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Structure of Classes of Circular Words dened by a

Quadratic Equivalence

By

Benoît RITTAUD *

Abstract

A circular word is a finite word such that its last letter is assumed to be followed by its first one.

Assuming combinatorial constraints on such circular words gives rise to intersting algebraic structures,
as shown in [5] and [4] in the case of the Fibonacci constraint. Here, we consider the case of equivalence
classes of circular words dened by an equivalence relation derived from the polynomial X^{2}-kX-1

(with k\geq 1 integer). We also provide a link with spanning trees of graphs.

§1. Introduction

In [5], a circular word on an alphabet \mathcal{A} is defined as a finite word whose last letter is assumed

to be followed by the first one. A finite word W being given, \overline{W} denotes the corresponding circular

word. Combinatorial constraints on circular words leads to interesting group properties. The

Fibonacci case ( \mathcal{A}=\{0,1\} ,
words with no factor equal to 11) is extensively studied in [5], as

well as some applications. In the Fibonacci case, any circular word of even length is equivalent
to \mathrm{a} (essentially unique) admissible one (under the equivalence relation defined by. . . abc. . .

=

. . . (a-1)(b-1)(c+1)\ldots) . This fact is helpful to count its elements in an elementary way.

Here, the aim is to investigate the case of an equivalence between circular words derived from

the polynomial X^{2}-kX1 with k\geq 1 integer (the Fibonacci case corresponding to k=1 ). Such

an equivalence relation provides, for any circular word, an admissible form, essentially unique,
in which no factor of the form mk appears for m>0 (Theorem 3.1). We describe the group

structure of such circular words, extending in a natural way the results obtained in [5] in the

case k=1 (Theorems 4.3 and 4.4). We also show how the assumption for circular words to be

of even length, a necessary condition in the context of [5], can be removed (see the remark at

the end of section 3.2).
In section 5, we mention a combinatorial interpretation of the sets of circular words with the

quadratic equivalence X^{2}-kX-1
,

in terms of spanning trees of a particular family of graphs,
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extending an observation made in the case k=1 in [4]. Eventually, in section 6, we mention

some open questions and perspectives.

§2. Denitions and notation

An alphabet and an integer \ell>0 being given, \mathrm{a} (dotted) circular word of length \ell on this

alphabet is an ordered set of letters indexed by \mathbb{Z}/\ell \mathbb{Z} . The letter indexed by the neutral element

0 of \mathbb{Z}/\ell \mathbb{Z} is referred as the initial letter of the word. To avoid confusion with ordinary words of

length \ell
,

we write \overline{W}=w_{0}\overline{\ldots w_{\ell-1}} for the circular word \overline{W} of initial letter w_{0} and corresponding
to the word W= w0. . . w_{\ell-1} . (Hence, \overline{W}=\overline{W}' iff W=W' ; note that, on the contrary,
\overline{00100} is not equal to \overline{10000}. ) The shift on circular words is the transformation  $\sigma$ defined by

 $\sigma$(w_{0}\ldots w_{\ell-1})=w_{1}\ldots w_{\ell-1}w\ell=w_{1}\ldots w_{\ell-1}w_{0}.
With the single exception of the end of section 3.2, all circular words considered in this

article are defined on the alphabet \mathbb{Z} . Also, the value k>0 is a fixed integer, and we put

\mathcal{A}=\{0, . . . , k\}.
Let

F_{0}=1 F_{1}=k+1 F_{n}=kF_{n-1}+F_{n-2} for n\geq 2.

For any circular word \overline{W}=w_{0}\overline{\ldots w_{\ell-1}} ,
we define

N(\displaystyle \overline{W})=\sum_{0\leq i<\ell}w_{i}F_{i}.
We say that a word W or a circular word \overline{W} is k ‐admissible (or, simply, admissible) iff, for all

i
,

we have 0\leq w_{i}\leq k and w_{i}=k\Rightarrow w_{i-1}=0 . Recall that N
,

defined on the set of admissible

finite words not ending with a 0 ,
is bijective on \mathbb{N}^{*} . Its inverse function provides the greedy

expansion of integers in the numeration system defined by the scale (F_{n})_{n\geq 0} (for a presentation
of such kind of numeration systems, see the notion of U ‐representation given in [2]).

For any integer i
,

let $\tau$_{i}=$\sigma$^{-i} $\tau \sigma$^{i} ,
where  $\tau$ is the transformation on circular words such

that, for any \overline{W}=w_{0}\overline{\ldots w_{\ell-1}} of length at least 3:

 $\tau$(\overline{W})=(w_{0}+1)w_{1}\ldots w_{\ell-3}\overline{(w_{\ell-2}}-k)(w_{\ell-1}-1) .

Write \overline{W}\approx\overline{X} whenever \overline{W} and \overline{X} are equivalent under the action of the $\tau$_{i}\mathrm{s} . For \overline{W}\approx\overline{X}
and \overline{X} admissible, we say that \overline{X} is an admissible form of \overline{W}.

§3. Admissible forms

Our first aim here is to prove the following result.

Theorem 3.1. For any circular word \overline{W} on \mathbb{Z}
,

there exists a unique admissible form of
it

,
denoted by Z(\overline{W}) ,

with the only exception of \overline{0^{2\ell}}\approx(0k)^{\ell}\approx(k0)^{\ell}.

The first subsection is devoted to the existence part of the proof, the second subsection to

the unicity part. Eventually, the third subsection deals with the difference between this theorem
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and Proposition 2.1 of [5], which states the same result for the particular case k=1 but in a

different way because of a more restrictive definition of circular words.

§3.1. Existence of an admissible form

Note first that the application $\tau$_{0}^{-1}\circ\cdots\circ$\tau$_{\ell-1}^{-1} is the application that adds the value k to

each letter of a given circular word. Hence, in the sequel, we are allowed to assume that \overline{W} is a

circular word on \mathbb{N}.

To prove the existence, it is sufficient to prove that for any admissible circular word \overline{W}=

w_{0}\overline{\ldots w_{\ell-1}} and any i
,

the word \overline{X}=x_{0}\overline{\ldots x_{\ell-1}} obtained by replacing w_{i} by w_{i}+1 in \overline{W} has

an admissible form. The circular word X is non‐admissible iff w_{i-1}w_{i}=1k' or w_{i}=k ,
where

k'=k-1.

In the first case, we have w_{i+1}<k (since \overline{W} is admissible), so we consider $\tau$_{i+1}(\overline{X}) . If

w_{i+2}<k ,
then this latter circular word provides an admissible form for \overline{X} . If w_{i+2}=k ,

then

we write \overline{X}\approx$\tau$_{i+1}(\overline{X})\approx$\tau$_{i+3}($\tau$_{i+1}(\overline{X})) and, iterating the process while necessary makes the

sum \displaystyle \sum_{i}w_{i} decreases strictly and the letters remaining nonnnegative, so we eventually get an

admisssible form for \overline{X}.
Consider now the second case, in which w_{i}=k . In this case, we can write \overline{X}\approx$\tau$_{i+1}0

$\tau$_{i}^{-1}(\overline{X})=\overline{Y}=y_{0}\overline{\ldots y_{\ell-1}} . Note that we have y_{i-2}y_{i-1}y_{i}y_{i+1}=(x_{i-2}+1)k'0(x_{i+1}+1) (since
x_{i-1}=0 by admissibility of \overline{W} ), and that no other letter of \overline{X} changes when $\tau$_{i+1}\circ$\tau$_{i}^{-1} is applied
to it. Since, again by admissibility of \overline{W} ,

we have x_{i+1}<k ,
we then get that the admissibility of

\overline{Y} only depends on its factors y_{i-3}y_{i-2} and yy. The latter one is simple to deal with, since

the only possible issue is the case y_{i+2}=k ,
for which we can apply $\tau$_{i+2} (note that y_{i+1}>0 ),

and iterating with $\tau$_{i+4}, $\tau$_{i+6} etc. if necessary (and apply the same reasoning as before on the

sum \displaystyle \sum_{i}y_{i}) . The first one, together with the admissibility of \overline{W} , implies that the only possib
ilities for Y to be non‐admissible are the cases y_{i-2}=k+1 and y_{i-3}y_{i-2}=mk with m>0 . In

the second case, the circular word \overline{Z}=$\tau$_{i-1}(\overline{Y}) is admissible. In the first case, we iterate the

same reasoning as before (replacing i by i-2
,

then by i-4
, etc.) until we get an admissible

word or until the position of the problematic factor eventually comes back, by circularity, to the

index i . Two possibilities are, then, to be distinguished: if \ell is even, then, by induction, we get

that \overline{W}=(0k)^{\ell/2} (or (k0)^{\ell/2} ). If \ell is odd, then an induction gives that, up to a shift, we have

\overline{W}=k(0k)^{(\ell-1)/2} ,
so \overline{W} is not admissible, a contradiction.

§3.2. Unicity of the admissible form

Note from now that the relations \overline{0^{2\ell}}\approx\overline{(0k)^{\ell}}\approx\overline{(k0)^{\ell}} are given by the relation $\tau$_{1}\circ$\tau$_{3}\circ\cdots 0

$\tau$_{2\ell-1}((k0)^{\ell})=$\tau$_{0}\circ$\tau$_{2}\circ\cdots\circ$\tau$_{2\ell-2}.
We consider two admissible words, \overline{W}=w_{0}\overline{\ldots w_{\ell-1}} and \overline{X}=x_{0}\overline{\ldots x_{\ell-1}} ,

such that, for

some integers a_{0} ,
. . .

, a_{\ell-1} ,
we have \overline{X}=$\tau$_{0}^{a_{0}}0\cdots\circ$\tau$_{\ell-1}^{a_{l-1}}(\overline{W}) .

Lemma 3.2. For all i
,

we have |a_{i}|\leq 1.

Proof. For any i\in \mathbb{Z}/\ell \mathbb{Z} ,
we have

(3.1) x_{i}=w_{i}+a_{i}-ka_{i+1}-a_{i+2}.
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We assume, without loss of generality, that a=a_{0}=\displaystyle \max_{i}(|a_{i}|) . Taking i=\ell-1 in

Equation (3.1) gives ka+a_{1}-a_{\ell-1}=w_{\ell-1}-x_{\ell-1} ,
so (k-2)a\leq k.

If k>4 ,
then we get a\leq 1 which is the desired result.

If k=4
,

then (k-2)a\leq k implies a\leq 2 . Assume a=2 : taking i=\ell-1 in Equation (3.1)
gives 8+a_{1}-a_{\ell-1}\leq 4 ,

so a_{1}=-2 and a_{\ell-1}=2 . Taking i=0 in Equation (3.1) then gives

x_{0}-w_{0}=2+8-a_{2}\geq 10-2=8 ,
which is impossible. Hence, a\leq 1.

If k=3 ,
then the relation (k-2)a\leq k gives a\leq 3 . Assume a=3 . Then, Equation (3.1)

for i=\ell-1 gives x_{\ell-1}-w_{\ell-1}=a_{\ell-1}-9-a_{1} . Since x_{\ell-1}-w_{\ell-1}\geq-3 ,
we get a_{\ell-1}=3=-a_{1}.

Taking i=0 in Equation (3.1) gives x_{0}-w_{0}=12-a_{2}\geq 9 ,
which is impossible. Suppose

now a=2 . Equation (3.1) for i=\ell-1 becomes w_{\ell-1}-x_{\ell-1}-a_{1}+a_{\ell-1}=6 ,
which gives

a_{1}=-2 and/or a_{\ell-1}=2 . If, for example, a_{\ell-1}=2 ,
then Equation (3.1) for i=\ell-2 leads to

x_{\ell-2}=w_{\ell-2}+a_{\ell-2}-8\leq-6 ,
which is impossible, so a\leq 1 . (The case a_{1}=-2 is similar.)

If k=2
,

then Equation (3.1) for i=\ell-1 gives x_{\ell-1}-w_{\ell-1}=a_{\ell-1}-2a-a_{1} . Since

x_{\ell-1}-w_{\ell-1}\geq-2 ,
we have a_{\ell-1}-a_{1}\in\{2a, 2a-1, 2a-2\} . If a_{\ell-1}-a_{1}=2a or 2a-1

,
we can

assume, for example, that a_{1}=-a ,
so Equation (3.1) for i=0 gives x_{0}-w_{0}=3a-a_{2}\geq 2a . Since

x_{0}-w_{0}\leq 2 ,
we therefore have a\leq 1 . Hence, we can assume from now that a_{\ell-1}-a_{1}=2a-2,

and also that neither a_{\ell-1} nor a_{1} is equal to a in modulus, so a_{\ell-1}=a-1 and a_{1}=1-a . This

gives, in Equation (3.1) for i=0 ,
that x_{0}-w_{0}=3a-2-a_{2}\geq 2a-2 . Since, again, x_{0}-w_{0}\leq 2,

we obtain a\leq 2 . If a=2
,

then a_{1}=-1, a_{\ell-1}=1 ,
and Equation (3.1) for i=0 implies x_{0}=2,

w_{0}=0 and a_{2}=2 . Equation (3.1) for i=\ell-1 then gives x_{\ell-1}=w_{\ell-1}-2 ,
so x_{\ell-1}=2 and

w_{\ell-1}=0 ,
but we have now x_{0}=x_{\ell-1}=2 ,

which is impossible since \overline{X} is ad missible.

The case k=1 was proved in [5], Lemma 2.2. Note that the difference in the definition of

equivalence between circular words in the present paper and in [5] (see the end of section 3.2)
does not prevent us from the use of Lemma 2.2 of [5], since the restriction to words in \mathbb{N} is

nowhere used in that Lemma. \square 

Lemma 3.3. We have

N(\overline{X})=N(\overline{W})+a_{0}(1-F_{\ell})+a_{1}(1-F_{\ell-1}) .

Proof. Simple verification. \square 

Lemmas 3.2 and 3.3 enable us now to provide the proof of the desired result. Assume for

example that N(\overline{W})\leq N(\overline{X}) . Since we also have N(\overline{X})<F_{\ell} ,
Lemma 3.2 ensures that the pair

(a_{0}, a_{1}) belongs to the set \{(0,0) , (-1,0) , (0, -1) , (-1,1
By the unicity of the greedy expansion of integers in the scale (F_{n})_{n\geq 0} ,

the case (a_{0}, a_{1})=

(0,0) implies \overline{W}=\overline{X} . The case (a_{0}, a_{1})=(-1,0) forces the equalities \overline{W}=\overline{0^{\ell}} and \overline{X}=(0k)^{\ell/2}
(so \ell is even; if \ell is odd, the circular word \overline{X} such that N(\overline{X})=F_{\ell}-1 is not admissible).

Consider the case (a_{0}, a_{1})=(-1,1) . We have x_{0}=w_{0}+a_{0}-ka_{1}-a_{2}=w_{0}-(k+1)-a_{2},
so, since x_{0}\geq 0 ,

we must have w_{0}=k, a_{2}=-1 and x_{0}=0 . We then get from the equality

x_{1}=w_{1}+a_{1}-ka_{2}-a_{3} (and the fact that x_{1}\leq k ) that w_{1}=0, a_{3}=1 and x_{1}=k . An induction

eventually gives that \overline{W}=(k0)^{\ell/2} and \overline{X}=(0k)^{\ell/2}.
The last remaining case is (a_{0}, a_{1})=(0, -1) ,

which implies N(\overline{X})=N(\overline{W})+F_{\ell-1}-1 . We

have, in this case, x_{0}=w_{0}+k-a_{2} ,
so w_{0}=0 or w_{0}=a_{2}=1 . In this latter case, we have
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w_{1}<k (by admissibility of \overline{W} ), so x_{1}=w_{1}-1-k-a_{3}\leq(k-1)-1-k-a_{3}<0 ,
which is not

allowed. Hence, we have w_{0}=0 ,
so x_{0}=k-a_{2} ,

so a_{2}=0 or 1. Assume a_{2}=0 . We then have

x_{0}=k ,
so x_{\ell-1}=0 ,

so N(\overline{X})<F_{\ell-1} . Together with the relation N(\overline{X})=N(\overline{W})+F_{\ell-1}-1,
this implies \overline{W}=\overline{0^{\ell}} and N(\overline{X})=F_{\ell-1}-1 ,

so \overline{X}=(k0)^{\ell/2} . Hence, we can assume a_{2}=1 ,
so

we have (a_{1}, a_{2})=(-1,1) . The same induction as in the case (a_{0}, a_{1})=(-1,1) then gives the

desired conclusion.

Let us end the present section by the following remark. In [5], where only the case k=1 is

considered, circular words are defined on the alphabet \mathbb{N} and not, as here, on \mathbb{Z} . As a consequence,

the $\tau$_{i}\mathrm{s} do not define a group action on circular words, hence the statements are a little different.

The main difference between them is explained by the following propositions.

Proposition 3.4. Let T=\{$\tau$_{i}, 0\leq i<\ell\}\cup\{$\tau$_{i}^{-1}, 0\leq i<\ell\} . For some n\geq 1 ,
let

(t_{j})_{1\leq j\leq n} be a finite sequence of elements of T such that t_{1}\mathrm{o} . . . \circ t_{n}(\overline{W})=\overline{0^{\ell}} for some \overline{W} . The

circular word t_{2}\circ\cdots\circ t_{n}(\overline{W}) has at least one negative letter.

In particular, the words \overline{k^{\ell}} and \overline{0^{\ell}}, −which are equivalent when considered on the alphabet
\mathbb{Z} (see the relation $\tau$_{0}0

. . . \circ$\tau$_{\ell-1}(\overline{k^{\ell}})=0^{\ell} ) are not equivalent when they are considered on the

alphabet \mathbb{N}.

Proof. Write \overline{X}=t_{2}\mathrm{o}\cdots \mathrm{o}t_{n}(\overline{W}) . We have t_{1}(\overline{X})=\overline{0^{\ell}} ,
which is not possible if \overline{X} has only

nonnegative letters. \square 

Proposition 3.5. Let \overline{W} be a circular word of length \ell
, containing only nonnegative

letters, and non equivalent to \overline{0^{\ell}} . There exists t_{1} ,
. . .

, t_{n}\in T such that t_{1}\circ\cdots\circ t_{n}(\overline{W}) is

admissible and such that, for any i, t_{i}\circ\cdots\circ t_{n}(\overline{W}) has no negative letter.

Hence, the equivalence class of \overline{0^{\ell}} is the only one which is modified when considering equiv‐
alence of circular words on the alphabet \mathbb{N} instead of the alphabet \mathbb{Z}.

Proof. We know that, since \overline{W} is not equivalent to \overline{0^{\ell}} ,
it has exactly one admissible form.

An easy check in the proof in section 3.1 shows that the successive transformations applied to

\overline{W} and leading to its admissible form never lead to a negative letter. \square 

§4. Group structures

Proposition 4.1. For any \ell>0 ,
let \mathcal{G}\ell be the quotient set of the set of circular words of

length \ell by the equivalence relation dened by the $\tau$_{i}s . We embedd \mathcal{G}\ell with the binary operation,
denoted by + ,

in which the sum of two equivalent classes g_{1} and g_{2} is the equivalence class of
the circular word obtained by summing letter‐by‐letter any element of g_{1} and any element of g_{2}.

The set (, +) is an abelian group.

Proof. Trivial. \square 

Theorem 3.1 already showed that \mathcal{G}\ell is a finite set, our aim is now to determine explicitly
the form of the finite abelian group (, +) . Let us do first the following remark. For any \overline{W}=
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w_{0}\overline{\ldots w_{\ell-1}} ,
let S(\displaystyle \overline{W})=\sum_{i}w_{i} . For any (a0, . . .

, a_{\ell-1} ) \in \mathbb{Z}^{\ell} ,
we have  S($\tau$_{0}^{a_{0}}\circ\cdots\circ$\tau$_{\ell-1}^{a_{l-1}}(\overline{W}))\equiv

 S(\overline{W})\mathrm{m}\mathrm{o}\mathrm{d} k . In particular, \mathcal{G}\ell admits  S^{-1}(k) as a subgroup, so Card() is divided by k.

Now, let us consider the question of the cardinality of \mathcal{G}\ell.

Proposition 4.2. Let (c_{\ell})_{\ell} be the sequence dened by c_{0}=2, c_{1}=k and, for any \ell\geq 2,

c_{\ell}=kc_{\ell-1}+c_{\ell-2} . For any \ell>0 ,
we have

Card ()=\left\{\begin{array}{l}
c_{\ell} if \ell is odd;\\
c_{\ell}-2 if \ell is even.
\end{array}\right.
Proof. Consider the set of words of length \ell without the circular structure, and define

admissibility on it in the natural way. Let \mathcal{W}_{\ell} be the set of admissible words of length \ell : its

cardinality is equal to  F_{\ell} . Now, define G_{\ell} as the number of elements of \mathcal{W}_{\ell}' ,
the set of elements

of \mathcal{W}_{\ell} whose initial letter is not k . We split \mathcal{W}_{\ell}' into two subsets: the first is made by words

starting by 0 (it has F_{\ell-1} elements), the second made by words starting by a letter w such that

1\leq w<k (its cardinality is (k-1)G_{\ell-1} ). Therefore, we have G_{\ell}=F_{\ell-1}+(k-1)G_{\ell-1} . (Note
that G_{1}=k and G_{2}=k^{2}+2. )

Now, the set of admissible circular words of length \ell is written as the union of three sets:

the set of admissible words of length \ell ending with a  0 (cardinality: F_{\ell-1} ), the set of admissible

words ending by some letter w with 1\leq w<k (hence starting by a letter strictly less than

k
,

so of cardinality (k-1)G_{\ell-1} ), and the set of admissible words ending by 0k (hence starting

by a letter strictly less than k
,

so of cardinality G_{\ell-2} ). From all of this, denoting temporarily

by b_{\ell} the cardinality of the set of admissible circular words of length \ell
,

we get the equality

 b_{\ell}=F_{\ell-1}+(k-1)G_{\ell-1}+G_{\ell-2} ,
so b_{\ell}=F_{\ell-1}+F_{\ell-3}+(k-1)b_{\ell-1} . An induction then shows

that b_{n}=c_{n} for all n
,

and the conclusion is given by Theorem 3.1. \square 

Theorem 4.3. Put \triangle=k^{2}+4 . We have

\mathcal{G}_{2\ell} is isomorphic to \left\{\begin{array}{l}
(\mathbb{Z}/\sqrt{c_{2\ell}}/\triangle \mathbb{Z})\times(\mathbb{Z}/\sqrt{c_{2\ell}\triangle}\mathbb{Z}) if \ell=2n and k odd;\\
(\mathbb{Z}/\sqrt{4c_{2\ell}}/\triangle \mathbb{Z})\times(\mathbb{Z}/\sqrt{\triangle c_{2\ell}}/4\mathbb{Z}) if \ell=2n and k even;\\
(\mathbb{Z}/\sqrt{c_{2\ell}-2}\mathbb{Z})^{2} if \ell=2n+1.
\end{array}\right.
Proof. Put u_{0}=1, u_{1}=k^{2}+2, u_{2}=(k^{2}+2)u_{1}-2 and u_{n+1}=(k^{2}+2)u_{n}-u_{n-1} for

any n\geq 3 . Let \overline{W}=10^{2\ell-1} (but note that what follows would remain true for any circular

word). For any positive integer a
,

we write a \overline{W} for the sum \overline{W}+\cdots+\overline{W} containing a

terms. (For a negative value of a, a\overline{W} stands for (-a) . (‐ \overline{W}). ) A simple verification shows that

u_{1}\cdot\overline{W}=$\sigma$^{2}(\overline{W})+$\sigma$^{-2}(\overline{W}) . Therefore, we get

u_{2}\cdot\overline{W}=(u_{1}^{2}-2)\cdot\overline{W}
=u_{1} . ($\sigma$^{2}(\overline{W})+$\sigma$^{-2}(\overline{W}))-2\cdot\overline{W}
=$\sigma$^{2}(u_{1} . \overline{W})+$\sigma$^{-2}(u_{1} . \overline{W})-2\cdot\overline{W}
=$\sigma$^{2}($\sigma$^{2}(\overline{W})+$\sigma$^{-2}(\overline{W}))+$\sigma$^{-2}($\sigma$^{2}(\overline{W})+$\sigma$^{-2}(\overline{W}))-2\cdot\overline{W}
=$\sigma$^{4}(\overline{W})+$\sigma$^{-4}(\overline{W}) .
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An elementary induction then shows that, for any n\geq 1 ,
we have u_{n} \overline{W}=$\sigma$^{2n}(\overline{W})+

$\sigma$^{-2n}(\overline{W}) .

Put v_{n}=\displaystyle \sum_{0\leq i\leq n}ku_{i} : what precedes therefore gives that, for \ell=2n+1 ,
the circular word

\overline{10^{2\ell-1}} satisfies v_{n}\cdot\overline{10^{2\ell-1}}=\overline{(k0)^{\ell}} ,
so \overline{10^{2\ell-1}} is of order at most v_{n} . This is true as well for

010^{2\ell-2} ,
and recall that \mathcal{G}_{2\ell}=\langle 010^{2\ell-2},  10^{2\ell-1}\rangle . Eventually, an induction shows that  v_{n}^{2}=c_{2\ell}-2

for any n and \ell=2n+1 . Hence, the case \ell=2n+1 is proved.
Assume now that \ell=2n and put \overline{W}=0^{2n-1}10^{2n} . We have v_{n-1}\overline{W}\approx(0k)^{2n-1}00 and

u_{n}\overline{W}\approx 0^{4n-1}2 ,
so v_{n}\overline{W}\approx 0^{4n-1}k\approx-v_{n-1}\overline{W} ,

so the order of \overline{W} divides v_{n-1}+v_{n} . Let

s_{n}=(v_{n-1}+v_{n})/(k^{2}+4) . An induction show that, for any n
,

we have s_{n}=(k^{2}+2)s_{n-1}-s_{n-2}
with s_{1}=k and s_{2}=k^{3}+2k ,

so s_{n}\in \mathbb{N} . Another induction shows that c_{4n}-2=\triangle s_{n}^{2} . Since W

and  $\sigma$(\overline{W}) are of the same order dividing \triangle s_{n} and since \langle\overline{W},  $\sigma$(\overline{W})\rangle=\mathcal{G}_{2\ell} ,
there exists  $\delta$ and  $\delta$'

such that \triangle= $\delta \delta$' and such that \overline{W} is of order  $\delta$ s_{n} . The surjective morphism from (\mathbb{Z}/( $\delta$ s_{n})\mathbb{Z})^{2}
to \mathcal{G}_{2\ell} defined by (a, b)\mapsto a\overline{W}+b $\sigma$(\overline{W}) hence gives th at \triangle divides $\delta$^{2} . Since \triangle=k^{2}+4 ,

we

therefore have  $\delta$=\triangle in the case  k odd, and we are done in this case. If k=2k'
,

then we get
$\delta$'=1 or 2, and it only remains to prove that \overline{W} is of order (k^{\prime 2}+1)s_{n} ,

which is easily derived

from the observation that (v_{n-1}+k'u_{n})\overline{W}\approx(0k)^{2n}. \square 

For any \ell
,

the application \overline{W}\mapsto WWWW is an injective morphism of groups from \mathcal{G}\ell
into \mathcal{G}_{4\ell} ,

so the structure of \mathcal{G}_{2\ell} for even values of \ell is, in a sense, the most significant. It is

nevertheless possible to describe the structure of \mathcal{G}\ell for odd values of \ell as well. Here is a partial
result easy to obtain (we do not consider the general case, which is quite tiresome and, as is the

case of \mathcal{G}_{2\ell} with even value of \ell
, depends on whether  k is odd or even).

Theorem 4.4.  If\ell is odd and \ell\not\in 3\mathbb{N} , then \mathcal{G}\ell is monogenetic (i.e. isomorphic to \mathbb{Z}/c_{\ell}\mathbb{Z}).

Proof. The proof of Theorem 4.3 gives that, for the circular word \overline{W}=\overline{10^{\ell-1}} of length
\ell=4n+1 (resp. 4n+3 ), we have u_{n}(\overline{W})=$\sigma$^{2n}(\overline{W})+$\sigma$^{-2n}(\overline{W})=$\sigma$^{2n}(\overline{W})+$\sigma$^{2n+1}(\overline{W})=
$\sigma$^{2n-1}(\overline{W}) (resp. u_{n+1}(\overline{W})=$\sigma$^{2n+2}(\overline{W})+$\sigma$^{-2n-2}(\overline{W})=$\sigma$^{2n+2}(\overline{W})+$\sigma$^{2n+1}(\overline{W})=$\sigma$^{2n}(\overline{W}) ).
Hence, multiplying by u_{n} (resp. u_{n+1} ) again and again makes us attain all circular words of the

form 0^{i}10^{4n-i} iff \ell and  2n-1 (resp. 2n ) are mutually prime, which is the case iff \ell is not of the

form  6m+3 . Hence, if \ell\neq 6m+3 is odd, \mathcal{G}\ell is monogenetic. \square 

§5. Spanning trees

Classically, the \ell ‐th wheel \mathcal{W}_{\ell} is the graph with vertices c, r_{1} ,
. . . r_{\ell} ,

and with edges cr_{i} for

all i and r_{i}r_{i+1} for all i (this latter being understood modulo \ell
,

as in the sequel). Here, we will

talk about the \ell‐th wheel  k^{2} ‐reinforced, which means the graph \mathcal{W}_{\ell,k^{2}} made of the wheel \mathcal{W}_{\ell} in

which each r_{i} is linked to c by k^{2} distinct edges instead of only one. Note that \mathcal{W}_{\ell,1^{2}}=\mathcal{W}_{\ell} . It

is remarked in [4] that, for this case k=1
,

the number of spanning trees of \mathcal{W}_{\ell} is equal to the

cardinality of \mathcal{G}_{2\ell} (thanks to a result of Kenneth Rebman [3]), and that there exists a natural

bijection between the two sets. The present section is devoted to the following generalization.
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Theorem 5.1. Let k\geq 1 be fixed. For any \ell\geq 1 ,
the number of spanning trees of \mathcal{W}_{\ell,k^{2}}

is equal to the cardinality of \mathcal{G}_{2\ell}.

Proof. Let s_{\ell} be the number of spanning trees of \mathcal{W}_{\ell,k^{2}} . The value of s_{\ell} is given by
Kirchhoff�s theorem (see [1]): let D_{\ell} and A_{\ell} be respectively the degree matrix (the diagonal
matrix whose i‐th diagonal coefficient is the degree of the i‐th vertex of the graph) and the

adjacency matrix (the matrix whose coefficient at the i‐th line and j‐th column is the number of

edges from i to j) of \mathcal{W}_{\ell,k^{2}} . Then, the modulus of any cofactor of D_{\ell}-A_{\ell} is equal to s_{\ell}.

Here, writing D_{\ell} and A_{\ell} with the vertices written in the order r_{1} ,
. . .

, r_{\ell}, c
,

and taking the

minor of D_{\ell}-A_{\ell} made of the n first rows and column, we easily get that s_{\ell} is equal (up to a

change of sign) to the determinant of the matrix whose coefficients are equal to k^{2}+2 on the

diagonal, to -1 on the super‐ and sub‐ diagonal, also to -1 at the top‐right and bottom‐left,
and 0 elsewhere. It is now a classical exercice to prove that this determinant satisfies the same

induction property as Card() and that both values are equal for \ell=1 and 2, hence ending
the proof. (For details in the case k=1

,
see [3], section \mathrm{B}

,
matrix A_{n} ,

the general case being a

straightforward generalization.) \square 

§6. Open questions and perspectives

The most immediate question to ask concerns the generalization of the study to circular

words with a combinatorial constraint defined by a more general polynomial. It appears that, in

some cases, the corresponding notion of admissibility does not provide a theorem of existence and

unicity as in Theorem 3.1. A simple example is produced by the polynomial P(X)=X^{2}-2X-2,
defining admissible circular words as circular words on \mathcal{A}=\{0 , 1, 2 \} not containing the factor 22.

The circular words \overline{1010} and \overline{0101} ,
both equivalent to \overline{2222}

,
are two different admissible forms of

the same equivalence class (this one being different of the class of the identity element). Hence,
it seems that the notion of admissible circular words, at least in the naive definition here in use,

is not enough in itself. Fortunately, an alternative way to count the number of class of circular

words is suggested by the use of the determinant of an operato \mathrm{r} (see [5], section 3.2). Also, to

get the full structure of the groups \mathcal{G}\ell ,
an interesting approach is given by polynomial algebra.

Circular words of length \ell on the alphabet \mathbb{Z} can be seen as elements of \mathbb{Z}[X]/(X^{\ell}-1) ,
and the

combinatorial constraint defined by a polynomial P on these circular words leads to consider the

set \mathbb{Z}[X]/(X^{\ell}-1, P(X)) . The Euclidean division provides therefore a powerful tool to get the

order of a given element of this set. All of this is to be written in a forthcoming paper.

Some computer experiments show that the structure of \mathcal{G}\ell obtained in Theorem 4.3 is quite

particular. For many other choices of  P
,

the groups \mathcal{G}\ell seems to be monogenetic (apart for the

case  P(X)=X^{2}-kX+1 with k\geq 3 ,
for which the group of corresponding circular words of

length \ell seems to be of the form (\mathbb{Z}/a\mathbb{Z})\times(\mathbb{Z}/d_{\ell}\mathbb{Z})^{2} ,
where a depends only on the parity of \ell ). In

particular, despite a quite natural guess, the groups of circular words defined by the Tribonacci

polynomial  P(X)=X^{3}-X^{2}-X-1 are probably never of the form (\mathbb{Z}/d\mathbb{Z})^{3} ,
neither close

to it, whatever \ell is. Therefore, one may ask the question of the description of the set of finite

abelian groups that can be regarded as the group of circular words of length \ell quotiented by
some combinatorial equivalence given by a polynomial  P.
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Another question is about a more general choice for the set of indices for a word. As defined

in the beginning of section 2, a circular word is a word whose letters are indexed by \mathbb{Z}/\ell \mathbb{Z} . How

about a set of indices defined, for example, by (\mathbb{Z}/\ell \mathbb{Z})\times(\mathbb{Z}\ell'\mathbb{Z}) ? Write such a word as an array

\ell\times\ell' with a toral structure, and consider for example two combinatorial constraints, the one

acting horizontally, the other vertically. It is quite easy to show that this provides a finite abelian

group: how can we describe it? In particular, we leave the reader with the following exercise:

for horizontal and vertical constraints both defined by the Fibonacci rule (i.e. the polynomial

P(X)=X^{2}-X-1) ,
the group corresponding to (\ell ,

2 ) ‐circular words quotiented by the natural

equivalence relation is the trivial group for any \ell.
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