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Recovery of the Dirichlet‐to‐Neumann map from

scattering data in the plane

By

Kari AsTALA * Daniel FARACO **and Keith M. RoGERS***

Abstract

The differences between plane waves with fixed frequency and their analogues that have

been distorted by a potential V yield the scattering amplitude. It is a classical problem to

recover V from this information. It is well‐known that the scattering amplitude uniquely
determines the Dirichlet‐to‐Neumann (DN) map (from which the potential can be recovered)
and there are a number of different approaches to proving this. Here we provide explicit
formulae, closely following the work of Nachman and Stefanov, which recover the DN map

from the scattering amplitude in the plane.

§1. Introduction

Let  $\Omega$\subset \mathbb{R}^{2} be a bounded domain which contains the support of a real potential V.

We suppose throughout that V\in L^{p}( $\Omega$) ,
with p>2 ,

and that k^{2}>0 is not a Dirichlet

eigenvalue for the Hamiltonian -\triangle+V . Then the Dirichlet‐to‐Neumann (DN) map $\Lambda$_{V}
can be formally dened by

$\Lambda$_{V}:u|_{\partial $\Omega$}\mapsto\nabla u\cdot n|_{\partial $\Omega$},

where u is the solution to the Schrödinger equation

(1.1) (-\triangle+V)u=k^{2}u
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with the given Dirichlet data. In recent works (see for example [14, 11, 4, 2]), methods

for recovering potentials from their DN maps have been developed.
On the other hand, for each  $\theta$\in \mathrm{S}^{1} ,

the outgoing scattering solutions of (1.1) solve

the Lippmann‐Schwinger equation;

u(x,  $\theta$)=e^{ikx\cdot $\theta$}-\displaystyle \int_{\mathbb{R}^{2}}G_{0}(x, y)V(y)u(y,  $\theta$)dy.
Here, G_{0} is the outgoing Green�s function which satises

(1.2) (-\triangle-k^{2})G_{0}(x, y)= $\delta$(x-y) .

It can be calculated explicitly and is nothing more than a constant multiple of the zeroth

order Hankel function of the first kind.

The scattering solutions satisfy the (asymptotics� u(x,  $\theta$)=e^{ikx\cdot $\theta$} if V=0 . That

is they measure how much the plane wave has been distorted by the potential. Indeed,
later we will derive the asymptotics

G_{0}(x, y)=e^{-ik\frac{x}{|x|}\cdot y}\displaystyle \frac{e^{i\frac{ $\pi$}{4}}e^{ik|x|}}{\sqrt{8 $\pi$ k|x|}}+o(\frac{1}{\sqrt{|x|}}) ,

so that, by plugging into the Lippmann‐Schwinger equation, we obtain

u(x,  $\theta$)=e^{ik $\theta$\cdot x}-A_{V}(\displaystyle \frac{x}{|x|},  $\theta$)\frac{e^{i\frac{ $\pi$}{4}}e^{ik|x|}}{\sqrt{8 $\pi$ k|x|}}+o(\frac{1}{\sqrt{|x|}}) ,

Here, the scattering amplitude A_{V} : \mathrm{S}^{1}\times \mathrm{S}^{1}\rightarrow \mathbb{C} satises

(1.3) A_{V}( $\theta$,  $\theta$)=\displaystyle \int_{\mathbb{R}^{2}}e^{-ik $\theta$\cdot y}V(y)u(y,  $\theta$)dy,
and a classical problem is to recover the potential from this information alone.

It is well‐known that the scattering amplitude uniquely determines the DN map

(and vice versa) and so solutions to the first question, regarding the DN map, also

provide solutions to the scattering question. There are a number of different approaches
to showing this equivalence (see for example [3, 9, 16, 14, 15]). Here we provided explicit

formulae, initially following an argument due to Nachman [10, Section 3] and then

adapting three‐dimensional arguments, due to Stefanov [13], to the two‐dimensional

problem.

§2. The formulae

It is well‐known that, under the hypotheses of the introduction, for each  f\in

 H^{1/2}(@ ) ,
there is a unique weak solution to the Dirichlet problem

(2.1) \left\{\begin{array}{l}
\triangle u=(V-k^{2})u\\
u|_{\partial $\Omega$}=f,
\end{array}\right.
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that satises

(2.2) \Vert u\Vert_{H^{1}( $\Omega$)}\leq C\Vert f\Vert_{H^{1/2}(\partial $\Omega$)}

(see for example [6] ‐in two dimensions L^{n/2}(\mathbb{R}^{n}) can be replaced by L^{p}(\mathbb{R}^{2}) with

p>1) . Here H^{1/2}(@ ) :=H^{1}( $\Omega$)/H_{0}^{1}() ,
where H_{0}^{1} () denotes the closure of C_{0}^{\infty}( $\Omega$)

in H^{1}() . The DN map $\Lambda$_{V} is then dened by

\displaystyle \langle$\Lambda$_{V}[f],  $\psi$\rangle=\int_{\partial $\Omega$}$\Lambda$_{V}[f] $\psi$=\int_{ $\Omega$}Vu $\Psi$+\nabla u\cdot\nabla $\Psi$
for any  $\Psi$\in H^{1} () with  $\psi$= $\Psi$+H_{0}^{1}() . When the solution and boundary are

sufficiently regular, this denition coincides with that of the introduction by Green�s

formula. To see that $\Lambda$_{V} maps from H^{1/2}(@ ) to H^{-1/2}(@ ) ,
the dual of H^{1/2} (@) ,

we

note that by Hölder�s inequality and the Hardy−Littlewood−Sobolev inequality,

|\langle$\Lambda$_{V}[f],  $\psi$\rangle|\leq\Vert u\Vert_{H^{1}( $\Omega$)}\Vert $\Psi$\Vert_{H^{1}( $\Omega$)}+\Vert V\Vert_{p}\Vert u\Vert_{L^{q}( $\Omega$)}\Vert $\Psi$\Vert_{L^{q}( $\Omega$)}
\leq(1+C\Vert V\Vert_{p})\Vert u\Vert_{H^{1}( $\Omega$)}\Vert $\Psi$\Vert_{H^{1}( $\Omega$)}

whenever  $\Psi$\in H^{1} Here \displaystyle \frac{1}{p}+\frac{2}{q}=1 with p>1 . By (2.2), we obtain

|\langle$\Lambda$_{V}[f],  $\psi$\rangle|\leq C(1+\Vert V\Vert_{p})\Vert f\Vert_{H^{1/2}(\partial $\Omega$)}\Vert $\psi$\Vert_{H^{1/2}(\partial $\Omega$)}
and so the DN map is bounded.

Essential to our analysis will be the outgoing Green�s function G_{V} that satises

(2.3) (-\triangle+V-k^{2})G_{V}(x, y)= $\delta$(x-y)

and the corresponding near‐field operator S_{V} dened via the single layer potential

S_{V}[f](x)=\displaystyle \int_{\partial $\Omega$}G_{V}(x, y)f(y)dy.
This is a bounded and invertible mapping from H^{-1/2}(@ ) to H^{1/2}(@ ) (the two‐

dimensional proof can be found in [7, Proposition A.1]). Then Nachman�s formula [9],

$\Lambda$_{V}=$\Lambda$_{0}+S_{V}^{-1}-S_{0}^{-1},

allows us to recover the DN map as soon as we recover the single layer potential S_{V}
from the scattering amplitude A_{V} at energy k^{2}.

When  $\Omega$ is a disc, Nachman recovered  S_{V} via formulae given by expansions in

spherical harmonics as below. Otherwise he used a density argument (we remark that

Sylvester [15] also invokes density in order to recover). Since it is occasionally convenient

to work with different domains (see for example [2] where it is convenient to work on
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a square), at this point we follow instead an argument of Stefanov [13], obtaining an

explicit formula for the Green�s function G_{V} in terms of A_{V} . Alternatively it seems

likely that one could pass to the DN map on other domains from the the DN map on the

disc via the argument in [11, Section 6] for the conductivity problem, however we prefer
this more direct approach. We recover G_{V} outside of a disc which contains the potential,
but which is properly contained in  $\Omega$

,
so that  S_{V} can be obtained by integrating along

the boundary @.

First we require the following well‐known asymptotics.

Lemma 2.1. Let V\in L^{p}( $\Omega$) with p>2 . Then

G_{V}(x, y)-G_{0}(x, y)=\displaystyle \frac{-i}{8 $\pi$ k}\frac{e^{ik|x|}}{|x|^{\frac{1}{2}}}\frac{e^{ik|y|}}{|y|^{\frac{1}{2}}}A_{V}(-\frac{x}{|x|}, \frac{y}{|y|})+o(\frac{1}{|x|^{\frac{1}{2}}|y|^{\frac{1}{2}}}) .

Proof. Using the asymptotics of the Hankel function for large r ;

H_{0}^{(1)}(r)=e^{-i\frac{ $\pi$}{4}}(\displaystyle \frac{2}{ $\pi$ r})^{\frac{1}{2}}e^{ir}+o(\frac{1}{r^{\frac{1}{2}}})
(see for example [8, Section 5.16] or [5, pp. 66]) and the Taylor expansion at a fixed

y\in \mathbb{R}^{2},

|x-y|=|x|(1-2\displaystyle \frac{x}{|x|^{2}}\cdot y+\frac{|y|^{2}}{|x|^{2}})^{1/2}=|x|-\frac{x}{|x|}\cdot y+O(\frac{1}{|x|}) , |x|\gg|y|,
one obtains the asymptotic formula

(2.4) G_{0}(x, z)=\displaystyle \frac{i}{4}H_{0}^{(1)}(k|x-y|)=\frac{e^{i\frac{ $\pi$}{4}}}{(8 $\pi$)^{\frac{1}{2}}}\frac{e^{ik|x|}}{k^{\frac{1}{2}}|x|^{\frac{1}{2}}}e^{-ik\frac{x}{|x|}\cdot z}+o(\frac{1}{|x|^{\frac{1}{2}}}) .

On the other hand, given that the outgoing solution to (2.3) is unique, one can

verify that

(2.5) G_{V}(x, y)=G_{0}(x, y)-\displaystyle \int_{\mathbb{R}^{2}}G_{0}(x, z)V(z)G_{V}(y, z)dz.
For this one must check that the outgoing Sommerfeld radiation condition is also uni‐

formly satised for y in compact sets by the right‐hand side. This follows from the

fact that G_{0} satises the condition (see for example [12, Proposition 2.1]) and that the

resolvent

(-\displaystyle \triangle+V-k^{2}-i0)^{-1}:V\mapsto\int_{\mathbb{R}^{2}}V(z)G_{V} z ) dz

is bounded from L^{2}((1+\mathrm{j}\mathrm{j})) to L^{2}((1+|\cdot|^{2})^{- $\delta$}) with  $\delta$>1/2 (see [1, Theorem 4.2]).
Similarly, the outgoing scattering solutions of (1.1), in the direction −

\displaystyle \frac{x}{|x|} ,
solve

(2.6) u(y, -\displaystyle \frac{x}{|x|})=e^{-ik\frac{x}{|x|}\cdot y}-\int_{\mathbb{R}^{2}}e^{-ik\frac{x}{|x|}\cdot z}V(z)G_{V}(y, z)dy.
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Plugging (2.4) into (2.5) and comparing with (2.6), we see that G_{V} satises

(2.7) G_{V}(x, z)=\displaystyle \frac{e^{i\frac{ $\pi$}{4}}}{(8 $\pi$)^{\frac{1}{2}}}\frac{e^{ik|x|}}{k^{\frac{1}{2}}|x|^{\frac{1}{2}}}u(z, -\frac{x}{|x|})+o(\frac{1}{|x|^{\frac{1}{2}}}) .

As in (2.5), we also have that

(2.8) G_{V}(x, y)-G_{0}(x, y)=-\displaystyle \int_{\mathbb{R}^{2}}G_{0}(y, z)V(z)G_{V}(x, z)dz.
Substituting (2.4) and (2.7) into this, we see that G_{V}(x, y)-G_{0}(x, y) is equal to

\displaystyle \frac{-i}{8 $\pi$ k}\frac{e^{ik|x|}}{|x|^{\frac{1}{2}}}\frac{e^{ik|y|}}{|y|^{\frac{1}{2}}}\int_{\mathbb{R}^{2}}e^{-ik\frac{y}{|y|}\cdot z}V(z)u(z, -\frac{x}{|x|})dz+o(\frac{1}{|x|^{\frac{1}{2}}|y|^{\frac{1}{2}}}) ,

so that, by using the formula (1.3), we obtain the result. \square 

In the following theorem, H_{n}^{(1)} denotes the Hankel function of the first kind and

nth order (see for example [8] or [5]) and we write x in polar coordinates as (|x|, $\phi$_{x}) .

Theorem 2.2. Let V\in L^{p}( $\Omega$) ,
with p>2 ,

be supported in the disc of radius  $\rho$,

centred at the origin, and consider its Fourier series

A_{V}( $\theta$,  $\theta$)=\displaystyle \sum_{n\in \mathbb{Z}}\sum_{m\in \mathbb{Z}}a_{n,m}e^{in$\phi$_{ $\theta$}}e^{im$\phi$_{ $\theta$}}.
Then

G_{V}(x, y)-G_{0}(x, y)=\displaystyle \sum_{n\in \mathbb{Z}}\sum_{m\in \mathbb{Z}}\frac{(-1)^{n}}{16}i^{n+m}a_{n},{}_{m}H_{n}^{(1)}(k|x|)H_{m}^{(1)}(k|y|)e^{in$\phi$_{x}}e^{im$\phi$_{y}},
where the series is uniformly and absolutely convergent for |x|>|y|>R>\displaystyle \frac{3}{2} $\rho$>0.

Proof. We can expand H_{0}^{(1)}(k|x-y|) as

H_{0}^{(1)}(k|x-y|)=H_{0}^{(1)}(k|x|)J_{0}(k|y|)+2\displaystyle \sum_{n\geq 1}H_{n}^{(1)}(k|x|)J_{n}(k|y|)\cos($\phi$_{x}-$\phi$_{y}) ,

(see for example [5, Section 3.4] or [12, Theorem 3.4]). As H_{-n}^{(1)}=(-1)^{n}H_{n}^{(1)} and

J_{-n}=(-1)^{n}J_{n} ,
in order to separate variables it will be convenient to write this as

G_{0}(x, y)=\displaystyle \frac{i}{4}\sum_{n\in \mathbb{Z}}H_{n}^{(1)}(k|x|)J_{n}(k|y|)e^{in$\phi$_{x}}e^{-in$\phi$_{y}}.
Substituting (2.5) into (2.8) we obtain G_{V}-G_{0}=-I_{1}+I_{2} ,

where

I_{1}=\displaystyle \int_{\mathbb{R}^{2}}G_{0}(x, z)V(z)G_{0}(z, y)dz
I_{2}=\displaystyle \int_{\mathbb{R}^{2}}G_{0}(x, z_{1})V(z_{1})\int_{\mathbb{R}^{2}}G_{V}(z_{1}, z_{2})V(z_{2})G_{0}(y, z_{2})dz_{1}dz_{2}.



70 Kari Astala, Daniel Faraco and Keith Rogers

Now in both integrals we introduce the expansion of G_{0} (recall that G_{0}(z, y)=G_{0}(y, z

extracting the terms independent of z, z_{1}, z_{2} . In this way we get

(2.9) I_{1}=\displaystyle \sum_{n\in \mathbb{Z}}\sum_{m\in \mathbb{Z}}$\alpha$_{n},{}_{m}H_{n}^{(1)}(k|x|)H_{m}^{(1)}(k|y|)e^{in$\phi$_{x}}e^{im$\phi$_{y}},
(2.10) I_{2}=\displaystyle \sum_{n\in \mathbb{Z}}\sum_{m\in \mathbb{Z}}$\beta$_{n},{}_{m}H_{n}^{(1)}(k|x|)H_{m}^{(1)}(k|y|)e^{in$\phi$_{x}}e^{im$\phi$_{y}},
where

$\alpha$_{n,m}=-\displaystyle \frac{1}{16}\int_{\mathbb{R}^{2}}V(z)J_{n}(k|z|)J_{m}(k|z|)e^{-i(n+m)$\phi$_{z}}dz,
$\beta$_{n,m}=-\displaystyle \frac{1}{16}\int_{\mathbb{R}^{4}}J_{n}(k|z_{1}|)V(z_{1})G_{V}(z_{1}, z_{2})V(z_{2})J_{m}(k|z_{2}|)e^{-in$\phi$_{z_{1}}}e^{-im$\phi$_{z_{2}}}dz_{1}dz_{2}.

It remains to show that the sums (2.9) and (2.10) converge uniformly and absolutely
for |x|>|y|>R>\displaystyle \frac{3}{2} $\rho$ . Once we know that this is the case, we can take limits and use

the asymptotics of the Hankel functions for large  r ;

H_{n}^{(1)}(r)=e^{-i(n\frac{ $\pi$}{2}+\frac{ $\pi$}{4})}(\displaystyle \frac{2}{ $\pi$ r})^{\frac{1}{2}}e^{ir}+o(\frac{1}{r^{\frac{1}{2}}})
(see for example [8, Section 5.16] or [5, pp. 66 and then Lemma 2.1 tells us that

(-i)^{n+m+1}\displaystyle \frac{2}{ $\pi$ k}($\beta$_{n,m}-$\alpha$_{n,m})=-i\frac{(-1)^{n}}{8 $\pi$ k}a_{n,m}.
To see that the sums converge note that, by Hölder�s inequality, we have

|$\alpha$_{n,m}|\leq C_{ $\rho$}\Vert V\Vert_{L^{p}}\Vert J_{n}(k| |)\Vert_{L^{\infty}(B_{ $\rho$})}\Vert J_{m}(k| |)\Vert_{L^{\infty}(B_{ $\rho$})},
|$\beta$_{n,m}|\leq\Vert G_{V}\Vert_{L^{2}(B_{ $\rho$}\times B_{ $\rho$})}\Vert V\Vert_{L^{p}}^{2}\Vert J_{n}(k| |)\Vert_{L^{\infty}(B_{ $\rho$})}\Vert J_{m}(k| |)\Vert_{L^{\infty}(B_{ $\rho$})}.

At this point we deviate from [13] as there seems to be less local knowledge regarding
G_{V} in two dimensions. Instead we can rewrite (2.8) as

G_{V}(; y)=G_{0}(_{;} y)-(-\triangle+V-k^{2}-i0)^{-1}[VG_{0}(_{;} y)],

and use that the resolvent is bounded from L^{2}((1+| \mathrm{j})) to L^{2}((1+| |^{2})^{- $\delta$}) with

 $\delta$>1/2 (see [1, Theorem 4.2]). Thus, using that V is compactly supported, and taking

\displaystyle \frac{1}{2}=\frac{1}{p}+\frac{1}{q} with sufficiently large q,

\Vert G_{V} y)\Vert_{L^{2}(B_{ $\rho$})}\leq\Vert G_{0} y)\Vert_{L^{2}(B_{ $\rho$})}+C_{ $\rho$}\Vert VG_{0} y)\Vert_{L^{2}(B_{ $\rho$})}
\leq\Vert G_{0} y)\Vert_{L^{2}(B_{ $\rho$})}+C_{ $\rho$}\Vert V\Vert_{p}\Vert G_{0} y)\Vert_{L^{q}(B_{ $\rho$})}.
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Integrating again with respect to y ,
and recalling that the singularity of H_{0}^{(1)} at the

origin is logarithmic, we see that \Vert G_{V}\Vert_{L^{2}(B_{ $\rho$}\times B_{ $\rho$})}\leq C_{ $\rho$}(1+\Vert V\Vert_{p}) . Then, using the

Taylor series expansion for the Bessel function,

|J_{n}(r)|=|\displaystyle \sum_{j\geq 0}\frac{(-1)^{j}}{j!(|n|+j)!}(\frac{r}{2})^{2j+|n|}|\leq\frac{1}{|n|!}(\frac{ $\rho$}{2})^{|n|}
with  0\leq r\leq $\rho$ ,

we see that

|$\alpha$_{n,m}|\displaystyle \leq C_{ $\rho$}\Vert V\Vert_{p}\frac{1}{|n|!}(\frac{k $\rho$}{2})^{|n|}\frac{1}{|m|!}(\frac{k $\rho$}{2})^{|m|},
|$\beta$_{n,m}|\displaystyle \leq C_{ $\rho$}(1+\Vert V\Vert_{p})_{p}^{3}\frac{1}{|n|!}(\frac{k $\rho$}{2})^{|n|}\frac{1}{|m|!}(\frac{k $\rho$}{2})^{|m|}

Plugging these estimates, along with the forthcoming estimate (2.11) for the Hankel

functions, into the sums (2.9) and (2.10), we see that they are bounded by constant

multiples of

\displaystyle \sum_{n\geq 0}\sum_{m\geq 0}(\frac{3 $\rho$}{2R})^{n}(\frac{3 $\rho$}{2R})^{m}
provided that |x|>|y|>R>0 . This series is of course convergent when  R>\displaystyle \frac{3}{2} $\rho$ ,

and

so we are done. \square 

For a fixed order n
,

the Hankel function of the first kind is well‐known to decay at

innity as we saw earlier, however we need a bound that is uniform in n . The decay
is not uniform in n as the singularity at the origin widens as n grows, however the

following estimate is sufficient for our purposes.

Lemma 2.3. For all n\in \mathbb{Z} and all r\geq R>0,

(2.11) |H_{n}^{(1)}(r)|\displaystyle \leq C_{R}|n|!(\frac{3}{R})^{|n|}
Proof. The Hankel functions have only one singularity, at the origin, and they

decay at innity (see for example [8, Section 5] or [5, Section 3.4]), so by taking the

constant C_{R} sufficiently large, it will suffice to prove the estimate for |n|\geq 2(R+6) .

As H_{-n}^{(1)}=(-1)^{n}H_{n}^{(1)} ,
we need only consider positive n and we divide these into two

cases.

First we consider the easier case 4n(n-1)\leq r^{2} and use the recurrence relation

(2.12) H_{n-1}^{(1)}(r)+H_{n+1}^{(1)}(r)=\displaystyle \frac{2n}{r}H_{n}^{(1)}(r)
(see for example [8, Section 5.4]) to conclude that

|H_{n+1}^{(1)}(r)|=|\displaystyle \frac{2n}{r}(\frac{2(n-1)}{r}H_{n-1}^{(1)}(r)-H_{n-2}^{(1)}(r)))-H_{n-1}^{(1)}(r)|
\leq|H_{n-1}^{(1)}(r)|+|H_{n-2}^{(1)}(r)|.
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Iterating this step, we see that

|H_{n}^{(1)}(r)|\leq 2^{n}(|H_{0}^{(1)}(r)|+|H_{1}^{(1)}(r)|+|H_{2}^{(1)}(r)|) , 4n(n-1)\leq r^{2}
Taking C_{R}=\displaystyle \sup_{r\geq R}(|H_{0}^{(1)}(r)|+|H_{1}^{(1)}(r)|+|H_{2}^{(1)}(r)|) ,

and recalling that we can sup‐

pose that n!\geq(2R/3)^{n} (by Stirling�s formula n>2R is a stronger assumption), we

obtain

(2.13) |H_{n}^{(1)}(r)|\displaystyle \leq C_{R}n!(\frac{3}{R})^{n}, 4n(n-1)\leq r^{2}
Next we consider the harder case 4n(n-1)>r^{2} and again use the recurrence

relation (2.12) to conclude that

\displaystyle \frac{2n}{r}|H_{n}^{(1)}(r)|+|H_{n-1}^{(1)}(r)|=\frac{2n}{r}|\frac{2(n-1)}{r}H_{n-1}^{(1)}(r)-H_{n-2}^{(1)}(r)|+|H_{n-1}^{(1)}(r)|
\displaystyle \leq\frac{3n}{r}(\frac{2(n-1)}{r}|H_{n-1}^{(1)}(r)|+|H_{n-2}^{(1)}(r)|) .

Letting n_{0} denote the smallest integer for which 4n_{0}(n_{0}-1)>r^{2} ,
we iterate this

inequality;

(2.14) |H_{n+1}^{(1)}(r)|\displaystyle \leq\frac{3n}{r}\ldots\frac{3n_{0}}{r}(\frac{2(n_{0}-1)}{r}|H_{n_{0}-1}^{(1)}(r)|+|H_{n_{0}-2}^{(1)}(r)|) .

Now as long as n_{0}\geq 12 (if n_{0}<12 then we are already done), we have

\displaystyle \frac{r}{2n_{0}}<\frac{2(n_{0}-1)}{r}\leq\frac{r}{2(n_{0}-2)}\leq\frac{6}{5}\frac{r}{2n_{0}},
which implies that 1/3<2(n_{0}-1)/r<3 . For convenience we divide the first term and

multiply the second term by this factor, so that

|H_{n+1}^{(1)}(r)|\displaystyle \leq 3\frac{3n}{r}\ldots\frac{3n_{0}}{r}(|H_{n_{0}-1}^{(1)}(r)|+\frac{2(n_{0}-1)}{r}|H_{n_{0}-2}^{(1)}(r)|) .

Now as

\displaystyle \frac{3n}{r}\ldots\frac{3n_{0}}{r}\leq\frac{3n}{R}\ldots\frac{3n_{0}}{R}=n!(\frac{3}{R})^{n}\frac{1}{(n_{0}-1)!}(\frac{R}{3})^{n_{0}-1}
this yields

|H_{n+1}^{(1)}(r)|\displaystyle \leq 3n!(\frac{3}{R})^{n}(\frac{1}{(n_{0}-1)!}(\frac{R}{3})^{n_{0}-1}|H_{n_{0}-1}^{(1)}(r)|+\frac{1}{(n_{0}-2)!}(\frac{R}{3})^{n_{0}-2}|H_{n_{0}-2}^{(1)}(r)|) .

As n_{0} was chosen to be the smallest integer belonging to the second case, we can bound

|H_{n_{0}-1}^{(1)}(r)| and |H_{n_{0}-2}^{(1)}(r)| using the estimate (2.13) from the first case. This yields the

estimate for the second case, and so the proof is complete. \square 



Recovery 0F THE DIRIcHLET‐To‐Neumann maP from scattering data 1N the plane 73

The authors thank Juan Antonio Barceló, Adrian Nachman, Alberto Ruiz and

Plamen Stefanov for helpful (electronic) conversations.

References

[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola

Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151‐218.

[2] K. Astala, D. Faraco and K.M. Rogers, Rough potential recovery in plane, submitted.

[3] J.M. Berezanski, The uniqueness theorem in the inverse problem of spectral analysis for

the Schrödinger equation, Trudy Moskov. Mat. Obšč. 7 (1958), 1‐62.

[4] A.L. Bukhgeim, Recovering a potential from Cauchy data in the two‐dimensional case, J.

Inverse Ill‐Posed Probl. 16 (2008), no. 1, 19‐33.

[5] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Applied
Mathematical Sciences, 93, Springer, Berlin, 1992.

[6] D. Dos Santos Ferreira, C. E. Kenig and M. Salo, Determining an unbounded potential
from Cauchy data in admissible geometries, Comm. Partial Differential Equations 38

(2013), no. 1, 50‐68.

[7] V. Isakov and A. I. Nachman, Global uniqueness for a two‐dimensional semilinear elliptic
inverse problem, Trans. Amer. Math. Soc. 347 (1995), no. 9, 3375‐3390.

[8] N.N. Lebedev, Special functions and their applications, Revised English edition. Prentice

Hall, Englewood Cliffs, NJ, 1965.

[9] A.I. Nachman, Reconstructions from boundary measurements. Ann. of Math. 128 (1988),
no. 3, 531‐576.

[10] A.I. Nachman, Inverse scattering at fixed energy, in Mathematical physics, X (Leipzig,
1991), 434‐441, Springer, Berlin. Nachman96, SU93a

[11] A.I. Nachman, Global uniqueness for a two‐dimensional inverse boundary value problem,
Ann. of Math. 142 (1995), 71‐96.

[12] A. Ruiz, Harmonic analysis and inverse problems, www.uam.es/gruposinv/inversos/pub‐
licaciones/inverseproblems.pdf.

[13] P. Stefanov, Stability of the inverse problem in potential scattering at fixed energy, Ann.

Inst. Fourier (Grenoble) 40 (1990), no. 4, 867‐884 (1991).
[14] Z.Q. Sun and G. Uhlmann, Inverse scattering for singular potentials in two dimensions,

Trans. Amer. Math. Soc. 338 (1993), no. 1, 363‐374.

[15] J. Sylvester, The Cauchy data and the scattering amplitude, Comm. Partial Differential

Equations 19 (1994), no. 9‐10, 1735‐1741.

[16] G. Uhlmann, Inverse boundary value problems and applications, Astérisque No. 207

(1992), 6, 153‐211.


