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Thurston�s metric on Teichmüller space and

isomorphisms between Fuchsian groups

By

Athanase PAPADOPOULOS * and Weixu \mathrm{S}\mathrm{U}^{**}

Abstract

The aim of this paper is to establish relations between Thurston�s metric on Teichmüller

space and work of T. Sorvali on isomorphisms between Fuchsian groups. As a result, we give
a new formula for Thurston�s asymmetric metric for surfaces with punctures. We also update
some results of Sorvali on boundary isomorphisms of Fuchsian groups.

§1. Introduction

Let S=S_{g,n} be an oriented surface of genus g with n punctures and negative Euler

characteristic. The Teichmüller space \mathcal{T}_{g,n} of S is the space of equivalence classes of

complete hyperbolic structures of finite area on S ,
where two hyperbolic structures X

and Y on S are equivalent if there exists an isometry h : X\rightarrow Y homotopic to the

identity of S.

Thurston [13] dened an asymmetric metric d_{L} (that is, d_{L} is a metric except that

the symmetry axiom d_{L}(x, y)=d_{L}(y, x) is not satised) which we call, for brevity, the

Thurston metric, on \mathcal{T}_{g,n} by setting

(1.1) d_{L}(X, Y)=\displaystyle \inf_{f}\log L_{f}(X, Y) ,

where

L_{f}(X, Y)=\displaystyle \sup_{x,y\in S,x\neq y}\frac{d_{Y}(x,y)}{d_{X}(x,y)}
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is the Lipschitz constant of a homeomorphism f : X\rightarrow Y homotopic to the identity

map of S . In the same paper, Thurston proved that there is \mathrm{a} (non‐necessarily unique)
extremal Lipschitz homeomorphism that realizes the inmum in (1.1), and that

d_{L}(X, Y)=\log K(X, Y) ,

where

K(X, Y)=\displaystyle \sup_{ $\gamma$\in \mathcal{S}}\frac{\ell_{Y}( $\gamma$)}{\ell_{X}( $\gamma$)},
where \ell_{X}() denotes the hyperbolic length of  $\gamma$ in  X and S is the set of homotopy classes

of essential simple closed curves on S . Several geometrical aspects of Thurston�s metric,
such as the description of a distinguished class of geodesics (called stretch lines) and

the description of the structure of its Finsler norm unit ball, were studied by Thurston

in [13]. Thurston�s metric is also related to Thurston�s compactication of Teichmüller

space, see [9] and [14].
In this paper, we consider hyperbolic surfaces with at least one puncture. The

existence of punctures is equivalent to the fact that the Fuchsian groups that represent

the hyperbolic surfaces contain parabolic transformations. We make relations between

Thurston�s metric and work of Sorvali which was done more than ten years before the

appearance of Thurston�s preprint [13], by including Sorvali�s work in a non‐symmetric

setting. Indeed, Sorvali�s work concerns a symmetrization of Thurston�s metric, namely,
the so‐called length‐spectrum metric, but part of his theory may be used for a description
of Thurston�s metric. The length‐spectrum metric d_{ls} on \mathcal{T}_{g,n} is dened, for X and Y

in \mathcal{T}_{g,n} , by

d_{ls}(X, Y)=\displaystyle \log\sup_{ $\gamma$\in \mathcal{S}}\{\frac{\ell_{Y}( $\gamma$)}{\ell_{X}( $\gamma$)}, \frac{\ell_{X}( $\gamma$)}{\ell_{Y}( $\gamma$)}\}
which, by Thurston�s result mentioned above, is equal to

maxd(X; Y ), d_{L}(Y, X

For surfaces with punctures, the work of Sorvali gives a formula for d_{ls}(X, Y) in terms

of the translation vector (dened below) of the parabolic transformations. Using these

ideas, we obtain a new formula for Thurston�s distance between two hyperbolic struc‐

tures X and Y in terms of translation vectors of parabolic transformations corresponding
to punctures of X and Y.

Sorvali [11] also related the length‐spectrum distance to the Hölder continuity of the

boundary mappings of Fuchsian groups (see Section 4 for the denition). His results are

also interesting for surfaces of innite type. In a previous paper [1], we have observed

that for surfaces of innite type, the denition of the associated Teichmüller space
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depends on the choice of a base‐point of that space and on the choice of a metric on

that space which induces the topology. We used the name quasiconfO rmal Teichmüller

space for a Teichmüller space equipped with the Teichmüller metric, and length‐spectrum
Te ichmüller space for a Teichmüller space equipped with the length‐spectrum metric.

The spaces are in general different (even set‐theoretically), even if the base surfaces are

the same. In particular, we showed that there exists a hyperbolic surface R of innite

type such that the quasiconformal Teichmüller space \mathcal{T}_{qc}(R) is a proper subset of the

length‐spectrum Teichmüller space \mathcal{T}_{ls}(R) . Combining this with the result of Sorvali

[11], we obtain a class of examples of homeomorphisms of \mathbb{R}\cup\{\infty\} which are Hölder

continuous but not quasisymmetric.

§2. Isomorphism between Fuchsian groups

Let \mathbb{H} be the upper half‐plane endowed with the Poincaré metric. The ideal bound‐

ary of \mathbb{H} can be identied with \overline{\mathbb{R}}=\mathbb{R}\cup\{\infty\}. A Fuchsian group  $\Gamma$ is a subgroup of

\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{R}) which acts properly discontinuously and freely on \mathbb{H}.

In this section, we consider Fuchsian groups that are not cyclic and which contain

the parabolic transformation g_{0} : z\mapsto z+1 . We do not assume that they are finitely

generated and, consequently, the surfaces we consider might be of innite type.
To a hyperbolic isometry g of the upper half‐plane is associated a multiplier  $\lambda$(g)>

1 whose logarithm is the translation length along the invariant geodesic of g . To a

parabolic isometry, we can associate a translation length along a horocycle. The latter

association is not canonical (it needs some normalization), but it will turn out to be

useful. We now make this precise.
An isomorphism j :  $\Gamma$\rightarrow$\Gamma$' between Fuchsian groups is called type‐preserving if it

maps parabolic elements to parabolic elements and hyperbolic elements to hyperbolic
elements. This is equivalent to saying that j and j^{-1} both preserve parabolic elements.

Note that if there exists a homeomorphism f : \mathrm{R}\rightarrow\overline{\mathbb{R}} such that

f\circ g=j(g)\circ f

for all  g\in $\Gamma$ ,
then  j is type‐preserving. Indeed, in this case, fogo f^{-1}=j(g) ,

and if

a\in \mathrm{R} is a fixed point of g ,
then f(a) is a fixed point of j(g) .

In this section, we shall only consider type‐preserving isomorphisms j :  $\Gamma$\rightarrow$\Gamma$'

For a hyperbolic transformation g ,
we denote its attracting and repelling fixed

points by P(g) and N(g) respectively. The element g is uniquely determined by P(g) ,

N(g) and by the multiplier  $\lambda$(g)>1 ,
dened by the fact that \log $\lambda$(g) is the translation

length along the invariant geodesic of g . From the denition, we see that  $\lambda$(g) is a

conjugacy invariant. Up to conjugation by an element of \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{R}) , g is represented
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by the transformation z\mapsto $\lambda$(g)z . Since the eigenvalues of a Möbuis transformation

z\mapsto $\lambda$(g)z are  $\lambda$(g)^{1/2} and  $\lambda$(g)^{-1/2} ,
its trace is

\mathrm{t}\mathrm{r}(g)= $\lambda$(g)^{1/2}+ $\lambda$(g)^{-1/2}

If g is parabolic, we set  $\lambda$(g)=1 and we denote the unique fixed point of g by P(g) .

Given an isomorphism j :  $\Gamma$\rightarrow$\Gamma$'
,

we dene $\delta$_{L}(j)\in[1, \infty] by

$\delta$_{L}(j)=\displaystyle \inf\{a\geq 1: $\lambda$(j(g))\leq $\lambda$(g)^{a}, \forall g\in $\Gamma$\}.

This denition of $\delta$_{L}(j) is a nonsymmetric version of a denition made by Sorvali in

[11]. We have the following other formula for $\delta$_{L}(j) :

Lemma 2.1. If  1\leq s\leq\infty is the smallest number such that for all  g\in $\Gamma$,

\mathrm{t}\mathrm{r}(j(g))\leq \mathrm{t}\mathrm{r}(g)^{s} ,
then s=$\delta$_{L}(j) .

Proof. Suppose that \mathrm{t}\mathrm{r}(j(g))\leq \mathrm{t}\mathrm{r}(g)^{a} for all  g\in $\Gamma$ . For any  g\in $\Gamma$ ,
we let

 $\lambda$= $\lambda$(g) , $\lambda$'= $\lambda$(j(g)) . Since j is an isomorphism, j(g^{n})=j(g)^{n}, n=1
, 2, \cdots

. Since

\mathrm{t}\mathrm{r}(j(g)^{n})\leq \mathrm{t}\mathrm{r}(g^{n})^{a} ,
we have

($\lambda$')^{n/2}+($\lambda$')^{-n/2}\leq($\lambda$^{n/2}+$\lambda$^{-n/2})^{a},

and then

($\lambda$')^{n}\leq($\lambda$')^{n}+($\lambda$')^{-n}+2\leq($\lambda$^{n}+$\lambda$^{-n}+2)^{a}

For some sufficiently large integer n_{0} ,
the right hand side of the above inequality is less

than (4$\lambda$^{n})^{a} for all n\geq n_{0} . Therefore,

$\lambda$'\leq(4^{1/n} $\lambda$)^{a}, \forall n\geq n_{0}.

By letting  n\rightarrow\infty
,

we get $\lambda$'\leq$\lambda$^{a}.

Conversely, suppose that $\lambda$'\leq$\lambda$^{a} . Then

\mathrm{t}\mathrm{r}(j(g))=($\lambda$')^{1/2}+($\lambda$')^{-1/2}\leq$\lambda$^{a/2}+$\lambda$^{-a/2}\leq($\lambda$^{1/2}+$\lambda$^{-1/2})^{a}=\mathrm{t}\mathrm{r}(g)^{a}

\square 

Let g be a parabolic transformation. We shall associate with it a real number  $\omega$(g) .

If  P(g)=\infty and  g(z)=z+c ,
then we dene  $\omega$(g)=c . The value  $\omega$(g) is a real

(positive or negative) number uniquely determined by g . The absolute value | $\omega$(g)| is

expressed (like the value  $\lambda$(g) associated to a hyperbolic element g) as a translation

length, namely, the length of the horizontal segment (horocycle) joining the complex
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numbers i and i+ $\omega$(g) . If g is parabolic with  P(g)\neq\infty ,
then we dene  $\omega$(g) to be the

real number determined by the following equality:

\displaystyle \frac{1}{g(z)-P(g)}=\frac{1}{z-P(g)}+ $\omega$(g) .

There is a geometrical meaning to w(g) . There is a unique horocycle through P(g) and

P(g)+i which is invariant by the action of g . For any point z on this horocycle, | $\omega$(g)|
is the non‐euclidean length of the horocycle arc connecting z and g(z) . (We note by the

way that when  P(g)=\infty ,
the non‐Euclidean length of the horocycle arc connecting the

points  i and i+c is equal to c and that the Euclidean length of such a horocycle arc is

also equal to c. )
Thus, when g is parabolic and whether  P(g)=\infty or  P(g)\neq\infty, |w(g)| is a

translation length along a horocycle.

Following Sorvali [11], we call  $\omega$(g) the translation vector of g.

Note that unlike the value  $\lambda$(g) associated to a hyperbolic element g ,
the values

 $\omega$(g) and |w(g)| are not conjugacy invariants in the case where g is parabolic. To see

this, consider the parabolic element g(z)=\displaystyle \frac{z}{1+}cz

where c\neq 0 is real and let h be a

transformation h(z)= $\lambda$ z with  $\lambda$\in(0, \infty[ . Then a computation gives  $\omega$(g)=c while

 $\omega$(h^{-1}\mathrm{o} goh)=c $\lambda$ . The fact that  $\omega$(g) is not a conjugacy invariant can also be seen

from Lemma 2.2.

From now on and except in Theorem 4.2 below, we shall only consider type‐

preserving isomorphisms j :  $\Gamma$\rightarrow$\Gamma$' that fix g_{0}.

Lemma 2.2. For any parabolic element h in \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{R}) with  P(h)\neq\infty ,
we have

| $\omega$(h^{-1}\circ g_{0}\circ h)|=| $\omega$(h)|^{2}

Proof. The proof is contained in the proof of Theorem 3 of [11]. We reproduce it

here for the convenience of the reader.

We have

\displaystyle \frac{1}{h(z)-P(h)}=\frac{1}{z-P(h)}+ $\omega$(h)
or, equivalently,

h(z)=\displaystyle \frac{(1+ $\omega$(h)P(h))z- $\omega$(h)P(h)^{2}}{ $\omega$(h)z+1- $\omega$(h)P(h)}.
A computation shows that

(2.1) (h^{-1}\displaystyle \circ g_{0}\circ h)(z)=\frac{(1+ $\omega$(h)- $\omega$(h)^{2}P(h))z-(1- $\omega$(h)P(h))^{2}}{- $\omega$(h)^{2}z+1- $\omega$(h)+ $\omega$(h)^{2}P(h)}.
Since the fixed point of h^{-1}\circ g_{0}\circ h is h^{-1}(P(g_{0}))=h^{-1} () ,

we have

P(h^{-1}\displaystyle \circ g_{0}\circ h)=\frac{ $\omega$(h)P(h)-1}{ $\omega$(h)}.
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It is easy to show that (2.1) is equivalent to

\displaystyle \frac{1}{(h^{-1}\circ g_{0}\circ h)(z)-P(h^{-1}\circ g_{0}\circ h)}=\frac{1}{z-P(h^{-1}\circ g_{0}\circ h)}- $\omega$(h)^{2}
It follows that  $\omega$(h^{-1}\circ g_{0}\circ h)=- $\omega$(h)^{2}.

\square 

In what follows, we consider an isomorphism j :  $\Gamma$\rightarrow$\Gamma$' satisfying $\delta$_{L}(j)<\infty . Such

a hypothesis is satised for example if  j is induced by a homeomorphism between \mathbb{H}/ $\Gamma$
and \mathbb{H}/$\Gamma$' ,

where \mathbb{H}/ $\Gamma$ and \mathbb{H}/$\Gamma$' are surfaces of finite type.
The following is an asymmetric version of Theorem 3 of Sorvali�s paper [11].

Lemma 2.3. Let j: $\Gamma$\rightarrow$\Gamma$' be an isomorphism such that  s=$\delta$_{L}(j)<\infty . Then

| $\omega$(j(g))|\leq| $\omega$(g)|^{s} for all parabolic transfO rmations g\in $\Gamma$.

Proof. The proof is the same as that of Theorem 10 of [12]. Let g\neq g_{0} be a fixed

parabolic transformation of  $\Gamma$ . Since  $\Gamma$ is discrete,  P(g)\neq\infty.
Let g_{1}=g^{-1}\circ g_{0}\circ g and inductively let g_{n}=g_{n-1}^{-1}\circ g_{0}\circ g_{n-1} for every n\geq 1 . By

Lemma 2.2, we have

| $\omega$(g_{n})|=| $\omega$(g_{n-1})|^{2}

Therefore,

(2.2) | $\omega$(g_{n})|=| $\omega$(g)|^{2^{n}}

Similarly, we have

| $\omega$(j(g_{n}))|=| $\omega$(j(g))|^{2^{n}}
For any parabolic transformation h\neq g_{0} of  $\Gamma$

,
either  g_{0}\circ h^{-1} or g_{0}\circ h is hyperbolic.

Assume, for the proof, that g_{0}\circ h is hyperbolic. Then,

(2.3) tr(g_{0}\circ h)=|2+ $\omega$(h)|.

We apply (2.3) to g_{n} and j(g_{n}) . Then by Lemma 2.1,

|2+ $\omega$(f(g_{n}))|\leq|2+ $\omega$(g_{n})|^{s}

By (2.2), we have

(| $\omega$(j(g))|^{2^{n}}-2)=(| $\omega$(j(g_{n}))|-2)
\leq|2+ $\omega$(j(g_{n}))|

\leq|2+ $\omega$(g_{n})|^{s}

\leq(2+| $\omega$(g)|^{2^{n}})^{s}
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Hence

(| $\omega$(j(g))|^{2^{n}}-2)^{1/2^{n}}\leq(2+| $\omega$(g)|^{2^{n}})^{s/2^{n}}

By letting  n\rightarrow\infty
,

we obtain | $\omega$(j(g))|\leq| $\omega$(g)|^{s}. \square 

The following lemma is also due to Sorvali ([12] p. 3).

Lemma 2.4. Suppose  g\in $\Gamma$ is hyperbolic and  $\lambda$(j(g))= $\lambda$(g)^{a} . For each n=

1
, 2, \cdots

,
let  b_{n} be the real number such that

| $\omega$(j(g)^{n}\circ g_{0}\circ j(g)^{-n})|=| $\omega$(g^{n}\circ g_{0}\circ g^{-n})|^{b_{n}}.

Then \displaystyle \lim_{n\rightarrow\infty}b_{n}=a.

Proof. The proof is due to Sorvali [11].
Note that the translation vectors of parabolic elements are not changed under

conjugation by translations z\mapsto z+b (where b is real). Therefore we may assume that

P(g)=P(j(g))=0.
Set  $\lambda$= $\lambda$(g) and N=N(g) ; then

g^{n}(z)=\displaystyle \frac{Nz}{(1-$\lambda$^{n})z+$\lambda$^{n}N},
and it is easy to show that

g^{n}\displaystyle \circ g_{0}\circ g^{-n}(z)=\frac{N($\lambda$^{n}N+$\lambda$^{n}-1)z+N^{2}}{-($\lambda$^{2}-1)z+N($\lambda$^{n}N+$\lambda$^{n}-1)}.
Hence

(2.4)  $\omega$(g^{n}\displaystyle \circ g_{0}\circ g^{-n})=-\frac{($\lambda$^{n}-1)^{2}}{$\lambda$^{n}N^{2}}=-\frac{$\lambda$^{n}+$\lambda$^{-n}-2}{N^{2}}.
By replacing N by N'=N(j(g)) and  $\lambda$ by  $\lambda$^{a}= $\lambda$(j(g)) ,

we obtain a similar expression
for  $\omega$(j(g)^{n}\circ g_{0}\circ j(g)^{-n}) . As a result,

(\displaystyle \frac{$\lambda$^{an}+$\lambda$^{-an}-2}{(N')^{2}})^{1/n}=(\frac{$\lambda$^{n}+$\lambda$^{-n}-2}{(N)^{2}})^{b_{n}/n}
The left hand side of the above equation tends to $\lambda$^{a} as  n\rightarrow\infty

,
and

(\displaystyle \frac{$\lambda$^{n}+$\lambda$^{-n}-2}{(N)^{2}})^{1/n}
tends to k as  n\rightarrow\infty . It follows that \displaystyle \lim_{n\rightarrow\infty}b_{n}=a. \square 

It would be interesting to give a geometric interpretation of Lemma 2.4.

Now suppose that j: $\Gamma$\rightarrow$\Gamma$' is an isomorphism with $\delta$_{L}(j)<\infty . We let

$\rho$_{L}(j)=\displaystyle \inf {  a\geq 1:| $\omega$(j(g))|\leq| $\omega$(g)|^{a} for all parabolic g in  $\Gamma$ }.
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Theorem 2.5. Let  $\Gamma$ and  $\Gamma$' be two Fuchsian groups, both of which contain the

parabolic element g_{0}(z)=z+1 . Suppose that j :  $\Gamma$\rightarrow$\Gamma$' is an isomorphism with

j(g_{0})=g_{0} and $\delta$_{L}(j)<\infty . Then $\delta$_{L}(j)=$\rho$_{L}(j) .

Proof. By Lemma 2.3, $\rho$_{L}(j)\leq$\delta$_{L}(j) .

Suppose that $\rho$_{L}(j)<$\delta$_{L}(j) . By denition of $\delta$_{L}(j) ,
there exists some hyperbolic

element  g\in $\Gamma$ ,
some number  $\epsilon$>0 and  a\geq$\rho$_{L}(j)+ $\epsilon$ such that  $\lambda$(j(g))= $\lambda$(g)^{a} . By

Lemma 2.4, the numbers b_{n} satisfy

| $\omega$(j(g)^{n}\circ g_{0}\circ j(g)^{-n})|=| $\omega$(g^{n}\circ g_{0}\circ g^{-n})|^{b_{n}}.

Then \displaystyle \lim_{n\rightarrow\infty}b_{n}=a . This means that $\rho$_{L}(j)\geq$\rho$_{L}(j)+ $\epsilon$/2 ,
which is impossible. As a

result, $\rho$_{L}(j)\geq$\delta$_{L}(j) .

\square 

§3. Thurston�s metric

Let S=S_{g,n} with n>0 . Each hyperbolic structure X on S can be represented by

\mathbb{H}/ $\Gamma$ for some Fuchsian group  $\Gamma$ . Up to conjugation, we may assume that  g_{0}:z\mapsto z+1

belongs to  $\Gamma$
,

and we shall do this throughout the rest of this paper.

Given two hyperbolic structures  X=\mathbb{H}/ $\Gamma$ and  Y=\mathbb{H}/$\Gamma$' on S ,
the identity

map between (S, X) and (S, Y) lifts to a homeomorphism f : \mathbb{H}\rightarrow \mathbb{H} which extends

continuously to the ideal boundary R. We may also assume that f fixes 0 , 1, \infty . Using
the map  f ,

we dene an isomorphism j :  $\Gamma$\rightarrow$\Gamma$' by

j(g):=f\circ g\circ f^{-1}, \forall g\in $\Gamma$.

Note that j satises the assumptions on the isomorphism j of Section 2, that is,

j is type‐preserving and it fixes the element g_{0} (which, also by assumption, is in both

groups  $\Gamma$ and  $\Gamma$' ).
Each hyperbolic element g in  $\Gamma$ corresponds to \mathrm{a} (not necessary simple) closed

geodesic $\gamma$_{g} of X
,
with hyperbolic length \ell_{X}() =\log $\lambda$(g) . By Theorem 2.5, we have

\displaystyle \sup_{g\in $\Gamma$}\frac{\ell_{Y}($\gamma$_{g})}{\ell_{X}($\gamma$_{g})}= $\rho$(j) .

By a result of Thurston (Proposition 3.5, [13]),

\displaystyle \sup_{g\in $\Gamma$}\frac{\ell_{Y}($\gamma$_{g})}{\ell_{X}($\gamma$_{g})}=K(X, Y) .

As a result, we get a new formula for the Thurston distance, which we state in the

following:
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Theorem 3.1. With the above notation, Thurston�s metric is given by

d_{L}(X, Y)=\log$\delta$_{L}(j)=\log$\rho$_{L}(j) .

By symmetrizing we obtain the following theorem of Sorvali.

Theorem 3.2 (Sorvali [12]). With the above notation, the length‐spectrum met‐

ric satises

d_{ls}(X, Y)=\log $\delta$(j)=\log $\rho$(j) ,

where

 $\delta$(j)=\displaystyle \max\{$\delta$_{L}(j), $\delta$_{L}(j^{-1})\}

and

 $\rho$(j)=\displaystyle \max\{$\rho$_{L}(j), $\rho$_{L}(j^{-1})\}.

Note that it is interesting to have, like above, a denition of the Thurston metric

in terms of translation lengths in the setting of groups, because such a denition can be

generalized to other group actions. At the end of this paper, we address some questions
in this direction.

§4. Boundary mappings

A homeomorphism  $\varphi$ : \mathrm{R}\rightarrow\overline{\mathbb{R}} is called a boundary mapping of an isomorphism

j: $\Gamma$\rightarrow$\Gamma$' if

 $\varphi$\circ g=j(g)\circ $\varphi$

for all  g\in $\Gamma$ . We say that  j is induced from  $\varphi$.

The limit set of a Fuchsian group  $\Gamma$
,

denoted by  $\Lambda$( $\Gamma$) ,
is the set of accumulation

points of the set

 $\Gamma$(z_{0})=\{g(z_{0}):g\in $\Gamma$\}

on \overline{\mathbb{H}}=\mathbb{H}\cup\overline{\mathbb{R}} for some z_{0}\in \mathbb{H} . Since  $\Gamma$ acts properly discontinuously and freely on \overline{\mathbb{H}},
 $\Lambda$( $\Gamma$) is a subset of R. It is easy to see that the denition of  $\Lambda$( $\Gamma$) is independent of the

choice of z_{0}\in \mathbb{H} . The Fuchsian groups  $\Gamma$ is said to be non‐elementary if  $\Lambda$( $\Gamma$) contains

at least three points.
We denote by F( $\Gamma$) the set of hyperbolic fixed points of a Fuchsian group  $\Gamma$.

Lemma 4.1. Suppose that  $\Gamma$ is non‐elementary. Then  $\Gamma$ contain a hyperbolic
element. Moreover,  F( $\Gamma$) is dense in  $\Lambda$( $\Gamma$) .

See e.g. Matsuzaki‐Taniguchi [8] for a proof of Lemma 4.1.
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A Fuchsian group  $\Gamma$ is of the first kind if  $\Lambda$( $\Gamma$)= R. It is known that if  $\Gamma$ and

 $\Gamma$' are finitely generated and of the first kind, then any type‐preserving isomorphism

j: $\Gamma$\rightarrow$\Gamma$' is realized by some homeomorphism  $\varphi$ : \mathrm{R}\rightarrow\overline{\mathbb{R}} . Moreover, the existence of

such an isomorphism j implies that  $\Gamma$ and  $\Gamma$' are quasiconformally conjugate, that is,
there exists a quasiconformal map  $\Phi$ : \mathbb{H}\rightarrow \mathbb{H} such that

 $\Phi$\circ g=j(g)\circ $\Phi$

for all  g\in $\Gamma$.
If an isomorphism j :  $\Gamma$\rightarrow$\Gamma$' is realized by some homeomorphism  $\varphi$ : \mathrm{R}\rightarrow\overline{\mathbb{R}}

,
then

it follows from work of Douady‐Earle [3] that there is a homeomorphism  $\Phi$ : \mathbb{H}\rightarrow \mathbb{H}

such that  $\Phi$|_{\overline{\mathbb{R}}}= $\varphi$ and

 $\Phi$\circ g=j(g)\circ $\Phi$

for all  g\in $\Gamma$ . Furthermore,  $\varphi$ is quasisymmetric if and only if  $\Phi$ is quasiconformal. Recall

that an orientation‐preserving homeomorphism  $\varphi$ : \mathrm{R}\rightarrow\overline{\mathbb{R}}
,

normalized by  $\varphi$(\infty)=\infty,
is quasisymmetric if there exists a real number k\geq 1 such that for all x, t\in \mathbb{R}, t\neq 0,

1/k\displaystyle \leq\frac{ $\varphi$(x+t)- $\varphi$(x)}{ $\varphi$(x)- $\varphi$(x-t)}\leq k.
In general, for an isomorphism j :  $\Gamma$\rightarrow$\Gamma$' between two Fuchsian groups of the

first kind, if there exists a boundary mapping  $\varphi$ of  j ,
then  $\varphi$ is unique. The following

necessary and sufficient condition for the existence of boundary mappings is due to

Sorvali [10].

Theorem 4.2. Let  $\Gamma$ and  $\Gamma$' be two Fuchsian groups of the first kind and j :

 $\Gamma$\rightarrow$\Gamma$' an isomorphism. (We do not make the assumption that j is type‐preserving.)
Then the following two conditions are equivalent:

1. The boundary mapping  $\varphi$ of  j exists.

2. For all g_{1},  g_{2}\in $\Gamma$ not equal to the identity,  A(g_{1})\cap A(g_{2})\neq\emptyset if and only if  A(j(g_{1}))\cap
 A(j(g_{2}))\neq\emptyset . Here  A(g) denotes the geodesic connecting P(g) and N(g) if g is

hyperbolic and denotes P(g) if g is parabolic.

An example of a type‐preserving isomorphism between two Fuchsian groups of the

first kind which does not have a boundary mapping is given by Sorvali [10].

Given 0< $\alpha$\leq 1 and a subset F\subset\overline{\mathbb{R}} , we say that a homeomorphism  $\varphi$ : \mathrm{R}\rightarrow\overline{\mathbb{R}} is

 $\alpha$ ‐Hölder bi‐continuous on  F if for each x_{0}\in F ,
there exists a neighborhood I\subset \mathrm{R} of

x_{0} and a constant C\geq 1 such that

\displaystyle \frac{|x-x_{0}|^{1/ $\alpha$}}{C}\leq| $\varphi$(x)- $\varphi$(x_{0})|\leq C|x-x_{0}|^{ $\alpha$}
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for all x\in I . In the case where  x_{0}=\infty or  $\varphi$(x_{0})=\infty ,
then we consider the Hölder

bi‐continuity of  $\varphi$(1/x) at 0 or of 1/ $\varphi$(x) at x_{0} respectively.

Suppose that  $\varphi$ is a boundary mapping of an isomorphism  j :  $\Gamma$\rightarrow$\Gamma$' with  $\delta$(j)<\infty.
Let B(j) be the set of real numbers  $\alpha$, 0< $\alpha$\leq 1 ,

such that  $\varphi$ is  $\alpha$‐Hölder bi‐continuous

on  F( $\Gamma$) . Note that B(j) is an interval contained in [0 ,
1 ].

The following theorem is also due to Sorvali [11].

Theorem 4.3. Suppose that  $\varphi$ is  a boundary mapping of an isomorphism j :

 $\Gamma$\rightarrow$\Gamma$' with  $\delta$(j)<\infty . Then  B(j)\neq\emptyset and

 $\delta$(j)=\displaystyle \min_{ $\alpha$\in B(j)}\{\frac{1}{ $\alpha$}\}.
In the rest of this section, S is a connected orientable surface of innite type

and R=\mathbb{H}/$\Gamma$_{0} is a hyperbolic structure on S . We assume that  $\Lambda$($\Gamma$_{0})=\mathrm{R} , i.e. $\Gamma$_{0}

is a Fuchsian group of the first kind. Up to conjugation, we may assume that the

transformation z\mapsto $\lambda$ z for some  $\lambda$>1 belongs to $\Gamma$_{0} and that 1 is a fixed point of some

elements in $\Gamma$_{0}.

The length‐spectrum Teichmüller space \mathcal{T}_{ls}(R) is the space of homotopy classes of

hyperbolic surfaces X homeomorphic to R ,
with

L(R, X)=\displaystyle \sup_{ $\gamma$\in \mathcal{S}}\{\frac{\ell_{X}( $\gamma$)}{\ell_{R}( $\gamma$)}, \frac{\ell_{R}( $\gamma$)}{\ell_{X}( $\gamma$)}\}<\infty.
It is clear that for any two distinct elements X, Y\in \mathcal{T}_{ls}(R) ,

we have

1<L(X, Y)=\displaystyle \sup_{ $\gamma$\in \mathcal{S}}\{\frac{\ell_{X}( $\gamma$)}{\ell_{Y}( $\gamma$)}, \frac{\ell_{Y}( $\gamma$)}{\ell_{X}( $\gamma$)}\}<\infty.
The length‐spectrum distance between X and Y is then given by

d_{ls}(X, Y)=\displaystyle \frac{1}{2}\log L(X, Y) .

The fact that d_{ls}(X, Y)=0 implies X=Y is due to Sorvali [11]. In fact, Sorvali [11]
showed that this result is also valid for Fuchsian groups of the second kind with some

restriction on the isomorphism j.

Finally, we consider the quasiconfO rmal Te ichmüller space \mathcal{T}_{qc}(R) ,
i.e. the space of

homotopy classes of hyperbolic metrics X on R such that the identity map between the

topological surface equipped respectively with R and X is homotopic to a quasiconformal

homoemorphism.
For any two (equivalence classes of) hyperbolic metrics X, Y\in \mathcal{T}_{qc}(R) ,

their qua‐

siconformal distance d_{qc}(X, Y) is dened as

d_{qc}(X, Y)=\displaystyle \frac{1}{2}\log\inf_{f}K(f)
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where K(f) is the quasiconformal dilatation of a quasiconformal homeomorphism f :

X\rightarrow Y which is homotopic to the identity.
The following lemma is called Wolpert�s formula [15].

Lemma 4.4. For any K ‐quasiconfO rmal map f : X\rightarrow Y and any  $\gamma$\in S ,
we

have

\displaystyle \frac{1}{K}\leq\frac{\ell_{Y}(f( $\gamma$))}{\ell_{X}( $\gamma$)}\leq K.
It follows from Wolpert�s Lemma that for any two points X, Y\in \mathcal{T}_{qc}(R) ,

(4.1) d_{ls}(X, Y)\leq d_{qc}(X, Y) .

We note that the inequality (4.1) was first obtained by Sorvali [11].
We proved in [1] that if there exists a sequence of simple closed curves \{$\alpha$_{i}\} con‐

tained in the interior of R with \ell_{R}($\alpha$_{i})\rightarrow 0 ,
then \mathcal{T}_{qc}(R)\neq\subset \mathcal{T}_{ls}(R) . The idea was to

construct a sequence of hyperbolic metrics by performing large twists along short curves.

Suppose that X=\mathbb{H}/ $\Gamma$\in \mathcal{T}_{ls}(R)\backslash \mathcal{T}_{qc}(R) and suppose that the surface R contains

a sequence of simple closed curves $\alpha$_{i} ,
in its interior, with \ell_{R}($\alpha$_{i})\rightarrow 0 . The identity

map between (S, R) and (S, X) lifts to a homeomorphism between the universal covers

and induces a homeomorphism  $\varphi$ : \mathrm{R}\rightarrow\overline{\mathbb{R}} . Consider the homomorphism j :  $\Gamma$_{0}\rightarrow $\Gamma$

given by

 $\varphi$\circ g=j(g)\circ $\varphi$

for all  g\in$\Gamma$_{0} . Then  $\varphi$ is a boundary mapping of  j . Since  $\delta$(j)<\infty ,
it follows from

Theorem 4.3 that there is some  0< $\alpha$\leq 1 such that  $\varphi$ is  $\alpha$‐Hölder continuous on  F( $\Gamma$) .

However,  $\varphi$ is not quasisymmetric, since, otherwise, by Douady‐Earle [3] there would

exist an quasiconformal extension of  $\varphi$ to \mathbb{H} satisfying

 $\varphi$\circ g=j(g)\circ $\varphi$,

and this would induce a quasiconformal mapping between R and X . This is impossible,
since d_{qc}(R, X)=\infty.

In a recent paper [2], we proved that endowed with the length‐spectrum metric,

\mathcal{T}_{qc}(R) is nowhere dense in \mathcal{T}_{ls}(R) .

Denote by A($\Gamma$_{0}) the set of orientation‐preserving homeomorphisms  $\varphi$ : \mathrm{R}\rightarrow\overline{\mathbb{R}}

such that

1. the conjugation

 $\varphi$\circ g\circ$\varphi$^{-1}, g\in$\Gamma$_{0}

gives a isomorphism between $\Gamma$_{0} and some Fuchsian group  $\Gamma$ ;

2. the map  $\varphi$ fixes  0 , 1, \infty ;
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3. there exists some  0< $\alpha$\leq 1 such that  $\varphi$ is  $\alpha$‐Hölder bi‐continuous on  F($\Gamma$_{0}) .

Note that if  $\varphi$ : \mathrm{R}\rightarrow\overline{\mathbb{R}} is quasisymmetric, then it is  $\alpha$‐Hölder bi‐continuous on \overline{\mathbb{R}} for

some 0< $\alpha$\leq 1 (see \mathrm{e}. \mathrm{g}. [6] ).
Let A_{qs}($\Gamma$_{0}) be the subset of A() consisting of the maps  $\varphi$\in A() which are

quasisymmetric. We conclude with the following theorem.

Theorem 4.5. A_{qs}() is a proper subset of A($\Gamma$_{0}) .

§5. Cross‐ratio norm

For any quadruple of distinct points p, q, r, s on \mathrm{R}
,

the cross‐ratio (p, q, r, s) is

dened by

(p, q, r, s)=\displaystyle \frac{p-r}{p-s} \frac{q-s}{q-r}.
Given a hyperbolic transformation g ,

it is easy to show that

 $\lambda$(g)=(g(s), s, N(g), P(g))

for any s\neq P(g) , N(g) .

Suppose that there is an isomorphism j :  $\Gamma$\rightarrow$\Gamma$' with boundary mapping  $\varphi$ . Then

for any  g\in $\Gamma$ ,
we have

 $\lambda$(j(g))=(j(g)(t), t, N(j(g)), P(j(g)))

=( $\varphi$\circ g(s),  $\varphi$(s),  $\varphi$(N(g)),  $\varphi$(P(g)))

for s\neq P(g) , N(g) and t\neq P(j(g)) , N(j(g)) . Dene \Vert $\varphi$\Vert_{ls}= $\delta$(j) . It follows that

\displaystyle \Vert $\varphi$\Vert_{ls}=\sup\frac{|\log( $\varphi$\circ g(s), $\varphi$(s), $\varphi$(N(g)), $\varphi$(P(g)))}{(g(s),s,N(g),P(g))}
where the supremum is taken over all  g\in $\Gamma$ and  s\neq P(g) , N(g) .

There is a natural norm on the set of orientation‐preserving homeomorphisms of

\mathrm{R}
,

called the cross‐ratio norm, dened by

\displaystyle \Vert $\varphi$\Vert_{cr}=\sup\frac{|\log( $\varphi$(p), $\varphi$(q), $\varphi$(r), $\varphi$(s))}{(p,q,r,s)}
where the supremum is taken over all quadruples (p, q, r, s) arranged counter‐clockwise

on R. It is clear that for a boundary mapping  $\varphi$ of some isomorphism  j, \Vert $\varphi$\Vert_{ls}\leq\Vert $\varphi$\Vert_{cr}.
The cross‐ratio norm was studied by Gardiner‐Hu‐Lakic [4] and Hu [5]. These

authors proved that for an orientation‐preserving homeomorphism  $\varphi$ : \mathrm{R}\rightarrow\overline{\mathbb{R}}, \Vert $\varphi$\Vert_{cr}
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is equivalent to Thurston�s norm on the transverse shearing measure induced by the

earthquake map on \mathbb{H} whose extension to \mathrm{R} is equal to  $\varphi$. \Vert $\varphi$\Vert_{cr} is finite if and only if

 $\varphi$ is quasisymmetric.
We end this paper with the following questions:

1. There are some sufficient conditions on  $\Gamma$ such that  A_{qs}( $\Gamma$)=A() (see [1], [2]).
Find sufficient and necessary conditions for the equality A_{qs}( $\Gamma$)=A( $\Gamma$) .

2. Adapt this theory to the setting of automorphism groups of free groups.

3. Adapt this theory to the setting of Kleinian groups.
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