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Helical Voronoi tilings on the cylinder

Novel Development of Nonlinear Discrete Integrable Systems
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Abstract

A helical Voronoi tiling on the cylinder \mathbb{C}/\mathbb{Z} is one of the most simplied mathematical

models of phyllotaxis. Its bifurcation structure is described by the set of the generators z=

x+\mathrm{i}y, y>0 ,
for rectangular Voronoi tilings, which is a family of half‐circles in the upper half

plane. In relation to the parastichy transitions in phyllotaxis, we consider the limit set  $\Omega$(x)
of aspect ratios of the rectangular tiles, by fixing x and taking the limit as y\rightarrow 0 . If x is a

quadratic irrational, then  $\Omega$(x) is a finite set. Moreover, if x is linearly equivalent to the golden
section, then the shapes of the rectangular tiles tend to the square.

§1. Introduction

Beautiful features of plants are observed in the regular arrangements of botanical

units such as seeds of a sunower, florets in the head inorescence of a daisy, and scales

on a pine cone. Symmetry of phyllotaxis is related to the golden section  $\tau$=(1+\sqrt{5})/2,
Fibonacci numbers 1; 1; 2; 3; 5; 8; 13; 21, \cdots

,
and continued fractions. See [1, 14, 15] for

the comprehensive overview on this interdisciplinary subject. For the recent progress

on the dynamical study of self‐organizing processes, see [5, 16, 23].
One of the most basic models on the geometry of phyllotaxis is a helical Voronoi

tiling on the cylinder \mathbb{C}/\mathbb{Z}[2 , 6, 7, 18 ] ,
which is periodic with respect to the additive
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group of translations generated by a single element z=x+\mathrm{i}y, y>0 . It naturally has

a linear lattice structure, and is a prototype for other models such as the disk model

[17, 18], the conical model [3] and the constant curvature model [19]. The bifurcation

diagram of helical Voronoi tilings is described by the family of half‐circles in the upper

half plane, whereas the parameter spaces of triangular spiral tilings and Voronoi spiral

tilings are described by families of real algebraic curves [20, 22].
In the phyllotaxis theory, x={\rm Re}(z) is called the divergence and \mathrm{e}^{y}=|\mathrm{e}^{-\mathrm{i}z}| is

called the plastochrone ratio. The transition of combinatorial structures depending on

the plastochrone ratio, with a divergence x fixed, is called parastichy transition. In this

paper, we consider the limit set  $\Omega$(x) of the shapes of rectangular tiles by taking the

limit as y\rightarrow 0 . If x is a quadratic irrational, then  $\Omega$(x) is a finite set. Moreover, if x is

linearly equivalent to the golden section  $\tau$
,
then the shapes of the rectangular tiles tend

to the square. This is an extended result of the shape invariance under compression
observed by Rothen and Koch [18], as shown in Section 5. See also [21, 22] for the shape
limits in triangular spiral tilings and quadrilateral Voronoi spiral tilings.

In Section 2, we dene helical Voronoi tilings on the cylinder \mathbb{C}/\mathbb{Z} as quotients of

planar Voronoi tilings with a lattice site set. It is shown that the tiles are rectangles
or hexagons. In Section 3, we describe the space of parameters of rectangular Voronoi

tilings with a given opposed parastichy pair. In Section 4, the relationship is shown

between the parastichy pair and the continued fraction expansion of the divergence. In

Section 5, we study the limit set  $\Omega$(x) of the shape parameters of rectangular tiles.

This work was inspired by Hizume�s figurative art works on phyllotactic paper‐

foldings, triangular spirals and aperiodic quasicrystals [10, 11, 12, 13].

§2. Helical Voronoi tilings on the cylinder

A tiling [9] of a two dimensional manifold X is a family \mathcal{T}=\{T_{j}\}_{j} of topological
disks T_{j}\subset X which covers X without gaps or overlaps, that is, X=\displaystyle \bigcup_{j}T_{j} and int (T_{j})\cap
int(T) =\emptyset, j\neq k . Each T_{j} is called a tile. Two distinct tiles T, T' are called adjacent
if T\cap T' contains at least two points.

Let z\in \mathbb{H}=\{z\in \mathbb{C} : {\rm Im}(z)>0\} ,
and  $\Lambda$= $\Lambda$(z) :=z\mathbb{Z}+\mathbb{Z} a lattice. The Voronoi

region [4] of the site  $\lambda$\in $\Lambda$(z) is given by

(2.1) V( $\lambda$)=V( $\lambda$;z):=\{ $\zeta$\in \mathbb{C}:| $\zeta$- $\lambda$|\leq| $\zeta-\lambda$'|, \forall$\lambda$'\in $\Lambda$(z)\}.

The family \mathcal{V}(z)=\{V(; z)\}_{ $\lambda$\in $\Lambda$(z)} is a tiling of the plane \mathbb{C} . It is a periodic tiling
with respect to the additive group of translations  $\Lambda$(z) ,

since  V( $\lambda$)=V(0)+ $\lambda$ for

each  $\lambda$\in $\Lambda$(z) . Moreover, we have \mathcal{V}(z)=\mathcal{V}(z+1)=z\cdot \mathcal{V}(-z^{-1}) because z\mathbb{Z}+\mathbb{Z}=

(z+1)\mathbb{Z}+\mathbb{Z}=z(\mathbb{Z}-z^{-1}\mathbb{Z}) .
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By the canonical projection  $\pi$ : \mathbb{C}\rightarrow \mathbb{C}/\mathbb{Z} ,
the plane \mathbb{C} is a covering space of the

cylinder \mathbb{C}/\mathbb{Z} . The Euclidean metric of \mathbb{C} induces a canonical distance in \mathbb{C}/\mathbb{Z} . The

Voronoi regions in \mathbb{C}/\mathbb{Z} with respect to the site set  $\pi$((z)) are given by

T( $\lambda$):=\{ $\zeta$\in \mathbb{C}/\mathbb{Z}: dist (  $\zeta$,  $\pi$( $\lambda$))\leq dist (  $\zeta$,  $\pi$($\lambda$')), \forall$\lambda$'\in $\Lambda$(z)\},  $\lambda$\in $\Lambda$(z) .

Note that T( $\lambda$)= $\pi$(V . The family \mathcal{T}(z) :=\{T( $\lambda$)\}_{ $\lambda$\in $\Lambda$(z)} admits a transitive action

of an additive group of translations  $\pi$(z\mathbb{Z}+\mathbb{Z})= $\pi$(z)\mathbb{Z} , generated by a single element

 $\pi$(z) .

Let B_{0}=\displaystyle \{z\in \mathbb{H} : |z-\frac{1}{2}|\leq\frac{1}{2}\} . If z\not\in \mathbb{Z}+B_{0} ,
then the two tiles V(0) , V(1)\in \mathcal{V}(z)

are adjacent to each other, and hence the Voronoi region T(0)=T(1) in the cylinder is

not simply connected. If z\in \mathbb{Z}+B_{0} ,
then T( $\lambda$) ,  $\lambda$\in $\Lambda$(z) ,

are simply connected, and

\mathcal{T}(z) is a tiling of the cylinder by convex polygons. It is called a helical Voronoi tiling

generated by z.

Suppose that z\in \mathbb{Z}+B_{0} ,
and fix a lattice  $\Lambda$= $\Lambda$(z) . The dual of a Voronoi tiling is

called a Delaunay diagram. The line segment \ell( $\lambda,\ \lambda$') joining two sites  $\lambda$,  $\lambda$'\in $\Lambda$ is called

a Delaunay edge if  V( $\lambda$) is adjacent to V($\lambda$') . Two distinct Delaunay edges may have

a point in common only at their endpoint. A connected component of the complement

\mathbb{C}\backslash \cup\ell( $\lambda,\ \lambda$') ,
where \ell( $\lambda,\ \lambda$') runs through all the Delaunay edges, is called a Delaunay

polygon. Each Delaunay polygon is inscribed in a circle. That is, a finite subset  $\Lambda$'\subset $\Lambda$

is the set of the corners of a Delaunay polygon if and only if there exists a disk  D such

that @D\cap $\Lambda$=$\Lambda$' and int (D)\cap $\Lambda$=\emptyset.
For three distinct complex numbers z_{1}, z_{2}, Z3\in \mathbb{C} ,

let

\displaystyle \angle(z_{1}, z_{2}, z_{3})=\mathrm{A}\mathrm{r}\mathrm{g}(\frac{z_{1}-z_{2}}{z_{3}-z_{2}}) ,

where - $\pi$<\mathrm{A}\mathrm{r}\mathrm{g}(z)\leq $\pi$ denotes the principal argument of  z\neq 0.

Lemma 2.1. Let z\in \mathbb{Z}+B_{0} . For the tiling \mathcal{V}(z) of the plane, there are  $\lambda$=

mz—a; $\lambda$'=nz-b\in $\Lambda$(z) with m, n\in \mathbb{N} and a, b\in \mathbb{Z} , such that the followings hold.

1. The tile V(0) is adjacent to V( $\lambda$) and V($\lambda$') ,

2.  $\lambda$, $\lambda$', $\lambda$'/ $\lambda$\in \mathbb{H} , mb—na =1, {\rm Re}($\lambda$')<0<{\rm Re}( $\lambda$) ,
and

3. Either

(a) \mathcal{V}(z) is a rectangular tiling, or

(b) \mathcal{V}(z) is a hexagonal tiling such that V(0) is adjacent to V( $\lambda$+$\lambda$') .

Proof. Since the site set  $\Lambda$= $\Lambda$(z) is a lattice, the Delaunay diagram is also

periodic with respect to the translation group  $\Lambda$ . Suppose that  V(0) is adjacent to

V V($\lambda$') ,  $\lambda$\neq$\lambda$' . Then we have either:
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(b) (c)

Figure 1. Voronoi tilings \mathcal{V}(( $\tau$-2)+\mathrm{i}y) on the cylinder \mathbb{C}/\mathbb{Z} ,
where  $\tau$=(1+\sqrt{5})/2

is the golden section. (a) y= 0:056, a hexagonal tiling with opposed parastichy pairs

{2, 3}, {5, 3}. (b)  y=0.0296149\cdots ,
a rectangular tiling with an opposed parastichy

pair {5, 3}. (c)  y=0.02 ,
a hexagonal tiling with opposed parastichy pairs {5, 3}, {5, 8}.

1. the quadrilateral \square (0,  $\lambda$,  $\lambda$+$\lambda$', $\lambda$') is a Delaunay polygon, or

2. \ell(0,  $\lambda$+$\lambda$') or \ell( $\lambda,\ \lambda$') is a Delaunay edge.

In the case 1, the quadrilateral \square (0,  $\lambda$,  $\lambda$+$\lambda$', $\lambda$') is a parallelogram which is inscribed

in a circle. Hence it is a rectangle. Denote by  $\lambda$=mz-a, $\lambda$'=nz-b, a, b, m, n\in \mathbb{Z}.

Since V(0) is also adjacent to V(- $\lambda$) and V(-$\lambda$') ,
we may assume that m, n>0

without loss of generality, which implies that  $\lambda$, $\lambda$'\in \mathbb{H} . Since  $\Lambda$= $\lambda$ \mathbb{Z}+$\lambda$'\mathbb{Z} ,
we

have |mb-na|=1 . We may further assume that $\lambda$'/ $\lambda$\in \mathbb{H} ,
which implies that

{\rm Re}($\lambda$')<0<{\rm Re}() and mb—na =1.

In the case 2, we may assume without loss of generality that V(0) is adjacent to

V V($\lambda$') , V( $\lambda$+$\lambda$') ,
and that  $\lambda$, $\lambda$', $\lambda$'/ $\lambda$\in \mathbb{H} . Denote by  $\lambda$=mz-a, $\lambda$'=nz-b.

Then we have m, n>0 ,
and mb‐na =1 because  $\Lambda$= $\lambda$ \mathbb{Z}+$\lambda$'\mathbb{Z} . Since \triangle(0,  $\lambda$,  $\lambda$+$\lambda$') is

a Delaunay polygon, $\lambda$' lies outside the circumscribing circle of \triangle(0,  $\lambda$,  $\lambda$+$\lambda$') ,
whereas

\square (0,  $\lambda$,  $\lambda$+$\lambda$', $\lambda$') is a parallelogram. This implies that \displaystyle \angle($\lambda$', 0,  $\lambda$)>\frac{ $\pi$}{2} ,
and hence

{\rm Re}($\lambda$')<0<{\rm Re}( $\lambda$) . \square 

In the phyllotaxis theory, the pair \{m, n\} is called an opposed parastichy pair of the

tiling \mathcal{V}(z) if V(0) is adjacent to V(mza) and V(nzb), and {\rm Re}(nz-b)\cdot{\rm Re}(mz-a)<0,
for some a, b\in \mathbb{Z}.

Figure 1 shows the parastichy transition of \mathcal{V}( $\tau$-2+\mathrm{i}y) ,
where  $\tau$ is the golden

section. The parastichy pairs consist of consecutive Fibonacci numbers.

Figure 2 shows the Delaunay diagrams for the Voronoi tilings \mathcal{V}(z) in Figure 1. If

\mathcal{V}(z) is a hexagonal tiling, then the Delaunay diagram consists of Delaunay triangles.
If \mathcal{V}(z) is a rectangular tiling, then the Delaunay digram is a parallel translate of \mathcal{V}(z) .
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(b) (c)

Figure 2. Delaunay diagrams for the Voronoi tilings \mathcal{V}(( $\tau$-2)+\mathrm{i}y) in Figure 1. (a)
y=0.056 ,

the line segment \ell( $\lambda,\ \lambda$') is a Delaunay edge, where  $\lambda$=3z+1, $\lambda$'=5z+2. (b)
 y=0.0296149\cdots ,

the rectangle \square (0,  $\lambda$,  $\lambda$+$\lambda$', $\lambda$') is a Delaunay polygon. (c) y=0.02,
the line segment \ell(0,  $\lambda$+$\lambda$') is a Delaunay edge.

§3. Helical hexagonal Voronoi tilings

Let z\in \mathbb{H} ,
and consider a tiling \mathcal{V}(z) . Suppose that the tile V(0) is adjacent

to V() ; V($\lambda$') ,
where  $\lambda$=mz -a, $\lambda$'=nz-b, m, n\in \mathbb{N} ,

mb—na =1 . If V(0)
is a rectangle, then the angle \angle($\lambda$', 0,  $\lambda$) is a right angle, and z lies on the half‐circle

C\left(\begin{array}{l}
\underline{b}\underline{a}\\
m,n
\end{array}\right)\cap \mathbb{H} , where

(3.1) C(\displaystyle \frac{a}{m}, \frac{b}{n})=\{z\in \mathbb{C} : \displaystyle \frac{nz-b}{mz-a}\in \mathrm{i}\mathbb{R}\}
The circle C\left(\begin{array}{l}
\underline{b}\underline{a}\\
m,n
\end{array}\right) is symmetric with respect to the real axis, and passes through the

points \displaystyle \frac{a}{m}, \displaystyle \frac{b}{n}\in \mathbb{R} . This, together with the assumption that mb—na >0 , implies that

\displaystyle \frac{a}{m}<{\rm Re}(z)<\frac{b}{n} for z\in C (\displaystyle \frac{a}{m}, \frac{b}{n}) .

Lemma 3.1. Let z\in \mathbb{Z}+B_{0} . Suppose that \mathcal{V}(z) is a hexagonal tiling such that

the tile V(0) is adjacent to V() ; V($\lambda$') ,  V( $\lambda$+ $\lambda$ where  $\lambda$= mz—a, $\lambda$'=nz-b,
m, n\in \mathbb{N} , mb—na =1 . Then z lies inside the circle (3.1). In particular, we have

\displaystyle \frac{a}{m}<{\rm Re}(z)<\frac{b}{n}.

Proof. Let z=x+\mathrm{i}y, y>0 . Fix x, m, n, a, b
,

and consider  $\lambda$= $\lambda$(z)=mz-a,
$\lambda$'=$\lambda$'(z)=nz-b as functions of y . Since  $\lambda$(z) , $\lambda$'(z)\in \mathbb{H} and {\rm Re}($\lambda$'(z))<0<
{\rm Re}( $\lambda$(z)) ,

the angle \angle($\lambda$', 0,  $\lambda$) is a decreasing function of y>0 . Since \ell(0,  $\lambda$+$\lambda$') is a

Delaunay edge, we have \displaystyle \angle($\lambda$', 0,  $\lambda$)>\frac{ $\pi$}{2} ,
which implies that {\rm Re}($\lambda$'/ $\lambda$)<0 ,

and z lies

inside the circle (3.1). \square 

Now suppose that |{\rm Re}(z)|<\displaystyle \frac{1}{2} for simplicity. For each pair of relatively prime

integers m, n>0 with (m, n)\neq(1,1) ,
there exist a, b\in \mathbb{Z} such that mb—na =1 and
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-\displaystyle \overline{\frac{1}{2}||||-\frac{3}{7}-\frac{2}{5}-\frac{1}{3}-\frac{2}{7}-\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}}|\frac{1}{7}\frac{1}{6}\frac{1}{5}\frac{1}{4}\frac{2}{7}\frac{1}{3}\frac{2}{5}\frac{3}{7}|^{\frac{1}{2}}|||
Figure 3. The set of generators of rectangular tilings. For each pair of relatively prime

integers m, n>0 ,
there exists a half circle C(\displaystyle \frac{a}{m}, \frac{b}{n}) ,

denoted by (m, n) ,
which is the set

of generators z\in \mathbb{H}, |{\rm Re}(z)|<\displaystyle \frac{1}{2} ,
of rectangular tilings with an opposed parastichy pair

\{m, n\}.

‐ \displaystyle \frac{1}{2}<\frac{a}{m}<\frac{b}{n}<\frac{1}{2} . Denote by  $\lambda$= $\lambda$(z) :=mz-a, $\lambda$'=$\lambda$'(z) :=nz-b . Lemma 3.1

implies that for z\in B_{0} with |{\rm Re}(z)|<\displaystyle \frac{1}{2}, \mathcal{V}(z) is a hexagonal tiling such that V(0) is

adjacent to V() , V($\lambda$') , V( $\lambda$+$\lambda$') and  $\lambda$, $\lambda$',  $\lambda$+$\lambda$'\in \mathbb{H} , if and only if z lies inside the

circle C(\displaystyle \frac{a}{m}, \frac{b}{n}) and outside C(\displaystyle \frac{a}{m}, \frac{a+b}{m+n}) and C(\displaystyle \frac{a+b}{m+n}, \frac{b}{n}) ,
that is, z\in W_{m,n} where

W_{m,n} :=\{z\in \mathbb{H} : |{\rm Re}(z)|<\displaystyle \frac{1}{2}, {\rm Re}(\displaystyle \frac{$\lambda$'}{ $\lambda$})<0, {\rm Re}(\displaystyle \frac{ $\lambda$+$\lambda$'}{ $\lambda$});{\rm Re}(\frac{$\lambda$'}{ $\lambda$+ $\lambda$})>0\}
Figure 3 shows the family of the half‐circles C(\displaystyle \frac{a}{m}, \frac{b}{n})\cap \mathbb{H} , denoted by (m, n) ,

in the

strip |{\rm Re}(z)|<\displaystyle \frac{1}{2}.

§4. Parastichies and continued fraction expansions

For x\in \mathbb{R} ,
let

x=a_{0}+\displaystyle \frac{1}{a_{1}+\frac{1}{a_{2}+}}=[a_{0}, a_{1}, a_{2}, ], a_{0}\in \mathbb{Z}, a_{i}\in \mathbb{N}, i\geq 1
be a continued fraction expansion of x . Dene the sequences \{p_{j}\}_{j\geq-1}, \{q_{j}\}_{j\geq-1},
\{p_{j,k}\}_{j\geq 0,0<k\leq a_{j+1}} ,

and \{q_{j,k}\}_{j\geq 0,0<k\leq a_{j+1}} as follows: p_{-1}=1, p_{0}=a_{0}, p_{1}=a_{0}a_{1}+1,

p_{j}=p_{j-2}+a_{j}p_{j-1} for j\geq 2;q_{-1}=0, q_{0}=1, q_{1}=a_{1}, q_{j}=q_{j-2}+a_{j}q_{j-1} for j\geq 2 ;

p_{j,k}=p_{j-1}+kp_{j} ; and q_{j,k}=q_{j-1}+kq_{j} . The ratio \displaystyle \frac{p_{j}}{q_{j}}=[a_{0}, a_{1}, a_{2}, \cdots, a_{j}] is called

a principal convergent of x
,

and \displaystyle \frac{p_{j,k}}{q_{j,k}}=[a_{0}, a_{1}, a_{2}, \cdots, a_{j}, k] is called an intermediate

converegent of x . If x\in \mathbb{Q} ,
there are only finitely many convergents of x.
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A pair of rational numbers \displaystyle \frac{a}{m}, \displaystyle \frac{b}{n} is called a pair of convergents of x\in \mathbb{R} if |bm-an|=
1 and either \displaystyle \frac{a}{m}<x<\frac{b}{n} or \displaystyle \frac{b}{n}<x<\frac{a}{m} . It is known that if \displaystyle \frac{a}{m}, \displaystyle \frac{b}{n} are a pair of convergents
of x

,
then either a=p_{j}, m=q_{j}, b=p_{j,k}, n=q_{j,k} with j even, or a=p_{j,k}, m=q_{j,k},

b=p_{j}, n=q_{j} with j odd, and 0<k\leq a_{j+1}.

Lemma 4.1. Let z=x+\mathrm{i}y\in \mathbb{Z}+B_{0} ,
and suppose that \mathcal{V}(z) is a hexagonal tiling

such that V(0) is adjacent to V() ; V($\lambda$') ,  V( $\lambda$+ $\lambda$ where  $\lambda$=mz-a, $\lambda$'=nz-b,
m, n\in \mathbb{N} and mb—na =1 . Then \displaystyle \frac{a}{m}, \displaystyle \frac{b}{n} are principal or intermediate convergents of x,

at least one of which is principal.

Proof. We have mb—na =1
,

and \displaystyle \frac{a}{m}<x<\frac{b}{n} by Lemma 3.1. Hence, \displaystyle \frac{a}{m}, \displaystyle \frac{b}{n} are a

pair of convergents of x. \square 

§5. Shape limit of helical rectangular Voronoi tilings

Fix an irrational number x such that |x|<\displaystyle \frac{1}{2} ,
and dene the sequences a_{j}, q_{j} and

q_{j,k}, j\geq 0, 0<k\leq a_{j+1} ,
as in Section 4. For each j\geq 0 and 0<k\leq a_{j+1} ,

let

\displaystyle \frac{a_{j,k}}{m_{j,k}}<\frac{b_{j,k}}{n_{j,k}} be a pair of convergents of x such that \{m_{j,k}, n_{j,k}\}=\{q_{j}, q_{j,k}\} . Denote by

C_{j,k}(x)=C(\displaystyle \frac{a_{j,k}}{m_{j,k}}, \frac{b_{j,k}}{n_{j,k}}) . There exists a unique y_{j,k}>0 such that  z_{j,k}:=x+\mathrm{i}y_{j,k}\in
 C_{j,k}(x) . Let $\lambda$_{j,k}=m_{j,k}z_{j,k}-a_{j,k}, $\lambda$_{j,k}'=n_{j,k}z_{j,k}-b_{j,k} . The ratio

R_{j,k}(x):=\displaystyle \frac{$\lambda$_{j,k}'}{$\lambda$_{j,k}}=\frac{n_{j,k}(x+\mathrm{i}y_{j,k})-b_{j,k}}{m_{j,k}(x+\mathrm{i}y_{j,k})-a_{j,k}}\in \mathrm{i}\mathbb{R}
is called a shape parameter of the tiling \mathcal{V}(z_{j,k}) . It is the aspect ratio, or the modulus,
of the Delaunay polygon \square (0, $\lambda$_{j,k}, $\lambda$_{j,k}+$\lambda$_{j,k}', $\lambda$_{j,k}') ,

which is similar to the rectangular
tile T(0) in \mathcal{V}(z_{j,k}) . Let

 $\Omega$(x) := $\Omega$(\{R_{j,k}(x) : j\geq 0,0<k\leq a_{j+1}\})

be the limit set of \{R_{j,k}(x)\}_{j,k} as  j\rightarrow\infty , i.e., the set of the accumulation points of

\{R_{j,k}(x)\}_{j,k}.
Denote by \langle $\xi$\rangle\in (- \displaystyle \frac{1}{2}, \frac{1}{2} ] a fractional part of  $\xi$\in \mathbb{R} ,

such that [ $\xi$]:= $\xi$-\langle $\xi$\rangle is

(one of) the closest integer to  $\xi$ . We have \langle xm_{j,k}\rangle=xm_{j,k}-a_{j,k}={\rm Re}($\lambda$_{j,k})>0,
\langle xn_{j,k}\rangle=xn_{j,k}-b_{j,k}={\rm Re}($\lambda$_{j,k}')<0.

Lemma 5.1. R_{j,k}(x)=\displaystyle \mathrm{i}(-\frac{q_{j,k}\langle xq_{j,k}\rangle}{q_{j}\langle xq_{j}\rangle})^{\frac{(-1)^{j}}{2}}
Proof. Since $\lambda$_{j,k}'/$\lambda$_{j,k}\in \mathrm{i}\mathbb{R} , we have {\rm Re}($\lambda$_{j,k}'/$\lambda$_{j,k})=0 ,

where

|$\lambda$_{j,k}|^{2}\displaystyle \cdot{\rm Re}(\frac{$\lambda$_{j,k}'}{$\lambda$_{j,k}})=(m_{j,k}x-a_{j,k})(n_{j,k}x-b_{j,k})+m_{j,k}n_{j,k}y_{j,k}^{2}.
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So we have

y_{j,k}=(-\displaystyle \frac{(m_{j,k}x-a_{j,k})(n_{j,k}x-b_{j,k})}{m_{j,k}n_{j,k}})^{\frac{1}{2}},
|$\lambda$_{j,k}|^{2}=(m_{j,k}x-a_{j,k})^{2}+m_{j,k}^{2}y_{j,k}^{2}=\displaystyle \frac{m_{j,k}x-a_{j,k}}{n_{j,k}},

and hence

{\rm Im}(\displaystyle \frac{$\lambda$_{j,k}'}{$\lambda$_{j,k}})=\frac{y_{j,k}}{|$\lambda$_{j,k}|^{2}}=(-\frac{n_{j,k}(n_{j,k}x-b_{j,k})}{m_{j,k}(m_{j,k}x-a_{j,k})})^{\frac{1}{2}}=(-\frac{n_{j,k}\langle xn_{j,k}\rangle}{m_{j,k}\langle xm_{j,k}\rangle})^{\frac{1}{2}} .

\square 

Suppose that x is a quadratic irrational. Then it has a periodic continued fraction

expansion

x=[a_{0}, a_{1}, a_{2}, . . .]

=[a_{0}, a_{1}, . . . , a_{j_{0}}, \overline{b_{1},\cdots,b_{d}}]
=[a_{0}, a_{1}, . . . , a_{j_{0}}, b_{1}, . . . , b_{d}, b_{1}, \cdots ; b_{d}, . . .].

We may assume that j_{0}, d are even, by choosing bigger ones if necessary. For each

1\leq s\leq d ,
let

$\omega$_{s}=[\overline{b_{s},\ldots,b_{d},b_{1},\ldots,b_{s-1}}]

be a purely periodic continued fraction, and h_{s}(X)=X^{2}-$\alpha$_{s}X-$\beta$_{s}\in \mathbb{Q}[X] a quadratic

polynomial such that h_{s}($\omega$_{s})=0 . A conjugate $\omega$_{s}' of $\omega$_{s} is dened by h_{s}($\omega$_{s}')=0 and

$\omega$_{s}'\neq$\omega$_{s} . It is written as

$\omega$_{s}':=-[\overline{b_{s-1},\ldots,b_{1},b_{d},\ldots,b_{s}}]^{-1},

see [8].

Theorem 5.2. If x is a quadratic irrational, the limit set  $\Omega$(x) is written as

 $\Omega$(x)=\{\mathrm{i}(-h_{s+1}(k))^{\frac{(-1)^{\mathrm{S}}}{2}}:0\leq s<d, 0<k\leq b_{s+1}\}.
In particular, it is a finite set.

Proof. By using the continued fractions, we have

(5.1) \displaystyle \frac{q_{j,k}}{q_{j}}=[k, a_{j}, a_{j-1}, . . . , a_{1}], -\frac{\langle xq_{j,k}\rangle}{\langle xq_{j}\rangle}=[a_{j+1}-k, a_{j+2}, a_{j+3}, . . .]
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(c)

Figure 4. Voronoi tilings \mathcal{V}((\sqrt{2}-1)+\mathrm{i}y) . (a)  y=0.0349189\cdots ,
a rectangular tiling

with an opposed parastichy pair {2, 5}. (b)  y=0.02 ,
a hexagonal tiling with opposed

parastichy pairs {2, 5}, {7, 5}. (c)  y=0.0142855\cdots ,
a rectangular tiling with an

opposed parastichy pair {7, 5}.

for  j\geq 0, 0<k\leq a_{j+1} . As  j\rightarrow+\infty , they tend to the periodic sequence of continued

fractions

[k, \overline{b_{s},\ldots,b_{1},}bd, . . . , b_{s+1}] and [b_{s+1}-k, \overline{b_{s+2},\ldots,b_{d},}bl, . . .

, b_{s+1} ],

respectively. However, we have

[k, \overline{b_{s},\ldots,b_{1},}bd, . . . , b_{s+1}] [b_{s+1}-k, \overline{b_{s+2},\ldots,b_{d},}b\mathrm{l},
. . .

, b_{s+1} ]

=(k-$\omega$_{s+1}')(-k+$\omega$_{s+1})
=-h_{s+1}(k)

for 0\leq s<d, 0<k\leq b_{s+1} . This completes the proof. \square 

In the algebraic theory of phyllotaxis [6], it is known that the most common diver‐

gences x are the quadratic irrationals such that a_{j}=1 for sufficiently large j.

Theorem 5.3. Let x be a quadratic irrational such that a_{j}=1 for sufficiently

large j . Then  $\Omega$(x)=\{\mathrm{i}\}.

Proof. The golden section has the purely periodic continued fraction expansion

 $\tau$=[1 , 1, . . . ]=[1, \overline{1,1}] ,
and it is a root of a quadratic polynomial h(x)=x^{2}-x-1.

Thus we have -h(1)=1 ,
and hence  $\Omega$(x)=\{\mathrm{i}\}. \square 

Rothen and Koch [18] observed that if x=[\overline{a_{1}}]=[a_{1}, a_{1}, . . .] for some integer

a_{1}>0 ,
then q_{j,k}/q_{j} is close to q_{j+1,k}/q_{j+1} and \langle xq_{j,k}\rangle/\langle xq_{j}\rangle is close to \langle xq_{j+1,k}\rangle/\langle xq_{j+1}\rangle

for  j\geq 0, 0<k\leq a_{1}.

Figure 4 shows the parastichy transition of \mathcal{V}(x+\mathrm{i}y) ,
where x=\sqrt{2}-1 is the silver

ratio. The denominators of its convergents, 1; 2; 5; 7; 12, \cdots

,
are called silver numbers.
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Since we have  $\Omega$(\displaystyle \sqrt{2}-1)=\{\mathrm{i}, \mathrm{i}\sqrt{2}, \frac{\mathrm{i}}{\sqrt{2}}\} ,
the limit shapes of the rectangular tiles are the

square and the one with the aspect ratio 1: \sqrt{2}.

References

[1] Adler, I., Solving the riddle of phyllotaxis, Singapore: World Scientic, 2012.

[2] Atela, P., Gole, C. and Hotton, S., A dynamical system for plant pattern formation : \mathrm{A}

rigorous analysis, J. Nonlinear Sci. 12 (2002), 641‐676.

[3] Atela, P., The geometric and dynamic essence of phyllotaxis, Math. Model. Nat. Phenom.

6 (2011), 173‐186.

[4] Aurenhammer, F., Voronoi diagrams: A survey of a fundamental geometric data structure,
ACM Comput. Surv. 23 (1991), 345‐405.

[5] van Berkel, K., Boer, R. J., Scheres, B. and ten Tusscher, K., Polar auxin transport:
models and mechanism, Development 140 (2013), 2253‐2268.

[6] Coxeter, H. S. M., The role of intermediate convergents in Tait�s explanation for phyl‐
lotaxis, Journal of Algebra 20 (1972), 167‐175.

[7] Dale, J. E. and Milthorpe, F. L., The growth and functioning of leaves, Cambrige Univer‐

sity Press, 1983.

[8] Galois, E., Analyse algébrique. Démonstration d�un théorème sur les fractions continues

périodiques, Annales de Mathématiques Pures et Appliquées 19 (1828‐1829), 294‐301.

[9] Grunbaum, B. and Shephard, G. C., Tilings and patterns, San Francisco, CA: Freeman,
1987.

[10] Hizume, A., Fibonacci Tornado, Manifold 11 (2005), 6‐11. (in Japanese)
http://www.starcage.org/manifold/

[11] Hizume, A., Real Tornado, Manifold 17 (2008), 8‐11. (in Japanese)
[12] Hizume, A. and Yamagishi, Y., Real Tornado, Proceedings of the 12th Annual Bridges

Confe rence, 2009, 239‐242.

[13] Hizume, A. and Yamagishi, Y., Stripes on Penrose Tilings, J. Phys. A: Math. Theor. 44

(2011), 015202.

[14] Jean, R. V., Phylltaxis, A systemic study in plant morphogenesis, Cambrige University
Press, 1994.

[15] Jean, R. V. and Barabe, D., Symmetry in plants, Singapore: World Scientic, 1998.

[16] Pennybacker, M. and Newell, A. C., Phyllotaxis, Pushed Pattern‐Forming Fronts and

Optimal Packing, Phys. Rev. Lett. 110 (2013), 248104.

[17] Rivier, N., A Botanical quasicrystal, J. Physique 47 (1986), 299‐309.

[18] Rothen, F. and Koch, A. J., Phyllotaxis, or the properties of spiral lattice I‐II, Journal de

Physque, France 50 (1989), 633−657; ibid., 50 (1989), 1603‐1621.

[19] Sadoc, J. F., Charvolin, J. and Rivier, N., Phyllotaxis on surfaces of constant Gaussian

curvature, J. Phys. A: Math. Gen. 46 (2013), 295202.

[20] Sushida, T., Hizume, A. and Yamagishi, Y., Triangular spiral tilings, J. Phys. A: Math.

Theor. 45 (2012), 235203.

[21] Sushida, T., Hizume, A. and Yamagishi, Y., Shape limit in triangular spiral tilings, to

appear in Acta Physica Polonica A.

[22] Sushida, T., Hizume, A. and Yamagishi, Y., Voronoi spiral tilings, submitted.

[23] Tanaka, Y., A reaction‐diffusion model study of formation of inorescence (in Japanese),
Master Thesis, Meiji University (2011).


