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The Stokes phenomenon for the ¢-difference equation
satisfied by the basic hypergeometric series

sp1(ay, as, as; by;q, x)
By

Takeshi MORITA*

Abstract

We show the connection formula for the basic hypergeometric series sp1 (a1, az, as; bi;q, x)
between around the origin and infinity by the using of the g-Borel-Laplace transformations.
We also show the limit ¢ —+ 1 — 0 of the new connection formula.

§1. Introduction

In this paper, we show the connection formula for the divergent basic hypergeo-
metric series

(a17a27a3;Q)n n(n—1) ) —1
1.1 p1(ay,as,a3;b1;q,¢) = {—1 g2 } z"
( ) 3 1( 1,@2,43,U]1 ) nzz;) (b1;Q)n(q;Q)n ( )

between around the origin and around infinity by the using of the ¢-Borel-Laplace
resummation methods.

At first, we review some basic notations. Hereafter, we assume that 0 < |¢| < 1.
The g-shifted operator o, is given by o,f(z) = f(¢z). The function (a;q), is the
g-shifted factorial:

1, n =20,

(3 0)n = 1—-a)(1l—aq)...(1—aq" %), n>1,

moreover, (a;q)co := lim,_,c0(a; q), and

(a1,a2, ..., 0m; @)oo = (a1;9)00 (a2 @)oo - - - (Am; @) oo-
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The basic hypergeometric series with the base ¢ [4, page 4] is

(a1, ar @ SEEICESVE
ws(a,...,ar;b1,...,bs;q,2) 1= {(—1)q 2 } z".
nre " 3 nzzo(bla---abs;Q)n(q;Q)n

The radius of convergence is 0o, 1 or 0 according to whether r —s < 1,r —s =1 or
r — s > 1. Therefore, the function s¢;(a1,az,as;b1;q, x) is the divergent series around
the origin.

The series (1.1) satisfy the third order linear g-difference equation

(a,la,gagai — Z—;) u(q®z) — {(am + azas + azay)x — (% + é) } u(q*)
(1.2) 4 {(al +as +ag)e — 3} w(gz) — zu(z) = 0.

Equation (1.2) also has a fundamental system of solutions around infinity:

04(a1) aiq . ai1q aiq gbq
1.3 = q O- .
( ) U1 ([E) eq(x) 3¥2 | a1, bl s Uy as 9 as )4, 4142037
4(azx) a2q | G2q aq gby
14 = 4q — L —— -
( ) V2 (.17) eq(x) 3p2 | az, bl s Uy ay ) as y 4, 4102037
0, (asz) azq . asq asq gbq
1.5 = y T — /3, ——— | .
(1.5) v () 04(x) 32| 43 by as  ap a1a2a3%

In section 2, we show the connection formula between (1.3), (1.4) (1.5) and (1.1).

Here, 6,(z) is the theta function of Jacobi, which plays an important role in con-
nection problems on linear g¢-difference equations. The theta function with the base ¢
is

Oy(z) := qux", Vo € C*.
net

The theta function has the triple product identity

(16) eq(aj) = ((L _xa_Q/x;Q)oo'

n(n—1)

The theta function satisfies the g-difference equation 0,(¢*z) = ¢~ =z a7%0,(z), Vk €
Z. The theta function also has the inversion formula 6, (1/x) = 04(x) /.
For any fixed A € C*\ ¢%, the set [); g]-spiral is [\; q] :== A¢” = {\¢"; k € Z}. We remark
that 0(\g*/z) = 0 if and only if z € [-); q].

The function 0,(x)/0,(¢“x), Vo ¢ Z satisfies a g-difference equation

u(qr) = q“u(x),
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which is also satisfied by the function u(z) = .

We review the connection problems on the linear ¢-difference equations. Connection
problems on the linear g-difference equations with regular singular points were studied
by G. D. Birkhoff [1]. Connection formulae for the second order linear g-difference
equations are given by the matrix form

u () _ Cu(z) Crz2(z) | [vi(2)
uz(x) Co1(z) Co2(x) ) \v2(x)
The pair (uy(x),uz(z)) is a fundamental system of solutions around the origin and the

pair (vi(z),v2(z)) is a fundamental system of solutions around infinity. The connection
coefficients Cji(x) (1 < j,k < 2) are given by g-periodic and unique valued functions

0,Cjr(x) = Cir(x), Cj(e*™x) = Cjp(x),

namely, the elliptic functions.
The first example of the connection formula was given by G. N. Watson [11] in
1910. Watson gave the connection formula for Heine’s basic hypergeometric series

(a’7 b; Q)n n
201(a,b;c;q,w) 1= Y ————x
7%% (& On e Q)n

around the origin and around the infinity [4, page 117]. Heine’s o¢1 (a, b; ¢; q, z) satisfies
the g-difference equation

(1.7) [(c = abqz)ol — {(c+q) — (a +b)gz} og + q(1 — x)] u(x) = 0.

The equation (1.7) also has a fundamental system of solutions around the infinity:

(@:0) () — o ( aq. 9. ﬂ)
Yso (il]') x 201\ G, C, b 3 4,5 abx

and

_ bg bg g
(b.a) () — . —B ba,
Yso (il'}) x 201 <b7 c ) a y 4, abx) )

provided that a = ¢® and b = ¢”. Watson’s connection formula for 51 (a, b;c; q, ) is
given by

(b, ¢/a; @) ocblg(—ax)ss O4(x) y(a,b)(@

(¢, b/a;q)ocl¢(—T)oc Og(az) ™™
(@, ¢/b; @) oobly(—b) o0 bg() (b,a)
(c.0/b; @) ey (—2)oc 0y (b2) "

We remark that the connection coefficients are given by the g¢-elliptic functions.

201 (a,byc;q5x) =
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But connection formulae for g-difference equations with irregular singular points
had not known for a long time. We remark that A. Duval and C. Mitschi gave connection
matrices for degenerated differential equations [3]. In the differential case, the divergent
solution for the hypergeometric equations converges on the suitable sectors by the Borel-
Laplace resummation process.

The irregularity of g-difference equations are studied by the using of the Newton
polygons by J.-P. Ramis, J. Sauloy and C. Zhang [9]. In the g¢-difference case, the
resummation of the divergent series converges on C* without the points of the suitable
[\; ¢]-spirals. This point is essentially different from the differential case.

C. Zhang gave connection formulae for some confluent type basic hypergeometric
series [12, 13, 14] where he uses the g-Borel-Laplace transformations. In [6, 7], the author
gave the connection formula for the Hahn-Exton ¢-Bessel function and the ¢g-confluent
type function by the g-Borel-Laplace transformations. These resummation methods are
powerful tools for connection problems on linear g¢-difference equations with irregular
singular points.

Definition 1.1.  We assume that f(z) is a formal power series f(z) = >, ., ana",
ag = 1.

1. The ¢-Borel transformation is

(BIf) (€)= ang™ 7 €" (= 0(€)).

nez

2. For any analytic function ¢(£) around £ = 0, the g-Laplace transformation is

oo |

Here, this transformation is given by Jackson’s g-integral [4, page 23].

The definition is a special case of one of the g-Laplace transformations in [2, 12].
The ¢-Borel transformation is the formal inverse of the ¢-Laplace transformation as
follows:

Lemma 1.2 (Zhang, [12]).  For any entire function f(z), we have
Li oBIf=/.

Thanks to these methods, some connection formulae for the second order ¢-difference
equations were found. However, the connection formulae for more higher order linear
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g-difference equations have not known. In this paper, especially we apply the ¢-Borel-
Laplace transformations to the divergent series (1.1) to study the connection problem
on the third order ¢-difference equation. In section 2, we show the following Theorem:

Theorem. For any x € C*\ [—\;q|, we have

sfi(ar, a2, a3;015¢: A, 2) = (5;,\ OB;3¢1(01,G2,CL3;51;q,$)) (z)

_ (a2,a3,b1/a1;q) oo 6’q(al)‘) 6)q(aqu//\) eq(x) e
(b1,az2/a1,a3/a15q)00 0g(A)  Oy(qr/A) O4(arz)
(a1,a3,b1/a2;@)oc  Oq(a2)) O(azqr/X) 04(x) oo (2)
(b1,a1/az,a3/a2;q)oc 04(N)  Og(qr/N) 0O4(azr)
(ag,a1,b1/a3;9)00  Og(as) Oy(azqz/N) Oy(x) vs(z
(b1,a2/as,a1/a3;q)oc 04(N)  Og(qr/A) 04(azr)

Here, (,C;r’)\ o B;Fggol(al,ag,ag; bl;q,x)) (x) is the q-Borel-Laplace transform of the di-
vergent series sp1(ay,az,as;by;q, ).

The connection coefficients(with the new parameter A) are given by the g-elliptic
functions. Therefore, the values of the connection coefficients change continuously.
These coefficients are also the new example of the Stokes phenomenon [2] for the g-
difference equation (1.2). We remark that the parameter A corresponds to “the path”
of the resummation process [12].

In the last section, we give the limit ¢ — 1 — 0 of the new connection formula. We
review the g-gamma function to obtain the limit. The g-gamma function I'y(z) is

= @D i
Ly(x) := (qx;q)oo(l qQ) "

The limit ¢ — 1 — 0 of T'y(z) gives the gamma gunction [4, page 20]

(1.8) lim Ty (z)=T(z).

g—1-0

By the limit, finally we obtain the limit of the connection formula.
§2. The connection formula
In this section, we give the new connection formula for the basic hypergeometric

series 3¢1(ay,az,as3;b1;q,x). In section 2.1, we review the connection formula of non-

degenerated series 3po(aq, as,as; b1, b2;q, ).
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§2.1. The non-degenerated case
The non-degenerated convergent series

(a1,a2,a3;¢)n
(b1,b2; O)n (@ @)n

(2.1) 3p2(ar, az,as; by, be;q,w) := Z
n>0

satisfies the third order g-difference equation

- biby by b
(2.2) [(a1a2a3x - ;—22> ol — {(alaz + asaz + azar)x — (;—22 + ?2 + i) } o2

{(a1+a2+a3)x— (%—I—%—i—l)}aq—(x—l)} u(z) = 0.

Equation (2.2) also has a fundamental system of solutions around infinity:

- 04(a1) a1q aiq aiq aiq qb102

2. = q -+ -4, - -1, _triva

( 3) 1(33) eq(x) 3¥2 1, bl ) b2 ) as ’ as s Yy 4102037 )
- 0y(azz) azq a2q_aq axq qb1bo

24 = d e 21,21 21, _ 1 "4

( ) 2(:[’.) eq(x) 3p2 | a2, bl ) b2 ) a1 5 a3 s U 4102031 5
- 0y(azx) asq azq asq asq qb1b2

2. = 4 —_ == — - = .

( 5) 3(33‘) Qq(x) 3p2 | as, bl ) b2 ) as ) a1 s Y 102037

The connection formula between the solutions (2.3), (2.4), (2.5) and (2.1) can be found in
[4, page 121]. We remark that the following formula was essentially given by L. J. Slater.

Theorem 2.1 (Slater, [10]).  For any x € C*, we have

(a2aa’37bl/alab2/afl;Q)OO eq(_a'lx) 0‘](3:) ~1
(b1,b2,a2/a1,a3/a15q¢)0c Og(—x) 0O4(ar)

+ idem(aq; az, as).

3pa(ar, a2, as; by, by q, ) =

Provided that the notation idem(ay;a2,as) after an expression stands for the sum ex-
pressions obtained from the preceding expression by interchanging a, with each as and

as.

This Theorem can be considered as the higher order extension of Watson’s formula.
By Theorem 2.1, we obtain the following key Lemma.

Lemma 2.2.  For any x € C*, we have

3p2(ar, az,asz;01,0;q, )

__(az,03,b1/a1;¢)00  Og(—a17) AU ¢°by
(b1,a2/a1,a3/a1;q)0c Oq(—2) 2\t b1 " as’ az’ " asasx

+ idem(ay;az,as).
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Proof. We tale the limit b — 0 in Theorem 2.1, we obtain the conclusion. O

In the next section, we prove our new connection formula by Lemma 2.2 and the
g-Borel-Laplace transformations.

§2.2. Proof of main Theorem

In this section, we prove the following Theorem.
Theorem 2.3.  For any x € C*\ [—X; q|, we have
sfi(ar, a2, a3;01:¢: A, @) = (»CIA o By sp1(ar, az, az; 0154, 37)) (z)

_ (az,asz,b1/a1;q) 00 04(a1)) 04(a1qz/N) 04(7) o (z
(b1,a2/a1,a3/a15q)0e 04(N)  O(qr/A) O4(arz) !
(a1,a3,b1/a2; Q)0 Oq(az]) bg(azgz/X) b(x)
(bi,a1/az,a3/az;q)oc 0g(A)  Oy(qr/A) 04(asz) ?
(az,a1,b1/a3;9)0  04(az) 04(azqr/N) 04(x) vs(z
(b1,a2/as,a1/a3;q)oc 04(N)  Og(qr/A) 04(azr) ’

Proof. 'We apply the g-Borel transformation to the series 3¢1(a1, az,as; b1;q,x).
(333901(&1,&2&3; bl;q,l“)) (&) = sp2(a1, a2, a3; 01,0, =&) =: p(&).

By Lemma 2.2, we have another expression of the function ¢(£). We also apply the
g-Laplace transformation £, » to the function ¢(§), we obtain the conclusion. O

Remark.  We remark that the fundamental system of solutions for equation (1.2)
is given by

04(a17) aiq . aiq aiq qb1

26 = q O - _-= -

( ) 1 ([E) eq(x) 392 | 1, 57— b as ) as 14, 4142037 ’
0, (az) asq . a2q asq qby

27 = q — O- .

( ) ,UQ(x) eq(x) 3p2 | a2, bl 3 Uy ay 3 as 34, 414903 )
q(as) asq . asq asq qb1

2.8 =2 —,0;, —, —;q, ———

( ) 1)3([13) Hq(:c) 3y2 | as, bl s Uy as ) a1 14, 4142037

in the Theorem 2.3.

Remark. By the g-difference equation of the theta function, we can check out
that the connection coefficients (with the new parameter \)

() = (a2,a3,b1/01;9)00  Og(a1X) 6 (alqaj/)\) 04(x)
(b1,a2/a1,a3/a15qQ)0e Oq(N)  O4(qr/N) O4(arx)’
Col) = (a1,a3,b1/a2;9)00  Oq(az)) Og(azqr/N) O4(x)

~ (bi,a1/ag,a3/a2; )00 04(N)  Og(qz/N) O4(azz)’
Cs(z) = (az,a1,b1/a3;9)00  Oq(az) O4(azqr/A) 04(x)
S (b1,a2/a3,a1/a3;q)00 04(N)  O4(qr/A) 04(azm)
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are the g-elliptic functions.

§3. The limit ¢ — 1 — 0 of the connection formula

The aim of this section is to give the limit ¢ — 1 —0 of the new connection formula
as follows:

Theorem 3.1.  For any x € C*\ [=); q], we have the following limit ¢ — 1 — 0
of the connection formula

1 az oz, Bi. .
_1{1’103]01( 7q ,qd 754 a('L)‘ax)

LBl (az —an)l(as —a1) _q,
I'(c2)T(e3)0 (81 — )

1
oy (041,041+1—ﬁ1;061+1—062,041—|—1—043;5)

)
(
+ (?() ()al(_ ;kI%EFfCX_?,;Q)Oéz)$_a22F2 (()42,052 +1-Praz+1l—o,a2+1—as; é)
LB (2 — a3)T( —a3) 4, . _ g
+ F( ) ( )F( 1—053) X 2F2(Oé3,063—|—1—51,053+1 052,063+1 Oél,x>,

provided that —m < argx < .

The following proposition [13] is important to consider the limit ¢ — 1 — 0 of our
connection formula.

Proposition 3.2.  For any x € C*(—7 < argz < 7), we have

o Og(d’w)
1 1 2 = P
(3.1) A0 9, (qoz)
and
q"x
(755
(3.2) lim L—0)/ (1 _ oo — o

e ((1(12))

We give the proof of the Theorem 3.1.

Proof. At first, we put a; := ¢% (j = 1,2,3), by := ¢ and = — z/(1 — q). We
remark that the limit ¢ — 1 — 0 of the left hand-side of Theorem 3.1 formally converges
the hypergeometric series

Z (Oél, Qg, Oé3)nxn'

sFy (o, a0, a3;0152) = 2 Gl
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We consider the right hand-side. The connection formula can be rewritten as follows:

3 f1(g%, g%, 4% ¢ g3 M\, )
aq+1

i
(g%, %, % @)oo O4(q™1 M) O (A(l—q))

- 51, Q21 g3 —ar, 0. (\
(4%, q q Do 04(N) g, (A(f—ffq)>
1+B1(1 _
_ _ _ e )
X 302 (qal,qal“ P1,0;qo1H1moe gratizes, ’W>

+ idem(q™; ¢*%, ¢*)

_ Da(B)Tg(az — an)Ty(as — an) 04(¢™A) O (ia(i——qg)c)
FQ(QQ)Fq(a3)Fq(51 - 051) eq()\) eq (A(%i@)

(1—q)™

1461
- - P e C)
X 309 <qa17qa1+1 Bl,o; qa1+1 az, qa1+l a3; q, qa1+a2+a3x )

+ idem(g™; ¢*2, ¢*?).
By (3.1), (3.2) and (1.8), we obtain the conclusion. O

Acknowledgements

The author would like to give heartful thanks to Professor Yousuke Ohyama who
provided carefully considered feedback and many valuable comments. The author also
would like to show his greatest appreciation to Professor Masahiko Ito who provided
helpful comments and suggestions.

References

[1] G. D. Birkhoff, Proc. Am. Acad. Arts and Sciences, 49 (1914), 521 — 568.

[2] L. Di Vizio and C. Zhang, On ¢g-summation and confluence, Ann. Inst. Fourier (Grenoble),
59 (2009), no. 1, 347-392.

[3] A. Duval and C. Mitschi, Matrices de Stokes et groupe de Galois des équations hy-
pergéométriques confluentes généralisées. Pacific Journal of Mathematics, 138 (1989),
no. 1, 25-56.

[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed, Cambridge, 2004.

[5] T. Morita, An asymptotic formula of the divergent bilateral basic hypergeometric series,
arXiv:1205.1453

[6] T. Morita, A connection formula of the Hahn-Exton ¢g-Bessel Function, SIGMA,7 (2011),
115, 11pp.

[7] T. Morita, A connection formula of the g-confluent hypergeometric function, SIGMA, 9
(2013), 050, 13 pp.

[8] S. Ramanujan, The Lost Notebook and Other Unpublished Papers (with an introduction
by G. E. Andrews), Narosa, New Delhi, 1988.



126 TAKESHI MORITA

[9] J.-P. Ramis, J. Sauloy and C. Zhang, Local analytic classification of ¢g-difference equations,

arXiv:0903.0853, 2012; to appear in Astérisque.

[10] L. J. Slater, General transformations of bilateral series, Quart. J. Math. Soc. , (2) 3, 73-80.

[11] G. N. Watson, The continuation of functions defined by generalized hypergeometric series,
Trans. Camb. Phil. Soc., 21 (1910), 281-299.

[12] C. Zhang, Remarks on some basic hypergeometric series, in “Theory and Applications of
Special Functions”, Springer (2005), 479-491.

[13] C. Zhang, Sur les fonctions g-Bessel de Jackson, J. Approx. Theory, 122 (2003), 208—223.

[14] C. Zhang, Une sommation discrete pour des équations aux g¢-différences linéaires et a
coefficients analytiques: théorie générale et exemples, in “Differential Equations and the
Stokes Phenomenon”, World Scientific (2002), 309-329.



