Boundedness of Littlewood-Paley operators

By

Shuichi Sato*

Abstract

We survey some results related to L^p boundedness of Littlewood-Paley operators on homogeneous groups. Also, we give proofs of some results in the survey.

§ 1. Introduction

Let $f \in L^p(\mathbb{T})$ $(1 , where <math>\mathbb{T}$ is the one-dimensional torus, which is identified with \mathbb{R}/\mathbb{Z} (\mathbb{Z} denotes the integer group), and let

$$\sum_{k=-\infty}^{\infty} c_k e^{2\pi i k\theta}$$

be the Fourier series of f, where

$$c_k = \int_{\mathbb{T}} f(x)e^{-2\pi ikx} \, dx$$

is the Fourier coefficient.

The Littlewood-Paley function $\gamma(f)$ is defined as

$$\gamma(f)(\theta) = \left(\sum_{m=0}^{\infty} |\Delta_m(\theta)|^2\right)^{1/2},$$

where

$$\Delta_m(\theta) = \sum_{2^{m-1} \le |k| < 2^m} c_k e^{2\pi i k \theta}$$

Received September 28, 2013. Revised April 16, 2014.

2010 Mathematics Subject Classification(s): Primary 42B25.

Key Words: Littlewood-Paley functions, Marcinkiewicz integrals.

This research was partially supported by Grant-in-Aid for Scientific Research (C) No. 25400130, Japan Society for the Promotion of Science.

e-mail: shuichi@kenroku.kanazawa-u.ac.jp

^{*}Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan.

^{© 2014} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

if m is a positive integer and $\Delta_0 = c_0$. Then Littlewood and Paley proved

$$(1.1) A_p ||f||_{L^p} \le ||\gamma(f)||_{L^p} \le B_p ||f||_{L^p}$$

for some positive constants A_p , B_p . This can be applied in proving the multiplier theorems of Marcinkiewicz type and in studying the lacunary convergence of the Fourier series.

A result analogous to (1.1) for the g function on \mathbb{T} defined by

(1.2)
$$g(f)(\theta) = \left(\int_0^1 (1-t) |(\partial/\partial t) P_t * f(\theta)|^2 dt \right)^{1/2}$$

was also shown by Littlewood and Paley, where

$$P_t(\theta) = \frac{1 - t^2}{1 - 2t\cos(2\pi\theta) + t^2}$$

is the Poisson kernel for the unit disk. (See Littlewood and Paley [22, 23, 24]) and also Zygmund [43, Chap. XV] for the results above).

In this note we consider analogues on the Euclid spaces \mathbb{R}^n and on the homogeneous groups of the Littlewood-Paley function g(f) in (1.2). We survey a paper [10] and some back ground results in Sections 2–4. (See [37, 39, 43] for relevant results.) Also, in Sections 5–7, we shall give proofs of three results stated in Sections 2 and 3. Finally, in Section 8, we shall see some results related to Littlewood-Paley operators arising from the Bochner-Riesz means and the spherical means.

§ 2. Littlewood-Paley functions on \mathbb{R}^n

Let ψ be a function in $L^1(\mathbb{R}^n)$ such that

(2.1)
$$\int_{\mathbb{D}^n} \psi(x) \, dx = 0.$$

We consider the Littlewood-Paley function on \mathbb{R}^n defined by

$$S_{\psi}(f)(x) = \left(\int_{0}^{\infty} |f * \psi_{t}(x)|^{2} \frac{dt}{t}\right)^{1/2},$$

where $\psi_t(x) = t^{-n} \psi(t^{-1}x)$.

Let $Q(x) = [(\partial/\partial t)P_t(x)]_{t=1}$, where

$$P_t(x) = c_n \frac{t}{(|x|^2 + t^2)^{(n+1)/2}}$$

is the Poisson kernel on the upper half space $\mathbb{R}^n \times (0, \infty)$. Then $S_Q(f)$ is a version on \mathbb{R}^n of the Littlewood-Paley function g(f).

If $H(x) = \chi_{[-1,0]}(x) - \chi_{[0,1]}(x)$ is the Haar function on \mathbb{R} , then $S_H(f)$ coincides with the Marcinkiewicz integral

$$\mu(f)(x) = \left(\int_0^\infty |F(x+t) + F(x-t) - 2F(x)|^2 \frac{dt}{t^3}\right)^{1/2},$$

where $F(x) = \int_0^x f(y) dy$. Here χ_E denotes the characteristic function of a set E. We can easily see that S_Q and S_H are L^p $(1 bounded on <math>\mathbb{R}^n$ and \mathbb{R} , respectively, from the following well-known result of Benedek, Calderón and Panzone [2].

Theorem A. Suppose that ψ satisfies (2.1) and

$$|\psi(x)| \le C(1+|x|)^{-n-\epsilon},$$

(2.3)
$$\int_{\mathbb{R}^n} |\psi(x-y) - \psi(x)| \, dx \le C|y|^{\epsilon}$$

for some positive constant ϵ . Then

- (1) S_{ψ} is bounded on $L^{p}(\mathbb{R}^{n})$ for all $p \in (1, \infty)$;
- (2) S_{ψ} is of weak type (1,1) on \mathbb{R}^n .

It is known that for the L^p boundedness, the condition (2.3) is superfluous, which can be seen from the following result when p = 2.

Theorem B. S_{ψ} is bounded on $L^{2}(\mathbb{R}^{n})$ if ψ satisfies (2.1) and (2.2) with $\epsilon = 1$.

We refer to Coifman and Meyer [8, p. 148] for this. A proof can be found in Journé [20]; see [20, pp. 81-82].

Let

$$H_{\psi}(x) = \sup_{|y| \ge |x|} |\psi(y)|$$

be the least non-increasing radial majorant of ψ . Also, define

$$B_{\epsilon}(\psi) = \int_{|x|>1} |\psi(x)| |x|^{\epsilon} dx$$
 for $\epsilon > 0$,

$$D_u(\psi) = \left(\int_{|x|<1} |\psi(x)|^u dx\right)^{1/u} \quad \text{for} \quad u > 1.$$

In [28], part (1) of Theorem A and Theorem B are improved as follows.

Theorem C. Let $\psi \in L^1(\mathbb{R}^n)$. Suppose that ψ satisfies (2.1) and the conditions

(1) $B_{\epsilon}(\psi) < \infty$ for some $\epsilon > 0$;

(2) $D_u(\psi) < \infty$ for some u > 1;

(3)
$$H_{\psi} \in L^1(\mathbb{R}^n)$$
.

Then

$$||S_{\psi}(f)||_{L_{\infty}^{p}} \leq C_{p,w} ||f||_{L_{\infty}^{p}}$$

for all $p \in (1, \infty)$ and $w \in A_p$.

As usual $L_w^p(\mathbb{R}^n)$ denotes the weighted L^p space of those functions f which satisfy $||f||_{L_w^p} = ||fw^{1/p}||_p < \infty$. Also, here we recall the weight class A_p of Muckenhoupt. We say that $w \in A_p$ (1 if

$$\sup_{B} \left(|B|^{-1} \int_{B} w(x) \, dx \right) \left(|B|^{-1} \int_{B} w(x)^{-1/(p-1)} dx \right)^{p-1} < \infty,$$

where the supremum is taken over all balls B in \mathbb{R}^n and |B| denotes the Lebesgue measure. Let M be the Hardy-Littlewood maximal operator defined by

$$M(f)(x) = \sup_{x \in B} |B|^{-1} \int_{B} |f(y)| \, dy,$$

where the supremum is taken over all balls B containing x. We then say that $w \in A_1$ if there exists a constant C such that $M(w)(x) \leq C w(x)$ for almost every x.

We now see some applications of Theorem C from [28].

Corollary 1. Suppose that $\psi \in L^1$ satisfies (2.1) and (2.2). Let $b \in BMO$ and $w \in A_2$. We define the measure ν on the upper half space $\mathbb{R}^n \times (0, \infty)$ by

$$d\nu(x,t) = |b * \psi_t(x)|^2 \frac{dt}{t} w(x) dx.$$

Then, the measure ν is a Carleson measure with respect to the measure w(x) dx, that is,

$$\nu(S(Q)) \le C_w ||b||_{BMO}^2 \int_Q w(x) \, dx$$

for all cubes Q in \mathbb{R}^n , where

$$S(Q) = \{(x, t) \in \mathbb{R}^n \times (0, \infty) : x \in Q, 0 < t \le \ell(Q)\}$$

with $\ell(Q)$ denoting sidelength of Q.

This follows from the L_w^2 -boundedness of the operator S_{ψ} . See [20, pp. 85–87]. From Corollary 1 we get the following (see [20, p. 87]).

Corollary 2. Let $b \in BMO$. Suppose that φ satisfies (2.2) and that ψ satisfies (2.1), (2.2). Then

$$||T_b(f)||_{L_w^p} \le C_{p,w} ||b||_{BMO} ||f||_{L_w^p}$$

for all $p \in (1, \infty)$ and $w \in A_p$, where

$$T_b(f)(x) = \left(\int_0^\infty |b * \psi_t(x)|^2 |f * \varphi_t(x)|^2 \frac{dt}{t} \right)^{1/2}.$$

We note that the conditions (2.1), (2.2) only are required for ψ in Corollaries 1, 2 (no additional regularity condition for ψ is needed).

By Corollary 2 and Theorem C we have the following.

Corollary 3. We assume that ψ satisfies (2.1), (2.2) and that φ satisfies (2.2). Let $b \in BMO$. Furthermore, let η be a function in $L^1(\mathbb{R}^n)$ satisfying all the conditions of Theorem C imposed on ψ . Define a paraproduct π_b by the equation

$$\pi_b(f)(x) = \int_0^\infty \eta_t * ((b * \psi_t) (f * \varphi_t)) (x) \frac{dt}{t}.$$

Then

$$\|\pi_b(f)\|_{L_w^p} \le C_{p,w} \|b\|_{BMO} \|f\|_{L_w^p}$$

for all $p \in (1, \infty)$ and $w \in A_p$.

The class $L(\log L)^{\alpha}(\mathbb{R}^n)$, $\alpha > 0$, is defined to be the collection of the functions f on \mathbb{R}^n such that

$$\int_{\mathbb{R}^n} |f(x)| [\log(2+|f(x)|)]^{\alpha} dx < \infty.$$

Similarly, let $L(\log L)^{\alpha}(S^{n-1})$ be the class of the functions Ω on S^{n-1} satisfying

$$\int_{S^{n-1}} |\Omega(\theta)| \left[\log(2 + |\Omega(\theta)|) \right]^{\alpha} d\sigma(\theta) < \infty,$$

where $d\sigma$ denotes the Lebesgue surface measure on $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}.$

For the rest of this section we consider the cases where ψ is compactly supported. In [31] the following result was proved.

Theorem D. The operator S_{ψ} is bounded on $L^{p}(\mathbb{R}^{n})$ for all $2 \leq p < \infty$ if ψ is a function in $L(\log L)^{1/2}(\mathbb{R}^{n})$ with compact support and satisfies (2.1).

This improves on a previous result of [17] which guarantees L^p boundedness of S_{ψ} for $p \in [2, \infty)$ under a more restrictive condition that $\psi \in L^q(\mathbb{R}^n)$ with some q > 1.

For p < 2, Duoandikoetxea [12] proved the following result.

Theorem E. We assume that ψ has compact support.

- (1) Suppose that $1 < q \le 2$ and 0 < 1/p < 1/2 + 1/q'. Then S_{ψ} is bounded on $L^p(\mathbb{R}^n)$ if ψ is in $L^q(\mathbb{R}^n)$ and satisfies (2.1).
- (2) Let 1 < q < 2 and 1/p > 1/2 + 1/q'. Then there exists $\psi \in L^q(\mathbb{R}^n)$ such that S_{ψ} is not bounded on $L^p(\mathbb{R}^n)$.

Here q' denotes the exponent conjugate to q. See also [6] for a previous result for p < 2. Theorem E (1) was shown by arguments involving a theory of weights (see also [14]).

Let $\psi^{(\alpha)}$ be a function on \mathbb{R} defined by

$$\psi^{(\alpha)}(x) = \begin{cases} \alpha(1-|x|)^{\alpha-1}\operatorname{sgn}(x), & x \in (-1,1), \\ 0, & \text{otherwise.} \end{cases}$$

Suppose that 1 , <math>1 < q < 2 and $1/q' < \alpha \le 1/p - 1/2$. Then $\psi^{(\alpha)} \in L^q(\mathbb{R})$; also, Remark 2 of [17] implies that $S_{\psi^{(\alpha)}}$ is not bounded on L^p and $S_{\psi^{(\alpha)}}$ is of weak type (p,p) if $\alpha = 1/p - 1/2$.

The following result is a particular case of part (1) of Theorem E.

Proposition 1. If ψ is compactly supported and belongs to $L^2(\mathbb{R}^n)$, then S_{ψ} is bounded on $L^p(\mathbb{R}^n)$ for all $p \in (1, \infty)$.

This can be proved by combining results of [28] and the weight theory of [12]. We shall give the proof in Section 5.

The Marcinkiewicz integral $\mu_{\Omega}(f)$ of Stein [36] (see also Hörmander [19]) is defined by $\mu_{\Omega}(f) = S_{\psi}(f)$ with

$$\psi(x) = |x|^{-n+1} \Omega(x') \chi_{(0,1]}(|x|) \text{ for } x \in \mathbb{R}^n \setminus \{0\},$$

where x' = x/|x|, $\Omega \in L^1(S^{n-1})$, $\int_{S^{n-1}} \Omega d\sigma = 0$.

Al-Salman, Al-Qassem, Cheng and Pan [1] proved the following.

Theorem F. μ_{Ω} is bounded on $L^p(\mathbb{R}^n)$ for all $p \in (1, \infty)$ if $\Omega \in L(\log L)^{1/2}(S^{n-1})$.

See Walsh [42] for the case p=2. In Section 3, we shall consider an analogue of Theorem F on homogeneous groups.

§ 3. Littlewood-Paley functions on homogeneous groups

We consider Littlewood-Paley functions on homogeneous groups. We also regard \mathbb{R}^n , $n \geq 2$, as a homogeneous group with multiplication given by a polynomial mapping. So, we have a dilation family $\{A_t\}_{t>0}$ on \mathbb{R}^n such that

$$A_t x = (t^{a_1} x_1, t^{a_2} x_2, \dots, t^{a_n} x_n), \quad x = (x_1, \dots, x_n),$$

with some real numbers a_1, \ldots, a_n satisfying $0 < a_1 \le a_2 \le \cdots \le a_n$ and such that each A_t is an automorphism of the group structure (see [18], [41] and [25, Section 2 of Chapter 1]). We also write $\mathbb{H} = \mathbb{R}^n$. \mathbb{H} is equipped with a homogeneous nilpotent Lie group structure; the underlying manifold is \mathbb{R}^n itself. We recall that Lebesgue measure is a bi-invariant Haar measure, the identity is the origin 0 and $x^{-1} = -x$. Multiplication $xy, x, y \in \mathbb{H}$, satisfies the following.

- (1) $A_t(xy) = A_t x A_t y, x, y \in \mathbb{H}, t > 0;$
- $(2) (ux)(vx) = ux + vx, x \in \mathbb{H}, u, v \in \mathbb{R};$
- (3) if z = xy, $z = (z_1, \dots, z_n)$, $z_k = P_k(x, y)$, then

$$P_1(x, y) = x_1 + y_1,$$

 $P_k(x, y) = x_k + y_k + R_k(x, y)$ for $k \ge 2$,

where $R_k(x, y)$ is a polynomial depending only on $x_1, \ldots, x_{k-1}, y_1, \ldots, y_{k-1}$.

We have a norm function r(x) satisfying the following.

- (1) $r(A_t x) = tr(x)$, for all t > 0 and $x \in \mathbb{R}^n$;
- (2) r is continuous on \mathbb{R}^n and smooth in $\mathbb{R}^n \setminus \{0\}$;
- (3) $r(x+y) \leq N_1(r(x)+r(y)), r(xy) \leq N_2(r(x)+r(y))$ for some positive constants N_1, N_2 ;
- (4) $r(x^{-1}) = r(x);$
- (5) if $\Sigma = \{x \in \mathbb{R}^n : r(x) = 1\}$, Σ coincides with S^{n-1} ;
- (6) there exist positive constants $c_1, c_2, c_3, c_4, \alpha_1, \alpha_2, \beta_1, \beta_2 > 0$ such that

$$c_1|x|^{\alpha_1} \le r(x) \le c_2|x|^{\alpha_2}$$
 if $r(x) \ge 1$,
 $c_3|x|^{\beta_1} \le r(x) \le c_4|x|^{\beta_2}$ if $r(x) \le 1$.

Let $\gamma = a_1 + \cdots + a_n$ (the homogeneous dimension of \mathbb{H}). Then $dx = t^{\gamma - 1} dS dt$, that is,

$$\int_{\mathbb{R}^n} f(x) dx = \int_0^\infty \int_{\Sigma} f(A_t \theta) t^{\gamma - 1} dS(\theta) dt$$

with $dS = \omega d\sigma$, where ω is a strictly positive C^{∞} function on Σ and $d\sigma$ is the Lebesgue surface measure on Σ as above.

The Heisenberg group \mathbb{H}_1 is an example of the homogeneous groups. Let

$$(x, y, u)(x', y', u') = (x + x', y + y', u + u' + (xy' - yx')/2)$$

for $(x, y, u), (x', y', u') \in \mathbb{R}^3$. Then, with this group law, \mathbb{R}^3 is the Heisenberg group \mathbb{H}_1 . A dilation is defined by

$$A_t(x, y, u) = (tx, ty, t^2u) \quad (2-\text{step}).$$

Also, we can adopt

$$A'_t(x, y, u) = (tx, t^2y, t^3u)$$
 (3-step)

as an automorphism dilation.

For a function f on \mathbb{H} , let

$$f_t(x) = \delta_t f(x) = t^{-\gamma} f(A_t^{-1} x).$$

Convolution on H is defined as

$$f * g(x) = \int_{\mathbb{H}} f(y)g(y^{-1}x) \, dy.$$

Then $(f * g) * h = f * (g * h), (f * g)^{\sim} = \tilde{g} * \tilde{f} \text{ if } \tilde{f}(x) = f(x^{-1}).$

We consider the Littlewood-Paley function on H defined by

$$S_{\psi}(f)(x) = \left(\int_0^\infty |f * \psi_t(x)|^2 \frac{dt}{t}\right)^{1/2},$$

where ψ is in $L^1(\mathbb{H})$ and satisfies (2.1). Let Ω be locally integrable in $\mathbb{H} \setminus \{0\}$. We assume that Ω is homogeneous of degree 0 with respect to the dilation group $\{A_t\}$, which means that $\Omega(A_t x) = \Omega(x)$ for $x \neq 0$, t > 0. Also, we assume that

(3.1)
$$\int_{\Sigma} \Omega(\theta) \, dS(\theta) = 0.$$

Let $\mu_{\Omega} = S_{\Psi}$ with

(3.2)
$$\Psi(x) = r(x)^{-\gamma + a} \Omega(x') \chi_{(0,1]}(r(x)), \quad a > 0,$$

where $x' = A_{r(x)^{-1}}x$ for $x \neq 0$. The spaces $L^p(\Sigma)$, $L(\log L)^{\alpha}(\Sigma)$ are defined with respect to the measure dS.

We recall a result of Ding and Wu [11].

Theorem G. We assume in (3.2) that a=1 and that Ω is a function in $L \log L(\Sigma)$ satisfying (3.1). Then μ_{Ω} is bounded on $L^p(\mathbb{H})$ for $p \in (1,2]$ and is of weak type (1,1).

The result on the L^p boundedness of Theorem G was improved by [10] as follows.

Theorem 1. μ_{Ω} is bounded on $L^p(\mathbb{H})$ for all $p \in (1, \infty)$ if Ω is in $L(\log L)^{1/2}(\Sigma)$ and satisfies (3.1).

To prove Theorem 1 we decompose $\Psi(x) = \sum_{k<0} 2^{ka} \Psi^{(k)}(x), k \in \mathbb{Z}$, where

$$\Psi^{(k)}(x) = 2^{-ka} r(x)^{a-\gamma} \Omega(x') \chi_{(1,2]}(2^{-k} r(x)).$$

A change of variables and the property $\delta_s \delta_t = \delta_{st}$ of operators δ_t imply

$$S_{\Psi^{(k)}}f(x) = S_{\Psi^{(k)}_{2^{-k}}}f(x) = S_{\Psi^{(0)}}f(x).$$

Thus, by the sublinearity we have

$$S_{\Psi}f(x) \le \sum_{k<0} 2^{ka} S_{\Psi^{(k)}} f(x) = c_a S_{\Psi^{(0)}} f(x).$$

(See [16] for this observation.) So, we consider a function of the form

(3.3)
$$\Psi(x) = \ell(r(x)) \frac{\Omega(x')}{r(x)^{\gamma}},$$

where ℓ is in Λ_{∞}^{η} (see [33]) for some $\eta > 0$ and supported in the interval [1, 2].

Now we recall the definition of Λ_{∞}^{η} (the definition of Λ_{q}^{η} , $1 \leq q \leq \infty$, can be found in [33]). Let h be a locally integrable function on $\mathbb{R}_{+} = \{t \in \mathbb{R} : t > 0\}$. For $t \in (0,1]$, define

$$\omega(h,t) = \sup_{|s| < tR/2} \int_{R}^{2R} |h(r-s) - h(r)| \frac{dr}{r},$$

where the supremum is taken over all s and R such that |s| < tR/2 (see [34]). Define Λ^{η} , $\eta > 0$, to be the family of the functions h such that

$$||h||_{\Lambda^{\eta}} = \sup_{t \in [0,1]} t^{-\eta} \omega(h,t) < \infty.$$

Let $\Lambda_{\infty}^{\eta} = L^{\infty}(\mathbb{R}_{+}) \cap \Lambda^{\eta}$ with $||h||_{\Lambda_{\infty}^{\eta}} = ||h||_{\infty} + ||h||_{\Lambda^{\eta}}$ for $h \in \Lambda_{\infty}^{\eta}$. Then $\Lambda_{\infty}^{\eta_{1}} \subset \Lambda_{\infty}^{\eta_{2}}$ if $\eta_{2} \leq \eta_{1}$.

Theorem 1 is a consequence of the following.

Theorem 2. Let Ψ be as in (3.3). Then S_{Ψ} is bounded on $L^p(\mathbb{H})$ for all $p \in (1,\infty)$ if Ω is in $L(\log L)^{1/2}(\Sigma)$ and satisfies (3.1).

Extrapolation arguments using the following estimates can prove Theorem 2 (see [32]).

Theorem 3. Suppose that Ψ is as in (3.3) with Ω belonging to $L^s(\Sigma)$ for some $s \in (1,2]$ and satisfying (3.1). Let 1 . Then

$$||S_{\Psi}f||_p \le C_p(s-1)^{-1/2} ||\Omega||_s ||f||_p$$

where the constant C_p is independent of s and Ω .

For $F \in L(\log L)^a(\Sigma)$, a > 0, recall that

$$||F||_{L(\log L)^a} = \inf\left\{\lambda > 0 : \int_{\Sigma} \frac{|F|}{\lambda} \left[\log\left(2 + \frac{|F|}{\lambda}\right)\right]^a dS \le 1\right\}.$$

Then, under the assumptions of Theorem 2, we can in fact prove that

$$||S_{\Psi}f||_{p} \le C_{p} ||\Omega||_{L(\log L)^{1/2}} ||f||_{p}$$

for a constant C_p independent of Ω , which is not stated explicitly in Theorem 2. We shall give a proof of (3.4) in Section 6 by applying Theorem 3.

To prove Theorem 3 we apply certain vector valued inequalities, which will be controlled by a maximal function of the form

$$M_{\psi}(f)(x) = \sup_{t>0} |f * |\psi|_t(x)|.$$

Lemma 1. Let Ψ be as in (3.3) and p > 1. Suppose that Ω is in $L^1(\Sigma)$. Then

$$||M_{\Psi}f||_p \le C_p ||\Omega||_1 ||f||_p.$$

For $\theta \in \Sigma$, let

$$M_{\theta}f(x) = \sup_{s>0} \frac{1}{s} \int_{0}^{s} |f(x(A_{t}\theta)^{-1})| dt$$

be the maximal function on \mathbb{H} along a curve homogeneous with respect to the dilation A_t . To prove Lemma 1, we apply a result of M. Christ [7].

Lemma 2. Let p > 1. Then, there exists a constant C_p independent of θ such that

$$||M_{\theta}f||_{p} \leq C_{p}||f||_{p}.$$

We can easily prove Lemma 1 by applying Lemma 2.

Proof of Lemma 1. By a change of variables, we have

$$f * |\Psi|_t(x) = \int f(xy^{-1}) |\Psi|_t(y) \, dy$$
$$= \int_1^2 \int_{\Sigma} f(x(A_{st}\theta)^{-1}) |\Omega(\theta)\ell(s)| s^{-1} \, dS(\theta) \, ds.$$

It follows that

$$M_{\Psi}f(x) \leq C \|\ell\|_{\infty} \int_{\Sigma} M_{\theta}f(x) |\Omega(\theta)| dS(\theta).$$

Thus, Minkowski's inequality and Lemma 2 imply the conclusion.

As indicated in [7], if we consider the Heisenberg group with 2-step dilation, then Lemma 2 can be proved by the boundedness of a maximal function along a curve in \mathbb{R}^2 (see (7.5)), which was studied by [40]. In Section 7, we shall give a straightforward proof of this fact.

Let $\mathcal{H} = L^2((0,\infty), dt/t)$. For each $k \in \mathbb{Z}$ and $\rho \geq 2$ we consider an operator T_k defined by

$$(T_k(f)(x))(t) = T_k(f)(x,t) = f * \Psi_t(x)\chi_{[1,\rho)}(\rho^{-k}t)$$

where Ψ is as in (3.3). The operator T_k maps functions on \mathbb{H} to \mathcal{H} -valued functions on \mathbb{H} and we see that

$$|T_k(f)(x)|_{\mathcal{H}} = \left(\int_{\rho^k}^{\rho^{k+1}} |f * \Psi_t(x)|^2 \frac{dt}{t}\right)^{1/2} = \left(\int_1^{\rho} |f * \Psi_{\rho^k t}(x)|^2 \frac{dt}{t}\right)^{1/2}.$$

By Lemma 1, we have the following vector valued inequality, which will be useful in proving Theorem 3.

Lemma 3. Let $1 < s < \infty$. Then

$$\left\| \left(\sum_{k} |T_k(f_k)|_{\mathcal{H}}^2 \right)^{1/2} \right\|_{s} \le C(\log \rho)^{1/2} \|\Omega\|_1 \left\| \left(\sum_{k} |f_k|^2 \right)^{1/2} \right\|_{s}.$$

We can apply the converse of Hölder's inequality and Lemma 1 to prove this (see [13]).

§ 4. Outline of the proof of Theorem 3

Let ϕ be a C^{∞} function supported in $\{1/2 < r(x) < 1\}$ such that $\int \phi = 1$, $\phi(x) = \tilde{\phi}(x), \ \phi(x) \ge 0$ for all $x \in \mathbb{H}$. For $\rho \ge 2$, we define

$$\Delta_k = \delta_{\rho^{k-1}} \phi - \delta_{\rho^k} \phi, \quad k \in \mathbb{Z}.$$

Then, supp $(\Delta_k) \subset {\{\rho^{k-1}/2 < r(x) < \rho^k\}}$, $\Delta_k = \tilde{\Delta}_k$ and

$$\sum_{k} \Delta_k = \delta,$$

where δ is the delta function.

We decompose

$$f * \Psi_t(x) = \sum_{j \in \mathbb{Z}} F_j(x, t),$$

where

$$F_j(x,t) = \sum_{k \in \mathbb{Z}} f * \Delta_{j+k} * \Psi_t(x) \chi_{[\rho^k,\rho^{k+1})}(t).$$

Define

$$U_{j}f(x) = \left(\int_{0}^{\infty} |F_{j}(x,t)|^{2} \frac{dt}{t}\right)^{1/2} = \left(\sum_{k \in \mathbb{Z}} \int_{1}^{\rho} |f * \Delta_{j+k} * \Psi_{\rho^{k}t}|^{2} \frac{dt}{t}\right)^{1/2}$$
$$= \left(\sum_{k} |T_{k}(f * \Delta_{j+k})|_{\mathcal{H}}^{2}\right)^{1/2}.$$

Lemma 4. Let $1 < s \le 2$ and $\rho = 2^{s'}$. Then, there exist positive constants C, ϵ independent of s and $\Omega \in L^s(\Sigma)$ such that

$$||U_j f||_2 \le C(s-1)^{-1/2} 2^{-\epsilon|j|} ||\Omega||_s ||f||_2.$$

We choose $\psi_j \in C_0^{\infty}(\mathbb{R}), j \in \mathbb{Z}$, such that

$$\operatorname{supp}(\psi_j) \subset \{t \in \mathbb{R} : \rho^j \le t \le \rho^{j+2}\}, \quad \psi_j \ge 0,$$
$$\log 2 \sum_{j \in \mathbb{Z}} \psi_j(t) = 1 \quad \text{for } t > 0,$$
$$|(d/dt)^m \psi_j(t)| < c_m |t|^{-m} \quad \text{for } m = 0, 1, 2, \dots,$$

where c_m is a constant independent of $\rho \geq 2$. Decompose

$$\frac{\Omega(x')}{r(x)^{\gamma}} = \sum_{j \in \mathbb{Z}} S_j(x),$$

where

$$S_j(x) = \int_0^\infty \psi_j(t) \delta_t K_0(x) \frac{dt}{t} = \frac{\Omega(x')}{r(x)^{\gamma}} \int_{1/2}^1 \psi_j(tr(x)) \frac{dt}{t}$$

with

$$K_0(x) = \frac{\Omega(x')}{r(x)^{\gamma}} \chi_{[1,2]}(r(x)).$$

We observe that S_j is supported in $\{\rho^j \leq r(x) \leq 2\rho^{j+2}\}$. Let

$$L_m^{(t)}(x) = \ell(t^{-1}r(x))S_m(x).$$

Then by the restraint of the support of ℓ we have

$$\Psi_t(x)\chi_{[\rho^k,\rho^{k+1}]}(t) = \sum_{m=k-3}^{k+3} L_m^{(t)}(x)\chi_{[\rho^k,\rho^{k+1}]}(t).$$

Consequently,

$$F_j(x,t) = \sum_{k \in \mathbb{Z}} \sum_{m=k-3}^{k+3} f * \Delta_{j+k} * L_m^{(t)}(x) \chi_{[\rho^k, \rho^{k+1})}(t).$$

Using this expression of F_j and an analogue of the estimates in Lemma 1 of [33] (see also [9] for related results on product homogeneous groups), which can be proved by methods based on Tao [41], we can prove Lemma 4.

Now we are able to prove Theorem 3. First we recall the Littlewood-Paley inequality

$$\left\| \left(\sum_{k} |f * \Delta_{k}|^{2} \right)^{1/2} \right\|_{r} \le C_{r} \|f\|_{r}, \quad 1 < r < \infty,$$

where C_r is independent of ρ . Let $1 , <math>\rho = 2^{s'}$, $1 < s \le 2$. By Lemma 3 and the Littlewood-Paley inequality we have

(4.1)
$$||U_{j}(f)||_{r} = \left\| \left(\sum_{k} |T_{k}(f * \Delta_{j+k})|_{\mathcal{H}}^{2} \right)^{1/2} \right\|_{r}$$

$$\leq C(\log \rho)^{1/2} ||\Omega||_{1} \left\| \left(\sum_{k} |f * \Delta_{k}|^{2} \right)^{1/2} \right\|_{r}$$

$$\leq C(\log \rho)^{1/2} ||\Omega||_{1} ||f||_{r}$$

for all $r \in (1, \infty)$. Also, by Lemma 4

$$||U_i f||_2 \le C(\log \rho)^{1/2} 2^{-\epsilon|j|} ||\Omega||_s ||f||_2.$$

Thus, interpolating between (4.1) and (4.2), we have

$$||U_i f||_p \le C(\log \rho)^{1/2} 2^{-\epsilon |j|} ||\Omega||_s ||f||_p$$

with some $\epsilon > 0$, which implies

$$||S_{\Psi}f||_p \le \sum_j ||U_jf||_p \le C_p(s-1)^{-1/2} ||\Omega||_s ||f||_p.$$

This completes the proof of Theorem 3.

§ 5. A proof of Proposition 1

Let

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i \langle x,\xi \rangle} dx$$

be the Fourier transform of f, where

$$\langle x, \xi \rangle = \sum_{j=1}^{n} x_j \xi_j, \quad x = (x_1, \dots, x_n), \quad \xi = (\xi_1, \dots, \xi_n).$$

To prove Proposition 1 we apply the following Fourier transform estimates.

Lemma 5. Let $\psi \in L^2(\mathbb{R}^n)$. Suppose that ψ is compactly supported and satisfies (2.1). Then

$$\int_{1}^{2} |\hat{\psi}(t\xi)|^{2} dt \leq C \min\left(|\xi|^{\epsilon}, |\xi|^{-\epsilon}\right) \quad \text{for all} \quad \xi \in \mathbb{R}^{n}$$

with some $\epsilon \in (0,1)$.

Also, we need the following.

Lemma 6. Suppose that ψ is a function in $L^2(\mathbb{R}^n)$ with compact support. Let $w \in A_1$. If v = w or w^{-1} , then we have

$$\sup_{k \in \mathbb{Z}} \int_{\mathbb{R}^n} \int_1^2 |f * \psi_{t2^k}(x)|^2 dt \, v(x) \, dx \le C \|f\|_{L_v^2}^2.$$

For a proof of Lemma 5 see [28].

Proof of Lemma 6. When v=w, Lemma 6 was proved in [28] (the author has learned from [12] that Lemma 6 is also valid for $v=w^{-1}$ and that it is useful for application). Now we recall the proof. We may assume that $\operatorname{supp}(\psi) \subset \{|x| \leq 1\}$. Then, by Schwarz's inequality we see that

$$|f * \psi_t(x)|^2 \le t^{-n} ||\psi||_2^2 \int_{|y| < t} |f(x - y)|^2 dy.$$

Since $w \in A_1$, integration with respect to the measure w(x) dx gives

(5.1)
$$\int |f * \psi_t(x)|^2 w(x) dx \le \|\psi\|_2^2 \int |f(y)|^2 t^{-n} \int_{|x-y| < t} w(x) dx dy$$
$$\le C_w \|\psi\|_2^2 \int |f(y)|^2 w(y) dy$$

uniformly in t. Also, by duality we can prove the uniform estimate

(5.2)
$$\int |f * \psi_t(x)|^2 w^{-1}(x) dx \le C_w ||\psi||_2^2 \int |f(y)|^2 w^{-1}(y) dy.$$

The conclusion easily follows from the estimates (5.1) and (5.2).

We choose $\Psi \in C^{\infty}$ that is supported in $\{1/2 \le |\xi| \le 2\}$ and satisfies

$$\sum_{j \in \mathbb{Z}} \Psi(2^j \xi) = 1 \quad \text{for} \quad \xi \neq 0.$$

Define

$$\widehat{D_j(f)}(\xi) = \Psi(2^j \xi) \widehat{f}(\xi)$$
 for $j \in \mathbb{Z}$,

and decompose

$$f * \psi_t(x) = \sum_{j \in \mathbb{Z}} F_j(x, t),$$

where

$$F_j(x,t) = \sum_{k \in \mathbb{Z}} D_{j+k}(f * \psi_t)(x) \chi_{[2^k, 2^{k+1})}(t).$$

Let

$$T_j(f)(x) = \left(\int_0^\infty |F_j(x,t)|^2 \frac{dt}{t}\right)^{1/2}.$$

We write $A_j = \{2^{-1-j} \le |\xi| \le 2^{1-j}\}$. Then, by the Plancherel theorem and Lemma 5 we see that

(5.3)
$$||T_{j}(f)||_{2}^{2} = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^{n}} \int_{2^{k}}^{2^{k+1}} |D_{j+k} (f * \psi_{t}) (x)|^{2} \frac{dt}{t} dx$$

$$\leq \sum_{k \in \mathbb{Z}} C \int_{A_{j+k}} \left(\int_{2^{k}}^{2^{k+1}} \left| \hat{\psi}(t\xi) \right|^{2} \frac{dt}{t} \right) \left| \hat{f}(\xi) \right|^{2} d\xi$$

$$\leq \sum_{k \in \mathbb{Z}} C \int_{A_{j+k}} \min \left(|2^{k}\xi|^{\epsilon}, |2^{k}\xi|^{-\epsilon} \right) \left| \hat{f}(\xi) \right|^{2} d\xi$$

$$\leq C2^{-\epsilon|j|} \sum_{k \in \mathbb{Z}} \int_{A_{j+k}} \left| \hat{f}(\xi) \right|^{2} d\xi.$$

Since the sets A_j are finitely overlapping, (5.3) implies that

$$||T_{j}(f)||_{2}^{2} \leq C2^{-\epsilon|j|} ||\hat{f}||_{2}^{2} = C2^{-\epsilon|j|} ||f||_{2}^{2}.$$

Let $w \in A_1$. If v = w or w^{-1} , by Lemma 6 and the Littlewood-Paley inequality for L_v^2 (note that $v \in A_2$) we see that

(5.5)
$$||T_{j}(f)||_{L_{v}^{2}}^{2} = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^{n}} \int_{2^{k}}^{2^{k+1}} |D_{j+k}(f) * \psi_{t}(x)|^{2} \frac{dt}{t} v(x) dx$$

$$\leq \sum_{k \in \mathbb{Z}} C \int_{\mathbb{R}^{n}} |D_{j+k}(f)(x)|^{2} v(x) dx$$

$$\leq C ||f||_{L_{v}^{2}}^{2}.$$

Thus, by interpolation with change of measures between (5.4) and (5.5)

(5.6)
$$||T_j(f)||_{L^2_{v^a}} \le C2^{-\epsilon(1-a)|j|/2} ||f||_{L^2_{v^a}}$$

for $a \in (0,1)$. Choosing a so that $w^{1/a} \in A_1$, by (5.6) we have

$$||T_j(f)||_{L^2_x} \le C2^{-\epsilon(1-a)|j|/2} ||f||_{L^2_x}.$$

From this it follows that

(5.7)
$$||S_{\psi}(f)||_{L_{v}^{2}} \leq \sum_{j \in \mathbb{Z}} ||T_{j}(f)||_{L_{v}^{2}} \leq C||f||_{L_{v}^{2}}.$$

Let M be the Hardy-Littlewood maximal operator (see Section 2) and $M_s(f) = (M(|f|^s)(x))^{1/s}$. To prove Proposition 1, by Theorem D we may assume that p < 2. Now we apply the idea of [12]. If 1 < s < p/(2-p), then $M_s(|f|^{2-p})$ is in A_1 (we may assume that $0 < M_s(|f|^{2-p}) < \infty$) and M_s is bounded on $L^{p/(2-p)}$. Thus by Hölder's inequality and (5.7) with $v = M_s(|f|^{2-p})^{-1}$, we have

$$\int S_{\psi}(f)(x)^{p} dx = \int S_{\psi}(f)(x)^{p} M_{s}(|f|^{2-p})(x)^{-p/2} M_{s}(|f|^{2-p})(x)^{p/2} dx
\leq \left(\int S_{\psi}(f)(x)^{2} M_{s}(|f|^{2-p})(x)^{-1} dx\right)^{p/2} \left(\int M_{s}(|f|^{2-p})(x)^{p/(2-p)} dx\right)^{1-p/2}
\leq C \left(\int |f(x)|^{2} M_{s}(|f|^{2-p})(x)^{-1} dx\right)^{p/2} ||f||_{p}^{p(1-p/2)}
\leq C \left(\int |f(x)|^{2} |f(x)|^{p-2} dx\right)^{p/2} ||f||_{p}^{p(1-p/2)}
= C ||f||_{p}^{p}.$$

This completes the proof of Proposition 1.

§ 6. Proof of (3.4)

We can prove Theorem 2 by extrapolation arguments using Theorem 3. More specifically, we can prove the estimate (3.4).

Let a > 0. We define the space $\mathcal{N}_a(\Sigma)$ to be the class of the functions $F \in L^1(\Sigma)$ for which we can find a sequence $\{F_m\}_{m=1}^{\infty}$ of functions on Σ and a sequence $\{b_m\}_{m=1}^{\infty}$ of non-negative real numbers such that

$$(1) F = \sum_{m=1}^{\infty} b_m F_m,$$

(2)
$$\sup_{m\geq 1} \|F_m\|_{1+1/m} \leq 1$$
,

(3)
$$\int_{\Sigma} F_m dS = 0,$$

$$(4) \sum_{m=1}^{\infty} m^a b_m < \infty.$$

For $F \in \mathcal{N}_a(\Sigma)$, let

$$||F||_{\mathcal{N}_a} = \inf_{\{b_m\}} \sum_{m=1}^{\infty} m^a b_m,$$

where the infimum is taken over all such non-negative sequences $\{b_m\}$. We note that $\int_{\Sigma} F dS = 0$ if $F \in \mathcal{N}_a(\Sigma)$.

By well-known arguments we have the following (see [43, Chap. XII, pp. 119–120] for relevant results).

Proposition 2. Suppose that $F \in L^1(\Sigma)$ and a > 0. Then, the following two statements (1), (2) are equivalent:

- (1) $F \in L(\log L)^a(\Sigma)$ and $\int_{\Sigma} F dS = 0$;
- (2) $F \in \mathcal{N}_a(\Sigma)$.

Moreover,

(3) there exist positive constants A, B such that

$$||F||_{L(\log L)^a} \le A||F||_{\mathcal{N}_a}, \quad ||F||_{\mathcal{N}_a} \le B||F||_{L(\log L)^a}$$

for $F \in \mathcal{N}_a(\Sigma)$.

To prove Proposition 2 we use the following two elementary results.

Lemma 7. Let $1 0, x \ge 2$. Then, there exists a positive constant C_a depending only on a such that

$$x(\log x)^a \le C_a(p-1)^{-a}x^p.$$

This was also used in [32].

Lemma 8. Let f be a continuous, non-negative, convex function on $[0, \infty)$ such that f(0) = 0. Suppose that a series $\sum_{k=1}^{\infty} c_k a_k$ converges, where $c_k \ge 0$, $\sum_{k=1}^{\infty} c_k \le 1$, $a_k \in \mathbb{C}$. Then

$$f\left(\left|\sum_{k=1}^{\infty}c_ka_k\right|\right) \leq \sum_{k=1}^{\infty}c_kf\left(\left|a_k\right|\right).$$

Proof of Proposition 2. We first see that part (1) follows from part (2). Let $F \in \mathcal{N}_a(\Sigma)$. We have already noted that $\int_{\Sigma} F dS = 0$. For any $\epsilon > 0$ there exist a sequence $\{b_m\}$ of non-negative real numbers and a sequence $\{F_m\}$ of functions on Σ with the properties required in the definition of $\mathcal{N}_a(\Sigma)$ such that

$$||F||_{\mathcal{N}_a} \le \sum_{m=1}^{\infty} m^a b_m < ||F||_{\mathcal{N}_a} + \epsilon.$$

Let $\lambda = ||F||_{\mathcal{N}_a} + \epsilon$. By Lemma 8 with $f(x) = x[\log(2+x)]^a$ and $c_k = b_k/\lambda$, we have

$$\int_{\Sigma} \frac{|F|}{\lambda} \left[\log \left(2 + \frac{|F|}{\lambda} \right) \right]^a dS \le \sum_{m=1}^{\infty} \lambda^{-1} b_m \int_{\Sigma} |F_m| \left[\log \left(2 + |F_m| \right) \right]^a dS.$$

It follows from Lemma 7 with p = 1 + 1/m that

$$|F_m| \left[\log \left(2 + |F_m| \right) \right]^a \le C_a m^a (2 + |F_m|)^{1+1/m}$$

$$\le C_a m^a 2^{1/m} (2^{1+1/m} + |F_m|^{1+1/m})$$

$$\le 2C_a m^a (4 + |F_m|^{1+1/m}).$$

Thus

$$\int_{\Sigma} \frac{|F|}{\lambda} \left[\log \left(2 + \frac{|F|}{\lambda} \right) \right]^{a} dS \leq \sum_{m=1}^{\infty} \lambda^{-1} b_{m} 2C_{a} m^{a} \int_{\Sigma} (4 + |F_{m}|^{1+1/m}) dS$$

$$= \sum_{m=1}^{\infty} \lambda^{-1} b_{m} 2C_{a} m^{a} (4S(\Sigma) + ||F_{m}||^{1+1/m})$$

$$\leq \sum_{m=1}^{\infty} \lambda^{-1} b_{m} 2C_{a} m^{a} (4S(\Sigma) + 1)$$

$$\leq 2C_{a} (4S(\Sigma) + 1).$$

This implies that F belongs to $L(\log L)^a(\Sigma)$ and

$$||F||_{L(\log L)^a} \le A\lambda = A(||F||_{\mathcal{N}_a} + \epsilon)$$

for some A > 0. Letting ϵ tend to 0, we see that the first inequality of part (3) holds. Next we prove that part (1) implies part (2). We take $\lambda > 0$ such that

$$\int_{\Sigma} \frac{|F|}{\lambda} \left[\log \left(2 + \frac{|F|}{\lambda} \right) \right]^a dS \le 1.$$

Let $F_{\lambda} = F/\lambda$. We define

$$U_m = \{ \theta \in \Sigma : 2^{m-1} < |F_{\lambda}(\theta)| \le 2^m \} \text{ for } m \ge 2,$$

 $U_1 = \{ \theta \in \Sigma : |F_{\lambda}(\theta)| \le 2 \}$

and decompose $F_{\lambda} = \sum_{m=1}^{\infty} \tilde{F}_{\lambda,m}$, where

$$\tilde{F}_{\lambda,m} = F_{\lambda} \chi_{U_m} - S(\Sigma)^{-1} \int_U F_{\lambda} dS.$$

Note that $\int \tilde{F}_{\lambda,m} dS = 0$. If we put $e_m = S(U_m), m \geq 1$, then

(6.1)
$$\|\tilde{F}_{\lambda,m}\|_{1+1/m} \le 22^m e_m^{m/(m+1)} \quad \text{for } m \ge 1.$$

Define

$$F_{\lambda,m} = \begin{cases} 2^{-m-1} e_m^{-m/(m+1)} \tilde{F}_{\lambda,m}, & \text{if } e_m \neq 0, \\ 0, & \text{if } e_m = 0. \end{cases}$$

Let $b_m = 2^{m+1} e_m^{m/(m+1)}$ for $m \ge 1$. Then

$$F_{\lambda} = \sum_{m=1}^{\infty} b_m F_{\lambda,m}, \quad \int_{\Sigma} F_{\lambda,m} dS = 0.$$

Also, by (6.1) we see that $\sup_{m\geq 1} \|F_{\lambda,m}\|_{1+1/m} \leq 1$. Furthermore, applying Young's inequality, we have

(6.2)
$$\sum_{m=1}^{\infty} m^{a} b_{m} = \sum_{m=1}^{\infty} m^{a} 2^{m+1} e_{m}^{m/(m+1)}$$

$$\leq 2 \sum_{m=1}^{\infty} (m/(m+1)) m^{a} 2^{(m+1)(1+1/m)} e_{m} + 2 \sum_{m=1}^{\infty} m^{a} 2^{-m-1}/(m+1)$$

$$\leq C \sum_{m=1}^{\infty} m^{a} 2^{m} e_{m} + C$$

$$\leq C \int_{\Sigma} |F_{\lambda}| \left(\log(2 + |F_{\lambda}|)\right)^{a} dS + C$$

$$\leq C.$$

Collecting results, we see that $F \in \mathcal{N}_a$ and, since $F = \sum_{m=1}^{\infty} \lambda b_m F_{\lambda,m}$,

$$\sum_{m=1}^{\infty} m^a b_m \ge \lambda^{-1} ||F||_{\mathcal{N}_a},$$

which combined with (6.2) implies that $||F||_{\mathcal{N}_a} \leq B\lambda$ for some B > 0. So, taking the infimum over λ , we get the second inequality of part (3).

Let Ω and Ψ be as in Theorem 2. By Proposition 2 we can decompose Ω as

$$\Omega = \sum_{m=1}^{\infty} b_m \Omega_m,$$

where $\sup_{m\geq 1} \|\Omega_m\|_{1+1/m} \leq 1$ and each Ω_m satisfies (3.1), while $\{b_m\}$ is a sequence of non-negative real numbers such that $\sum_{m=1}^{\infty} m^{1/2} b_m < \infty$. Accordingly,

$$\Psi = \sum_{m=1}^{\infty} \Psi_m, \quad \Psi_m(x) = b_m \ell(r(x)) \frac{\Omega_m(x')}{r(x)^{\gamma}}.$$

Let 1 . By Theorem 3 with <math>s = 1 + 1/m we have

$$||S_{\Psi_m}f||_p \le C_p m^{1/2} b_m ||\Omega_m||_{1+1/m} ||f||_p \le C_p m^{1/2} b_m ||f||_p,$$

which implies

$$||S_{\Psi}f||_p \le \sum_{m=1}^{\infty} ||S_{\Psi_m}f||_p \le C_p(\sum_{m=1}^{\infty} m^{1/2}b_m)||f||_p.$$

Taking the infimum over $\{b_m\}$ and applying Proposition 2, we get

$$||S_{\Psi}f||_{p} \leq C_{p} ||\Omega||_{\mathcal{N}_{1/2}} ||f||_{p} \leq C_{p} B ||\Omega||_{L(\log L)^{1/2}} ||f||_{p}.$$

This completes the proof of (3.4).

§ 7. Maximal functions on the Heisenberg group with two-step dilation

We give a proof of Lemma 2 for the maximal function M_{θ} on the Heisenberg group \mathbb{H}_1 with 2-step dilation by applying the boundedness of the maximal function $\mathfrak{M}g$ on \mathbb{R}^2 (see (7.5)).

Let $\theta = (\theta_1, \theta_2, \theta_3) \in S^2$ and $d_{\theta} = |\theta_1 \theta_2 \theta_3|$. We may assume that $d_{\theta} \neq 0$. Let

$$T_{\theta}x = (\theta_1^{-1}x_1, \theta_2^{-1}x_2, \theta_3^{-1}x_3).$$

It is convenient to define a group law $u \circ_{\theta} v$ on \mathbb{R}^3 so that

$$T_{\theta}x \circ_{\theta} T_{\theta}y = T_{\theta}(xy).$$

If $u = T_{\theta}x$, $v = T_{\theta}y$, this requires that

$$u \circ_{\theta} v = T_{\theta}x \circ_{\theta} T_{\theta}y = T_{\theta}(xy)$$

$$= T_{\theta}(x_1 + y_1, x_2 + y_2, x_3 + y_3 + (x_1y_2 - y_1x_2)/2)$$

$$= (\theta_1^{-1}(x_1 + y_1), \theta_2^{-1}(x_2 + y_2), \theta_3^{-1}(x_3 + y_3) + \theta_3^{-1}(x_1y_2 - y_1x_2)/2)$$

$$= (u_1 + v_1, u_2 + v_2, u_3 + v_3 + (2\theta_3)^{-1}\theta_1\theta_2(u_1v_2 - v_1u_2)).$$

Since $A_t x = (tx_1, tx_2, t^2x_3)$, if $a(t) = (t, t, t^2)$,

$$f(x(A_t\theta)^{-1}) = f(T_\theta^{-1}((T_\theta x) \circ_\theta a(t)^{-1})) = f_\theta((T_\theta x) \circ_\theta a(t)^{-1}),$$

where $f_{\theta}(x) = f(T_{\theta}^{-1}x)$ and $a(t)^{-1} = (-t, -t, -t^2)$. Thus, by a change of variables, we have

(7.1)
$$\int_{\mathbb{H}_1} \left(\sup_{r>0} \frac{1}{r} \int_0^r |f(x(A_t\theta)^{-1})| dt \right)^p dx = d_\theta \int_{\mathbb{H}_1} \left(\sup_{r>0} \frac{1}{r} \int_0^r |f_\theta(y \circ_\theta a(t)^{-1})| dt \right)^p dy.$$

Let $c_{\theta} = (2\theta_3)^{-1}\theta_1\theta_2$. Then we note that

$$y = (y_1, y_2, y_3) = (0, y_2 - y_1, 0) \circ_{\theta} (y_1, y_1, y_3 + c_{\theta}y_1(y_2 - y_1)).$$

Thus

$$(7.2) y \circ_{\theta} a(t)^{-1} = ((0, y_2 - y_1, 0) \circ_{\theta} (y_1, y_1, y_3 + c_{\theta} y_1 (y_2 - y_1))) \circ_{\theta} a(t)^{-1}$$

$$= (0, y_2 - y_1, 0) \circ_{\theta} ((y_1, y_1, y_3 + c_{\theta} y_1 (y_2 - y_1)) \circ_{\theta} a(t)^{-1}).$$

By (7.1) and (7.2), applying a change of variables, we have

$$\int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f(x(A_{t}\theta)^{-1})| dt \right)^{p} dx
= d_{\theta} \int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f_{\theta}((0, y_{2} - y_{1}, 0) \circ_{\theta} ((y_{1}, y_{1}, y_{3} + c_{\theta}y_{1}(y_{2} - y_{1})) \circ_{\theta} a(t)^{-1}))| dt \right)^{p} dy
= d_{\theta} \int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f_{\theta}((0, y_{2}, 0) \circ_{\theta} ((y_{1}, y_{1}, y_{3}) \circ_{\theta} a(t)^{-1}))| dt \right)^{p} dy.$$

We observe that

$$(y_1, y_1, y_3) \circ_{\theta} a(t)^{-1} = (y_1 - t, y_1 - t, y_3 - t^2).$$

Thus (7.3) implies that

(7.4)
$$\int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f(x(A_{t}\theta)^{-1})| dt \right)^{p} dx$$

$$= d_{\theta} \int_{\mathbb{H}_{1}} \left(\sup_{r>0} \frac{1}{r} \int_{0}^{r} |f_{\theta}((0, y_{2}, 0)) \circ_{\theta} (y_{1} - t, y_{1} - t, y_{3} - t^{2}))| dt \right)^{p} dy$$

$$= d_{\theta} \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{2}} (\mathfrak{M}f_{\theta, y_{2}}(y_{1}, y_{3}))^{p} dy_{1} dy_{3} \right) dy_{2},$$

where $f_{\theta,y_2}(y_1,y_3) = f_{\theta}((0,y_2,0) \circ_{\theta} (y_1,y_1,y_3))$ and

(7.5)
$$\mathfrak{M}g(y_1, y_3) = \sup_{r>0} \frac{1}{r} \int_0^r |g(y_1 - t, y_3 - t^2)| dt.$$

It is known that

$$\|\mathfrak{M}g\|_{L^p(\mathbb{R}^2)} \le C_p \|f\|_{L^p(\mathbb{R}^2)}, \quad p > 1$$

(see [40]). Applying this and a change of variables, we see that

(7.6)
$$d_{\theta} \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{2}} (\mathfrak{M}f_{\theta,y_{2}}(y_{1},y_{3}))^{p} dy_{1} dy_{3} \right) dy_{2}$$

$$\leq C_{p}^{p} d_{\theta} \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{2}} |f_{\theta,y_{2}}(y_{1},y_{3})|^{p} dy_{1} dy_{3} \right) dy_{2}$$

$$= C_{p}^{p} d_{\theta} \int_{\mathbb{H}_{1}} |f_{\theta}(y_{1},y_{1}+y_{2},y_{3}-c_{\theta}y_{1}y_{2})|^{p} dy_{1} dy_{2} dy_{3}$$

$$= C_{p}^{p} d_{\theta} \int_{\mathbb{H}_{1}} |f_{\theta}(y)|^{p} dy$$

$$= C_{p}^{p} \int_{\mathbb{H}_{1}} |f(y)|^{p} dy.$$

Combining (7.4) and (7.6), we get the conclusion.

§ 8. Littlewood-Paley operators related to Bochner-Riesz means and spherical means

Let

$$S_R^{\delta}(f)(x) = \int_{|\xi| < R} \widehat{f}(\xi) (1 - R^{-2}|\xi|^2)^{\delta} e^{2\pi i \langle x, \xi \rangle} d\xi = H_{R^{-1}}^{\delta} * f(x)$$

be the Bochner-Riesz mean of order δ on \mathbb{R}^n , $\delta > -1$, where

$$H^{\delta}(x) = \pi^{-\delta} \Gamma(\delta + 1) |x|^{-(n/2+\delta)} J_{n/2+\delta}(2\pi|x|)$$

with J_{ν} denoting the Bessel function of the first kind of order ν .

For $\beta > 0$, let

$$M_t^{\beta}(f)(x) = c_{\beta} t^{-n} \int_{|y| < t} (1 - t^{-2}|y|^2)^{\beta - 1} f(x - y) \, dy,$$

where

$$c_{\beta} = \frac{\Gamma\left(\beta + \frac{n}{2}\right)}{\pi^{\frac{n}{2}}\Gamma(\beta)}.$$

By taking the Fourier transform, we can embed these operators in an analytic family of operators in β so that

$$M_t^0(f)(x) = c \int_{S^{n-1}} f(x - ty) d\sigma(y).$$

Now we define a Littlewood-Paley operator σ_{δ} , $\delta>0$, from the Bochner-Riesz means as

$$\sigma_{\delta}(f)(x) = \left(\int_0^{\infty} \left| (\partial/\partial R) S_R^{\delta}(f)(x) \right|^2 R dR \right)^{1/2}$$
$$= \left(\int_0^{\infty} \left| -2\delta \left(S_R^{\delta}(f)(x) - S_R^{\delta - 1}(f)(x) \right) \right|^2 \frac{dR}{R} \right)^{1/2},$$

and also another Littlewood-Paley operator ν_{β} , $\beta + n/2 - 1 > 0$, from the spherical means as

$$\nu_{\beta}(f)(x) = \left(\int_{0}^{\infty} \left| (\partial/\partial t) \ M_{t}^{\beta}(f)(x) \right|^{2} t \, dt \right)^{1/2}$$

$$= \left(\int_{0}^{\infty} \left| -2(\beta + n/2 - 1) \left(M_{t}^{\beta}(f)(x) - M_{t}^{\beta - 1}(f)(x) \right) \right|^{2} \, \frac{dt}{t} \right)^{1/2}.$$

These Littlewood-Paley functions are related as follows.

Theorem H. Suppose that $\delta = \beta + n/2 - 1 > 0$. Then, there exist positive constants A, B such that for all $x \in \mathbb{R}^n$ and $f \in \mathcal{S}(\mathbb{R}^n)$ (the Schwartz space) we have

$$\sigma_{\delta}(f)(x) \le A \nu_{\beta}(f)(x), \quad \nu_{\beta}(f)(x) \le B \sigma_{\delta}(f)(x).$$

This was proved by Kaneko and Sunouchi [21].

Also, we recall a result of Carbery, Rubio de Francia and Vega [5].

Theorem I. If $\delta > 1/2$ and $-1 < \alpha \le 0$, then

$$\int_{\mathbb{R}^n} |\sigma_{\delta}(f)(x)|^2 |x|^{\alpha} dx \le C_{\delta,\alpha} \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} dx.$$

See Rubio de Francia [27] for a different proof. Theorems H and I imply the following.

Proposition 3. Suppose that $\beta > 3/2 - n/2$ and $-1 < \alpha \le 0$. Then

$$\int_{\mathbb{R}^n} |\nu_{\beta}(f)(x)|^2 |x|^{\alpha} dx \le C_{\beta,\alpha} \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} dx.$$

Let

$$M_*^{\beta}(f)(x) = \sup_{t>0} \left| M_t^{\beta}(f)(x) \right|.$$

The following weighted L^2 estimate can be deduced from Proposition 3.

Proposition 4. Suppose that $Re(\beta) > 3/2 - n/2$ and $-1 < \alpha \le 0$. Then

$$\int_{\mathbb{R}^n} \left| M_*^{\beta - 1/2}(f)(x) \right|^2 |x|^{\alpha} \, dx \le C_{\beta, \alpha} \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} \, dx.$$

This is due to [38] when $\alpha = 0$.

To prove Proposition 4 we use the following relation.

Lemma 9. If $\operatorname{Re}(\alpha) > \operatorname{Re}(\alpha') > -n/2$,

$$M_t^{\alpha}(f)(x) = \frac{2\Gamma(\alpha + n/2)}{\Gamma(\alpha - \alpha')\Gamma(\alpha' + n/2)} \int_0^1 M_{st}^{\alpha'}(f)(x) (1 - s^2)^{\alpha - \alpha' - 1} s^{n + 2\alpha' - 1} ds.$$

See [38] and [40, p. 1270].

Proof of Proposition 4. Let k be the smallest non-negative integer such that $1 < \text{Re}(\beta) + k$. Let $3/2 - n/2 < \eta < \text{Re}(\beta)$. Then, by Lemma 9 and the Schwarz inequality we have

$$M_*^{\beta - 1/2}(f)(x) \le CM^{\eta - 1}(f)(x),$$

where

$$M^{\eta - 1}(f)(x) = \sup_{t > 0} \left(\frac{1}{t} \int_0^t \left| M_s^{\eta - 1}(f)(x) \right|^2 ds \right)^{1/2}.$$

Also, we easily see that

$$M^{\eta-1}(f)(x) \le C\nu_{\eta}(f)(x) + C\nu_{\eta+1}(f)(x) + \dots + C\nu_{\eta+k}(f)(x) + CM^{\eta+k}(f)(x).$$

Note that $M^{\eta+k}(f)$ is bounded by the Hardy-Littlewood maximal function if η is sufficiently close to $\text{Re}(\beta)$. Thus, applying Proposition 3, we get the weighted inequality as claimed.

Define the spherical maximal operator \mathcal{M} by

$$\mathcal{M}(f)(x) = \sup_{t>0} \left| \int_{S^{n-1}} f(x - ty) \, d\sigma(y) \right|.$$

We note that $\mathcal{M}(f)(x) = cM_*^0(f)(x)$. The following weighted norm inequality for \mathcal{M} is due to Duoandikoetxea and Vega [15].

Theorem J. Suppose that $n \geq 2$ and n/(n-1) < p. Then the inequality

$$\int_{\mathbb{R}^n} |\mathcal{M}(f)(x)|^p |x|^\alpha \, dx \le C \int_{\mathbb{R}^n} |f(x)|^p |x|^\alpha \, dx$$

holds for $1 - n < \alpha < p(n - 1) - n$.

This was partly proved by Rubio de Francia [26].

When $\alpha = 0$, Theorem J was proved by Stein [38] for $n \geq 3$ and by Bourgain [3] for n = 2. We can find in Sogge [35] a proof of the result of Bourgain which has some features in common with a proof, also given in [35], of Carbery's result [4] for the maximal Bochner-Riesz operator on \mathbb{R}^2 .

We can give a different proof of Theorem J when $n \geq 3, 1-n < \alpha \leq 0$ and p > n/(n-1) by applying Proposition 4. To see this, first we note that

(8.1)
$$\int_{\mathbb{R}^n} |M_*^{\beta}(f)(x)|^p |x|^{\alpha} dx \le C \int_{\mathbb{R}^n} |f(x)|^p |x|^{\alpha} dx$$

when $1 , <math>-n < \alpha < n(p-1)$ and $\text{Re}(\beta) \ge 1$, since $M_*^{\beta}(f)$ is pointwise bounded by the Hardy-Littlewood maximal function. On the other hand, by Proposition 4 we have

(8.2)
$$\int_{\mathbb{R}^n} |M_*^{\beta}(f)(x)|^2 |x|^{\alpha} dx \le C \int_{\mathbb{R}^n} |f(x)|^2 |x|^{\alpha} dx,$$

if $\operatorname{Re}(\beta) > (2-n)/2$ and $-1 < \alpha \le 0$. By an interpolation argument involving (8.1) and (8.2), we see that for any p > n/(n-1) and $\alpha \in (1-n,0)$, there exist $r \in (n/(n-1),p)$ and $\tau \in (1-n,\alpha)$ such that

$$\int_{\mathbb{R}^n} |\mathcal{M}(f)(x)|^r |x|^\tau \, dx \le C \int_{\mathbb{R}^n} |f(x)|^r |x|^\tau \, dx.$$

Interpolating between this estimate and the unweighted L^r estimate for \mathcal{M} , since $\tau < \alpha < 0$, we have

$$\int_{\mathbb{R}^n} |\mathcal{M}(f)(x)|^r |x|^\alpha \, dx \le C \int_{\mathbb{R}^n} |f(x)|^r |x|^\alpha \, dx.$$

Since $r , interpolating between this and the obvious <math>L^{\infty}(|x|^{\alpha})$ estimate for \mathcal{M} , we get the $L^{p}(|x|^{\alpha})$ boundedness of \mathcal{M} as claimed. (A similar argument can be found in [29]; see also [30].)

Finally, we prove Theorem J when $n \geq 2$, $0 \leq \alpha < p(n-1)-n$ and p > n/(n-1) by the methods of [15]. We write $w_{\alpha}(x) = |x|^{\alpha}$. It is known that the pointwise inequality $\mathcal{M}(w_{\alpha}) \leq Cw_{\alpha}$ holds if and only if $\alpha \in (1-n,0]$ (see [15]). Let

$$T_{\alpha}(g) = w_{\alpha}^{-1} \mathcal{M}(w_{\alpha}g)$$

for $\alpha \in (1-n,0]$. Then, T_{α} is bounded on L^{∞} , as we see that

(8.3)
$$||T_{\alpha}(g)||_{\infty} \le ||g||_{\infty} ||w_{\alpha}^{-1} \mathcal{M}(w_{\alpha})||_{\infty} \le C||g||_{\infty}.$$

Let $r \in (n/(n-1), p)$. Since M is bounded on L^r , we have

$$(8.4) \qquad \int_{\mathbb{R}^n} |T_{\alpha}(g)(x)|^r w_{\alpha}^r(x) \, dx = \int_{\mathbb{R}^n} |\mathcal{M}(w_{\alpha}g)(x)|^r \, dx \le C \int_{\mathbb{R}^n} |g(x)|^r w_{\alpha}^r(x) \, dx.$$

Interpolation between (8.3) and (8.4) will imply that

$$\int_{\mathbb{R}^n} |T_{\alpha}(g)(x)|^p w_{\alpha}^r(x) \, dx \le C \int_{\mathbb{R}^n} |g(x)|^p w_{\alpha}^r(x) \, dx.$$

This can be expressed as

$$\int_{\mathbb{R}^n} |\mathcal{M}(f)(x)|^p w_{\alpha}^{r-p}(x) \, dx \le C \int_{\mathbb{R}^n} |f(x)|^p w_{\alpha}^{r-p}(x) \, dx$$

for any $\alpha \in (1-n,0]$ and $r \in (n/(n-1),p)$, which implies the result as claimed.

References

[1] A. Al-Salman, H. Al-Qassem, L. C. Cheng and Y. Pan, L^p bounds for the function of Marcinkiewicz, Math. Res. Lett. 9 (2002), 697–700.

- [2] A. Benedek, A. P. Calderón and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U. S. A. 48 (1962), 356–365.
- [3] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85.
- [4] A. Carbery, The boundedness of the maximal Bochner-Riesz operator on $L^4(\mathbb{R}^2)$, Duke Math. J. 50 (1983), 409–416.
- [5] A. Carbery, J. L. Rubio de Francia and L. Vega, Almost everywhere summability of Fourier integrals, J. London Math. Soc. (2) 38 (1988), 513–524.
- [6] L. C. Cheng, On Littlewood-Paley functions, Proc. Amer. Math. Soc. 135 (2007), 3241–3247.
- [7] M. Christ, Hilbert transforms along curves I. Nilpotent groups, Ann. of Math. 122 (1985), 575–596.
- [8] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque no. 57, Soc. Math. France, 1978.
- [9] Y. Ding and S. Sato, Singular integrals on product homogeneous groups, Integr. Equ. Oper. Theory, **76** (2013), 55–79.
- [10] Y. Ding and S. Sato, Littlewood-Paley functions on homogeneous groups, preprint, 2013.
- [11] Y. Ding and X. Wu, Littlewood-Paley g-functions with rough kernels on homogeneous groups, Studia Math. 195 (2009), 51–86.
- [12] J. Duoandikoetxea, Sharp L^p boundedness for a class of square functions, Rev Mat Complut **26** (2013), 535-548.
- [13] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541–561.
- [14] J. Duoandikoetxea and E. Seijo, Weighted inequalities for rough square functions through extrapolation, Studia Math. 149 (2002), 239–252.
- [15] J. Duoandikoetxea and L. Vega, Spherical means and weighted inequalities, J. London Math. Soc. (2) **53** (1996), 343–353.
- [16] D. Fan and S. Sato, Weak type (1,1) estimates for Marcinkiewicz integrals with rough kernels, Tôhoku Math. J. **53** (2001), 265–284.
- [17] D. Fan and S. Sato, Remarks on Littlewood-Paley functions and singular integrals, J. Math. Soc. Japan **54** (2002), 565–585.
- [18] G. B. Folland and E. M. Stein, *Hardy Spaces on Homogeneous Groups*, Princeton Univ. Press, Princeton, N.J. 1982.
- [19] L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93–139.
- [20] J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. vol. 994, Springer-Verlag, 1983.
- [21] M. Kaneko and G. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions, Tôhoku Math. J. 37 (1985), 343–365.
- [22] J. E. Littlewood and R.E.A.C. Paley, *Theorems on Fourier series and power series*, J. London Math. Soc. **6** (1931), 230–233.
- [23] J. E. Littlewood and R.E.A.C. Paley, *Theorems on Fourier series and power series (II)*, Proc. London Math. Soc. **42** (1936), 52–89.
- [24] J. E. Littlewood and R.E.A.C. Paley, *Theorems on Fourier series and power series (III)*, Proc. London Math. Soc. **43** (1937), 105–126.
- [25] A. Nagel and E. M. Stein, *Lectures on Pseudo-Differential Operators*, Mathematical Notes 24, Princeton University Press, Princeton, NJ, 1979.

- [26] J. L. Rubio de Francia, Weighted norm inequalities for homogeneous families of operators, Trans. Amer. Math. Soc. **275** (1983), 781–790.
- [27] J. L. Rubio de Francia, Transference principles for radial multipliers, Duke Math. J. 58 (1989), 1–19.
- [28] S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. **58** (1998), 199–211.
- [29] S. Sato, Some weighted estimates for Littlewood-Paley functions and radial multipliers, J. Math. Anal. Appl. 278 (2003), 308-323.
- [30] S. Sato, Singular integrals and Littlewood-Paley functions, Selected papers on differential equations and analysis, Translations. Series 2. **215** (2005), 57-78, American Mathematical Society, Providence, RI.
- [31] S. Sato, Estimates for Littlewood-Paley functions and extrapolation, Integr. equ. oper. theory **62** (2008), 429–440.
- [32] S. Sato, A note on L^p estimates for singular integrals, Sci. Math. Jpn. 71 (2010), 343–348.
- [33] S. Sato, Estimates for singular integrals on homogeneous groups, J. Math. Anal. Appl. 400 (2013) 311–330.
- [34] A. Seeger, Singular integral operators with rough convolution kernels, J. Amer. Math. Soc. 9 (1996), 95–105.
- [35] C. D. Sogge Fourier Integrals in Classical Analysis, Cambridge University Press, 1993
- [36] E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430–466.
- [37] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [38] E. M. Stein, Maximal functions: Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2174–2175.
- [39] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [40] E. M. Stein and S. Wainger, *Problems in harmonic analysis related to curvature*, Bull. Amer. Math. Soc. **84** (1978), 1239–1295.
- [41] T. Tao, The weak-type (1,1) of $L \log L$ homogeneous convolution operator, Indiana Univ. Math. J. 48 (1999), 1547–1584.
- [42] T. Walsh, On the function of Marcinkiewicz, Studia Math. 44 (1972), 203–217.
- [43] A. Zygmund, *Trigonometric Series*, 2nd ed., Cambridge Univ. Press, Cambridge, London, New York and Melbourne, 1977.