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Abstract

This is a review article on a tropical geometric realization of the ultradiscrete periodic
Toda lattice (UD‐pTL). Time evolution of the UD‐pTL is translated into an addition on the

Picard group of its spectral curve, which is a tropical hyperelliptic curve of arbitrary genus

depending on the system size. The addition on the Picard group can be realized by using
intersection of several tropical plane curves, one of which is the spectral curve. In addition, the

tropical eigenvector map, which maps a point in the phase space of the UD‐pTL into a set of

points on the spectral curve, can also be realized by using intersection of tropical curves. Thus,
if the initial values are given then the time evolution of the UD‐pTL is completely translated

into a motion of intersection points of tropical plane curves. Moreover, all tropical plane curves

appearing in the curve intersection are explicitly given in terms of the conserved quantities of

the UD‐pTL.

§1. Introduction

The discovery of a cellular automaton possessing solitonical nature by Takahashi‐

Satsuma in 1990 [29] was a trigger of various subsequent studies upon new integrable dy‐
namical systems governed by piecewise linear maps on the real spaces of finite or innite

dimension. Such dynamical systems are called ultradiscrete integrable systems and their

evolutions are described by means of the \displaystyle \max‐plus algebra. The most powerful tool to

investigate ultradiscrete integrable systems known as the procedure of ultradiscretiza‐

tion was proposed by Tokihiro et al. in 1996 [31]. By using this procedure, ultradiscrete
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integrable systems are directly connected with the discrete integrable systems such as

the discrete \mathrm{K}\mathrm{d}\mathrm{V} , the discrete Toda and the discrete KP equations. Namely, evolution

equations, exact solutions and conserved quantities of such discrete integrable systems
are simultaneously reduced to those of ultradiscrete integrable systems by applying
ultradiscretization [22, 30, 12]. With ultradiscretization as a booster, ultradiscrete in‐

tegrable systems have intensively been studied by using various mathematical tool such

as combinatorics [20, 1, 34, 27], crystal bases of quantum groups [6, 4, 5, 9], tropical

geometry [23, 17, 16, 24, 9] and so forth.

In this article, we focus our interests on the geometric aspects of ultradiscrete inte‐

grable systems. The first step of the studies on the geometry of ultradiscrete integrable

systems was made by Kimijima— Tokihiro in 2002 [18]. They applied the procedure of

ultradiscretization to the periodic discrete Toda lattice (pdTL) and their quasi‐periodic

solutions, and linearized time evolution of the ultradiscrete periodic Toda lattice (UD‐
\mathrm{p}\mathrm{T}\mathrm{L}) on the real torus corresponding to the Jacobian of the spectral curve of the pdTL.

They also solved the initial value problem to the UD‐pTL of genus 1 and constructed

its quasi‐periodic solutions by means of the ultradiscrete elliptic theta functions. Subse‐

quent steps were made by Inoue— Takenawa [10, 11] and Iwao et al. [8, 15] in terms of

tropical geometry [13] and ultradiscretization procedure. They solved the initial value

problems to the UD‐pTL of arbitrary genus by using tropical hyperelliptic curves, their

tropical Jacobians, ultradiscrete theta functions and ultradiscretization of Abelian in‐

tegrals. Through their works, we have gradually recognized the advantage in applying
the method of tropical geometry to ultradiscrete integrable systems.

We will go a step further and try to realize the UD‐pTL completely in the framework

of tropical geometry. In section 2 and 3, we introduce the UD‐pTL and its spectral curve

and realize time evolution of the UD‐pTL as an addition of points on the Picard group

of its spectral curve. We give explicit formulae for the eigenvectors of the Lax matrix

of the pdTL in terms of the conserved quantities in section 4. Moreover, we realize the

tropical eigenvector maps geometrically by using intersection of the spectral curve of

the UD‐pTL and tropical plane curves derived from the eigenvector of the Lax matrix.

In section 5, we translate the addition of points on the Picard group into intersection

of tropical plane curves. These tropical plane curves, one of which is the spectral curve

of the UD‐pTL, are explicitly given by using the conserved quantities of the UD‐pTL.
If we restrict the UD‐pTL to take its initial values in positive integers then its time

evolution is realized as a motion of balls in an array of boxes and is called the periodic
box‐ball system (pBBS) [35] . In Appendix \mathrm{A}

,
we present a concrete computation of the

geometric realization of the pBBS for a certain initial condition by using intersection of

tropical plane curves. We observe that the time evolution of the pBBS is realized as a

motion of several points on a tropical hyperelliptic curve.
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§2. Ultradiscrete periodic Toda lattice and periodic box‐ball system

Let us consider the dynamical system  $\zeta$ : \mathbb{R}^{2g+2}\rightarrow \mathbb{R}^{2g+2} ;

(J, W)=(J_{1}, \ldots, J_{g+1}, W_{1}, \ldots, W_{g+1})\mapsto(\overline{J}, \overline{W})=(\overline{J}_{1}, \ldots,\overline{J}_{g+1}, \overline{W}_{1}, \ldots, \overline{W}_{g+1})

given by

(2.1) \overline{J}_{i}=\lfloor W_{i}, X_{i}+J_{i}\rfloor, \overline{W}_{i}=J_{i+1}+W_{i}-\overline{J}_{i},

X_{i}=\displaystyle \lceil\sum_{l=1}^{k}(J_{i-l}-W_{i-l})\rceil_{0\leq k\leq g}
Here we dene

\lfloor A, B ,
. . \displaystyle \rfloor:=\min(A, B, \ldots) , \lceil A, B ,

. . \displaystyle \rceil:=\max(A, B, \ldots)

for A, B
,

. . . \in \mathbb{R} . Moreover, we assume that \displaystyle \sum_{l=1}^{0}(J_{i-l}-W_{i-l})=0 and

(2.2) \displaystyle \sum_{i=1}^{g+1}J_{i}<\sum_{i=1}^{g+1}W_{i}.
When we iterate the map  $\zeta$ we use the notation

\{\mathrm{z} (\mathrm{J};\mathrm{W})(J^{t}, W^{t})=(J_{1}^{t}, \ldots, J_{g+1}^{t}, W_{1}^{t}, . .

t

for t=0 , 1, . . ..

We call the dynamical system generated by (2.1) the ultradiscrete periodic Toda

lattice (UD‐pTL). It is well known that the UD‐pTL is reduced from the periodic
discrete Toda lattice or the periodic discrete \mathrm{K}\mathrm{d}\mathrm{V} equation through the procedure of

ultradiscretization [31]. In particular, if the variables J_{1} ,
. . .

; J_{g+1} and W_{1} ,
. .

:; W_{g+1}
take their values in positive integers then the dynamical system is called the periodic
box‐ball system (pBBS) [35 , 18 ] . The pBBS is obtained from the box‐ball system (BBS),
which was introduced by Takahashi— Satsuma as a soliton cellular automaton [29], by

imposing a periodic boundary condition.

The pBBS can be realized by using an array of finite boxes and balls as follows.

Consider an array of \displaystyle \sum_{i=1}^{g+1}(J_{i}+W_{i}) boxes whose both ends are connected each other.

Assume that we have \displaystyle \sum_{i=1}^{g+1}J_{i} balls. Put a ball into an arbitrary box in the array

of boxes. Successively, put a ball into the next box of the occupied one to the right.

Repeat this procedure J_{1} times then we obtain a sub‐array of consecutive J_{1} boxes

each of which is occupied with a ball. For the adjoining W_{1} boxes of the right‐most

occupied one to the right, we do not put balls into them. Thus we obtain a sub‐array of
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consecutive W_{1} empty boxes adjoining the sub‐array of J_{1} occupied ones. Next, put a

ball into the next box of the right‐most box in the sub‐array of W_{1} empty boxes to the

right, and repeat the above procedure for J_{2} and W_{2} . Then we obtain a sub‐array of

consecutive J_{2} occupied boxes and that of consecutive W_{2} empty boxes adjoining to the

sub‐array of W_{1} empty boxes. By applying the procedure repeatedly, we finally obtain

sub‐arrays of J_{1} ,
.

::; J_{g+1} occupied boxes and those of W_{1} ,
. . .

; W_{g+1} empty boxes which

are alternately arranged (see figure 1). This is the initial state of the pBBS.

.
.

.
. . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . .

.
.

.

\cdots\cdots
.

----W_{1}- ----W_{2} W_{g}-- -\cdot\cdot-\cdot.--\cdot..\cdot.\cdot.\cdot.::W_{g+1}^{\cdot}\cdots=^{:}::
-

--J_{1}- --\overline{J}_{2} ----J_{g+1}-
Figure 1. Correspondence of J and W with the variables of the pBBS.

Time evolution (2.1) can be realized by moving balls in the following manner. Make

a copy of every ball in the initial state constructed above. Pick an arbitrary copy of ball

and move it to the nearest empty box to the right. Repeat this procedure till every ball

moves once, and then erase the original ones. Thus we obtain the second state consisting
of \displaystyle \sum_{i=1}^{g+1}W_{i} empty boxes and \displaystyle \sum_{i=1}^{g+1}J_{i} occupied boxes each of which contains a ball.

We find that the sub‐array of occupied boxes starting from the left‐most box in that of

W_{1} empty boxes in the initial state has length \overline{J}_{1} . We also find that the sub‐array of

empty boxes adjoining that of \overline{J}_{1} occupied boxes has length \overline{W}_{1} . We inductively find

that the second state consists of sub‐arrays of \overline{J}_{1} ,
.

::, \overline{J}_{g+1} occupied boxes and those of

\overline{W}_{1} ,
. .

:; \overline{W}_{g+1} empty boxes which are alternately arranged (see figure 2). Repeat this

procedure t times then we obtain the t‐th state of the balls corresponding to \{J^{t}, W^{t}\}.
Now we introduce the spectral curve of the UD‐pTL. Let us consider the following

tropical polynomial F in X and Y

F(X, Y) :=\lfloor 2Y, Y+\lfloor(g+1)X, C_{g}+gX, \cdots

;  C_{1}+X,  C_{0}\rfloor ;  C_{-1}\rfloor ;

where 2 \mathrm{T} \mathrm{R}[\mathrm{f}\mathrm{l}\mathrm{g} We can associate the coefficientswhere C_{-1}, C_{0} ,
. . .

, C_{g}\in \mathrm{T} :=\mathbb{R}\cup\{\infty\} . We can associate the coefficients C_{-1}, C_{0} ,
. . .

, C_{g}
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----\overline{J}_{1}- ----\overline{J}_{2}- ----\overline{J}_{g+1}-

Figure 2. Time evolution of the pBBS.

in F with the variables J and W of the UD‐pTL appropriately [19, 10, 26], e.g.,

C_{g}=C_{g}(J;W)=\lfloor J_{i}, W_{i}\rfloor_{1\leq i\leq g+1},

C_{g-1}=C_{g-1}(J;W)=\lfloor\lfloor J_{i}+J_{j},W_{i}+W_{j}\rfloor 1\leq i<j\leq g+1 � \lfloor 1J_{i}\leq i,j\leq g+1

C_{0}=C_{0}(J;W)=\displaystyle \lfloor\sum_{i=1}^{g+1}J_{i}, \sum_{i=1}^{g+1}W_{i}\rfloor=\sum_{i=1}^{g+1}J_{i},
C_{-1}=C_{-1}(J;W)=\displaystyle \sum_{i=1}^{g+1}(J_{i}+W_{i}) .

Here we use the assumption (2.2). The correspondence denes a piecewise linear map

(2.3)  $\psi$ : \mathbb{R}^{2g+2}\rightarrow \mathbb{R}^{g+2};(J, W)\mapsto(C_{-1}, C0, . . . , C_{g}) .

We may use the notation C_{i}^{t} :=C_{i}(J^{t};W^{t}) for t=0 , 1, . :: when the map  $\zeta$ is iterated.

One can show that the coefficients  C_{-1}, C_{0} ,
.

::, C_{g} in F are the conserved quantities of

the UD‐pTL [19, 10].
Consider the tropical plane curve \tilde{ $\Gamma$} dened by F[28 , 2, 13 ] :

\tilde{ $\Gamma$} := { P\in \mathbb{R}^{2}|F is not differentiable at P}.

Assume C_{-1}>2C_{0}, C_{g-1}>2C_{g} ,
and C_{i}+C_{i+2}>2C_{i+1} for i=0 , 1, . . .

; g-2 . Then \tilde{ $\Gamma$}

is a tropical hyperelliptic curve of genus g[21, 3] . By removing all half rays from \tilde{ $\Gamma$}
,

we

obtain the compact tropical curve denoted by  $\Gamma$ (see figure 3). Hereafter, we consider

 $\Gamma$ rather than \tilde{ $\Gamma$} as the spectral curve of the UD‐pTL.
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V_{0}'

- \cdot - -\neg \mathrm{t} \mathrm{t} . —- -\neg - \mathrm{t} .

Figure 3. The tropical hyperelliptic curve  $\Gamma$ . The compact subset  $\Gamma$ is drown by solid

lines and the half rays by dotted lines.

Consider the involution ! \mathrm{P} \mathrm{Y} |!Consider the involution  $\iota$ :  $\Gamma$\rightarrow $\Gamma$;P=(X, Y)\mapsto P'=(X, C_{-1}-Y) . We call P'

the conjugate of P . Note that  $\Gamma$ is symmetric with respect to the line  Y=C_{-1}/2 . We

denote the 2g+2 vertices of  $\Gamma$ by  V_{i} and V_{i}' for i=0 , 1, . .

:, g

V_{i}=(C_{g-i}-C_{g-i+1}, C_{-1}-(g-i+1)C_{g-i}+(g-i)C_{g-i+1}) ,

V_{i}'=(C_{g-i}-C_{g-i+1}, (g-i+1)C_{g-i}-(g-i)C_{g-i+1}) .

The cycle connecting V_{i}, V_{i-1}, V_{i-1}' ,
and V_{i}' in a counterclockwise direction is denoted

by $\alpha$_{i} for i=1
, 2, . .

:, g.

§3. Addition on tropical hyperelliptic curves

We briey review addition of points on tropical hyperelliptic curves [33, 25].
Denote the divisor group of  $\Gamma$ by \mathcal{D}( $\Gamma$) . A rational function on  $\Gamma$ is a continuous

function  f :  $\Gamma$\rightarrow \mathbb{R} such that its restriction to any edge is piecewise linear with integral

slope [2]. The order of f at  P\in $\Gamma$ is the sum of the outgoing slopes of all segments

emanating from  P and is denoted by ordpf. If ordpf <0 then P is called the zero

of f of order |\mathrm{o}\mathrm{r}\mathrm{d}_{P}f| . If ordpf >0 then P is called the pole of f of order ordpf.



A geometric realization oF the UD‐pTL via tropical plane curves 61

The principal divisor (f) of f is dened to be (f) :=\displaystyle \sum_{P\in $\Gamma$} (ordpf ) P . We then find

\displaystyle \deg(f)=\sum_{P\in $\Gamma$} (ordpf ) =0.

Dene the Picard group of  $\Gamma$ to be the residue class group \mathrm{P}\mathrm{i}\mathrm{c}^{\ovalbox{\tt\small REJECT}}() :=\mathcal{D}_{0}( $\Gamma$)/\mathcal{D}_{l}( $\Gamma$) ,

where \mathcal{D}_{0}() is the group of divisors of degree 0 on  $\Gamma$ and \mathcal{D}_{l}() is the group of principal
divisors of rational functions on  $\Gamma$.

Dene the canonical map  $\Phi$ : \mathcal{D}_{g}^{+}( $\Gamma$)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}^{0}() to be

 $\Phi$(A) :\equiv A-D^{*} (mod \mathcal{D}_{l} for A\in \mathcal{D}_{g}^{+}( $\Gamma$) ,

where \mathcal{D}_{g}^{+}( $\Gamma$) is the group of effective divisors of degree g on  $\Gamma$ and  D^{*}\in \mathcal{D}_{g}^{+}( $\Gamma$) is a

fixed element. We then have the following theorem.

Theorem 3.1 ([25]). The canonical map  $\Phi$ is surjective. In particular,  $\Phi$ is

bijective if  g=1.

By using the surjection  $\Phi$
,

we induce an addition of points on the g‐th symmetric

product Sy\mathrm{m}^{}() :=$\Gamma$^{g}/\mathfrak{S}_{g} from \mathrm{P}\mathrm{i}\mathrm{c}^{\ovalbox{\tt\small REJECT}} Put \tilde{ $\Phi$}:= $\Phi$\circ$\mu$^{-1} : Sy \mathrm{m}^{}( $\Gamma$)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}^{0} () ,
where

 $\mu$ : \mathcal{D}_{g}^{+}( $\Gamma$)\rightarrow \mathrm{S}\mathrm{y}\mathrm{m}^{g}( $\Gamma$);D_{P}=P_{1}+P_{2}+\cdots+P_{g}\mapsto d_{P} := $\mu$(D_{P})=\{P_{1}, P_{2}, . . . , P_{g}\}.
For d_{P}, d_{Q}\in \mathrm{S}\mathrm{y}\mathrm{m}^{g} we dene d_{P}\oplus d_{Q} to be an element in the subset

\tilde{ $\Phi$}^{-1}(\tilde{ $\Phi$}(d_{P})+\tilde{ $\Phi$}(d_{Q}))\subset \mathrm{S}\mathrm{y}\mathrm{m}^{g}( $\Gamma$) .

Although d_{P}\oplus d_{Q} is not uniquely determined on Sy \mathrm{m}^{} (  $\Gamma$ ) ,
there exists a subset of

Sy \mathrm{m}^{} (  $\Gamma$ ) on which the addition is uniquely determined.

Put  $\alpha$_{ij} :=$\alpha$_{i}\cap$\alpha$_{j}\backslash \mathrm{f}\mathrm{n}\mathrm{d} points of $\alpha$_{i}\cap$\alpha$_{j} } for the cycles $\alpha$_{i}(i=1,2, \ldots, g) . We

dene the subset \tilde{\mathcal{D}} of \mathcal{D}_{g}^{+}( $\Gamma$) to be

\mathrm{D}:=\{D_{P}\in \mathcal{D}_{g}^{+}( $\Gamma$)|_{\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{o}\mathrm{n}$\alpha$_{ij}}^{P_{i}\in$\alpha$_{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}11i=1,2.g\mathrm{a}\mathrm{n}\mathrm{d}}\}
We then have the following theorem.

Theorem 3.2 ([10]). The reduced map  $\Phi$|\mathrm{D}:\mathrm{D}\rightarrow\sim \mathrm{P}\mathrm{i}\mathrm{c}^{0}( $\Gamma$) is bijective.

Since  $\mu$|\tilde{\mathcal{D}} : \mathrm{D}\rightarrow $\mu$(\tilde{\mathcal{D}})\subset \mathrm{s}_{\mathrm{y}}\mathrm{m}() is also bijective, the addition \oplus: $\mu$(\tilde{\mathcal{D}})\times $\mu$(\tilde{\mathcal{D}})\rightarrow
 $\mu$(\mathrm{D}) is uniquely determined. Thus we see that  $\mu$(\mathrm{D})\simeq \mathrm{P}\mathrm{i}\mathrm{c}^{0}() as a group.

Hereafter, we fix D^{*} as follows

D^{*}=\left\{\begin{array}{ll}
\frac{g}{2}(V_{0}+V_{0}') & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n} g,\\
\frac{g-1}{2}(V_{0}+V_{0}')+V_{0} & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{o}\mathrm{d}\mathrm{d} g.
\end{array}\right.
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Dene the element 0\in \mathrm{S}\mathrm{y}\mathrm{m}^{g}( $\Gamma$) to be

o:=\left\{\begin{array}{ll}
\bigcup_{i=1}^{g/2}\{V_{2i-1}, V_{2i-1}'\} & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n} g,\\
\{V_{0}\}\cup(\bigcup_{i=1}^{g-1/2}\{V_{2i}, V_{2i}'\}) & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{o}\mathrm{d}\mathrm{d} g.
\end{array}\right.
Then 0 is the unit of addition of the group  $\mu$(\mathrm{D})[25 , 26].

§4. Tropical eigenvector maps

Let the phase space of the UD‐pTL be

\displaystyle \mathcal{T}:=\{(J, W)|\sum_{i=1}^{g+1}J_{i}<\sum_{i=1}^{g+1}W_{i}\}
and the moduli space of  $\Gamma$ be  C :=\{(C_{-1} , C0, . . .

, C_{g} Consider the map  $\psi$ : \mathcal{T}\rightarrow C

dened by (2.3) and set

\mathcal{T}c :=$\psi$^{-1}(C_{-1}, C0, . . . , C_{g})\subset \mathcal{T}.

The set \mathcal{T}c is called the isospectral set of the UD‐pTL.
Now remember the periodic discrete Toda lattice (pdTL)  $\chi$ : \mathbb{C}^{2g+2}\rightarrow \mathbb{C}^{2g+2};(I, V)

\mapsto(\overline{I},\overline{V}) given by

(4.1) \overline{I}_{i}+\overline{V}_{i-1}=I_{i}+V_{i}, \overline{V}_{i}\overline{I}_{i}=I_{i+1}V_{i},

where we put I=(I\mathrm{l}, . . :; I_{g+1}) and V=(V\mathrm{l}, . ::, V_{g+1}) [7] . By applying the procedure
of ultradiscretization to the pdTL, we obtain the UD‐pTL [35, 18]. Let  $\varphi$(x, y)=
($\varphi$_{1}, \cdots, $\varphi$_{g}, -$\varphi$_{g+1})^{T} be the eigenvector of the Lax matrix

\lceil I_{2}+V_{1}1 (1)  gI_{1}V_{1}/y\rceil

 L:=\lfloor_{(-1)^{g}y I_{g+1}V_{g+1}}^{I_{2}V_{2}} I_{1}+^{1}V_{g+1}\rfloor
of the pdTL. Here -x is the eigenvalue of L and y is the spectral parameter.

Let \tilde{f} be the polynomial y|x\mathrm{I}+L| in x and y . Then \tilde{f} has the form

\tilde{f}(x, y)=y^{2}+y(x^{g+1}+c_{g}x^{g}+\cdots+c_{1}x+c_{0})+c_{-1}
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and denes the spectral curve \tilde{ $\gamma$} of the pdTL, which is a hyperelliptic curve of genus g for

appropriate choice of c_{i}' \mathrm{s}[10] . Note that the coefficients c_{-1}, c_{0} ,
. .

:; c_{g} are subtraction‐

free polynomials in I and V and are the conserved quantities of the pdTL.
Consider the eigenvalue equation of L

(4.2) (x\mathrm{I}+L) $\varphi$(x, y)=0.

Let the (i, j) ‐entry of L be l_{ij} . By applying the Cramer formula, each element of  $\varphi$(x, y)
is explicitly given by

$\varphi$_{i}(x, y)=\left|\begin{array}{lllll}
l_{11}+X &  & l_{1,i-1}l_{1,g+1}l_{1,i+1} & \cdots & l_{1g}\\
\vdots &  &  &  & \\
l_{g1} & \cdots & l_{g,i-1}l_{g,g+1}l_{g,i+1} & \cdots & l_{gg}+X
\end{array}\right|
for i=1

, 2, . . .

; g and

$\varphi$_{g+1}(x)=|x\mathrm{I}+L_{\overline{ $\Lambda$}}|,

where L_{\overline{ $\Lambda$}}=(l_{ij})_{1\leq i,j\leq g}.
Let \mathcal{U}_{c} be the isospectral set of the pdTL. The eigenvector map  $\phi$ of the pdTL is

dened to be a map  $\phi$ : \mathcal{U}_{c}\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}^{g} () :=\mathcal{D}_{g}( $\gamma$)/\mathcal{D}_{l}( $\gamma$) ;

(I, V)\mapsto $\phi$(I, V)\equiv P_{1}+\cdots+P_{g} (mod \mathcal{D}_{l}

where P_{1}, P_{2}, \cdots, P_{g} are points on \tilde{ $\gamma$} such that they are the common g zeros of the

rational functions $\varphi$_{1}(x, y) , $\varphi$_{2}(x, y) ,
. .

:; $\varphi$_{g}(x, y) in the eigenvector  $\varphi$(x, y)[32 ,
14].

We can easily see that the first two entries $\varphi$_{1}(x, y) and $\varphi$_{2}(x, y) of  $\varphi$(x, y) have

exactly g zeros in common, and these g zeros dene  $\phi$ . Expand  $\varphi$_{1}(x, y) with respect to

the first column:

(4.3) $\varphi$_{1}(x, y)=\displaystyle \frac{(-1)^{g}}{y}I_{1}V_{1}|_{I_{g}V_{g}I_{g+1}+}^{I_{3}+V_{2}+x.1}1_{V_{g}+x}(-1)^{g}.
Also expand $\varphi$_{2}(x, y) with respect to the second column:

(4.4)

$\varphi$_{2}(x, y)=(-1)^{g}(I_{2}+V_{1}+x)-\displaystyle \frac{(-1)^{g}I_{1}I_{2}V_{1}V_{2}}{y}
I_{4}+V_{3}+x1

I_{4}V_{4}

1

I_{g}V_{g}I_{g+1}+V_{g}+x
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Now consider the following formula [26]:

(4.5) |_{I_{g}V_{g}I_{g+1}+}^{I_{2}+V_{1}+x.1}1_{V_{g}+x}=\displaystyle \frac{|x\mathrm{I}+L(I_{2,g+1};V_{1,g})|-y}{x}
=x^{g}+\displaystyle \sum_{i=1}^{g}c_{i}(I_{2,g+1};V_{1,g})x^{i-1},

where we put

);\mathrm{I}_{\mathrm{i};\mathrm{j}} := (0; : : : ; 0| \{\mathrm{z} \}
| \{\mathrm{z} \}

| \{\mathrm{z} \}
| \{\mathrm{z} \}

i-1 g+1-j

for i\leq j, i, j=1 , 2, . . .

; g+1 . It should be noted that (4.5) is the subtraction‐free

polynomial $\varphi$_{g+1}(x) in x
,

the (g+1) ‐th entry of the eigenvector  $\varphi$(x, y) .

Setting I_{2}=V_{1}=0 in (4.5), we have

|^{I_{3}+V_{2}+x.1}\cdot\cdot..1 �

where we use the fact c_{1}(I_{3,g+1};V_{2,g})=0 . Moreover setting I3=V_{2}=0 ,
we obtain

|^{I_{4}+V_{3}+x.1}\cdot\cdot..1 �

where we use the fact c_{2}(I_{4,g+1};V_{3,g})=0 . Thus we find the following explicit formulae

for $\varphi$_{1} and $\varphi$_{2}

$\varphi$_{1}(x, y)=\displaystyle \frac{(-1)^{g}}{y}I_{1}V_{1}\{x^{g-1}+\sum_{i=2}^{g}c_{i}(I_{3,g+1};V_{2,g})x^{i-2}\}-(-1)^{g},
$\varphi$_{2}(x, y)=(-1)^{g}(I_{2}+V_{1}+x)-\displaystyle \frac{(-1)^{g}}{y}I_{1}I_{2}V_{1}V_{2}\{x^{g-2}+\sum_{i=3}^{g}c_{i}(I_{4,g+1};V_{3,g})x^{i-3}\}
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From the first equation in (4.2) we have

(4.6) $\varphi$_{g+1}(x)=\displaystyle \frac{(-1)^{g}y}{I_{1}V_{1}}\{(I_{1}+V_{1}+x)$\varphi$_{1}(x, y)+$\varphi$_{2}(x, y)\}.
The remaining equations in (4.2) imply

(4.7) I_{i+1}V_{i}+1$\varphi$_{i}+(I_{i+2}+V_{i+1}+x)$\varphi$_{i+1}+$\varphi$_{i+2}=0

for i=1
, 2, . . .

; g-2 and

(4.8) (1) gy$\varphi$_{1}(x, y)+I_{g+1}V_{g+1}$\varphi$_{g}(x, y)-(I_{1}+V_{g+1})$\varphi$_{g+1}(x)=0.

Note that (4.8) is equivalent to the dening polynomial \tilde{f}(x, y) of \tilde{ $\gamma$}.
Now we apply the procedure of ultradiscretization to $\varphi$_{1} and $\varphi$_{2} . Replace x and -y

with e^{-X/ $\epsilon$} and e^{-Y/ $\epsilon$}
, respectively. Also replace I_{i} and V_{i} with e^{-J_{i}/ $\epsilon$} and e^{-W_{i}/ $\epsilon$}

for i=1
, 2, . . .

, g-1 , respectively. Then the polynomials (1) g-1_{y$\varphi$_{1}}(x, -y) and

(-1)^{g}y$\varphi$_{2}(x, -y) are subtraction‐free and we obtain tropical polynomials

G_{1}(X, Y) :=-\displaystyle \lim_{ $\epsilon$\rightarrow 0} $\epsilon$\log(\frac{(-1)^{g-1}y}{I_{1}V_{1}}$\varphi$_{1}(x, -y))
=\lfloor\lfloor C_{i}(J_{3,g+1};W_{2,g})2\leq i\leq g+(i-2)X\rfloor, (g-1)X, Y-J_{1}-W_{1}\rfloor

and

 G_{2}(X, Y) :=-\displaystyle \lim_{ $\epsilon$\rightarrow 0} $\epsilon$\log(\frac{(-1)^{g}y}{I_{1}I_{2}V_{1}V_{2}}$\varphi$_{2}(x, -y))
=\lfloor\lfloor C_{i}(J_{4,g+1};W_{3,g})3\leq i\leq g+(i-3)X\rfloor, (g-2)X, Y+\lfloor J_{2}, W_{1},  X\displaystyle \rfloor-\sum_{i=1}^{2}(J_{i}+W_{i})\rfloor

in the limit  $\epsilon$\rightarrow 0 . Here C_{i}(i=1,2, \ldots, g-1) is the coefficient in the dening

polynomial F of  $\Gamma$ and we put

);\{\mathrm{z} \{\mathrm{z}\mathrm{i};\mathrm{j}

\{\mathrm{z} \{\mathrm{z}\mathrm{i};\mathrm{j}

i-1 g+1-j

for i\leq j, i, j=1 , 2, . . .

, g+1.
Dene tropical plane curves L_{1} and L_{2} by using these tropical polynomials:

L_{1}:= { P\in \mathbb{R}^{2}|G_{1} is not differentiable at P},
L_{2} := { P\in \mathbb{R}^{2}|G_{2} is not differentiable at P}.
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We may use the notation G_{1}^{t}(X, Y) , G_{2}^{t}(X, Y) and L_{1}^{t}, L_{2}^{t} for J^{t} and W^{t} for t=0 , 1, . ::.

By embedding these tropical curves into tropical projective plane \mathrm{T}\mathbb{P}^{2}
,

we can prove

that L_{1} intersects L_{2} exactly at g points P_{1}, P_{2} ,
. . .

, P_{g} . Moreover, by (4.6)-(4.8) ,
we

find that the g intersection points P_{1}, P_{2} ,
.

::, P_{g} of L_{1} and L_{2} are on  $\Gamma$.

We dene the tropical eigenvector map  $\phi$ : \mathcal{T}c\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}^{g}( $\Gamma$) :=\mathcal{D}_{g}^{+}( $\Gamma$)/\mathcal{D}_{l}( $\Gamma$) to be

 $\phi$(J, W)\equiv P_{1}+P_{2}+\cdots+P_{g} (mod \mathcal{D}_{l} ;

where P_{1}, P_{2} ,
.

::, P_{g} are the intersection points of L_{1}, L_{2} and  $\Gamma$.

§5. A geometric realization of UD‐pTL

Dene T\in \mathcal{D}_{g}^{+}( $\Gamma$) to be

(5.1) T:=\left\{\begin{array}{ll}
V_{0}+V_{g}'+\sum_{i=1}^{(g-2)/2}(V_{2i}+V_{2i}') & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n} g,\\
B+V_{1}+V_{g}'+\sum_{i=2}^{(g-1)/2}(V_{2i-1}+V_{2i-1}') & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{o}\mathrm{d}\mathrm{d} g
\end{array}\right.
for g\geq 2 . Here B=(C_{g}, C_{-1}-C_{g-1}-(g-1)C_{g})\in\overline{V_{0}V_{0}'}\subset$\alpha$_{1} is the unique point
such that B+V_{1}-2V_{0} is the principal divisor of a rational function on  $\Gamma$ . For  g=1,
we dene T to be the point (C_{1}, C_{0})\in \mathrm{D} on the edge \overline{V_{0}V_{0}'}.

We easily observe that T\in \mathrm{D} . Moreover, we obtain the following theorem concern‐

ing time evolution of the UD‐pTL and an addition on Sy\mathrm{m}^{}() .

Theorem 5.1 ([26]). Set  $\tau$= $\mu$(T)\in Sy \mathrm{m}^{} (  $\Gamma$ ) . Then, for any  g ,
the following

diagram is commutative

\mathcal{T}c\rightarrow^{ $\mu$\circ $\phi$} Sy \mathrm{m}^{} (  $\Gamma$ )

(2.1)\downarrow \downarrow\oplus $\tau$
\mathcal{T}c\rightarrow \mathrm{S}\mathrm{y}\mathrm{m}^{g}( $\Gamma$) .

 $\mu$\circ $\phi$

Let  P_{1}, P_{2} ,
. .

:; P_{g} be the points on  $\Gamma$ given by the tropical eigenvector map  $\phi$ . Also

let  d_{P}= $\mu$(D_{P}) for D_{P}=P_{1}+P_{2}+\cdots+P_{g} . Then the addition of points on Sy \mathrm{m}^{} (  $\Gamma$ )
in theorem 5.1 is written as

\mathrm{d} ()(5.2)  d_{\overline{P}}=d_{P}\oplus $\tau$ \Leftrightarrow \left\{\begin{array}{l}
d_{Q}\oplus d_{P}\oplus $\tau$=0,\\
d_{Q}\oplus d_{\overline{P}}=0.
\end{array}\right.
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Since  $\phi$(T)\equiv V_{g}'-V_{0}' (mod \mathcal{D}_{l} for any g, (5.2) is written by the divisors on \mathrm{P}\mathrm{i}\mathrm{c}^{\ovalbox{\tt\small REJECT}}

(5.3) D_{Q}+D_{P}+V_{g}'-V_{0}'-2D^{*}\equiv 0 (mod \mathcal{D}_{l} ;

(5.4) D_{Q}+D_{\overline{P}}-2D^{*}\equiv 0 (mod \mathcal{D}_{l} ;

where D_{Q}=Q_{1}+\cdots+Q_{g}=$\mu$^{-1}(d_{Q}) . Hereafter, we assume that the divisor D_{P}=

P_{1}+\cdots+P_{g} is in D.

Let M be a number such that M\geq\lceil J,  W\rceil . Dene  S_{j}C_{i} and T_{k}C_{i} for i=0 ,
. . .

; g

and j, k=1
, 2, .

::, g+1 to be

S_{j}C_{i}:=C_{i}(J_{1}, \ldots, J_{j}-(g-i+1)M, . :. , J_{g+1};W)+(g-i+1)M,

T_{k}C_{i}:=C_{i}(J;W_{1}, \ldots, W_{k-1}, W_{k}+(g-i+1)M, W_{k+1}, \ldots, W_{g+1}) .

Note that S_{j}C_{i} eliminates the terms in C_{i} not containing J_{j} and T_{k}C_{i} the terms in C_{i}

containing W_{k}.
Dene tropical polynomials

(5.5) H_{1}(X, Y):=\left\{\begin{array}{ll}
\lfloor\lfloor S_{1}C_{i}+iX\rfloor 0\leq i\leq g' Y\rfloor & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n} g,\\
\lfloor T_{g1}C_{i}+iX\rfloor, (g+1)X, Y\rfloor & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{o}\mathrm{d}\mathrm{d} g
\end{array}\right.
and

H_{2}(X, Y):=\lfloor\acute{C}_{0}, \acute{C}_{1}+X ,
. .

:, \acute{C}_{g-1}+(g-1)X, C_{g}+gX, (g+1)X, Y\rfloor,
where \acute{C}_{i}:=\lfloor C_{i}, S_{1}C_{i},  J_{1}+C_{i+1}(J_{2,g+1};W_{2,g+1})\rfloor for  i=0 , 1, . .

:; g-1.

By using H_{1} and H_{2} ,
we dene the tropical curves K_{1} and K_{2} , respectively

K_{1} := { P\in \mathbb{R}^{2}|H_{1} is not differentiable at P},
K_{2} := { P\in \mathbb{R}^{2}|H_{2} is not differentiable at P}.

These tropical plane curves are tropical analogues of the plane curves which intersect

the spectral curve \tilde{ $\gamma$} of the pdTL and give the time evolution of the pdTL [ 26] . We may

use the notation H_{1}^{t}(X, Y) , H_{2}^{t}(X, Y) and K_{1}^{t}, K_{2}^{t} for J^{t} and W^{t} for t=0 , 1, . . :.

Denote the restriction of the rational function H_{1} on  $\Gamma$ by  H_{1}| $\Gamma$ . We then have the

following proposition.

Proposition 5.2 ([26]). Assume that the points  P_{1}, P_{2} ,
. . .

,  P_{g}\in $\Gamma$ are on the

tropical curve  K_{1} . Then the rational function  H_{1}| $\Gamma$ on  $\Gamma$ satises

(5.6) (H_{1}| $\Gamma$)=D_{Q}+D_{P}+V_{g}'-V_{0}'-2D^{*}
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Thus we see that the addition (5.3) is realized by using the intersection of  $\Gamma$ and  K_{1}

dened by H_{1} ,
and hence Q_{1} ,

. .

:; Q_{g} are the intersection points of  $\Gamma$ and  K_{1} . Moreover,
if g is an even number we have (see [25])

D_{Q}+D_{Q'}-2D^{*}\equiv 0 (mod \mathcal{D}_{l}

for Q_{1} ,
. .

:;  Q_{g}\in $\Gamma$ . This implies  D_{\overline{P}}=D_{Q'} . Thus the time evolution of the UD‐pTL
is realized by using the intersection of tropical plane curves  $\Gamma$ and  K_{1} if g is an even

number.

Now assume that g is an odd number. The restriction  H_{2}| $\Gamma$ of rational function

 H_{2} on  $\Gamma$ has poles of oder  g at V_{0} and V_{0}' . This implies

(H_{2}| $\Gamma$)=D_{R}+D_{R'}+V_{0}-V_{0}'-2D^{*},

where R_{1} ,
. . .

, R_{g} and Rí, . . .

, R_{g}' are the intersection points of  $\Gamma$ and  K_{2} dened by H_{2}.

There uniquely exists a point Z_{0} on $\alpha$_{1}\backslash $\alpha$_{1,2} such that

V_{0}'+Z_{0}-V_{0}-R_{1}'\equiv 0 (mod \mathcal{D}_{l}

We then find

(H_{2}| $\Gamma$)\equiv D_{R}+Z_{0}+R_{2}'+\cdots+R_{g}'-2D^{*} (mod \mathcal{D}_{l}

Since there exists at least one intersection point of  $\Gamma$ and  K_{1} on the upper half of

$\alpha$_{1}\backslash $\alpha$_{1,2} ,
we can assume that Q_{1} is the one. Then there exist rational functions G_{1} and

G_{2} on  $\Gamma$ such that

(G_{1})=Z_{1}+Q_{1}-Z_{0}-R_{1},

(G_{2})=Q_{2}+\cdots+Q_{g}+Q_{2}'+\cdots+Q_{g}'-R_{2}-\cdots-R_{g}-R_{2}'-\cdots-R_{g}'.
Then we have

(G_{1}+G_{2})=D_{Q}+Z_{1}+Q_{2}'+\cdots+Q_{g}'-Z_{0}-D_{R}-R_{2}'-\cdots-R_{g}'.

It immediately follows

(5.7) (H_{2}| $\Gamma$)\equiv D_{Q}+Z_{1}+Q_{2}'+\cdots+Q_{g}'-2D^{*}\equiv 0 (mod \mathcal{D}_{l}

Comparing (5.4) with (5.7), we find

D_{\overline{P}}=Z_{1}+Q_{2}'+\cdots+Q_{g}'.

Remember that Q_{1} ,
. .

:; Q_{g} are the intersection points of  $\Gamma$ and  K_{1} ,
and Z_{1} is the unique

point on  $\Gamma$ determined by the intersection points  R_{1} , Rí of  $\Gamma$ and  K_{2} by the formula

Z_{1}+Q_{1}+V_{0}'-R_{1}-R_{1}'-V_{0}\equiv 0 (mod \mathcal{D}_{l}
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Thus the time evolution of the UD‐pTL is realized by using the intersection of the

tropical plane curves  $\Gamma$, K_{1} and K_{2} if g is an odd number. We obtain the following
theorem.

Theorem 5.3 ([26]). Let D_{P} and D_{Q} be elements of \mathrm{D} satisfy ing (5.3). Also

let T be the element of \mathrm{D} given by (5.1). Put d_{P}= $\mu$(D_{P})\in \mathrm{S}\mathrm{y}\mathrm{m}^{g}( $\Gamma$) and  $\tau$= $\mu$(T)\in
Sy \mathrm{m}^{} (  $\Gamma$ ) . Then the element  d_{\overline{P}}\in \mathrm{S}\mathrm{y}\mathrm{m}^{g}( $\Gamma$) dened by the addition

 d_{\overline{P}}=d_{P}\oplus $\tau$

is explicitly given by the formula

 d_{\overline{P}}=\left\{\begin{array}{ll}
\{Q\'{i}, Q_{2}', . . . , Q_{g}'\} & for even g,\\
\{Z_{1}, Q_{2}', . . . , Q_{g}'\} & for odd g.
\end{array}\right.
In Appendix \mathrm{A}

,
we give an explicit computation of the time evolution of the pBBS

imposing a certain initial condition on the integral lattice via tropical curve intersection.

§6. Conclusion

We establish a geometric realization of the UD‐pTL via the tropical curve inter‐

section of its spectral curve  $\Gamma$ and two plane curves  K_{1} and K_{2} . Namely, the linear

flow on the tropical Jacobian of  $\Gamma$ equivalent to the time evolution of the UD‐pTL is

translated into the intersection of tropical curves  $\Gamma$, K_{1} and K_{2} . The rational functions

F, H_{1} and H_{2} which respectively dene  $\Gamma$, K_{1} and K_{2} are explicitly given by using the

conserved quantities C_{-1}, C_{0} ,
. .

:; C_{g} of the UD‐pTL. Moreover, the tropical eigenvector

map, which maps a point in the isospectral set \mathcal{T}c of the UD‐pTL into a set of points
on  $\Gamma$

,
is explicitly given by using two tropical plane curves  L_{1} and L_{2} . The rational

functions G_{1} and G_{2} which respectively dene these tropical plane curves are also given

by using the conserved quantities of the UD‐pTL. Thus, if initial values of the UD‐pTL
are given then we can completely realize the time evolution of the UD‐pTL via tropical

plane curves  $\Gamma$, L_{1}, L_{2}, K_{1} and K_{2} . We observe that the points P_{1}^{t}, P_{2}^{t} ,
. . .

, P_{g}^{t} on  $\Gamma$

corresponding to the variables  J^{t}, W^{t} of the UD‐pTL move the cycles $\alpha$_{1}, $\alpha$_{2} ,
.

::, $\alpha$_{g} in

 $\Gamma$ in a counterclockwise direction as  t increasing, respectively.
The pBBS studied in this article is a fundamental ultradiscrete integrable system

and is associated with the crystal basis of the quantum group U_{q}(\hat{\mathfrak{s}1}_{2})[4] . To establish

geometric realizations for members in a wide class of ultradiscrete integrable systems
such as box‐ball systems associated with the crystal bases of the quantum groups U_{q}(\hat{\mathfrak{g}})
of affine Lie algebras \hat{\mathfrak{g}} other than \hat{\mathfrak{s}1}_{2} is a further problem.
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§ Appendix A. An example of geometric realization of pBBS

In this section, we show explicit computation of the tropical geometric realization

of the UD‐pTL discussed above. In particular, we consider the pBBS case, that is, we

take the initial values in positive integers. Throughout this section, we fix g=2.
Let us consider the following initial values of the pBBS

(Appendix A.1) J^{0}=(J_{1}^{0}, J_{2}^{0}, J_{3}^{0})=(3,2,1) , W^{0}=(W_{1}^{0}, W_{2}^{0}, W_{3}^{0})=(3,2,4) .

The time evolution of the pBBS imposing this initial condition from t=1 to 4 is

computed as follows

J^{1}=(J_{1}^{1}, J_{2}^{1}, J_{3}^{1})=(3,2,1) , W^{1}=(W_{1}^{1}, W_{2}^{1}, W_{3}^{1})=(2,1,6) ,

J^{2}=(J_{1}^{2}, J_{2}^{2}, J_{3}^{2})=(2,1,3) , W^{2}=(W_{1}^{2}, W_{2}^{2}, W_{3}^{2})=(2,1,6) ,

J^{3}=(J_{1}^{3}, J_{2}^{3}, J_{3}^{3})=(2,1,3) , W^{3}=(W_{1}^{3}, W_{2}^{3}, W_{3}^{3})=(1,3,5) ,

J^{4}=(J_{1}^{4}, J_{2}^{4}, J_{3}^{4})=(1,2,3) , W^{4}=(W_{1}^{4}, W_{2}^{4}, W_{3}^{4})=(1,4,4) .

The realization of the pBBS with boxes and balls is illustrated in figure 4.

\mathrm{O}\mathrm{O}\mathrm{O} \circ \mathrm{O} \circ

\circ \mathrm{O}\mathrm{O} \circ \mathrm{O} \circ

\circ \mathrm{O} \circ \circ \mathrm{O}\mathrm{O}

\mathrm{O}\mathrm{O}\mathrm{O}

\circ \mathrm{O}\mathrm{O}

\circ \mathrm{O} \circ

\circ \circ \mathrm{O}

Figure 4. Time evolution of the pBBS for the initial values (Appendix A.1) from t=0

to 4.

The spectral curve  $\Gamma$ of the pBBS is given by

 F(X, Y)=\lfloor 2X, Y+\lfloor 3X, C_{2}+2X, C_{1}+X,  C_{0}\rfloor ;  C_{-1}\rfloor ;
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where

 C_{2}=\lfloor J_{1}, J_{2}, J_{3}, W_{1}, W_{2}, W_{3}\rfloor,

C_{1}=\lfloor J_{1}+J_{2}, J_{2}+J_{3}, J_{3}+J_{1}, W_{1}+W_{2}, W_{2}+W_{3},

W_{3}+W_{1}, J_{1}+W_{2}, J_{2}+W_{3}, J_{3}+W_{1}\rfloor,

C_{0}=J_{1}+J_{2}+J_{3},

C_{-1}=J_{1}+J_{2}+J_{3}+W_{1}+W_{2}+W_{3}.

Substituting the initial values (Appendix A.1) into the coefficients C_{-1}, C_{0}, C_{1}, C_{2},
we obtain

C_{2}=C_{2}^{0}=\lfloor 3, 2, 1, 3, 2, 4\rfloor=1,

C_{1}=C_{1}^{0}=\lfloor 3+2, 2+1, 1+3, 3+2, 2+4, 4+3, 3+2, 2+4, 1+3\rfloor=3,

C_{0}=C_{0}^{0}=3+2+1=6,
C_{-1}=C_{-1}^{0}=3+2+1+3+2+4=15

and hence

(Appendix A.2) F(X, Y)=\lfloor 2X, Y+\lfloor 3X, 1+2X, 3+X,  6\rfloor ;  15\rfloor :

Figure 5(a) shows the spectral curve \tilde{ $\Gamma$} given by (Appendix A.2), which is a tropical

hyperelliptic curve of genus 2. The vertices in \tilde{ $\Gamma$} are as follows

V_{0}=(1,12) , V_{1}=(2,10) , V_{2}=(3,9) , V_{0}'=(1,3) , V_{1}'=(2,5) , V_{2}'=(3,6) .

The tropical plane curves L_{1} and L_{2} which dene the tropical eigenvector map are

given by the tropical polynomials

 G_{1}(X, Y)=\lfloor\lfloor C_{2}(J_{3,3};W_{2,2})\rfloor, X, Y-J_{1}-W_{1}\rfloor

=\lfloor J_{3}, W_{2}, X, Y-J_{1}-W_{1}\rfloor,

 G_{2}(X, Y)=\displaystyle \lfloor 0, Y+\lfloor J_{2}, W_{1}, X\rfloor-\sum_{i=1}^{2}(J_{i}+W_{i})\rfloor ,

where we use

 C_{2}(J_{3,3};W_{2,2})=C_{2}(\infty, \infty, J_{3};\infty, W_{2}, \infty)=\lfloor J_{3}, W_{2}\rfloor

For the initial values (Appendix A.1), we obtain

 G_{1}^{0}(X, Y)=\lfloor 1, 2, X, Y-6\rfloor ;

 G_{2}^{0}(X, Y)=\lfloor 0, Y+\lfloor 2, 3, X\rfloor-10\rfloor=\lfloor 0, Y-8, Y+X-10\rfloor :
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(a) Eigenvector map for  t=0 (b) Points on  $\Gamma$ from  t=0 to 4

Figure 5. Intersection of tropical plane curves  $\Gamma$, L_{1}^{t} and L_{2}^{t} which realizes the eigen‐
vector map  $\phi$ (left; for  t=0 ). Each set \{J^{t}, W^{t}\} of values of the pBBS is mapped into

the intersection points P_{1}^{t} and P_{2}^{t} of  $\Gamma$, L_{1}^{t} and L_{2}^{t} by the tropical eigenvector map  $\phi$

(right; for  t=0,1, .

::, 4).

Figure 5(a) shows  $\Gamma$, L_{1}^{0} and L_{2}^{0} and their intersection points P_{1}^{0}=(1,9) and P_{2}^{0}=(2,7) .

By applying the eigenvector map repeatedly, we obtain the sequence

P_{1}^{0}=(1,9) , P_{1}^{1}=(1,7) , P_{1}^{2}=(1,5) , P_{1}^{3}=(1,4) , P_{1}^{4}=(1,3) ,

P_{2}^{0}=(2,7) , P_{2}^{1}=(2,6) , P_{2}^{2}=(2,5) , P_{2}^{3}=(3,6) , P_{2}^{4}=(3,7) ,

of points on  $\Gamma$ corresponding to the sequence  J^{0}, W^{0}, J^{1} , Wl;:. : (see figure 5(\mathrm{b}) ). We

observe that the points P_{1}^{t} and P_{2}^{t} move the cycles $\alpha$_{1} and $\alpha$_{2} in a contourclockwise

direction as t increasing, respectively.
Now consider time evolution of the pBBS. The tropical curve K_{1} is given by the

tropical polynomial

H_{1}(X, Y)=\lfloor Y, S_{1}C_{2}+2X, S_{1}C_{1}+X, S_{1}C_{0}\rfloor,
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(a) Evolution from t=0 to 1

(c) Evolution from t=2 to 3

(b) Evolution from t=1 to 2

(d) Evolution from t=3 to 4

Figure 6. Intersection of tropical plane curves  $\Gamma$ and  K_{1}^{t} which is equivalent to the time

evolution of the pBBS imposing the initial values (Appendix A.1).
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where

S_{1}C_{2}=C_{2}(J_{1}-M, J_{2}, J_{3};W)+M=J_{1},

 S_{1}C_{1}=C_{1}(J_{1}-2M, J_{2}, J_{3};W)+2M=\lfloor J_{1}+J_{2}, J_{3}+J_{1}, J_{1}+W_{2}\rfloor ;

 S_{1}C_{0}=C_{0}(J_{1}-3M, J_{2}, J_{3};W)+3M=J_{1}+J_{2}+J_{3}.

For the initial values (Appendix A.1), we obtain

S_{1}C_{2}^{0}=J_{1}^{0}=3,

S_{1}C_{1}^{0}=\lfloor J_{1}^{0}+J_{2}^{0}, J_{3}^{0}+J_{1}^{0}, J_{1}^{0}+W_{2}^{0}\rfloor=\lfloor 5, 4, 5\rfloor=4,
S_{1}C_{0}^{0}=J_{1}^{0}+J_{2}^{0}+J_{3}^{0}=6

and hence

 H_{1}^{0}(X, Y)=\lfloor Y, 3+2X, 4+X, 6\rfloor

Since we fix  g=2 ,
we do not need the second curve K_{2} given by H_{2} to realize the time

evolution of the pBBS.

Figure 6(a) shows the intersection of K_{1}^{0} and  $\Gamma$ . The conjugates  Q_{1}^{0'} and Q_{2}^{0'} of the

new intersection points Q_{1}^{0} and Q_{2}^{0} are P_{1}^{1} and P_{2}^{1} ,
and these points correspond to J^{1}

and W^{1} through the eigenvector map  $\phi$ . Figures  6(\mathrm{b})-6(\mathrm{d}) show the intersection of  $\Gamma$

and  K_{1}^{t} equivalent to the time evolution of the pBBS for t=1
, 2, 3.

To obtain the intersection points concretely, we use the notion of stable intersection

[33] and rational functions on  $\Gamma$ . For example, in figure 6(a), we see that  $\Gamma$ intersects

 K_{1}^{0} at 5 vertices ( V_{0}, V_{1},  V_{2}'\in $\Gamma$ and  U_{0}, U_{1}\in K_{1}^{0} ) in the sense of stable intersection.

This fact suggests V_{0}+V_{1}+U_{0}+U_{1}+V_{2}'-V_{0}'-2D^{*}\equiv 0 (mod \mathcal{D}_{l} (see (5.3)).
We easily find that there exists a rational function on  $\Gamma$ whose principal divisor is

 P_{1}^{0}+P_{2}^{0}+Q_{1}^{0}+Q_{2}^{0}-V_{0}-V_{1}-U_{0}-U_{1} . This implies

P_{1}^{0}+P_{2}^{0}+Q_{1}^{0}+Q_{2}^{0}+V_{2}'-V_{0}'-2D^{*}\equiv 0 (mod \mathcal{D}_{l}

Thus the intersection points of  $\Gamma$ and  K_{1}^{0} are P_{1}^{0}, P_{2}^{0}, Q_{1}^{0}, Q_{2}^{0} and V_{2}'.
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