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{\rm Min}‐Plus Algebra and Networks

By

Sennosuke Watanabe * and Yoshihide Watanabe **

Abstract

The present paper deals with two topics from linear algebra over \displaystyle \min‐plus algebra. One

is the linear equation and the other is the eigenvalue problem. The Bellman equation for

the shortest path length is the \displaystyle \min‐plus analogue of the linear equation and can be solved by
Bellman‐Ford algorithm, which is the \displaystyle \min‐plus analogue of the Jacobi iteration algorithm. One

can accelerate the Bellman‐Ford algorithm by the similar way as in the Gauss‐Seidel algorithm
for the linear equation. Next, it is proved that the unique eigenvalue of a matrix with entries in

\displaystyle \min‐plus algebra comes from the minimal average weight of circuits in the network associated

with the matrix. It is also proved that corresponding eigenvectors arise in the column vectors

of the minimal weight matrix of the specied network. Finally, it is proved that unique right
eigenvalue coincide with the unique left eigenvalue.

§1. Introduction

The purpose of the present paper is to investigate the relation between the network

on the digraph and the \displaystyle \min‐plus algebra. {\rm Min}‐plus algebra is one of many idempotent

semirings which have been studied in various fields of mathematics. Many theorems

and techniques that we use in usual linear algebra seems to have analogues in linear

algebra over \displaystyle \min‐plus algebra. However, such kind of investigation have not yet ex‐

ploited sufficiently. First, we focus on the linear equation over the \displaystyle \min‐plus algebra.
The \displaystyle \min‐plus analogue of the linear equation which is solved by the Jacobi�s iteration

procedure become the Bellman equation for the shortest path length. The shortest

path problem is one of the most important optimization problems in the network on

digraphs. There are various combinatorial algorithms for solving the Bellman equation
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and finding the shortest path or the shortest path length. Examples of such algorithms
are the Bellman‐Ford algorithm, Floyd‐Warshall algorithm and Dijkstra algorithm. The

Bellman‐Ford algorithm is very primitive and simple, and solve the Bellman equation
for the shortest path length by iteration, which is considered to be the analogue of the

Jacobi iteration algorithm for the conventional linear equation. In the Jacobi iteration

algorithm, if we do not use the values obtained in the previous step but use the renewed

values obtained in the present step in the renewal of the values in the iteration of the

algorithm, we can accelerate the Jacobi algorithm. This acceleration algorithm is known

as the Gauss‐Seidel algorithm. If one accelerates the Bellman‐Ford algorithm on the

\displaystyle \min‐plus algebra by the same way as in the Gauss‐Seidel algorithm for the conventional

linear equation, one can get a new algorithm for solving the Bellman equation for the

shortest path length.

Next, we consider the eigenvalue problem of matrices with entries in \displaystyle \min‐plus alge‐
bra and characterize the eigenvalues and corresponding eigenvectors using the terminol‐

ogy of the network theory on graphs. We dene the network \mathcal{N}(A) associated with the

matrix A with entries in \displaystyle \min‐plus algebra. We show that the minimal average weight  $\lambda$

of the circuits in the network \mathcal{N}(A) become the eigenvalue of A . Also we show that the

corresponding eigenvectors appears as the column vectors of the minimal weight matrix

of the specied network which is obtained from \mathcal{N}(A) by shifting weights of every edges

by the minimal average weight  $\lambda$ . Further, we prove that the minimal average weight
of the network \mathcal{N}(A) is the unique eigenvalue of the matrix A . Finally we refer to the

coincidence between the unique right eigenvalue and the unique left eigenvalue.

§2. {\rm Min}‐Plus Algebra

§2.1. Basic Notations and Denitions

Let \mathbb{R} be the field of real numbers. We dene the \displaystyle \min‐plus algebra \mathbb{R}_{\min} by \mathbb{R}_{\min}=

\mathbb{R}[\mathrm{f}\mathrm{i}\} ,
with the binary operations \oplus and \otimes :

 a\displaystyle \oplus b=\min\{a, b\} ; a\otimes b=a+b

Both operations \oplus and \otimes are associative and commutative: We have

 a\oplus(b\oplus c)=(a\oplus b)\oplus c, a\otimes(b\otimes c)=(a\otimes b)\otimes c
a\oplus b=b\oplus a, a\otimes b=b\otimes a

for all a, b, c\in \mathbb{R}_{\min} . The algebra \mathbb{R}_{\min} has the identity  $\epsilon$=+\infty with respect \mathrm{t}\mathrm{o}\oplus :

 a\displaystyle \oplus $\epsilon$= $\epsilon$\oplus a=\min\{a, +\infty\}=a,
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and the identity e=0 with respect to \otimes :

 a\otimes e=e\otimes a=a+0=a

If  x\neq $\epsilon$ ,
there exists the unique inverse  y(=-x) of x with respect to \otimes :

 x\otimes y=e

The operation \otimes \mathrm{i}\mathrm{s} distributive with respect \mathrm{t}\mathrm{o}\oplus :

 x\otimes(y\oplus z)=(x\otimes y)\oplus(x\otimes z)

The identity  $\epsilon$=+\infty with respect \mathrm{t}\mathrm{o}\oplus \mathrm{i}\mathrm{s} absorbing for \otimes :

 x\otimes $\epsilon$= $\epsilon$\otimes x=x+\infty=+\infty= $\epsilon$

The operation \oplus \mathrm{i}\mathrm{s} idempotent:

x\displaystyle \oplus x=\min\{x, x\}=x

Denition 2.1. For x\in \mathbb{R}_{\min} and k\in \mathbb{N} ,
the k^{\mathrm{t}\mathrm{h}} power of x is dened by

\{\mathrm{z}
k times

In \mathbb{R}_{\min} ,
the k^{\mathrm{t}\mathrm{h}} power of x reduces to the conventional multiplication x^{\otimes k}=kx.

§2.2. Matrix Algebra over {\rm Min}‐Plus Algebra

For positive integers m and n
,

we denote by \mathbb{R}_{\min}^{m\times n} the set of all m\times n matrices

with entries in \mathbb{R}_{\min} . We dene the several operations in \mathbb{R}_{\min}^{m\times n} analogous to those in

the conventional matrix algebra as follows.

Denition 2.2.

1. For A=(a_{ij})\in \mathbb{R}_{\min}^{m\times n} and B=(b_{ij})\in \mathbb{R}_{\min}^{m\times n} ,
we dene their sum A\oplus B\in \mathbb{R}_{\min}^{m\times n}

by

[A\displaystyle \oplus B]_{ij}=a_{ij}\oplus b_{ij}=\min\{a_{ij}, b_{ij}\}

2. For A=(a_{ij})\in \mathbb{R}_{\min}^{m\times k} and B=(b_{ij})\in \mathbb{R}_{\min}^{k\times n} ,
we dene their product A\otimes B\in \mathbb{R}_{\min}^{m\times n}

by

[A\displaystyle \otimes B]_{ij}=\bigoplus_{\ell=1}^{k}(a_{i\ell}\otimes b_{\ell j})=\min_{\ell=1,2,.k}..,\{a_{i\ell}+b_{\ell j}\}
3. For A=(a_{ij})\in \mathbb{R}_{\min}^{m\times n} ,

we dene its transpose {}^{t}A\in \mathbb{R}_{\min}^{n\times m} of A by [{}^{t}A]_{ij}=a_{ji}.
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4. Dene the matrix I_{n}\in \mathbb{R}_{\min}^{n\times n} by

[I_{n}]_{ij}=\left\{\begin{array}{l}
e \mathrm{i}\mathrm{f} i=j\\
 $\epsilon$ \mathrm{i}\mathrm{f} i\neq j
\end{array}\right.
Then we see that A\otimes I_{n}=I_{n}\otimes A=A for A\in \mathbb{R}_{\min}^{n\times n} ,

which means that I=I_{n}
becomes the identity with respect to the matrix multiplication in \mathbb{R}_{\min}^{n\times n}

5. For A\in \mathbb{R}_{\min}^{n\times n} and k\in \mathbb{N} ,
we dene the k^{\mathrm{t}\mathrm{h}} power of A by

\{\mathrm{z}
k times

For k=0 ,
we set A^{\otimes 0}=I.

6. For A=(a_{ij})\in \mathbb{R}_{\min}^{m\times n} and  $\alpha$\in \mathbb{R}_{\min} ,
we dene the scalar multiplication  $\alpha$\otimes A\in

\mathbb{R}_{\min}^{m\times n} by

[ $\alpha$\otimes A]_{ij}= $\alpha$\otimes a_{ij}

The operation \oplus \mathrm{i}\mathrm{s} commutative in \mathbb{R}_{\min}^{m\times n} ,
but \otimes \mathrm{i}\mathrm{s} not. The operation \otimes \mathrm{i}\mathrm{s}

distributive with respect to the operation \oplus \mathrm{i}\mathrm{n} the matrix algebra \mathbb{R}_{\min}^{m\times n} . Also \oplus \mathrm{i}\mathrm{s}

idempotent in \mathbb{R}_{\min}^{m\times n} ,
that is, we have A\oplus A=A.

§3. Graph Theory and {\rm Min}‐Plus Algebra

§3.1. Graphs

A directed graph or, for short, a digraph G consists of the finite sets V and E ; an

element v\in V is called a vertex and an element e\in E is called an edge of the digraph
G . An edge e\in E can be expressed as an ordered pair e=(u, v) of vertices u, v\in V.

We introduce the maps \partial^{-}:E\rightarrow V and \partial^{+}:E\rightarrow V by @‐(e) =u
, @+ (e) =v for

e=(u, v) ; the vertices u and v are called the tail and the head of the edge e=(u, v)
respectively; vertices u and v are simply called the end vertices of the edge e=(u, v) .

If distinct edges e and e' have two end vertices in common, then one of the cases (i)
\partial^{-}(e)=\partial^{-}(e') , @+ (e) = @+ (e�) or (ii) @‐(e) =\partial^{+}(e') , @+ (e) = @‐(e�) occurs; in the

former case, edges e and e' are called parallel edges and in the latter case, they are

called antiparallel edges. An edge with just one end vertex (@‐(e) = @+ (e)) is called a

loop. A graph without loops, parallel edges and antiparallel edges is called simple. \mathrm{A}

path in G is an alternating sequence P= (v_{i_{0}}, e_{i_{1}}, v_{i_{1}}, . . :; e_{i_{\mathrm{s}}}, v_{i_{\mathrm{s}}}) of pairwise distinct

vertices and edges except the vertices v_{i_{0}} and v_{i_{\mathrm{s}}} such that each edge e_{i_{j}} has the tail

v_{i_{j-1}} and the head v_{i_{j}} . Vertices v_{i_{0}} and v_{i_{\mathrm{s}}} are respectively called the initial and the

terminal vertex of the path P;P is called a path from v_{i_{0}} to v_{i_{\mathrm{s}}} or v_{i_{0}}-v_{i_{\mathrm{s}}} path. If
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the initial and the terminal vertex of a path P coincide, P is called a closed path or a

circuit. We consider a loop or a pair of antiparallel edges as a circuit.

§3.2. Network on Graphs

Let G=(V, E) be a digraph with n vertices and m edges. We assign a real number

w(e) to each edge e\in E;w(e) is called the weight of the edge e . The pair \mathcal{N}=(G, w)
is called a network on the digraph G.

Denition 3.1. Let \mathcal{N}=(G, w) be a network on the digraph G . We dene the

weighted adjacency matrix A(\mathcal{N})=A=(a_{ij})\in \mathbb{R}^{n\times n} of \mathcal{N} by

a_{ij}=\left\{\begin{array}{ll}
w((v_{i,V))} & \mathrm{i}\mathrm{f} (v_{i}, v_{j})\in E\\
0 & \mathrm{i}\mathrm{f} (v_{i}, v_{j})\not\in E
\end{array}\right.
Let P= (v_{i_{0}}, e_{i_{1}}, v_{i_{1}}, . ::, e_{i_{\mathrm{s}}}, v_{i_{\mathrm{s}}}) be a path in G . The length \ell(P) of the path P

is the number s of edges in P ; the weight  $\omega$(P) of the path P is the sum of weights of

edges in the path:

 $\omega$(P)=\displaystyle \sum_{j=1}^{s}w(e_{i_{j}})=\sum_{k=0}^{s-1}a_{i_{k}i_{k+1}}
For a circuit C ,

we dene the length \ell(C) and the weight  $\omega$(C) of C in the same way

as for paths.

Denition 3.2. For the circuit C ,
we dene the average weight \mathrm{a}\mathrm{v}\mathrm{e}(C) of a

circuit C by

ave (C)=\displaystyle \frac{ $\omega$(C)}{\ell(C)}
Denition 3.3. Let \mathcal{N} be a network on the digraph G=(V, E) with the set

of vertices V=\{v_{1}, . . . , v_{n}\} . We denote by a_{ij}^{*}(i, j=1_{;}. :. , n) the minimal value of

weights of all v_{i}-v_{j} paths in G . We set  a_{ij}^{*}=\infty ,
if there exists no  v_{i}-v_{j} path. Dene

the minimal weight matrix A^{*}(\mathcal{N})=A^{*}\in \mathbb{R}_{\min}^{n\times n} by A^{*}=(a_{ij}^{*}) .

§3.3. Adjacency matrix with values in {\rm Min}‐Plus Algebra

Let G=(V, E) be a digraph with n vertices and m edges and \mathcal{N}=(G, w) be a

network on G . Let A(\mathcal{N})=(a_{ij}) be the weighted adjacency matrix of the network \mathcal{N}.

Denition 3.4. We dene the weighted adjacency matrix \overline{A}=(\mathrm{a}) with values

in \mathbb{R}_{\min} of the network \mathcal{N} by

\mathrm{a}_{ij}=\left\{\begin{array}{ll}
a_{ij} & \mathrm{i}\mathrm{f} (v_{i}, v_{j})\in E\\
+\infty & \mathrm{i}\mathrm{f} (v_{i}, v_{j})\not\in E
\end{array}\right.
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Since the conventional addition + becomes the operation \otimes \mathrm{i}\mathrm{n}\mathbb{R}_{\min} ,
we compute

the weight  $\omega$(P) of the path P=(v_{i_{0}}, e_{i_{1}}, v_{i_{1}}, . ::, e_{i_{\mathrm{s}}}, v_{i_{\mathrm{s}}}) in the digraph G as follows:

 $\omega$(P)=\displaystyle \bigotimes_{k=0}^{s-1}\mathrm{a}_{i_{k}i_{k+1}} .

For an arbitrary matrix A\in \mathbb{R}_{\min}^{n\times n} ,
we can dene the network \mathcal{N}=(G, w) on the digraph

G whose weighted adjacency matrix with values in \mathbb{R}_{\min} coincides with A . We denoted

such network by \mathcal{N}(A) and call the network associated with the matrix A\in \mathbb{R}_{\min}^{n\times n}

Proposition 3.5 ([5,7 Given a matrix A\in \mathbb{R}_{\min}^{n\times n} . Assume that the network

\mathcal{N}(A) has no circuits of negative weight. Then the power sum

A^{(k)}=I\oplus A\oplus A^{\otimes 2}\oplus\cdots\oplus A^{\otimes k}

become stable fork=n-1 : that is, we have  A^{(n-1)}=A^{(n)}=\cdots . Further, the minimal

weight matrix  A^{*} of the network \mathcal{N}(A) is given by A^{*}=A^{(n-1)}

§4. Shortest Path Problem and {\rm Min}‐Plus Algebra

Let G=(V, E) be a digraph with the set of vertices V=\{v_{1}, v_{2}, . . :, v_{n}\} and the

set of edges E=\{e_{1}, e_{2}, . . :; e_{m}\} ,
and \mathcal{N}=(G, w) be a network on G . Fix the initial

vertex v_{1} and denote by y_{j} (j=1, . . :, n) the minimal value of weights of the v_{1}-v_{j}

paths. Then it is well known that y_{1}, y_{2} ,
.

::, y_{n} satisfy the so‐called Bellman equation:

Proposition 4.1 (Bellman equation, [2]). Let A=(a_{ij}) be the usual weighted

adjacency matrix of the network on the graph with n vertices and m edges. We assume

that the network has no circuits of negative weight. Then the minimal weight y_{1} ,
. .

:, y_{n}

satisfy the following equation:

(4.1) \left\{\begin{array}{l}
y_{1}=0\\
y_{j}= \mathrm{m}\mathrm{i}\mathrm{n}\mathrm{y}_{;}\min_{k=1,\ldots,n}\{y_{k}+a_{kj}\}\} .
\end{array}\right.
The second expression in (4.1) is called the Bellman equation.

The solution of the Bellman equation (4.1) is unique if the network has no circuits

of negative weight. In order to investigate into the Bellman equation from the \displaystyle \min‐plus

algebra view point, we consider the linear equation on \displaystyle \min‐plus algebra with respect to

the unknown \displaystyle \min‐plus row vector  y as follows:

(4.2) y=y\otimes A\oplus b
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where A\in \mathbb{R}_{\min}^{n\times n} is a \displaystyle \min‐plus square matrix of order  n and b is a \displaystyle \min‐plus row‐vector of

order  n . This equation (4.2) is a \displaystyle \min‐plus analogue of the equation on the conventional

linear algebra:

(4.3)  y=yA+b

Rewriting Eq.(4.3) as

y(I-A)=b,

we see that the solution of Eq.(4.3) can be written formally in terms of the formal power

series as

y=b(I-A)^{-1}=b(I+A+A^{2}+\cdots)

If the power series of matrices  I+A+A^{2}+\cdots converges, then the above formula

actually gives the solution of the Eq.(4.3). Such a solution can be computed by the

iteration  y^{(k+1)}=y^{(k)}A+b(y^{(0)}=b) and this iteration algorithm is well‐known as

the Jacobi algorithm.
Let A\in \mathbb{R}_{\min}^{n\times n} be a weighted adjacency matrix of the network \mathcal{N} with values in

\mathbb{R}_{\min} and let I\in \mathbb{R}_{\min}^{n\times n} be the identity matrix with values in \mathbb{R}_{\min} . Then it is easily
veried that the Bellman equation is equivalent to the \displaystyle \min‐plus linear equation

(4.4)  y=y\otimes(I\oplus A)

with values in \mathbb{R}_{\min} subject to the condition y_{1}=0 . We must note that the equation

(4.4) is equivalent to the linear equation (4.2) for the weighted adjacency matrix A

of the network without circuits of negative weight under the conditions y_{1}=0 and

b=(0, +\infty, \ldots, +\infty) . In order to solve the linear equation (4.4), for the minimal

weights y_{1} . .

::, y_{n} ,
we can apply the \displaystyle \min‐plus analogue of the Jacobi algorithm, which

is called the Bellman‐Ford algorithm:

Algorithm 4.2 (Bellman‐Ford algorithm, [2, 4 Let  A be the weighted adja‐

cency matrix of the network with n vertices and m edges. We assume that the network

has no circuits of negative weight. The minimal weight values y_{1} ,
. . .

; y_{n} are computed

by the following procedure:

1. Set y_{1}:=0 and  y_{j}:=+\infty for  j=2 ,
. .

:,
n.

2. Set y_{i}':=y_{i} for i=1
,

. .

:;
n and compute

y_{j}:=\displaystyle \min\{y_{j}', \min_{k=1,\ldots,n}\{y_{k}'+a_{kj}\}\}

3. If y_{i}=y_{i}' for i=1
,

. . .

;
n then return y else go to step 2.
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It is easy to check that the Bellman‐Ford algorithm perform the iteration:

y^{(0)}=b, y^{(k+1)}=y^{(k)}\otimes(I\oplus A)

In order to verify the validity of the algorithm, we compute y^{(n-1)}=b\otimes(I\oplus A)^{\otimes(n-1)}.
Using the idempotency of \mathrm{t}\mathrm{h}\mathrm{e}\oplus ,

we obtain

(I+A)^{\otimes k}=I\oplus A^{\otimes 2}\oplus\cdots\oplus A^{\otimes k} for k=1
, 2, .

::,
:

It follows from Proposition 3.5 that we have y^{(n-1)}=b\otimes A^{*} ,
which shows that y^{(n-1)}

gives the minimum weight vector from the initial vertex v_{1} . In the above proof of the

validity of the algorithm, one finds the power sum expression of the solution of the

equation (4.4), from which one see that the Bellman‐Ford iteration is nothing but a

\displaystyle \min‐plus Jacobi iteration for the solution of the linear equation (4.2).
Next, we consider the acceleration of the Jacobi algorithm. As an example of

such accelerating algorithms, we consider the famous algorithm named the Gauss‐Seidel

algorithm. {\rm Min}‐plus version of the Gauss‐Seidel algorithm accelerating the Bellman‐

Ford algorithm is described formally as follows:

Algorithm 4.3 (Gauss‐Seidel algorithm over \displaystyle \min‐plus algebra, [5]). Consider the

Bellman‐Ford equation (4.4). Let  B=I\oplus A be the matrix dened by \displaystyle \min‐plus sum

of the identity matrix  I and the weighted adjacency matrix A\in \mathbb{R}_{\min}^{n\times n} with values in

\mathbb{R}_{\min} . We can obtain B from A by substituting the diagonal elements of A by 0 . We

decompose the matrix B=I\oplus A as the \displaystyle \min‐plus sum  B=U\oplus L of an upper triangular
matrix U and a lower triangular matrix L . Matrices U=(u_{ij}) and L=(l_{ij}) are dened

respectively by

u_{ij}=\left\{\begin{array}{ll}
b_{ij}=a_{ij} & \mathrm{i}\mathrm{f} i<j\\
+\infty & \mathrm{i}\mathrm{f} i\leq j
\end{array}\right. and l_{ij}=\left\{\begin{array}{ll}
+\infty & \mathrm{i}\mathrm{f} i>j\\
0 & \mathrm{i}\mathrm{f} i=j\\
b_{ij}=a_{ij} & \mathrm{i}\mathrm{f} i>j
\end{array}\right.
Then the solution of (4.4) can be computed by the following iteration:

1. Set b:=(0, +\infty, \ldots, +\infty) and y:=(0, +\infty, \ldots, +\infty) .

2. Set y':=y and compute

y:=y\otimes U\oplus y'\otimes L

3. If y=y' then return y as the solution of (4.4) else go to step 2.

The above description of the \displaystyle \min‐plus Gauss‐Seidel algorithm is formal and not

easy to understand. So we explain the iteration algorithm more explicitly and make

clear the difference between the Bellman‐Ford algorithm. In the Bellman‐Ford iteration,
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the old values y are substituted to the variable y' and values of y are renewed by the

formula:

y_{j}:=\displaystyle \min\{y_{j;}' \min_{k=1,\ldots,n}\{y_{k}'+a_{kj}\}\}
in terms of old values y_{j}'(j=1, \ldots; n) . On the other hand, in the Gauss‐Seidel iteration,
the values y are renewed by the formula:

y_{j}=\displaystyle \min\{\min_{k=1,\ldots,j-1}\{y_{k}+u_{kj}\}, \min_{k=j,\ldots,n}\{y_{k}'+l_{kj}\}\}
=\displaystyle \min\{y_{j}', \min_{k=1,\ldots,j-1}\{y_{k}+a_{kj}\}, \min_{k=j+1,.n}..,\{y_{k}'+a_{kj}\}\}

We must note that the renewal of the value y_{j} is executed in terms of the previously
renewed values y_{1} ,

. .

:; y_{j-1} and the old values y_{j+1}' ,
. . .

, y_{n}' and this perform the the

acceleration of the Bellman‐Ford algorithm.
In some references, one see the description that the Gauss‐Seidel acceleration algo‐

rithm of the Bellman‐Ford algorithm is the Floyd‐Warshall algorithm [3] for computing
the minimal weight matrix A^{*} . We recognize that there are some kind of similarities

between two algorithms, but we have not yet obtained the sufficient reason to assert

that they are the same. We will leave the clarication of the similarities of the two

algorithms for the future study.

§5. Eigenvalue Problem over {\rm Min}‐Plus Algebra

In this section, we show that the \displaystyle \min‐plus eigenvalues and eigenvectors admit a

graph theoretical interpretation. Throughout this section, we consider the digraph

 G=(V, E) with the set of n vertices V=\{1, 2, . :. ; n\} and m edges. Then, an edge
e\in E can be expressed as a pair e=(i, j) , i, j\in V.

Denition 5.1. Given a matrix A\in \mathbb{R}_{\min}^{n\times n} ,
we say that  $\lambda$\in \mathbb{R}_{\min} is a right

eigenvalue of A if there exists x\in \mathbb{R}_{\min}^{n} such that  x\neq {}^{t}( $\epsilon$,  $\epsilon$, .

::,  $\epsilon$ ) and

 A\otimes x= $\lambda$\otimes x

The vector x is called the right eigenvector of A belonging to the right eigenvalue  $\lambda$.

Similarly, we say that $\lambda$'\in \mathbb{R}_{\min} is a left eigenvalue of A if there exists y\in \mathbb{R}_{\min}^{n} such

that  y\neq {}^{t}( $\epsilon$ , �;::. ;  $\epsilon$ ) and

{}^{t} A\otimes y=$\lambda$'\otimes y (or {}^{t}y\otimes A=$\lambda$'\otimes {}^{t}y )

The vector y is called the left eigenvector of A belonging to the left eigenvalue $\lambda$'



50 Sennosuke Watanabe and Yoshihide Watanabe

We allow a right eigenvalue and a left eigenvalue to have the value  $\epsilon$ . First, we

characterize matrices  A having the right or the left eigenvalue  $\epsilon$ . A matrix  A\in \mathbb{R}_{\min}^{n\times n} is

said to have  $\epsilon$‐columns if it has at least one column whose all entries are  $\epsilon$ . Similarly, if

a matrix  A has at least one row whose all entries are  $\epsilon$ then it is said to have  $\epsilon$‐rows.

Proposition 5.2. The identity  $\epsilon$ of\oplus is a right eigenvalue of A if and only if
A has  $\epsilon$ ‐columns. Similarly,  $\epsilon$ is a left eigenvalue of  A if and only if A has  $\epsilon$ ‐rows.

Proof. We prove the assertion for the right eigenvalues. Let  x be a right eigen‐
vector of A belonging to the right eigenvalue  $\lambda$= $\epsilon$ . From the denition, the right

eigenvector  x has at least one entry  x_{j}\neq $\epsilon$ . Then we will prove that all entries of the

 j^{\mathrm{t}\mathrm{h}} column of A are equal to  $\epsilon$ . Suppose that one entry  a_{ij} of the j^{\mathrm{t}\mathrm{h}} column of A

satises  a_{ij}\neq $\epsilon$ for some  i
,

then we have  a_{ij}\otimes x_{j}\neq $\epsilon$ . On the other hand, we have

 $\lambda$\otimes x_{i}= $\epsilon$ since  $\lambda$= $\epsilon$ ,
which lead to the contradiction. Thus we have proved that the

all entries of the  j^{\mathrm{t}\mathrm{h}} column of A are  $\epsilon$ . This completes the proof of the if part. Next

we prove the only if part. We assume that all entries of  j^{\mathrm{t}\mathrm{h}} column of A are  $\epsilon$ . Then

it is easy to show that the vector  x= {}^{t}(x_{1}, .

::, x_{j}, .

::, x_{n} ) with  x_{j}=a\neq $\epsilon$ and  x_{i}= $\epsilon$

(i\neq j) becomes a right eigenvector of A belonging to the right eigenvalue  $\epsilon$ . We have

proved the only if part. If we note that the expression  t_{y\otimes A}=$\lambda$'\otimes^{t}y is equivalent to

the expression {}^{t}A\otimes y=$\lambda$'\otimes y ,
we can easily prove the assertion for the left eigenvalue

$\lambda$' from the assertion for the right eigenvalues. Thus we have completed the proof of

the proposition. \square 

Next, we characterize matrices A\in \mathbb{R}_{\min}^{n\times n} having the right eigenvalue  $\lambda$\neq $\epsilon$ . We

consider the case where matrices  A do not have  $\epsilon$‐columns.

Lemma 5.3. Assume that  A\in \mathbb{R}_{\min}^{n\times n} does not have  $\epsilon$ ‐columns. Then the net‐

work \mathcal{N}(A) associated with the matrix A has at least one circuit.

Proof. The assumption is equivalent to the fact that any vertices in the network

\mathcal{N}(A) become the head of at least one edge. That is, for any v_{1}\in V ,
there exist at

least one edge e_{1} with e_{1}=(v_{2}, v_{1}) , v_{2}\in V . Applying the same procedure, we can

find a sequence of vertices, v_{1} ,
. . .

; v_{i}, v_{i+1} ,
. :: such that e_{i}=(v_{i+1}, v_{i})\in E and in the

sequence we find a circuit C since the number of vertices is finite. \square 

Denition 5.4. Let  $\lambda$(\neq $\epsilon$) be an element of \mathbb{R}_{\min} . We dene the matrix A_{ $\lambda$}

by [A_{ $\lambda$}]_{ij}=[A]_{ij}- $\lambda$.

We assume that the matrix A\in \mathbb{R}_{\min}^{n\times n} does not have  $\epsilon$‐columns. Then it follows

from Lemma 5.3 that the network \mathcal{N}(A) associated with the matrix A has circuits.

Let  $\lambda$ be the minimal value of the average weight of circuits in \mathcal{N}(A) and consider the
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network \mathcal{N}(A) associated with the matrix A_{ $\lambda$} . Since the network \mathcal{N}(A) does not have

circuits with negative weights, we can compute by Proposition 3.5 the minimal weight
matrix A_{ $\lambda$}^{*} by the power sum: A_{ $\lambda$}^{*}=I\oplus A_{ $\lambda$}\oplus A_{ $\lambda$}^{\otimes 2}\oplus\cdots.

Theorem 5.5. Let A\in \mathbb{R}_{\min}^{n\times n} be a matrix without  $\epsilon$ ‐columns and let  $\lambda$\neq $\epsilon$ be the

minimal average weight of circuits in the network \mathcal{N} (A) . Let C=((v_{1}, v_{2}), (v_{2}, v_{3}), \ldots; (v_{k}, v))
be the circuit in \mathcal{N}(A) expressed as a sequence of edges and having the minimal average

weight  $\lambda$ . Then the column vectors [A_{ $\lambda$}^{*}]_{v_{1}} ,
. . .

, [A_{ $\lambda$}^{*}]_{v_{k}} of the minimal weight matrix

A_{ $\lambda$}^{*} of the network \mathcal{N}(A) become the right eigenvectors of A belonging to the right

eigenvalue  $\lambda$.

Proof. We represent by v one of the vertices in \{v_{1}, v_{2}, . . :; v_{k}\} . Then it is enough
to prove the following equality:

A\otimes[A_{ $\lambda$}^{*}]_{ $\nu$}= $\lambda$\otimes[A_{ $\lambda$}^{*}]_{ $\nu$} (1)

First, we compute the left hand side of the equality (1). From the denition of A_{ $\lambda$} ,
we

have A= $\lambda$\otimes A_{ $\lambda$} and if we use the natation:  A_{ $\lambda$}^{+}=A_{ $\lambda$}\oplus A_{ $\lambda$}^{\otimes 2}\oplus\cdots ,
we have

 A\otimes[A_{ $\lambda$}^{*}]_{ $\nu$}= $\lambda$\otimes A_{ $\lambda$}\otimes[A_{ $\lambda$}^{*}]_{ $\nu$}

= $\lambda$\otimes A_{ $\lambda$}\otimes[I\oplus A_{ $\lambda$}\oplus A_{ $\lambda$}^{\otimes 2}\oplus\cdots]_{ $\nu$}
= $\lambda$\otimes[A_{ $\lambda$}\oplus A_{ $\lambda$}^{\otimes 2}\oplus\cdots]_{ $\nu$}
= $\lambda$\otimes[A_{ $\lambda$}^{+}]_{ $\nu$}

where I is the identity matrix in \mathbb{R}_{\min}^{n\times n} . Thus the equality (1) is rewritten as:

 $\lambda$\otimes[A_{ $\lambda$}^{+}]_{ $\nu$}= $\lambda$\otimes[A_{ $\lambda$}^{*}]_{ $\nu$}

So it is enough to prove [A_{ $\lambda$}^{+}]_{ $\nu$}=[A_{ $\lambda$}^{*}]_{ $\nu$} . The entries [A_{ $\lambda$}^{*}]_{i $\nu$} (i=1,2, . ::, n) are given by:

[A_{ $\lambda$}^{*}]_{i $\nu$}=\left\{\begin{array}{l}
 $\epsilon$\oplus[A_{ $\lambda$}^{+}]_{i $\nu$} \mathrm{i}\mathrm{f} i\neq v\\
e\oplus[A_{ $\lambda$}^{+}]_{i $\nu$} \mathrm{i}\mathrm{f} i=v
\end{array}\right.
So the identity for the i\neq v case is trivial. Consider the identity for i=v case. The

entries [A_{ $\lambda$}^{+}]_{ $\nu \nu$} indicate the minimal weight of v‐v path in the network \mathcal{N}(A_{ $\lambda$}) . Since

 $\lambda$ is the minimal average weight of the circuit  C in \mathcal{N}(A) and v is an arbitrary vertex

in the circuit C ,
the minimal weight of v‐v path is equal to e . Thus we have proved

[A_{ $\lambda$}^{+}]_{ $\nu$}=[A_{ $\lambda$}^{*}]_{ $\nu$} . This completes the proof of the theorem. \square 

Let A\in \mathbb{R}_{\min}^{n\times n} be a matrix without  $\epsilon$‐columns. Then we have proved that  A has

an right eigenvalue  $\lambda$\neq $\epsilon$ which is the minimal average weight of the circuits in the

network \mathcal{N}(A) associated with A . Next we will prove that this right eigenvalue is the

only right eigenvalue of the matrix A.
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Proposition 5.6. If the matrix A\in \mathbb{R}_{\min}^{n\times n} has a right eigenvalue  $\lambda$\neq $\epsilon$ , there

exists a circuit in the network \mathcal{N}(A) whose average weight is equal to  $\lambda$.

Proof. Let  $\lambda$\neq $\epsilon$ be the right eigenvalue of  A . By the denition, a right eigenvector
x belonging to the right eigenvalue  $\lambda$ has at least one entry  x_{v_{1}}\neq $\epsilon$ . Hence we have

[A\otimes x]_{v_{1}}= $\lambda$\otimes x_{v_{1}}\neq $\epsilon$ . Thus we can find a vertex  v_{2} with a_{v_{1}v_{2}}\otimes x_{v_{2}}= $\lambda$\otimes x_{v_{1}}.
This implies that a_{v_{1}v_{2}}\neq $\epsilon$,  x_{v_{2}}\neq $\epsilon$ and (v_{1}, v_{2})\in E . By the same argument we can

find V3\in V with a_{v_{2}v_{3}}\otimes x_{v_{3}}= $\lambda$\otimes x_{v_{2}} and (v_{2}, v_{3})\in E . Applying the same procedure,
we find the sequence of vertices v_{1}, v_{2} ,

. . .

, v_{i} ,
. :: such that (v_{i-1}, v_{i})\in E . Since the

number of vertices is finite, we can find the subsequence (v_{h}, v_{h+1}, . ::, v_{h+k}) ,
in which

the vertices are pairwise distinct except v_{h}=v_{h+k} . Then the sequence of edges

C=((v_{h}, v_{h+1}), (v_{h+1}, v_{h+2}), \ldots(v_{h+k-1}, v))

express the circuit C . The circuit C has the length \ell(C)=k and the weight  $\omega$(C)=

\otimes_{j=0}^{k-1}a_{v_{h+j}v_{h+j+1}} ,
where v_{h}=v_{h+k} . By the construction of sequence of vertices, we

have

\displaystyle \bigotimes_{j=0}^{k-1}(a_{v_{h+j}v_{h+j+1}}\otimes x_{v_{h+j+1}})=$\lambda$^{\otimes k}\otimes\bigotimes_{j=0}^{k-1}x_{v_{h+j}}.
Converting \otimes \mathrm{t}\mathrm{o}+\mathrm{i}\mathrm{n} conventional algebra, we have

k-1 k-1

\displaystyle \sum(a_{v_{h+j}v_{h+j+1}}+x_{v_{h+j+1}})=k $\lambda$+\sum x_{v_{h+j}}.
j=0 j=0

Using the fact that

\displaystyle \sum_{j=0}^{k-1}x_{v_{h+j+1}}=\sum_{j=0}^{k-1}x_{v_{h+j}},
we obtain

\displaystyle \bigotimes_{j=0}^{k-1}a_{v_{h+j}v_{h+j+1}}=k $\lambda$,
which means that  w(C)=k $\lambda$ . Therefore we have proved that the average weight of the

circuit  C is

\displaystyle \frac{ $\omega$(C)}{\ell(C)}=\frac{k $\lambda$}{k}= $\lambda$
This completes the proof of the proposition. \square 

Proposition 5.6 shows that an arbitrary right eigenvalue of a matrix A comes from

the average weight of circuits in \mathcal{N}(A) .
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Theorem 5.7. Assume that A\in \mathbb{R}_{\min}^{n\times n} has a right eigenvalue  $\lambda$\neq $\epsilon$ . Then the

right eigenvalue  $\lambda$ of  A is uniquely determined, and  $\lambda$ is equal to the minimal average

weight of circuits in \mathcal{N}(A) associated with the matrix A.

Proof. Let x={}^{t}(x_{1}, \ldots, x_{n}) be an eigenvector belonging to the eigenvalue  $\lambda$.

We see from Proposition 5.6 that the network \mathcal{N}(A) contains at least one circuit. Let

C= ((v_{1}, v_{2}), (v_{2}, v_{3}), \ldots; (v_{k}, v)) be any one of circuits in \mathcal{N}(A) . Then we have

\displaystyle \bigotimes_{j=1}^{k}a_{v_{j}v_{j+1}}\otimes x_{v_{j+1}}\geq$\lambda$^{\otimes k}\otimes\bigotimes_{j=1}^{k}x_{v_{j}} (v_{k+1}=v_{1})
Using the same argument as in the proof of Proposition 5.6, we have

\displaystyle \frac{ $\omega$(C)}{\ell(C)}\geq\frac{k $\lambda$}{k}= $\lambda$
This inequality holds for an arbitrary right eigenvalue  $\lambda$\neq $\epsilon$ of  A and for an arbitrary
circuit C in \mathcal{N}(A) . So the right eigenvalue  $\lambda$ of  A has to be smaller or equal to the

minimal average weight of the circuit in \mathcal{N}(A) . By Proposition 5.6, any right eigenvalue
comes from the average weight of a circuit in \mathcal{N}(A) . Therefore the right eigenvalue

 $\lambda$\neq $\epsilon$ of  A is uniquely determined and equal to the minimal average weight of the

circuit in \mathcal{N}(A) . \square 

Here, we are concerned only with the right eigenvalue. We show that the unique

right eigenvalue coincide with the unique left eigenvalue.

Corollary 5.8. Assume that A\in \mathbb{R}_{\min}^{n\times n} has a right eigenvalue  $\lambda$\neq $\epsilon$ and a left

eigenvalue  $\lambda$'\neq $\epsilon$ . Then the unique right eigenvalue of  A is identical with the unique

left eigenvalue of A.

Proof. By the denition, $\lambda$' is the left eigenvalue of A if and only if it is the right

eigenvalue of the transpose {}^{t}A of A . Let G=(V, E) be the digraph which denes the

network \mathcal{N}(A) . We dene the new digraph {}^{t}G=(V,{}^{t}E) with the set of vertices V

and the set of edges {}^{t}E : The set of edges {}^{t}E is dened by (i, j)\in {}^{t}E if and only if

(j, i)\in E . Let w be the weight function on E dened by the matrix A . We dene

the weight function \overline{w} on {}^{t}E by \overline{w}((i, j))=w((j, i)) . Thus we can dene the network

({}^{t}G,\overline{w}) . It is easy to verify the weighted adjacency matrix with values in \mathbb{R}_{\min} of the

network ({}^{t}G,\overline{w}) coincides with the matrix {}^{t}A . It follows from the denition that the

minimal average weight of circuits in the network (G, w) become the minimal average

weight of the network ({}^{t}G,\overline{w}) and vice versa. By the assumption of the corollary, A and

{}^{t}A have the unique eigenvalue which is the minimal average weight of circuits in (G, w)
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or ({}^{t}G,\overline{w}) respectively. Then we see that the unique eigenvalue of A and {}^{t}A coincide.

Thus we have completed the proof of the corollary. \square 

§6. Conclusion

In the present paper, first we focus on the shortest path problem. Bellman�s equa‐

tion for the shortest path problem can be solved by the Bellman‐Ford algorithm, which

is the \displaystyle \min‐plus analogue of Jacobi�s iteration algorithm for linear equations. It is well

known that Jacobi�s algorithm shift to the Gauss‐Seidel algorithm by some kind of

acceleration. We have proved that the Bellman‐Ford algorithm shift to the new al‐

gorithm for the shortest path problem by the similar process as in the process from

Jacobi�s algorithm to Gauss Seidel algorithm. This result gives an example to suggest
that the algorithms for the shortest path problems can be obtained as \displaystyle \min‐plus ana‐

logues of the algorithms for linear equations. Then are there any algorithms for linear

equations whose \displaystyle \min‐plus analogues are the celebrated algorithms by Dijkstra or by

Floyd‐Warshall for the shortest path problem? This remains as interesting problems for

the future study. Second, we focus on the eigenvalue problem of a matrix with entries

in \displaystyle \min‐plus algebra. We characterize such eigenvalues as the minimal average weight
of the circuits in the network associated with the matrix, and further prove that the

eigenvectors appears in the column vectors of the minimal weight matrix of the certain

specied network. We have not yet made clear the reason why non‐minimal average

weights of circuits do not appear as the eigenvalues. If we find the relation between all

average weights of circuits in the given network and the eigenvalue problem of matrices

with entries in \displaystyle \min‐plus algebra, we will find a new approach for enumeration of circuits

of the network.
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