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A simple expression for discrete Painlevé equations

By

YASUHIKO YAMADA*

Abstract

A simple expression of discrete Painlevé equations and their Lax pair is obtained by using
an interpolation problem. We discuss mainly the case of g-Painlevé equation of type Eél).
8§1. Structure of discrete Painlevé equations

The second order discrete Painlevé equations were classified by Sakai [13] as follows:
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Each discrete Painlevé equation, represented as a rational map on P! x P!,

¢1(fvg) ¢l(fag)>
¢0(fvg)7¢0(fag) ,

has eight singular points where ¥y = 1 = 0 or ¢g = ¢1 = 0. Conversely, a configuration

(1.1) T: (f.g) 0 (F.3) = (

of eight points on P! x P! (or nine points on P?) characterize the Painlevé equation.

Let us look at some examples.
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(1) . B — . a3a4b1b2
Example 1.1.  ¢-D;'[3]: T(¢, f,9) = (at, [,9), ¢ = ajasbsby
— (g blt)(g th)
L 1= (g ba)(g —ba) O
(1.2) _ (f=ait)(f — ast)

bsby.

(f—a3)(f —a)
The 8 singular points are on the four lines f =0, f = 00,9 =0 and g = c©

Example 1.2. ¢-EM [12)[14][11]: T(t, f.g) = (¢t. 7.5), q= %
(fg—1(fg—1) _ qt?(big — 1)(bog — 1)(bsg — 1)(bag — 1)
(1.3) T bsbe(brgt — 1)(bsgt —1) ~
' (fg—D(fG—1) _ ?t2(bs — f)(b2 — F)(bs — [)(ba — f)
97 (bs — fat)(bs — fat) '

The 8 singular points are on the two lines f = 0,¢g = 0 and one curve fg = 1:

Example 1.3. q—Eél) [1)[11]: T(t, f,9) = (at, £,9), ¢ = Ziggg;gi
(fg—D(fg—1)  (big—1)(b2g — 1)(bsg — 1)(bsg — 1)
(1.4) (fgt*> = 1)(fgqt> — 1) (bsgt — 1)(begt — 1)(brgt — 1)(bsgt — 1)’
' (fg—1(fg—1)  (b1—F)b2— [)(bs— [)(bs— [)q

(Fgat> = V)(fga*t> — 1) (bs — fat)(bs — fat)(br — fat)(bs — fat)’
The 8 singular points are on the two curves fg =1 and fgt? = 1:
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Example 1.4. q—Eél) 11]: T(k, ¢, f,g) = (q,Cﬂ 1.9, a= u1k2£-2u8
ws) -9 -9 -G -0k-0F ¥ Ay
R-DGE-p-G-bG-pe B
F_(F E_ o)k — )4 AL T
(1.6) Ef_ ig)(g _g)g (qg qi(qg_)f - :quBiz g’
(k gq)( A e) (k gq)(k g)q q’

where A(h,x), B(h,x) are polynomials in x of degree 4 given by

Ah,z) = (% _ % + 4 — hmg + h2msg) + (% — mg + 2hmy)z
+(— 723 +mg — 3hmg)x? — myz3 + mgad,
mo Mo 2my  mg3
(1‘7) B(h,x):(ﬁ—T+m4—hm6+h2mg)+(7—T+hm7)x
3mg Mo 9 M1 5 My y
+( h3 +F—hm8)x —ﬁx +h4

4H z—4Z

Though it is not so obvious in this form, the singularity of this equation are given by

(f,9) = (F(w),G(w;)), (i=1,---,8) where
(1.8) Flu)=u+ —, G(u):u—i-z.

These points are on the curve of bi-degree (2, 2)

(1.9 (F =& =8~ (k=07 - =0,

which has a node at (00, 00).
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In the next section, we will rewrite the q—Eél) equation in simpler form where the
singularity structure is manifest (see Theorem.2.2).

Example 1.5. The most generic equation, the elliptic—Eél) [13][11], is more com-
plicated than q—Eél) case. The 8 points are on a smooth bi-degree (2,2) curve (i.e. an
elliptic curve):

There have been many challenges to obtain an explicit expression of the elliptic Eél)
equation (e.g.[4][7][8]). We will give one simple expression (Theorem.3.1) which was
obtained in [10] by a similar method as the g-case discussed below.

§2. An approach from the Padé interpolation

There exists a simple method to derive a Lax pair for Painlevé equations[15]. Using
a discrete version of it, we will derive a simple form of ¢g-Painlevé equation of type Eél).

Here, we use parameters ai, az, as, bi,bs,b3,k, £ € C and m,n € Z>( with constraints
(2.1) q_lkﬁ = q_”alagag = q_mb1b2b3.

The time evolution is k = %, (=gt (and T = «x for * = a;,b;,m,n). The parame-

ters u; in Example.1.4 are related to the parameters a;, b;, k, ¢, m,n by (uy,--- ,ug) =
((ll, az,as, q_m_nv b17 b27 b37 Q)
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Our staring point is the following Padé interpolation

k k k
qns(a_l,a,g,bl,bQ,bg)s Pm
= s k k k :Q7 T =Ts, (3:0,1,"',m+n),
q (aflaaf27a37a7g7g)s n

(a)i = H(l - aqj)v (a,-++,b)s = (a)s - (b)s,
=0

Y,

(2.2)

where P,,, ), are polynomials of degree m, n in variable . In the folowings, we use
variable z such that x = 2z + q%, hence P,,, @), are Laurent polynomials of the form

(2.3) Pu(2) = uilz + qﬁz) Qu(z) =3 vi(z+ £y

z
=0 =0 q

s—1

The interpolating points are zs = ¢~ ° + kq (g-quadratic grid) in variable x, and

$ (g-grid) in variable z.

hence z3, = g~
The main ingredients are the contiguous relations satisfied by u(z) = P,,(z) and
v(z) = Y (2)Qn(2) where Y(z) is a function such as Y (¢~ %) = Y;. For instance, the

relation between y(2),y(2),7(%) is obtained by evaluating the Casorati determinant

y(=) y(2)T(2)
(2.4) u(z) u(Z)a(2)| =0
v(z) 0(2) B(2)

This determinant divided by Y (z) is a Laurent polynomial in z and has many known
zeros due to the interpolating condition u(zs) = v(zs). Hence one can determine the
structure of the contiguous relations without knowing the explicit form of P,, and Q.

Proposition 2.1.  The following relations hold for y(z) = Pyn(2),Y (2)Qn(2):

La2): Balo){g - 6 ) - Ba(D{s - 62 }u)
(2.5)
vel - P} - D) =o,
L) s - G0 - B {s - G fta
(2.6)
F2{F-F@ e D) =0,
where
1 1
Bi(2) = = [[(z—w), Ba(z) = = [[(z—w),
(2.7) & il " iss
F(Z)ZZ-I-;, G(Z)ZZ-F;,
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and f,g,c,w are some constants (independent of z).

Combining Ly and Ls, one can obtain the three term relation L; between y(qz), y(2), y(z2/q).

y(2) (=)
L3(Z)
Ly(2) La(qz)
y(%) y(2) y(gz)

Though the explicit form of the L; equation is complicated, it can be characterized
by the following properties [16]: (1) As a polynomial in (f,g), it is of bi-degree (3,2).
(2) It vanishes when f = F(u), g = G(u) with v = uy,--- ,us, gz, g, and f = F(u),
(9—G(E)yuw) _ Ba(%)
(9—Gw)y(y)  Ba(u)

L; equation in [17] up to some gauge transformations, and the equations Lo, L3 (or L)

with © = z, qz. Hence, the L equation is equivalent with the

can be considered as a Lax pair for q—Eél).

Theorem 2.2.  The compatibility of the equations Lo, L3 (2.5)(2.6) is equivalent
to the relations

U-FEMT-FCY _ UG o
29 U FOMF-FO)y o)y 0 ee)
{9 - G(2)Hg - G(2)} U(z) or T Tl
(29) -GEMg-aky  uEy I
along with an additional relation
(2.10) (k= Ok =gOUE) 0 o Z G

Proof. Putting g = G(z) in equations Ly (z) and L3(z), we have the relation (2.10).
Since G(z) = G(£), the relation (2.10) holds also when z is replaced by £. Taking the

z
ratio of these two relations, we obtain the equation (2.8). Putting f = F(z) in equations

Ls(z) and L3(z), we get the equation (2.9). Sufficiency of the equations (2.8) (2.9) (2.10)
for the compatibility can be checked by a direct computation. O
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The equations (2.8)(2.9) are the desired simple expression for the q—Eél). In fact,
by eliminating the variable z, they correctly reproduce the equations (1.5)(1.6) , where
the polynomials A, B are given by

U(z) - Lu(L U(ky— by
(2.11) A(h,z_,_ﬁ):z (2) = (z)’ B(h,z-l-ﬁ):z (3) E (2)
< =7 z z— 7
. . Py (xs)
Remark.  Up to now, we used only the defining relation Y; = On(zs) for P, (x)

and @, (z). If we know the explicit forms of P, (z), Qn(z), then we can determine the
Painlevé variables f, g explicitly. For the interpolation problem with general Y, and x,
the following formula has been classically known by Cauchy and Jacobi

Py (x) = f(x) det (Wi(f))rll , Qn(x) =det (Wi(j))n_l ,

1,7=0 ,7=0
(2.12) m4n ! i J
w3 = =2 7 ; et f@) = I @ )
$ s=0

k
Applying this for the g-quadratic grid: x = z + —, s = ¢~° + k¢®*~ !, we have
qz

min o g 251 —m—n

*Ysq )=
_ —1 m-+n
— (1—kq') (g, kg™m)s

T — Ty
These expressions give the special solutions for q—Eél) Painlevé equation in terms of the

10Wy hypergeometric functions and their determinants (c.f.[5][6]).

Remark.  The Padé approach to the degenerate cases were studied in [2][9]. The
corresponding Padé problems are

P || ¢B) | ¢Eg) | aDy) | ¢-AY | Ay,
Y, (b1,b2,b3)s | (b1,b2)s o (b)s (), quw
(a1,a2,a3)s | (a1,a2)s (a)s
with the grid x5 = ¢®. There is a constraint ajasaszq™ = b1babzq™ for ¢- E( ) case.

§ 3. Elliptic case

As before, we use multiplicative parameters k, £, uy, - ,ug,q (k*0*> = quq -+ - ug)
and p, where ¢ is the base for the ¢-difference and p is the period of the elliptic functions.
Let [2] be a theta function such that [pz] = [271] = —271[z], and define

a. k 6.k
a(z) = [Z][=], b(z) =[=Z][=],

z az 2 Bz
o) = (A=) d@ = L)
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(o # B). Then the functions
(3.2) Flo) = 23 Gy = )
are elliptic functions such that

(3.3) F(p) = F(2) = F(E), Gl2) = G2) = &

which gives the parametrization f = F(z), g = G(z) of the elliptic curve in Example.1.5.
By the same method as the g-case in previous section, we have [10]

Theorem 3.1.  The elliptic difference Painlevé equation of type Eél) can be writ-
ten in the form (k,¢, f,g9) — (k/q,ql, f,q), where f, g are given by

la@f —bEOHIOT -0E)} _ 2 ppl%] o o st
B e worae ey ZLLEp fro9=6@ 2=z
(@) —dEWe(g —dE)} _ 2 ppl2l o o, sk
(3:5) {c(2)g — d(2)H{e(2)g — d(2)} = 1;[1 = for f=F), qz
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