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Surface topology and involutive bimodules

By

Nariya KAWAZUMI *

Abstract

We remark some basic facts on homological aspects of involutive Lie bialgebras and their
involutive bimodules, and present some problems on surface topology related to these facts.

Introduction

The notion of a Lie bialgebra was originated by Drinfel’d in the celebrated paper [5].
There he observed that any bialgebra structure on a fixed Lie algebra g is regarded as a
1-cocycle of g with values in the second exterior power A%g, and that the coboundary of
any element in A%g satisfying the Yang-Baxter equation defines a Lie bialgebra structure
on the Lie algebra g. It can be regarded as a deformation of the Lie bialgebra structure
on g with the trivial coalgebra structure.

It was Turaev [22] who discovered a close relation between surface topology and
the notion of a Lie bialgebra. Let S be a connected oriented surface, and Q7 (S) the
(rational) Goldman Lie algebra of the surface S [6], which is the Q-free vector space
over the homotopy set 7(S) = [S1,S] of free loops on the surface S equipped with the
Goldman bracket. The constant loop 1 is in the center of Q7 (S), so that the quotient
Q7’'(S) := Q#(S)/Q1 has a natural Lie algebra structure. He introduced a natural
cobracket, the Turaev cobracket, on Q#’(S), and proved that it is a Lie bialgebra.
Later Chas [2] proved that it satisfies the involutivity. See Appendix for the definition
of these operations.

On the other hand, Schedler [20] introduced a natural involutive Lie bialgebra struc-
ture on the necklace Lie algebra associated to a quiver. Let H be a symplectic Q-vector
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space of dimension 2g, g > 1, and T := szo H®™ the completed tensor algebra over
H. We denote by a, = Der,, (T\ ) the Lie algebra of continuous derivations on T anni-
hilating the symplectic form w € H®2. Tt includes Kontsevich’s “associative wor(1)d”
ag as a Lie subalgebra. The Lie algebra a  is the necklace Lie algebra associated to
some quiver. Hence it is an involutive Lie bialgebra by Schedler’s cobracket. Massuyeau
[16] introduced the notion of a symplectic expansion of the fundamental group of ¥ 1,
a compact connected oriented surface of genus g with 1 boundary component. Kuno
and the author [9] [10] proved that a natural completion of the Lie algebra Q7'(X1)
is isomorphic to the Lie algebra a, by using a symplectic expansion. In particular,
the Turaev cobracket defines an involutive Lie bialgebra structure on the Lie algebra
a, , which depends on the choice of a symplectic expansion, and does not coincide with
Schedler’s cobracket. In §4 we present some problems related to these cobrackets.

Now we go back to an arbitrary connected oriented surface S. Suppose that
its boundary 0S5 is non-empty. Then choose two (not necessarily distinct) points g
and %7 in 0S. We denote by I1S(xg,*;) the homotopy set of paths from xg to *q,
namely [([0,1],0,1), (S, *g,*1)]. In [9] and [10] Kuno and the author discovered that
QILS (g, *1), the Q-free vector space over the set I1S(xg,*1), is a nontrivial Q7' (S)-
module in a natural way. Moreover, inspired by [21], they [11] introduced a natural
operation

p 2 QILS (%, %1) — QILS (g, *1) ® Q7'(S).

It should satisfy some natural properties analogous to the defining conditions of an invo-
lutive Lie bialgebra. So, in [11], they introduced the defining conditions of an involutive
Q7' (S)-module, and proved that p satisfies all the conditions. See also Appendix for
details. As applications of the compatibility condition among them, they [11] obtain
a criterion for the non-realizability of generalized Dehn twists [15], and a geometric
constraint of the (geometric) Johnson homomorphism of the (smallest) Torelli group.

The purpose of the present paper is to explain a homological background of the
defining conditions of an involutive Lie bialgebra and its involutive bimodule, and to
present some problems on surface topology related to this background. Our key obser-
vation is the classical fact: the Jacobi identity for a Lie algebra g is equivalent to the
integrability condition 00 = 0 on the exterior algebra A*g. Throughout this paper we
work over the rationals Q for simplicity. But all the propositions in this paper hold
good over any field of characteristic 0. Let g be a Lie algebra over Q, 0 : APg — AP~ g,
p > 1, the standard boundary operator. See, for example, [1]. Moreover let § : g — A%g
be a Q-linear map. The map § has a natural extension d : APg — APT1g for any p > 0.
Then we have

Proposition 0.1.  The pair (g,9) is an involutive Lie bialgebra, if and only if
dd =0 and d0+ 0d =0 on A*g.
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This is an easy exercise. But, to complete our argument, we prove it in §1. The
proposition implies the homology group H.(g) of the Lie algebra g is a cochain complex
with the coboundary operator d(§) := H.(d), if g is an involutive Lie bialgebra.

Problem 0.2. Find a meaning of the cohomology group H*(H.(g), d(9)) for any
involutive Lie bialgebra (g, ).

Suppose g is an involutive Lie bialgebra. Let M be a g-module. Then we can
consider the standard chain complex (M ® A*g,0) of the Lie algebra g with values in
M [1]. Any Q-linear map p: M — M ® g has a natural extension d = dM : M @ APg —
M ® APT1g for any p > 0. Then we have

Proposition 0.3.  The pair (M, ) is an involutive g-bimodule in the sense of
[11], if and only if dd =0 and dO + dd =0 on M ® A*g.

Similarly to H.(g), the homology group H.(g; M) of g with values in M admits
the coboundary operator d(d, ) := H.(d) if M is an involutive g-bimodule.

Problem 0.4. Let (g,9) be an involutive Lie bialgebra. Then find a meaning of
the cohomology group H*(H.(g; M), d(d, p)) for any involutive g-bimodule (M, p).

In §3 we study Drinfel’d’s deformation of a Lie bialgebra structure by a 1-coboundary
stated above. We can consider an analogous deformation of an involutive bimodule. We
prove that such a deformation does not affect the coboundary operators d(d) and d(d, u)
on H,.(g) and H.(g; M) (Lemma 3.1 and Proposition 3.4). In §4 we discuss some re-
lation among these homological facts and surface topology, in particular, a tensorial
description of the Turaev cobracket and Kontsevich’s non-commutative symplectic ge-
ometry. In Appendix we briefly review some operations of loops on a surface [6] [22] [9]
[11].

The referee kindly informed us that two articles by Conant-Vogtmann [3] and
Hamilton [7] would be related to the results in §1 of this paper. In 11.3-7, p.173 [7],
Hamilton proves that the cobracket on any involutive Lie bialgebra g defines a canon-
ical differential operator 6 : A*g — A**lg, which is the same as the operator d in
this paper. But neither involutive bimodules nor Drinfel’d deformations were discussed
there. While the operator ¢ provides a deformation of the boundary operator 9 on A*g
but not an operator on the homology group H.(g) in [7], Conant and Vogtmann [3]
introduce a differential operator 0y on the O-graph homology for any cyclic operad
O, which comes from the homology groups of the Lie algebras associated with the op-
erad O. The operator 0y does not equal our operator d in the chain level, since 0y is
not compatible with the standard coproduct A of A*g. But the author does not know
whether they coincide with each other in the homology level or not.
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We conclude the introduction by listing our convention of notation in this paper.
For a Q-vector space V' and p > 1, the p-th symmetric group &,, acts on the tensor space
VP by permuting the components. In particular, we denote T := (12) € Aut(V®?) and
N = 1+(123)+(123)? € End(V®?). We regard the p-th exterior power APV as a linear
subspace of V®? in an obvious way APV := {u € V®?;0(u) = (sgno)u}. For X; € V,
1 < i < p, weidentify X1 A AXp =3 co (5800)Xo(1)  Xo(p) € APV C ver,
Here and throughout this paper we omit the symbol ®, if there is no fear of confusion.
In particular, we have

(0.1) A=1-T):V® 5 A%V, XY= XAY =(1-T)XY).

Acknowledgments. First of all, the author thanks Yusuke Kuno for lots of valuable
discussions and his comments for the first draft of this paper. This paper is a byproduct
of our joint paper [11]. He also thanks Atsushi Matsuo, Robert Penner and especially
Gwenael Massuyeau for lots of helpful conversations. Finally he thanks the referee for
letting him know the articles [3] and [7].
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§1. Lie bialgebras

In this section we recall the definitions of a Lie algebra, a Lie coalgebra and a Lie
bialgebra, and prove Proposition 0.1.

§1.1. Lie algebras

Let g be a Q-vector space equipped with a Q-linear map V : g ® g — g satisfying
the skew condition

(1.1) VI =-V:g% =g
Following the ordinary terminology, we denote [X,Y] := V(X ® Y) for any X and
Y € g. Then we define Q-linear maps o : g ® APg — APg and 0 : APg — AP~ g by
P
o) X1 A - AXp) =Y X1 A AXi gAY, XA X A A X,
i=1
DX A AXp) =Y (L)X, X A X AT A X,
1<J
for X; and Y € g. It is easy to show
(1.2) O(XiA- - AXpAY)=0(X1 A AX)AY + (=1)PTa(Y) (X1 A A X)).

Lemma 1.1.  We have 00 = 0 : A*g — A*g, if and only if V satisfies the
Jacobi identity

(1.3) VIV®1)N =0:g% - g.

Proof. For X, Y and Z € g, we have
(X AY NZ) =X, Y], Z] + Y, Z], X] + [[Z, X].Y].

Hence 00 = 0 implies the Jacobi identity.
Assume the Jacobi identity. Then, by some straight-forward computation, we have

(1.4) c(VIXL A AX,) =00(Y) (XL A~ AX,)

for any X; and Y € g. This proves 90 = 0 : APg — AP~2g by induction on p > 2. In
the case p = 2, 90 = 0 is trivial. Assume 90 = 0 : APg — AP~2g for p > 2. Then, using
(1.2) and (1.4) for £ € APg and Y € g, we compute

OENY) = (0 NY + (1) a(Y)E)
= (B0E) NY 4 (—1)Po(Y)OE + (—1)PTO(a(Y)E) = (00E) AY =0
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by the inductive assumption. This proves the lemma. O

The pair (g,V) is called a Lie algebra if the map V satisfies the Jacobi identity
(1.3). The map V is called the bracket of the Lie algebra. Then the p-th homology
group of the chain complex A*g = {APg,0},>0 is denoted by

H,(g) = Hy(A"g)

and called the p-th homology group of the Lie algebra g. See, for example, [1].

For any Lie algebra g, by some straight-forward computation, one can prove the
following, which will be used in §1.3.

Lemma 1.2. For{ = X;N\---AX, € APgandn =Y1A---NY, € Ng, X;,Y; € g,

D(EAn) — (98) Amp— (~1)PE A = S (—1) X1 A+ A X,y A (X)),

i=1
§1.2. Lie coalgebras

Next we consider a Q-vector space equipped with a Q-linear map § : g —> g® g
satisfying the coskew condition

(1.5) T6=—6:g— g%

We may regard §(g) C A%g. Then we define a Q-linear map d : APg — APTlg p > 0,
by d|poq := 0 and

p 5
=1

for any p > 1 and X; € g. In particular, dX = —0X for X € g. If £ € APg and n € Afg,
then

(1.6) d(§ A n) = (d€) A+ (=1)E A (dn).

Lemma 1.3. We have dd = 0 : A*g — A*g, if and only if 0 satisfies the
coJacobi identity

(1.7) NE®1)§=0:g— g9

Proof. If we denote 60X =", X/ AN X/, X/, X]' € g, then we have
CX)ANY =D X/ AX]AY

=" XIXIY + X[Y X[+ Y XX — XUX)Y - X]Y X! ~ YX/'X]
= N((6X)Y).
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This implies d(X AY) = —(6X)AY + (0Y)AX = —N((6X)Y) + N((6Y)X) = N[ ®
XY -YX)=-N(®1)(XAY). Since dg C A%g, we obtain

(1.8) dd=N(®1)6:g— g%,

Hence dd = 0 implies the coJacobi identity.

Assume the coJacobi identity. We prove dd = 0 : APg — APT2g by induction
on p > 1. In the case p = 1, dd = 0 is equivalent to the coJacobi identity. Assume
dd =0 : APg — APT2g for p > 1. Then, for £ € APgand Y € g, we have dd(¢ AY) =
d((dE)ANY 4+ (=1)PEANAY) = (ddE) ANY + (—=1)PTL(dE) AdY + (=1)PAEAAY +ENAAY =
(dd&) NY + &N ddY = 0 by the inductive assumption. This proves the lemma. O

The pair (g,d) is called a Lie coalgebra if the map ¢ satisfies the coJacobi iden-
tity (1.7). The map J is called the cobracket of the Lie coalgebra. Then the p-th
cohomology group of the cochain complex A*g = {APg,d},>¢ is denoted by

H?(g) = H?(A"g)

and called the p-th cohomology group of the Lie coalgebra g. In view of the formula
(1.6), H*(g) is a graded commutative algebra.

Assume g is a complete filtered Q-vector space, i.e., there exists a decreasing fil-
tration g = Fog O Fig D -+ D Frg D F,u+19 D -+ such that the completion map
g—g:= @n—)oo g/Fng is an isomorphism. Then we can consider a Q-linear map
§ : g — g®g, whose target is the completed tensor product of two copies of g. Then
the pair (g,0) is a complete Lie coalgebra if the map ¢ satisfies the coskew condition
(1.5) and the coJacobi identity (1.7), where g©2 and g®3 are replaced by the completed
tensor product g®2 and g@’g’, respectively. In this case we consider the p-th complete
exterior power, i.e., the alternating part of g@’p , instead of APg for any p > 0.

§1.3. Involutive Lie bialgebras

Let (g, V) be a Lie algebra, and (g,0) a Lie coalgebra with the same underlying
vector space g. We look at the operator do + 0d : APg — APg for p > 0. It is clear
do+ 0d =0 for p = 0.

Lemma 1.4. We have d0+ 0d =0 : APg — APg for p =1 and 2, if and only if
V and § satisfy the compatibility condition

(1.9) VX,VY €g, 0[X,Y]=0(X)(0Y)—-0(Y)(0X),
and the involutivity

(1.10) Vi=0:g—g.
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Proof. From the definition, the involutivity is equivalent to d0+ dd = 0 for p = 1.
Assume the involutivity. Then, for X and Y € g, we have (d0+90d)(XAY) = —d[X, Y]+
I(dX)NY =X A(dY)) =0[X, Y]+ (0dX)ANY —co(Y)(dX)—(0dY)NX —o(X)(dY) =
X, Y]+ o(Y)(0X) — o(X)(0Y). Hence dO + dd = 0 for p = 2 is equivalent to the
compatibility condition. This proves the lemma. O

When the compatibility condition holds, g is called a Lie bialgebra. This is the
definition given by Drinfel’d in [5]. A Lie bialgebra g is called involutive, if it satisfies
the involutivity.

Lemma 1.5. If g is a Lie bialgebra, we have
IENAY)— () NAY — (=1)PENIAY =do(Y)E —o(Y)dE

for£ € APg andY € g.

Proof. It suffices to show the lemma for £ = X5 A--- A X, X; € g. By the
compatibility condition, we have

p
do(Y)e—o(Y)de =) (1) Xy A= A(d]Y, X3] — o(Y)dX;) A+ A X
=1
p D R
=D ()X A Ao(X)dY A AXp =D (1) Xy A A X, Ao (X5)dY,
1=1 i=1

which equals 9(§ AdY) — (0§) ANdY — (—1)P€ AOdY from Lemma 1.2. This proves the

lemma. O

Proposition 1.6.  If g is a Lie bialgebra, then we have

p
(d8+8d)(X1/\--~/\Xp)=ZXlA---/\Xz-_lA(adXz-)/\XHl/\m/\Xp
=1

for X; € g.

Proof. It is clear for p = 1. Assume it holds for p > 1. Denote { = X; A--- A X,
and Y = X, 1. Then, from Lemma 1.5, (d0+9d)(EAY) = d((0)AY +(—1)PTLo(Y)E)+
O((dEYANY + (=1)PEAAY) = (dOY)ANY + (=1)PTHAE) AdY + (—1)PHLdo (V)€ + (0dE) A
Y + (=1)PT20(Y)dé + (—1)PO(EANAY) = ((d + 0d)E) NY +EADAY . This proceeds the
induction. O

Corollary 1.7. A Lie bialgebra g satisfies d0 + 0d = 0 : APg — APg for any
p >0, if and only if g is involutive.
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This completes the proof of Proposition 0.1 stated in Introduction.
For an involutive Lie bialgebra g, the operator d induces the coboundary operator

(1.11) d = d(6) : Hy(g) = Hpt1(g), [u] — [du]

on the homology group H,(g). Hence one can define the cohomology of the homology
H*(H.(g)).

When the pair (g, ) is a complete Lie coalgebra, we have to assume that the bracket
V is continuous with respect to the filtration of g, and to replace the exterior algebra
A*g by the complete exterior algebra of g in the three propositions in this subsection.
Then all of them hold good. In particular, we can consider a complete Lie bialgebra
and a complete involutive Lie bialgebra. Similarly we can consider a complete comodule
and a complete (involutive) bimodule in the next section.

§2. Bimodules

We discuss a homological background of the defining conditions of an involutive
bimodule introduced by Kuno and the author in [11]. In other words, we prove Propo-
sition 0.3 stated in Introduction.

§2.1. Modules

Let g be a Lie algebra, M a Q-vector space equipped with a Q-linear map o :
gOM — M, X®@m — Xm. We define a Q-linear map I', =T : M ® APg — M ®@ AP~ g
by I(m®Xi1A---AXp) = le(—l)i(Xim)®X1/\-?-/\Xp forp>1,me M and X; € g,
and a Q-linear map OM =9 : M®APg — M AP 1gby O(m®&) :=T(mRE)+mx®0(€)
for m € M and £ € APg. Here O : APg — AP~ 1g is the operator introduced in §1.1. By
some straight-forward computation, we have

(2.1) Fme&An) =T(mE An+ (=P T(men) A

for any m € M, £ € APg and n € A?g. Furthermore we define a Q-linear map o :
QM RAPg — MRAPgby o(YV)(m®E) = (Ym)@{+meo(Y)(§) forY e g, me M
and £ € APg. Then it is easy to show

(2.2) OMREAY)=0(mR@EAY + (=1)Po(Y)(m ®§).

Lemma 2.1.  We have 0M0M =0 : M @ A*g — M ® A*g, if and only if the
condition

(2.3) VX,VY € g,Vme M, [X,Y]m=X(Ym)-Y(Xm)

holds.
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Proof. For X,Y € g and m € M, we have
DO(me X ANy)=[X,Y]m—X(Ym)+Y(Xm).

Hence OM9M = 0 implies the condition (2.3).
Assume the condition (2.3). Then it is easy to show

(2.4) cY)T(mXiA--ANXp) =T(e(Y)(me X1 A---ANX)p))
for any m € M and Y, X; € g. From this formula and (1.4) follows
(2.5) a(Y)o(m &) = 9(o(Y)(m®¢))

for any m € X, Y € g and £ € APg. This proves 90 = 0 : M ® APg — M ® AP~2g
by induction on p > 2. In the case p = 2, 90 = 0 is equivalent to the condition (2.3).
Assume 99 = 0 : M ® APg — M ® AP~ 2g for p > 2. Then, using (2.2) and (2.5) for
me M, e APgand Y € g, we compute

DOMRENY)=00(mREAY + (1P o(Y)(m® £))
=00mREANY + (—1)Po(Y)O(m®E) + (—l)p“a(o(Y)(m ®E))
=90(mREANY =0

by the inductive assumption. This proves the lemma. O

The pair (M, o) is called a left g-module if the map o satisfies the condition (2.3).
Then the p-th homology group of the chain complex M ® A*g = {M ® APg,0}p>¢ is
denoted by

Hp(g; M) = Hy(M ® A*g)
and called the p-th homology group of the Lie algebra g with values in M. See, for
example, [1].

If we defined: M ®g — M by 3(m ® X) = —Xm and the condition (2.3) holds
for o, then the pair (M,7) is called a right g-module. By the identification (0.1) we
have

(2.6) IFo(m®Y1AYs) =(T®1)(m®Y) AYs)

for any m € M and Y7,Y5 € g.

§2.2. Comodules

Next let (g,d) be a Lie coalgebra, and M a Q-linear space equipped with a Q-linear
map p: M — M ®g. We define a Q-linear map d™ = d : M ® APg — M ® APTlg,
p >0, by

dim®¢&) = pum) AN+ (—1)Pm ® dE
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for m € M and & € APg. Here d : APg — APTlg is the operator introduced in §1.2. If
p=0,thend=p: M — M ®g. From the definition and the formula (1.6) follows

(2.7) dim @ EAN) =dm &) An+ (=1)P(m & &) A (dn)
for any m € M, £ € APg and n € Adg.

Lemma 2.2. We have dMdM = 0: M ® A*g — M ® A*g, if and only if the
following diagram commutes

M & M®g
(2.8) ul 1M®6l
M®g M®g®g

(An®(A-=T))(p®1g)

Proof. By (0.1) we have
A =1y (1 -T)(p®1ly) — 1y ®0.

Here it should be remarked d = —6 : g — g ® g. Hence the commutativity of the
diagram (2.8) is equivalent to d®d™ =0 on M = M ® A%g. In particular, dMd™ = 0
implies the commutativity of the diagram (2.8).

Assume the diagram (2.8) commutes. We prove dd = 0 : M ® APg — M ® AP 2g by
induction on p > 0. In the case p = 0, dd = 0 is equivalent to the commutativity of the
diagram (2.8). Assume dd = 0: M ® APg — M ® APT2g for p > 0. Then, for m € M,
€€ APgandY € g, we have dd(m@EAY) = d(d(mREAY +(—1)PmREAIY) = dd(m®
OANY +(=1)PHd(m @AY + (—1)Pd(m @AY +m@EADAY = dd(m@E)AY =0
by the inductive assumption. This proves the lemma. O

The pair (M, u) is called a right g-comodule if the diagram (2.8) commutes.
Then the p-th cohomology group of the cochain complex M ® A*g = {M ® APg,d},>0
is denoted by

HP(g; M) = H?(M © A"g)

and called the p-th cohomology group of the Lie coalgebra g with values in M. In view
of the formula (2.7), H*(g; M) is a graded right H*(g)-module.

§2.3. Involutive bimodules

Let g be a Lie bialgebra, (M,7) a right g-module, and (M, u) a right g-comodule
with the same underlying vector space M. As in §1.3, we look at the operator dM oM +
OMdM . M ® APg — M ® APg for p > 0. In [11] Kuno and the author introduced the
compatibility condition

(2.9) Vme M,VY €g, o(Y)(dm)—d(Ym)=-T,(m&®dY),
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or equivalently
210) VmeM\VY eg, oY)(uim)) —pw¥m)—-(G21)(ln @6)(meY) =0,

and the involutivity

(
(
)
(2.11) ou=0: M — M.

Lemma 2.3. Let g be an involutive Lie bialgebra. Then we have dMoM +

OMdM =0 : M ® APg — M ® APg for p = 0 and 1, if and only if & and p satisfy
the compatibility condition and the involutivity.

Proof. From the definition, the involutivity is equivalent to d0+ dd = 0 for p = 0.
Assume the involutivity. Then, for m € g and Y € g, we have (d0 + 0d)(m®Y) =
—d(Ym)+0((dm)ANY +m®dY) = —d(Ym)+(ddm)AY +o(Y)(dm)+T(medY)+m®
0dY = —d(Ym) +o(Y)(dm) +T'(m ®dY). Hence d0 + 0d = 0 for p = 1 is equivalent
to the compatibility condition. This proves the lemma. O

For a Lie bialgebra g, M is called a right g-bimodule if the compatibility condition
holds. A right g-bimodule M is called involutive, if it satisfies the involutivity.

Proposition 2.4. If g is a Lie bialgebra, and M a right g-bimodule, then we
have

(0 + 0d)(m @ Xy A--- A X))
p

=(8dm)®X1/\---/\Xp—l-m@ZXl/\Xi_lA(@dXi)/\XHl/\---/\Xp
=1

form e M and X; € g.

Proof. 1t is clear for p = 0. Assume it holds for p > 0. Denote { = X; A--- A X,
and Y = Xp,y1. We have o(Y)d(m®&) — (dm)Ao(Y)E— (Ym)®d = (o(Y)dm) ANE+
m® o(Y)dE. So, by (2.2), (2.1) and (2.7), we compute

(dO+0d)(m®ENY)
=(d0+0d)(mMRE)ANY
+H(=1)Pm @ (—(0§) NdY —do(Y)(&) +o(Y)dE+ I(ENAY))
+(=1)P (=(dYm)+o(Y)dm+T(m®dY)) A&
Hence, by Lemma 1.5 and (2.9), we obtain
(dO+0d)(m®EANY) = (d0+0d)(mE) ANY +m@EAOAY.

This proceeds the induction. O
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Corollary 2.5.  Let g be an involutive Lie bialgebra, and M a right g-bimodule.
Then we have dMOM + 9MdM =0 : M ® APg — M ® APg for any p > 0, if and only if
M is involutive.

This completes the proof of Proposition 0.3.
If g is an involutive Lie bialgebra and M an involutive right g-bimodule, then the
operator d™ induces the cobounday operator

d = d(6.p1) : Hylg M) — Hypa(g: M), [u] v @™

on the homology group H,(g; M). Hence one can define the cohomology of the homology
H*(H,(g; M)).

§3. Drinfel’d’s deformation

Let g be a Lie algebra equipped with a Lie cobracket 6 : g — A%g. As was pointed
out by Drinfel’d [5], the compatibility is equivalent to that ¢ is a 1-cocycle of the Lie
algebra g with values in A%g, and so one can deform the cobracket § by a 1-coboundary
of g with values in A%g satisfying some condition which assures the new cobracket the
coJacobi identity. Here g acts on A?g by the map o : g ® A’g — A%g. The subspace
N(g) := Ker(V : A%g — g) is a g-submodule. The involutivity means 6(g) C N (g).
Hence we may regard the set of involutive Lie bialgebra structures on the underlying
Lie algebra g as a subset of Z1(g; N (g)), the set of 1-cocycles of g with values in N (g).
In particular, we can say two cobrackets § and ¢, which define involutive Lie bialgebra
structures on g, are cohomologous to each other if and only if [§] = [§'] € H(g; N (g)).
Similar observations hold for a involutive bimodule structure on a g-module M.

We introduced the coboundary operators d(d) and d(6, 1) on the homology group
H.(g) and H.(g; M) in the previous sections. In this section, we prove that these
operators stay invariant under Drinfel’d’s deformation.

§3.1. Deformation of a cobracket

Let g be a Lie algebra.

Lemma 3.1. If§ and &' € Z'(g; N(g)) are involutive Lie bialgebra structures
on g, and cohomologous to each other, then the induced coboundary operators d(d) and
d(0") on the homology H.(g) coincide with each other

d(8) = d(3') : He(g) = Hera(g).
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Proof. For A € A*g, we denote by F4 : A*g — A*g the multiplication by A,
ur— AAu. If A€ A2g, then, by some straight-forward computation, we have

(3.1)  (0FA — EA0+ Eva)(X1A---ANX,) = i(_l)iU(Xi)(A) A XA .?./\Xp
=1

for any X; € g.

We denote d = d(6) and d’ = d(¢"). Suppose 6 and 0" are cohomologous to each
other. Then there exists some A € N(g) such that (d—d')(X) = (6§’ —0)(X) = o(X)(A)

for any X € g. From (3.1) follows (d' — d)(X1 A -+ A Xp) = >0 (—1)'0(X;)(A) A
X1 A A Xp = (0EgA — Ez0 + Eva)(X1 A -+ AN X,). Since A € N(g), we obtain
d —d=0FE,— EA0: A*g — A*T1g. This proves the lemma. O

As was pointed out by Drinfel’d [5], we have H'(g; N'(g)) = 0 in the case g is a
finite-dimensional semi-simple Lie algebra. Hence, in this case, d(6) = 0 on H,(g) for
any involutive Lie bialgebra structure on g.

Let U be an automorphism of a topological Lie algebra g, and § € Z!(g; NV (g)) an
involutive Lie bialgebra structure on g. Then the conjugate Ué := (U @ U)6U ! is also
an involutive Lie bialgebra strucuture on g.

Lemma 3.2. Let X € g, and suppose ¢*X = 3"1°  L(ad(X))* converges as

an automorphism of the topological Lie algebra g. Then we have d(§) = d(e*X5) on

H.(g)
Proof. The Lie algebra g acts on Z'(g; NV(g)) in an obvious way. We have
Ye)(2) :=o(Y)(c(2)) — ([, Z]) = o(Z)(c(Y))
for any ¢ € Z1(g; N'(g)) and Y, Z € g. Now we have
(3.2) (Y*e)(Z) = a(2)a(Y)"H(c(Y))

for any k > 1. If k = 1, (3.2) was already shown. Assume (3.2) holds for £ > 1.
Then (Y*1e)(Z) = o(Z2)a(Y)FH((Ye)(Y)) = o(Z)a(Y)k(c(Y)). This proceeds the
induction.

Hence we have

(X5 §)(7) = i L (x*o)(z i ki X)E-L(5X)
i 2
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This means e*3*§ — § is the 1-coboundary induced by (> p- | 40 (X)* 1) (6X). The
lemma follows from Lemma 3.1. |

§ 3.2. Deformation of a cobracket and a comodule structure map

A similar results to Lemma 3.1 holds for a deformation of cobrackets and comodules.

Lemma 3.3. Let g be a Lie algebra, M a g-module, § and &' € Z'(g;N(g))
involutive Lie bialgebra structures on g, and let p and p' : M — M ® g make M
an involutive right (g,d)-bimodule and an involutive right (g,d")-bimodule, respectively.
Suppose there exist A € N'(g) and B € A%g such that

(i) VX €9, (6" = 0)(X) = o(X)(A),
(ii) Yme M, (i — p)(m) = 0(m ® B), and
(i) VX € g, o(X)(A) = o(X)(B).

Then we have
d(d, p) = d(¢", 1) + Hu(g; M) — Hopa (g5 M).

Proof. We define Ep : M @ APg — M @ AP™2g by Eg(m ® &) :=m ® A B for
m € M and £ € APg. By (3.1) and (2.1), we have

p 4
(OFp —Epd)(m®§&) =0(m@B)ANE+m® Z(—l)ia(X,-)(B) AXI A A X,
i=1
Using the conditions (ii) (iii) and (3.1), we compute (0Fp — Egd)(m ® &) = (i —
W(MYANE+m®(OE, — Ex0)€ = (d —d)(m®E&). Here we write simply d = d(d, u) and
d' =d(¢', ). This proves the lemma. O

Let (g,0) be a topological involutive Lie bialgebra, (M, u) a topological involutive
right g-bimodule, U an automorphism of the topological Lie algebra g, and UM an
automorphism of the topological vector space M compatible with U. We define Up :=
(UM @ U)§(UM)~L. Then (M,Up) is an involutive right (g, U§)-bimodule.

Lemma 3.4. Let X € g and suppose €% = 5"1° %(ad(X))k and e?X) =
Yoreo %(O‘(X))k converge as automorphisms of the topological Lie algebra g and the

topological vector space M, respectively. Then we have d(d, ) = d(e*dX4, e”(X)u) on
H.(g; M).

Proof. We write A = (37—, 20(X)"!) (6X). As was shown in Lemma 3.2,
(X5 —6)(Z) = o(Z)(A) for any Z € g. From 2.9 follows (Xu)(m) = I'(m ® §X).
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Let ® € A%g. If we define ¢ : M — M ® g by ¢(m) := T'(m ® ®), then we have
(Xp)(m) = a(X)p(m) —o(Xm) = c(X)T'(m® ®) —T'(Xm® ?) = I'(m ® o(X)P).
Hence, by A € N(g),

(X ) (m) = S (X -2 LT(m & o(X)V16X)
k=1 k=1
—T(m® A) = d(m e A).

Consequently the lemma follows from Lemma 3.3. O

8§4. Surface Topology

We discuss some relations among these homological facts and surface topology,
in particular, a tensorial description of the Turaev cobracket and Kontsevich’s non-
commutative symplectic geometry.

§4.1. Symplectic derivations

It is the Lie algebra of symplectic derivations of the completed tensor algebra of a
symplectic vector space that plays a central role throughout this section. Let H be a
symplectic Q-vector space of dimension 2g, g > 1, and T = T\(H ) =11 _o H®™ the
completed tensor algebra over H. T is filtered by the two-sided ideals T, := anozp Hem,
p > 1, and constitutes a complete Hopf algebra whose coproduct A : T — TRT is given
by A(X) = X®1 + 1®X for any X € H. The symplectic form w € H®? is given by
w=>>9_, A;B;— B;A; € H®? for any symplectic basis {4;, B;}?_, of H. We study the
Lie algebra of continuous derivations on T annihilating the form w, which we denote by
Der,,(T) = a, . We regard Der, (T) as a subspace of H*®T by the restriction map to H.
The symplectic vector space H is naturally isomorphic to its dual H* by the map X €
Hw— (Y — X-Y) € H*, so that we identify H*®T = H®T = Ti. Then the image of
Der,(T) in Ty coincides with the cyclic invariants in Ty = [I°_, H®™. In other words,
we identify Der,,(T) with N(T}) C Ti, where N : T — T is the cyclic symmetrizer or
the cyclicizer defined by N|geo := 0 and N(X;--- X,,) := 2111 X, X, XX,
for X; € H. See [9] for details. The subspace N(H®?) is a Lie subalgebra naturally
isomorphic to 5p,,(Q).

Schedler [20] constructed a cobracket on the necklace Lie algebra associated to a
quiver. The Lie algebra a, can be regarded as such a Lie algebra. Schedler’s cobracket

for a,, which we denote by §els a, —a, @ag_, is given by
FME(N (X1 Xz Xon)) =D (Xi - XN (Xigr-- X5 1)BN(Xp1 - Xon X1+ X 1)
i<j
_N(X]Jrl e X X 'Xi—1)®N(Xi+1 .. 'Xj—l)}
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for any X; € H and m > 1.

The cyclic symmetry suggests us a close relation between symplectic derivations
and fatgraphs, which was exhausted in Kontsevich’s formal symplectic geometry [13].
He studied a Lie subalgebra a, := @, _, N(H®™) of a,
ciative”, and proved that the primitive part of the limit of the relative homology
limg o0 Hi(ag, 54 (Q)) is isomorphic to P09 9, s<0 HA—41257k (M5 /& ; Q). Here

M is the moduli space of Riemann surfaces of genus g with s punctures, and the s-th

which he called “asso-

symmetric group &, acts on it by permutation of punctures.

Schedler’s cobracket §28 does not preserve the subalgebra ag, so that d(6*8) does
not act on the homology group Hy(ag). On the other hand, Schedler’s cobracket o2le
preserves the subalgebra a, := @;0:1 N(H®™), whose degree completion is just the
Lie algebra a .

Problem 4.1. Find a fatgraph interpretation of the primitive part of the limit
of the relative homology lim, o Hy(a, ;5p,,(Q)).

The difference between ay and a/ is just H, the derivations of degree —1, which
seem to correspond to tails in fatgraphs. The homology group H.(a, ,5ps,(Q)) seems to
be related to the moduli space of Riemann surfaces with boundary and marked points
studied in [4]. See [19] for details on fatgraphs. The coboundary operator d(6*8) is
defined on H,(a, ,5p,,(Q)), since 6" is spy, (Q)-invariant, and vanishes on N(H®?) =

5p29 (Q)

Problem 4.2. If Problem 4.1 is solved in an affirmative way, then find a fatgraph
interpretation of the coboundary operator d(5#).

As will be explained in the next subsection, Schedler’s cobracket is closely related
to the Turaev cobracket. So the operator d(52#) seem to be related to degeneration of

Riemann surfaces.

§4.2. Turaev cobracket

In this section, for simplicity, we confine ourselves to a compact connected oriented
surface with connected boundary. See Appendix for the definitions of the Goldman
bracket, the Turaev cobracket and the operations ¢ and p stated below. We begin
by recalling some results of Kuno and the author on a completion of the Goldman
Lie algebra [9] [10]. Let g > 1 be a positive integer. We denote by ¥ = ¥,; a
compact connected oriented surface of genus g with 1 boundary component, and by
7 = #(¥) = [S}, Y] the homotopy set of free loops on the surface ¥. Goldman [6]
defines a natural Lie algebra structure on the Q-free vector space Qa, which we call
the Goldman Lie algebra. Choose a basepoint * on the boundary 0%, and consider the
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fundamental group 7 := 71(X%,*). The group ring Qn admits a decreasing filtration
given by the power of the augmentation ideal I7. Since 7 is a free group of rank 2g,
the completion map Qm — @r = l'gln_)oo Qn/(I7)™ is injective. We can consider a
similar completion of the Goldman Lie algebra Qn as follows. The forgetful map of
basepoints | | : Qmr — Q7 is surjective, since ¥ is connected. We define a filtration
{Q7(n)}n>1 of Qf by Qn(n) := |Q1 + (In)"|, where 1 € 7 is the constant loop. In
[10] it is proved that [Q7(n),Q ( "] C Qﬂ'(n +n' — 2). Hence we can consider the
completed Goldman Lie algebra Qﬂ’ = Qﬂ’( ) defined by Qﬂ’ = L Qﬁ' /Q7(n). In
[9] Kuno and the author defined a natural operation o : Q7 ® Qm — Q?T to introduce
a natural nontrivial Q@-module structure on the group ring Qm, which the completed
group ring @r inherits as a nontrivial @%—module structure [10]. These Lie algebras act
on the algebras by (continuous) derivations, respectively.

As is classically known, the group ring Qn is embedded into the completed tensor
algebra T over the first rational homology group H := H;(%;Q) of the surface ¥ as
(complete) Hopf algebras. Here we consider H a symplectic Q-vector space by the
intersection number on the surface 3. To study the embedding in detail, Massuyeau
[16] introduced the notion of a symplectic expansion of the fundamental group =. A
map 0 : T — Tis a symplectic expansion if it satisfies the following four conditions.

1. We have 0(xy) = 6(z)0(y) for any z and y € 7 .

2. For any = € m we have 6(z) = 1+ [z] (mod T), where [z] € H C T is the homology
class of z.

3. For any z € 7, 0(x) is group-like, namely, Af(z) = 0(x)R0(x).

4. Let ¢ € 7 be the boundary loop in the negative direction, and w € H®? C T the
symplectic form. Then we have 6(¢) = e¥ € T

Symplectic expansmns do exist [8] [16] [14]. A symplectic expansion 6 induces an iso-
morphism @ : Qﬂ' =T of complete Hopf algebras. For any two symplectic expansions
0 and @', there exists an element of u € Der,,(T) = a, such that (u@u)A = Au,
u(H) C Ty and 0’ = e 00 :m — T. See [9] for details.

In [9] and [10], Kuno and the author proved

Theorem 4.3.  Any symplectic expansion 6 : m — T induces

1. an isomorphism of Lie algebras

—NO: QF — N(T}) = Der,(T) = a,

given by —(NO0)(|z|) := —N(0(x)) for any x € 7, and
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2. a commutative diagram
QreQr —Qn
—N@@@l 9
Der,(T) @ T — T,

where the horizontal arrows mean the actions as derivations.

Let Q7" = Q#'(X) be the quotient of Q7 by the linear span of the constant loop
1 € 7. Since 1 is in the center of Q, it has a natural Lie algebra structure. In [22]
Turaev introduced a cobracket ¢ on the Lie algebra Q7’ and proved that the pair (Q7’, 9)
is a Lie bialgebra. Later Chas [2] proved that it is involutive. Kuno and the author
[11] proved the completed Goldman Lie algebra @?r inherits the Turaev cobracket, so
we call it the completed Goldman-Turaev Lie bialgebra. Inspired by Turaev’s p in [21],
they [11] introduced a natural nontrivial comodule structure map u : Qr — Qr ® Q7,
and proved that (Qm, p) is an involutive Q7#’-bimodule. The comodule structure map pu
defines a complete involutive @%—bimodule structure on the completed group ring @r
[11].

Let 0 : 7 — T be a symplectic expansion. Then the Turaev cobracket § and the
isomorphisms in Theorem 4.3 defines a cobracket 6% := ((—=NO)&(—N#)) o § o (—N6) :
a, — a;@a;. Similarly the comodule structure map pf : (02(—N6))opod : T — f@a;
can be defined so that (T\, 1) is an involutive a, -bialgebra.

The grading on a, defines the Laurent expansion of the cobracket 59

F(N(X1 Xz X)) = D 6y (N(X1 X2 X)),

p=—00
Oy (N(X1Xs - Xom)) € (05,80, )iy = €D N(H) © N(H)
k+l=m+p

for X; € H. Massuyeau and Turaev [18] and Kuno and the author [11] independently
proved

Theorem 4.4.  For any symplectic expansion 60 we have

1. 5(9p) =0 forp=0,—1, and p < —3.

2. 5?_2) is the same as Schedler’s cobracket [20], i.e., 5?_2) = 5218,

Theorem 4.4 follows from some computation based on a tensorial description of
the homotopy intersection form by Massuyeau and Turaev [17]. In the computation we
introduce the Laurent expansion of the comodule structure map p? in a similar way.
The principal term is p® : T — f@a; defined by

pE(X - X)) = Z (Xz'-Xj)X1"'Xz'—lXj+1"'Xm(§>N(Xi+1"'Xj—1)
1<i<j<m
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for X; € H. The pair (T, %) is a complete involutive (a,,0%¢)-bimodule. So we
present the following problem.

Problem 4.5. Find a fatgraph interpretation of the limit of the relative twisted
homology limy o Hi.(a, ,5ps,(Q); T) and the coboundary operator d(6?', 4'8) on it.

As for the first term 5?1) of the Laurent expansion of 6%, the following holds.

Proposition 4.6 ([12]).  There exist symplectic expansions 6 and 0" such that

In particular, 6% and ©f do depend on the choice of a symplectic expansion 0, and
the cobracket 6% for some 6 does not coincide with Schedler’s cobracket 622, But the
cohomology classes of 6% and ©? do not depend on the choice of symplectic expansions
from the following proposition.

Proposition 4.7.  Let 0’ be another symplectic expansion. Then we have

d(8”) = d(6%) on H.(ay), and
(0%, p®) = d(s°, p)  on Hi(ay: T).

Proof. There exists an element of u € Der,, (f) = a, such that (u@u)A = Au,
u(H) C T, and ¢/ = e o0 : 1 — T. From some straight-forward computation in [9]
Lemma 4.3.1, we have Ne¥ = ¢™uN : T — a, . Therefore 59" = (erdu@eadu)sleadu —
e®v§ and ,u‘g/ = (e*®@e*)pfe = e yf in the sense of Lemma 3.4. In view of
Lemmas 3.2 and 3.4, this shows the proposition. O

This proposition makes us to present the following problems.

Problem 4.8. Determine whether 6 and p are cohomologous to Schedler’s
5218 and pe, respectively, or not.

Problem 4.9. If the answer to Problem 4.8 is affirmative, determine whether
there exists a symplectic expansion @ such that 6 and p? coincide with Schedler’s 68
and p?'8, respectively, or not.

§ Appendix A. Operations of loops on a surface

In the appendix we briefly review some operations of loops on a surface introduced
in [6] [22] [9] and [11].
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Appendix A.1. Goldman bracket

Let S be an oriented surface. We denote by 7(.S) the homotopy set of free loops
on the surface S. For any p € S we denote by | | : m1(S,p) — 7(S) the forgetful map
of the basepoint p. Let o and § be elements of 7(S). We choose their representatives
in general position, and denote them by the same symbols. Then the set of intersection
points a N B is finite, and a and [ intersect transversely at each point in N 3. The
Goldman bracket is defined to be the formal sum

v, B] = Z ep(a, B)|ow Byl
peang

in Z#(S), the Z-free module over the set #(S) = [S*,S]. Here ep(a, 8) € {1} is the
local intersection number at p, and oy, (resp. ,) € m1(S,p) is the based loop along «a
(resp. ) with basepoint p. Goldman [6] proved that the bracket is well-defined, namely,
homotopy invariant, and that the pair (Z7(S), [, ]) is a Lie algebra, which we call the
Goldman Lie algebra of the surface S.

Assume that the boundary 95 is non-empty, and let % be a point on the boundary
0S. We denote by ILS(pg, p1) the homotopy set of paths on S from pg to p; € S. Choose
representatives of o € #(S) and vy € 71 (5, %) in general position. The formal sum

a(@)(7) = D (0, Vuppps € Zmi (S, %)
peEany

is well-defined, namely, homotopy invariant [9]. Here ., € ILS(x,p) (resp. p« €
I1S(p,*)) is (the homotopy class of) the restriction of v to the segment from * to p
(resp. from p to x). Moreover o defines a Lie algebra homomorphism o : Z#(S) —
Der(Zm1(S, %)) [9]. If %9 and #; are two distinct points on 05, then ZILS(xg,*;), the
Z-free module over the set ILS(xq, *1), has a similar Z#(S)-module structure [10].

Appendix A.2. Turaev cobracket

Let S be a connected oriented surface. The constant loop 1 € #(S) on the surface
is in the center of the Goldman Lie algebra Z#(S), so that the quotient Z#'(S) :=
Z#(S)/Z1 has a natural Lie algebra structure. We denote by | |" : Zm1 (S, p) — Z#'(S)
the composite of the forgetful map of the base point p € S and the quotient map
Z7(S) — Z7'(S). Choose a representative of a € 7(S) in general position, and denote
it by the same symbol. Then the set D, := {(t1,t2) € St x S1; t; # 1o, a(ty) = a(t2)}
is finite and « intersects itself transversely at each «(t1) = a(t2). The Turaev cobracket
is defined to be the formal sum

(5(0&) = Z €(d(t1), d(t2))|at1t2 |/ ® |at2t1 |/

(t1,t2)ED,
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in Z7'(S) ® Z7'(S). Here e(&(t1), &(t2)) € {1} is the local intersection number of the
velocity vectors é(t1) and é(ta) € To,)S, and ay g, (resp. auye,) € m1(S, aty)) is (the
homotopy class) of the restriction of « to the interval [t1,ta] (resp. [to, t1]). Turaev [22]
proved that the cobracket § is well-defined, namely, homotopy invariant, and that the
pair (Z#'(S),0) is a Lie bialgebra. Later Chas [2] proved that it satisfies the involutivity.

Assume that the boundary 05 is non-empty, and let * be a point on the boundary
0S. The homomorphism o stated above factors through the quotient Z#’(S). Choose
a representative of v € 71(S, *) such that it is a smooth immersion whose singularities
are at most ordinary double points, the image of the interior |0, 1] is included in the
interior of S, and the velocity vectors at the endpoints 0 and 1 are linearly independent
on the tangent space T.S. We denote it by the same symbol . Then the set 'y of
self-intersection points of «y except * is finite. For p € T'),, we denote v~ (p) = {t},¢5} so
that ¢} < ¢5. Inspired by Turaev [21], Kuno and the author [11] introduced the formal
sum

- Zpen e(y(t1), (tg))(’YOtp’Ytpl) ® |%Ptp| if e(9(0),¥(1)) = +1,
1y - ZpEF e(y(1), (tp))(’YOt‘l”Ytgl) ® |’thft§|/: if e(4(0),4(1)) = -1

in Zm(S,*) @ Z7'(S). Here vrr, € ILS(y(70),7(71)) is (the homotopy class of) the
restriction of v to the interval [rp, 73] C [0,1] for 0 < 79 < 73 < 1. They proved that
the map p is well-defined, namely, homotopy invariant, and that the pair (Zm (S, %), u)
is an involutive Z7'(S)-bimodule [11]. If ¢ and %; are two distinct points on 95, then
ZI1S (g, *1) has a similar involutive Z#'(S)-bimodule structure [11].
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