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Boundedness of Littlewood-Paley operators

By

Shuichi SATO*

Abstract

We survey some results related to LP boundedness of Littlewood-Paley operators on ho-
mogeneous groups. Also, we give proofs of some results in the survey.

§1. Introduction

Let f € LP(T) (1 < p < o0), where T is the one-dimensional torus, which is
identified with R/Z (Z denotes the integer group), and let

(e e)
§ : Ck6271'zk9

k=—o00

be the Fourier series of f, where

ck:/f(aj)e_%ikx dx
T

is the Fourier coefficient.
The Littlewood-Paley function ~(f) is defined as

1/2

VO = D 1aa@F ] .
m=0

where

Am(e) _ Z Ck€27mk0
om—1< |k|<2m
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if m is a positive integer and Ay = ¢g. Then Littlewood and Paley proved

(1.1) Apll fllze < v (H)llze < Byl fllze

for some positive constants A,, Bp. This can be applied in proving the multiplier
theorems of Marcinkiewicz type and in studying the lacunary convergence of the Fourier
series.

A result analogous to (1.1) for the g function on T defined by
1 1/2
(1.2 o016 = ([ @-ol@/e0r « fo)P )
0
was also shown by Littlewood and Paley, where

B 1—t
1 —2tcos(2n0) + t2

Py(0)

is the Poisson kernel for the unit disk. (See Littlewood and Paley [22, 23, 24]) and also
Zygmund [43, Chap. XV] for the results above).

In this note we consider analogues on the Euclid spaces R™ and on the homogeneous
groups of the Littlewood-Paley function g(f) in (1.2). We survey a paper [10] and some
back ground results in Sections 2—4. (See [37, 39, 43] for relevant results.) Also, in
Sections 5—7, we shall give proofs of three results stated in Sections 2 and 3. Finally, in
Section 8, we shall see some results related to Littlewood-Paley operators arising from
the Bochner-Riesz means and the spherical means.

§2. Littlewood-Paley functions on R"
Let 1 be a function in L!'(R™) such that
(2.1) Y(z)dr = 0.

R™

We consider the Littlewood-Paley function on R™ defined by

s = ([T Irenmr )

where ¥ (x) =t "p(t 12).
Let Q(x) = [(0/0t)P(x)]t=1, where

t

Pt(x) = Cp (|3§'|2 + t2)(n+1)/2

is the Poisson kernel on the upper half space R x (0,00). Then Sq(f) is a version on
R™ of the Littlewood-Paley function g(f).
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If H(x) = x[-1,0(%) — X[0,1(2) is the Haar function on R, then Sg(f) coincides
with the Marcinkiewicz integral

oo 1/2
u(N@ = ( [0+ Fe -0 -2r@P )

where F(z) = [ f(y)dy. Here xg denotes the characteristic function of a set E. We
can easily see that Sg and Sy are L? (1 < p < oo) bounded on R™ and R, respectively,
from the following well-known result of Benedek, Calderén and Panzone [2].

Theorem A.  Suppose that 1) satisfies (2.1) and
(2.2) [W(x)] < CA+ =),
(23) | ot =) = vt do < Cly
for some positive constant €. Then
(1) Sy is bounded on LP(R™) for all p € (1, 00);

(2) Sy is of weak type (1,1) on R™.

It is known that for the LP boundedness, the condition (2.3) is superfluous, which
can be seen from the following result when p = 2.

Theorem B. Sy is bounded on L*(R™) if ¢ satisfies (2.1) and (2.2) with e = 1.

We refer to Coifman and Meyer [8, p. 148] for this. A proof can be found in Journé
[20]; see [20, pp. 81-82].
Let

Hy(x) = | S|1>11|9 | [U(y)|

be the least non-increasing radial majorant of ¢). Also, define

B.(y) = / [(x)| |z|€ dx for €>0,
|z|>1

1/u
D,(Y) = </| » |¢(x)|”dx> for u>1.

In [28], part (1) of Theorem A and Theorem B are improved as follows.

Theorem C.  Let € L*(R™). Suppose that ¢ satisfies (2.1) and the conditions

(1) B.(v) < oo for some € > 0;
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(2) Dy(¢) < oo for some u > 1;
(3) Hy € L*R™).
Then
15w (Nllzs, < Cpwll flls,
for allp € (1,00) and w € A,.
As usual L2 (R™) denotes the weighted LP space of those functions f which satisfy

| fllze = || fw/P||, < co. Also, here we recall the weight class A, of Muckenhoupt. We
say that w € A, (1 <p < 00) if

sup (|B|_1/Bw(a;) da:> <|B|_1/Bw(x)_l/(p_l)da:)p_l < 00,

where the supremum is taken over all balls B in R™ and |B| denotes the Lebesgue
measure. Let M be the Hardy-Littlewood maximal operator defined by

M(f)(z) = sup | B|™* / ) dy,

xeB

where the supremum is taken over all balls B containing x. We then say that w € A;
if there exists a constant C' such that M (w)(z) < Cw(z) for almost every x.
We now see some applications of Theorem C from [28].

Corollary 1.  Suppose that ¢ € L' satisfies (2.1) and (2.2). Let b € BMO and
w € Ay. We define the measure v on the upper half space R™ x (0,00) by

dv(z,t) = |b* () % w(z) de.

Then, the measure v is a Carleson measure with respect to the measure w(x)dzx, that
18,

/(S(Q) < Cullblbuo [ w(e)ds
Q
for all cubes Q in R™, where
S(Q) ={(z,t) e R" x (0,00) : x € Q,0 <t <4(Q)}
with £(Q) denoting sidelength of Q.

This follows from the LZ-boundedness of the operator Sy. See [20, pp. 85-87].
From Corollary 1 we get the following (see [20, p. 87]).
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Corollary 2. Let b € BMO. Suppose that ¢ satisfies (2.2) and that ¢ satisfies
(2.1), (2.2). Then

ITo(H)lly, < CowllbllBaroll fllz,

for all p € (1,00) and w € A,, where

t

1)) = ([ e P £ 5 ) @>/

We note that the conditions (2.1), (2.2) only are required for ¢ in Corollaries 1, 2
(no additional regularity condition for 1 is needed).
By Corollary 2 and Theorem C we have the following.

Corollary 3.  We assume that i satisfies (2.1), (2.2) and that ¢ satisfies (2.2).
Let b € BMO. Furthermore, let ) be a function in L*(R™) satisfying all the conditions
of Theorem C imposed on 1. Define a paraproduct w, by the equation

di

(@) = [ (00 (x0T

Then
176 ()l e, < Cpw

for allp € (1,00) and w € A,.

bl Baro || fll e,

The class L(log L)*(R™), a > 0, is defined to be the collection of the functions f
on R" such that

[ 15@llog(z + £ (@) da < o

Similarly, let L(log L)*(S™~!) be the class of the functions Q on S"~! satisfying

/SH 192(6)| [log(2 + |QO))]* do(8) < o,

where do denotes the Lebesgue surface measure on S"~1 = {z € R" : |z| = 1}.
For the rest of this section we consider the cases where v is compactly supported.
In [31] the following result was proved.

Theorem D.  The operator Sy is bounded on LP(R™) for all2 < p < oo if ¢ is
a function in L(log L)Y/?(R™) with compact support and satisfies (2.1).

This improves on a previous result of [17] which guarantees LP boundedness of Sy,
for p € [2,00) under a more restrictive condition that ¢» € LY(R™) with some ¢ > 1.
For p < 2, Duoandikoetxea [12] proved the following result.
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Theorem E. We assume that v has compact support.

(1) Suppose that 1 < g<2and0<1/p<1/2+1/q". Then Sy is bounded on LP(R™)
if 1 is in LY(R™) and satisfies (2.1).

(2) Letl1<g<2andl/p>1/2+1/q. Then there exists v € LY(R™) such that Sy is
not bounded on LP(R™).

Here ¢’ denotes the exponent conjugate to g. See also [6] for a previous result for
p < 2. Theorem E (1) was shown by arguments involving a theory of weights (see also
[14]).
Let ©(®) be a function on R defined by
) (@) = {a(l —le)*tsgu(), @€ (-11),

0, otherwise.

Suppose that 1 <p<2,1<¢g<2and1/¢ <a <1/p—1/2. Then 1)(® € LI(R); also,
Remark 2 of [17] implies that S,p(a) is not bounded on LP and S,p(a) is of weak type

(p,p) if a=1/p—1/2.
The following result is a particular case of part (1) of Theorem E.

Proposition 1.  If 1 is compactly supported and belongs to L*(R™), then Sy 18
bounded on LP(R™) for all p € (1,00).

This can be proved by combining results of [28] and the weight theory of [12]. We
shall give the proof in Section 5.
The Marcinkiewicz integral puo(f) of Stein [36] (see also Hérmander [19]) is defined

by pua(f) = Sy(f) with
¥(x) = |z| ") x 0,1 (|z])  for z € R™\ {0},

where ©/ = z/|z|, Q@ € L'(S"™1), [4._1 Qdo = 0.

Al-Salman, Al-Qassem, Cheng and Pan [1] proved the following.
Theorem F. g is bounded on LP(R™) for allp € (1,00) if Q € L(log L)*/2(S™~1).

See Walsh [42] for the case p = 2. In Section 3, we shall consider an analogue of
Theorem F on homogeneous groups.

8§ 3. Littlewood-Paley functions on homogeneous groups

We consider Littlewood-Paley functions on homogeneous groups. We also regard
R", n > 2, as a homogeneous group with multiplication given by a polynomial mapping.
So, we have a dilation family {A;};~0 on R™ such that

Atx: (talxlata2x27"'7tan$n)7 x:(xl""’xn)’
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with some real numbers ay,...,a, satisfying 0 < a1 < as < --- < a, and such that
each A, is an automorphism of the group structure (see [18], [41] and [25, Section 2 of
Chapter 1]). We also write H = R™. H is equipped with a homogeneous nilpotent Lie
group structure; the underlying manifold is R" itself. We recall that Lebesgue measure
is a bi-invariant Haar measure, the identity is the origin 0 and ! = —z. Multiplication
xy, x,y € H, satisfies the following.

(1) Ay(xy) = ArxAvy, x,y € H, t > 0;
(2) (ux)(vr) =uxr + vz, z € H, u,v € R;
(3) if z=way, z=(21,...,2n), 2k = Px(x,y), then

Pi(z,y) = z1 + y1,
Pi(z,y) = xx + yx + Ri(z,y) for k> 2
where Ry (x,y) is a polynomial depending only on x1,...,Zk—1,Y1,-- -, Yk—1-
We have a norm function r(x) satisfying the following.
(1) r(Awx) = tr(x), for all t > 0 and = € R™;
(2) r is continuous on R™ and smooth in R™\ {0};

(3) r(x+y) < Ni(r(z) + r(y)), r(xy) < Na(r(z) + r(y)) for some positive constants

(5) if X ={z € R" : r(x) = 1}, ¥ coincides with S"~1;
(6) there exist positive constants ¢y, co, c3, 4, @1, @2, 51, B2 > 0 such that

)zt < r(x) < eolz|*? ifr(x) >

cslz|Pt < r(x) < eylzl?? if r(z) <

Let v = aj + - - + a, (the homogeneous dimension of H). Then dz = 7! dS dt, that
is,

| @) de = /O /E F(A0) 1 dS(0) dt

with dS = wdo, where w is a strictly positive C'*° function on ¥ and do is the Lebesgue
surface measure on ¥ as above.
The Heisenberg group Hj; is an example of the homogeneous groups. Let

(z,y,0) (", u) = (@ + 2" y+ ¢, u+u + (2 —ya')/2)
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for (x,y,u), (z',y',u') € R3. Then, with this group law, R? is the Heisenberg group H.
A dilation is defined by

Ay(z,y,u) = (tz,ty, t*u) (2-step).

Also, we can adopt
Ay(z,y,u) = (tz,t%y,t>u) (3-step)

as an automorphism dilation.

For a function f on H, let

fr(@) =0uf(x) =t77 f(A; '),

Convolution on H is defined as
fxg(x) = /Hf(y)g(y‘lfv)dy-

Then (fxg)xh=f*(g*h), (f*g) =gx[if f(z) = fla™").
We consider the Littlewood-Paley function on H defined by

S0 = ([ 1 e wntol %)/

where 1 is in L'(H) and satisfies (2.1). Let © be locally integrable in H \ {0}. We
assume that Q is homogeneous of degree 0 with respect to the dilation group {A:},
which means that Q(Aqx) = Q(x) for z # 0, ¢t > 0. Also, we assume that

(3.1) / (0)dS(0) = 0.
b
Let pg = Sy with
(3.2) U(z) = r(z) 7T Q )x.y(r(x), a>0,

where 2’ = A, (z)-12 for z # 0. The spaces LP(X), L(log L)*(X) are defined with respect
to the measure dS.
We recall a result of Ding and Wu [11].

Theorem G. We assume in (3.2) that a = 1 and that Q is a function in
Llog L(X) satisfying (3.1). Then g is bounded on LP(H) for p € (1,2] and is of
weak type (1,1).

The result on the LP boundedness of Theorem G was improved by [10] as follows.

Theorem 1. g is bounded on LP(H) for all p € (1,00) if Q is in L(log L)'/?(%)
and satisfies (3.1).
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To prove Theorem 1 we decompose U(z) = 3, 28U ¥ (2), k € Z, where
U (@) = 2787 (2)* Q2" )x (1,9 (27 Fr ()
A change of variables and the property d50; = d4 of operators d; imply
S f(x) = Sq,;kjkf(@ = Sy [(2).
Thus, by the sublinearity we have

Sy f(z) < Z 288y 00 f() = caSyo f(2).

k<0

(See [16] for this observation.) So, we consider a function of the form

(3.3) U(z) = £(r(x))

r(z)’

where £ is in A’ (see [33]) for some 1 > 0 and supported in the interval [1,2].

Now we recall the definition of A (the definition of AJ, 1 < g < oo, can be found
in [33]). Let h be a locally integrable function on Ry = {t € R: ¢ > 0}. For t € (0, 1],
define

2R dr
w(h,t) = sup / |h(r —s) — h(r)| —,
|s|<tR/2JR r

where the supremum is taken over all s and R such that |s| < tR/2 (see [34]). Define
A" n >0, to be the family of the functions h such that

|hllan = sup t "Tw(h,t) < oo.
t€(0,1]

Let A, = L*°(R4) N A" with ||h|[an. = ||h||ec + [|R||an for b € AZ . Then AL C A2 if
N2 < M.
Theorem 1 is a consequence of the following.

Theorem 2.  Let U be as in (3.3). Then Sy is bounded on LP(H) for all p €
(1,00) if Q is in L(log L)/?(X) and satisfies (3.1).

Extrapolation arguments using the following estimates can prove Theorem 2 (see
[32]).

Theorem 3.  Suppose that ¥ is as in (3.3) with Q belonging to L°(X) for some
s € (1,2] and satisfying (3.1). Let 1 < p < co. Then

1Sw fllp < Cp(s = 1)L/ N,

where the constant C), is independent of s and €.



84 SHUICHI SATO

For F € L(log L)*(%), a > 0, recall that

F FI\1¢
| Pl L(1og )= = inf )\>O:/u log 2+u ds <1;.
s A A

Then, under the assumptions of Theorem 2, we can in fact prove that

(3.4) 15w flly < Cpll U £gog )22 1o

for a constant (), independent of €2, which is not stated explicitly in Theorem 2. We
shall give a proof of (3.4) in Section 6 by applying Theorem 3.

To prove Theorem 3 we apply certain vector valued inequalities, which will be
controlled by a maximal function of the form

My (f)(@) = sup | f = [l (2)] .
>0
Lemma 1.  Let ¥ be as in (3.3) and p > 1. Suppose that Q is in L*(X). Then

[ My fllp < Cpll Ll f]lp-
For 6 € X, let

My f(z) =sup — /|f (A:0) |dt

s>0 S

be the maximal function on H along a curve homogeneous with respect to the dilation
A;. To prove Lemma 1, we apply a result of M. Christ [7].

Lemma 2. Let p > 1. Then, there exists a constant C, independent of 6 such
that

(Mo fllp < Cpllfllp-

We can easily prove Lemma 1 by applying Lemma 2.

Proof of Lemma 1. By a change of variables, we have
£ 0lu(e) = [ Hay )y dy
= / / F(x(Ag0)"H|Q0)E(s)|s~ 1 dS(0) ds.
1 Jx

It follows that
A@ﬂwsmmeMﬁmmwmaw

Thus, Minkowski’s inequality and Lemma 2 imply the conclusion. O
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As indicated in [7], if we consider the Heisenberg group with 2-step dilation, then
Lemma 2 can be proved by the boundedness of a maximal function along a curve in
R? (see (7.5)), which was studied by [40]. In Section 7, we shall give a straightforward
proof of this fact.

Let H = L?((0,00),dt/t). For each k € Z and p > 2 we consider an operator Ty
defined by

(Te(F)(@) (8) = Tu(F)(,t) = f* Ce(2)x11,0) (0 "),

where ¥ is as in (3.3). The operator T} maps functions on H to H-valued functions on
H and we see that

(1) @)lsc = (/ |fwt<x>|2%>l/2— ([ e ®)™.

By Lemma 1, we have the following vector valued inequality, which will be useful in

k41

proving Theorem 3.

Lemma 3. Letl < s < oo. Then

1/2
(Z |Tk(fk)|g{> < C(log p)'? |21 (Z |ka2>
k

We can apply the converse of Holder’s inequality and Lemma 1 to prove this (see

[13]).

1/2

s

8§4. Outline of the proof of Theorem 3

Let ¢ be a C* function supported in {1/2 < r(z) < 1} such that [¢ =
o(z) = ¢(x), ¢(x) > 0 for all z € H. For p > 2, we define

Ag =5pk,-—1¢—5pk¢, keZ.

Then, supp(Ag) C {p*1/2 < r(z) < p*}, Ap = Ay and
Z Ak = 57
k

where 0 is the delta function.
We decompose
I \Ijt(x) = Z Fj(xa t):
JEL
where

= Zf * Aj—i—k * \Ift(af)X[pk’pk-i-l)(t).

kEZ
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Define

o] d 1/2 P d 1/2
vifta = ([ 1R ) =(§jATU*Aﬂ%*wMA?§>

keZ

1/2
= <Z|Tk(f*ﬁj+k)|§c> :

k

Lemma 4. Letl <s<2andp= 25", Then, there exist positive constants C e
independent of s and Q € L*(X) such that

1U; fll2 < C(s = 1)~227 W0 | £
We choose ¢; € C§°(R), j € Z, such that

supp(ih;) C {t e R: p/ <t < p/*2}, o, >0,

log2) “w;(t)=1 fort>0,
JEZ
|(d/dt)™;(t)| < epmlt]™™ form=0,1,2,...,

where ¢,, is a constant independent of p > 2. Decompose

Ye) _ > Si(@),

r(x)Y =
where o dt Q) [* dt
si) = [ sk § = [ e
with _
Ko(z) = %X[LQ](T(Q?)).

We observe that S; is supported in {p? < r(z) < 2p7T2}. Let
Lg};) (x) = E(t_lr(a:))Sm(x).

Then by the restraint of the support of £ we have

k+3
\I/t(a]')X[pk’pIc—i-l)(t): Z L,'(,rtl)(a]')X[pk’pIc—i-l)(t).
m=k—3

Consequently,

k+3

Fi(z,t) =Y > fa Dy L (@)x e pein) (8).

k€Z m=k—3
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Using this expression of F; and an analogue of the estimates in Lemma 1 of [33] (see
also [9] for related results on product homogeneous groups), which can be proved by
methods based on Tao [41], we can prove Lemma 4.

Now we are able to prove Theorem 3. First we recall the Littlewood-Paley inequality

1/2
<Z|f*Ak|2> <Collfllry, 1<7< 00,
k

T

where C, is independent of p. Let 1 < p < o0, p = 25 1< s <2 By Lemma 3 and
the Littlewood-Paley inequality we have

1/2
(4.1) 1T ()l = (Z T (f = Aj+k)|2%>
k

T

1/2
< C(log p)"/*[21 (Z | = Ak|2>

T

< C(log p)* 221l Il
for all r € (1,00). Also, by Lemma 4
(4.2) 1U; fll2 < C(log p)*22=VHQ | fl2-
Thus, interpolating between (4.1) and (4.2), we have
1U; 1l < C(log p)*22= Q5 £,
with some € > 0, which implies

1Sw flly < D10 fllp < Cpls = )220 f -
J
This completes the proof of Theorem 3.

8§5. A proof of Proposition 1

Let
f©) = fla)e ™8 dy
Rn

be the Fourier transform of f, where
ijg‘ﬁ T = xl)"'axn)a 52(5177571)

To prove Proposition 1 we apply the following Fourier transform estimates.
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Lemma 5. Lety € L?*(R"). Suppose that v is compactly supported and satisfies
(2.1). Then

2
/ ()P dt < Cmin (|€5,1€]7¢)  forall £€R™
1
with some € € (0,1).
Also, we need the following.

Lemma 6.  Suppose that ¢ is a function in L?(R™) with compact support. Let
we A Ifv=w orw™?, then we have

2
swp [ [ b @ diole)do < OIS,
kez Jrn J1

For a proof of Lemma 5 see [28].

Proof of Lemma 6. When v = w, Lemma 6 was proved in [28] (the author has
learned from [12] that Lemma 6 is also valid for v = w™! and that it is useful for
application). Now we recall the proof. We may assume that supp(¢) C {|z| < 1}.
Then, by Schwarz’s inequality we see that

1 x (@) 2 < )2 / @ —y)Pdy.

ly|<t

Since w € A, integration with respect to the measure w(z) dzr gives

(5.1) / 1 * (@) P o) de < |3 / WP / w(z) do dy

|lz—y|<t

< CulléI2 / @) Pu(y) dy

uniformly in t. Also, by duality we can prove the uniform estimate

52 17+ 0@ 0 @) do < Cullol [ 176) o ) d.
The conclusion easily follows from the estimates (5.1) and (5.2). O

We choose ¥ € C'* that is supported in {1/2 < |£| < 2} and satisfies

D@ =1 for £#£0.
JEZL

Define

o —

D;(f)(&) =W(2¢)f(§) for jeL,
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and decompose

fx (e ZF (x,t),

JEL

where

Fi(x,t) = Djsn(f * ) (@) X(or 2r+1) (1)

keZ

re = ([ ineor )"

We write 4; = {27177 < |¢] < 2'77}. Then, by the Plancherel theorem and Lemma
5 we see that

Let

ok+1
dt
53) =3[ [ D @ o
keZ R~ J92k
ok+1 A > gt A 9
<o ([ Jea] T i@ a
A ok t
keZ itk
<Zc/ min (|2¢¢ )<, [2¢€] ) | f e )‘
keZ Ajtr
. L2
<cz iy [ | e
kez” Aitk
Since the sets A; are finitely overlapping, (5.3) implies that
(54) IT5 ()3 < C2- VN fl5 = c27H) 715,

Let w € A;. If v = w or w™!, by Lemma 6 and the Littlewood-Paley inequality for
L? (note that v € Ay) we see that

2k+1

5 dt
(5.5) I175(F)IIZ2 D; « ()" — v(z) do
3 Lol 1ot :
<ZC/ 1D (f) ()] v(z) da
keZ
< C[If)17z-

Thus, by interpolation with change of measures between (5.4) and (5.5)
(5.6) 175 ()2, < C27 U2 f 2,
for a € (0,1). Choosing a so that w'/® € Ay, by (5.6) we have

IT5(F)lez < C27 =2 £ s
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From this it follows that

(5.7) 1S5 (Nllzz < D IT5(Nlz < Ol flls.

JEZ

Let M be the Hardy-Littlewood maximal operator (see Section 2) and M(f) =
(M(|f|*)(x))'/*. To prove Proposition 1, by Theorem D we may assume that p < 2.
Now we apply the idea of [12]. If 1 < s < p/(2 — p), then M4(|f|*>7P) is in A; (we may
assume that 0 < M,(|f|>"P) < 0o) and M, is bounded on LP/(>~P) Thus by Holder’s
inequality and (5.7) with v = M(|f]*7?)~!, we have

[ sutpiar s - / S ()@ Mo F ) (@) P2 M (PP ()2 da

</ S (1) (22 M ) (@) )m ([ n.0s@pres dx>1—p/2

p/2
<C (/ |f(£li)|2Ms(|f|2—p)(x)—l d:l:) ||f||g(1—p/2)

p/2
<o([i@Piwr2as) 1o
= clsl,

This completes the proof of Proposition 1.

§6. Proof of (3.4)

We can prove Theorem 2 by extrapolation arguments using Theorem 3. More
specifically, we can prove the estimate (3.4).

Let a > 0. We define the space N,(X) to be the class of the functions F' € L}(X)
for which we can find a sequence {F},,}5°_; of functions on ¥ and a sequence {b,, }5°_;
of non-negative real numbers such that

(1) F =301 bmFom,

(2) supp,>1 1Fmllisim <1,
) fo FondS =0

(4) S0 my, < oo.

For F € N, (%), let

1P|, = inf Y~ m®by,,
{bM}m:I
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where the infimum is taken over all such non-negative sequences {b,,}. We note that
Je FdS =0if F € Ny(%).

By well-known arguments we have the following (see [43, Chap. XII, pp. 119-120]
for relevant results).

Proposition 2.  Suppose that F € L*(X) and a > 0. Then, the following two
statements (1), (2) are equivalent:

(1) F € L(log L)*(X) and [, FdS = 0;
(2) F € Ny(2).
Moreover,
(3) there exist positive constants A, B such that
IF | Lgog y)e < AlFlIng, 1 Fllx, < Bl FllLog Ly
for F e No(%).
To prove Proposition 2 we use the following two elementary results.

Lemma 7. Letl <p<oo,a>0,x>2. Then, there exists a positive constant
Cy, depending only on a such that

z(logx)® < Cy(p— 1) %aP.
This was also used in [32].

Lemma 8.  Let f be a continuous, non-negative, convex function on [0,00) such
that f(0) = 0. Suppose that a series Y .-, cxaj converges, where ¢ >0, > 7 cp <1,

ar € C. Then
/ ( chak ) < chf(|ak|)-
k=1 k=1

Proof of Proposition 2. We first see that part (1) follows from part (2). Let
F € No(X). We have already noted that [ F'dS = 0. For any ¢ > 0 there exist a
sequence {b,,} of non-negative real numbers and a sequence {F,,} of functions on %

with the properties required in the definition of N, (X) such that

[e.9]
1Fllx, < > mp < |[Flw, +e.

m=1

Let A = ||F||n, + €. By Lemma 8 with f(z) = x[log(2 + x)]* and ¢ = b/, we have

|F| { ( IF|)]“ — 1 / o
Elhog (24 50 as <SS A1 | [Flllog (2 + [En])]® dS.
/E S S m§:1 E| | [log (2 + | Finl)]



92 SHUICHI SATO

It follows from Lemma 7 with p = 1+ 1/m that

|Fm | [log (2 + |Fm|)]a < Com®(2+ |Fm|)1+1/m
< Camazl/m(Ql—l—l/m + |Fm|1+1/m)
< 2C,m(4 + | E,, |1 /™).

2 (o2

= 3 A 02t (4S(5) + |l )

Thus

> A bp2C,m! / (44 |Fp T ™) dS
3

m=1

m=1
< i A 10,,20,m(4S(2) + 1)
m=1
< 20,(4S(2) + 1).
This implies that F' belongs to L(log L)%(X%) and
IF ]| Log 1ye < AN = A([|Fllx, +¢)

for some A > 0. Letting € tend to 0, we see that the first inequality of part (3) holds.
Next we prove that part (1) implies part (2). We take A > 0 such that

|F| IFINT"
— |1 2+ — <1.
/2/\ og + h\ ds <

Un=1{0€X:2" 1 <|F\(0)] <2™} form > 2,
U, = {(9 eEX: |F>\(9)| < 2}

Let F\ = F/A. We define

and decompose F\ = Z;f:l F \,m, Where
Fxm = F\xu,, — S(E)_l/ FydS.
Unm

Note that fﬁ}\,m dS = 0. If we put e, = S(Uy,), m > 1, then
(6.1) [Exmlli1ym < 22mem/tm0 for m > 1.

Define
FA m —

’

g-m—le m/MED B if ey #£0,
0, if e,, = 0.
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Let b,, = 2m+1e%/(m+l) for m > 1. Then

Fx= bmFrm, / FxmdS =0.

m=1 2

Also, by (6.1) we see that sup,,>q [|[Fxml1+1/m < 1. Furthermore, applying Young’s
inequality, we have

00 00
(6.2) Z mabm _ Z ma2m+1€z/(m+l)
m=1

m=1

[e.9] [e.9]
<2 Z (m/(m + 1))ymam+a+t/me o 9 Z m*2~"" 1/ (m 4 1)

<C Z m*2me,, +C
m=1

< [ 1R og2+ IR dS +C
>
< C.

Collecting results, we see that F' € N, and, since F' = Z;f:l Ao B\ s

> M = A Fl,

m=1

which combined with (6.2) implies that || F||n, < BA for some B > 0. So, taking the
infimum over A\, we get the second inequality of part (3). O

Let Q and ¥ be as in Theorem 2. By Proposition 2 we can decompose 2 as

Q= i b oms
m=1

where sup,,>1 [|Qmll141/m < 1 and each Qy, satisfies (3.1), while {b,,} is a sequence of
non-negative real numbers such that > °_; m!/2b,, < co. Accordingly,

U= T, Uplz) = bonl(r(a)) 2T,

Let 1 < p < co. By Theorem 3 with s = 1+ 1/m we have
1S, fllp < Com*2bun|Qumll1s1/ml flp < Com 20| £,

which implies

I1Sefllp < > 1w, flp < Cp(D m b))l £l-
m=1 m=1



94 SHUICHI SATO

Taking the infimum over {b,,} and applying Proposition 2, we get

15w fllp < Cpll w1 Fllp < CoBlIRU L aog )22 M1 £l

This completes the proof of (3.4).

§ 7. Maximal functions on the Heisenberg group with two-step dilation

We give a proof of Lemma 2 for the maximal function My on the Heisenberg group
H; with 2-step dilation by applying the boundedness of the maximal function g on
R? (see (7.5)).

Let 6 = (01,602,03) € S? and dy = |0,0203]. We may assume that dg # 0. Let

Tox = (91_1:1:1,92_1:132, 9;1:1:3).
It is convenient to define a group law u og v on R? so that
Tyx og Tyy = Ty(xy).
If u = Tyx, v = Tyy, this requires that

uop v =Ty op Tyy = Ty(wy)
= Ty(z1 +y1, 72 + Y2, 73 + Y3 + (T1Y2 — Y172)/2)
= (07 (@1 +v1), 05 " (w2 + y2), 05 (3 + y3) + 05 ' (212 — 1172)/2)
= (u1 + v1, us + o, uz + vs + (203) 710102 (urve — v1u)).

Since Ayx = (txy, two, t?x3), if a(t) = (¢, t,12),
F(@(A0)™ 1) = f(T,; ' ((Tox) og a(t) ™) = fo((Thz) o alt) ™),

where fo(z) = f(T, 'z) and a(t)~! = (—t, —t, —t?). Thus, by a change of variables, we
have
(7.1)

p
/ (Sup / |f(x(A0) |dt> da::dg/ (Sup / | fo(y og a(t) )|dt> dy.
M, \r>0T H; \r>0T
Let cp = (203) " 10105. Then we note that

Y= (y1,¥2,43) = (0,2 — 1,0) 00 (y1,y1,y3 + coy1(y2 — y1)).
Thus

(7.2) yoga(t)™ = ((0,y2 — y1,0) o9 (y1, Y1,y + coyr(y2 — y1))) o alt)
= (0,92 — ¥1,0) g ((y1,y1.y3 + coy1(y2 — y1)) og a(t) ).
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By (7.1) and (7.2), applying a change of variables, we have

(7.3)

/(sup /|f (A:0) |dt> dx
Hy r>0 T

p
=d9/ (sulgr/ | fo((0,92 — y1,0) 09 ((y1, 91, Y3 + coyr(y2 — y1)) op a(t)” ))Idt> dy
H, r>

= dp /Hl (fg%;/o | f6((0,y2,0) oo ((y1,Y1,¥3) 9 0«(75)_1))|dt> dy.

We observe that

(y1,91,93) 0 a(t) ™t = (y1 — t,y1 — t,ys — t3).

Thus (7.3) implies that

(7.4) /Hl (ig%r/ |f(x(A0) |dt) dz

p
=d0/ (sup / Fo ((0,92,0) 00 (31 — t,y1 — t,y3 — £2) |dt) dy
Hy \r>07T
= de/ (/ (Mo, (y1,y3))" dy dy3> dya,
R R2

where fo.4, (y1,93) = fo((0,¥2,0) o9 (y1,¥1,¥3)) and

(7.5) Mg(y1,y3) = Sup / lg(yr —t,ys — t2)| dt.

It is known that
[MgllLr@e) < Cpllfllzrwe)y, p>1
(see [40]). Applying this and a change of variables, we see that

(7.6) de/R (/Rz (M fo.y,(y1,93))" dy dy3) dys

< nge/R (/RQ | fo.us (Y1, y3)|” dyr dyg) dyo

=Cldo | |fo(yr,y1 + y2,y3 — coyrye)|” dy1 dya dys
Hy

=Cydo | [fo)I” dy

=0y . IFW)I” dy.
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Combining (7.4) and (7.6), we get the conclusion.

§ 8. Littlewood-Paley operators related to Bochner-Riesz means and
spherical means

Let
Sh(f)(@) = / FOA—RIEP) ST de = Hy o+ f()
l€I<R
be the Bochner-Riesz mean of order § on R™, § > —1, where
HO (@) = 708 + 1) 2 /20,1, 5. 5(2r]a])

with J, denoting the Bessel function of the first kind of order v.

For g > 0, let
M@ = st [ (=t e - )
lyl<t
where
_r(+3)
ComnE)

By taking the Fourier transform, we can embed these operators in an analytic family of
operators in 8 so that

MO(f)(x) = ¢ / f(@ — ty) do(y).

Sn—l
Now we define a Littlewood-Paley operator o5, 6 > 0, from the Bochner-Riesz
means as

1/2

5@ = ([ l©/omsin@) rar)

- ([T sane - siwer )"

and also another Littlewood-Paley operator vg, 8 +n/2 —1 > 0, from the spherical
means as

1/2

@ = ([ [@ron sp iy ar)

= (/Ooo \—2(6 +n/2—1) (Mf(f)(x) -~ Mf—l(f)(g;)) ’2 %) v ,

These Littlewood-Paley functions are related as follows.
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Theorem H.  Suppose that 6 = +n/2 —1 > 0. Then, there exist positive
constants A, B such that for all x € R™ and f € §(R™) (the Schwartz space) we have

os(f)(x) < Avg(f)(2), vs(f)(x) < Bos(f) ().

This was proved by Kaneko and Sunouchi [21].
Also, we recall a result of Carbery, Rubio de Francia and Vega [5].

Theorem I. If§d>1/2 and —1 < a <0, then

[ lostN@Plel” dr < s [ 15@Piat s

Rn

See Rubio de Francia [27] for a different proof. Theorems H and I imply the
following.

Proposition 3.  Suppose that B > 3/2 —n/2 and —1 < a < 0. Then

/ s (f)(@)||® do < CB,a/ |f (@) || da.
R™ R™

Let

ME(f)(x) = sup |MF ()]

The following weighted L? estimate can be deduced from Proposition 3.

Proposition 4.  Suppose that Re(8) > 3/2 —n/2 and —1 < a < 0. Then

/.

This is due to [38] when o = 0.
To prove Proposition 4 we use the following relation.

2
ME ()@ Joft do < Caa [ If@)Plal” do
Rn

Lemma 9. IfRe(a) > Re(d/) > —n/2,

1
ME()0) = o asm o [ ME (@)1= 52 1 g

See [38] and [40, p. 1270].

Proof of Proposition 4. Let k be the smallest non-negative integer such that 1 <
Re(B) + k. Let 3/2 —n/2 < n < Re(B). Then, by Lemma 9 and the Schwarz inequality
we have

M (f) (@) < OMT (f) ().
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where

MW*Umw=mm(%AﬂM@*qxwfdﬁvé

t>0

Also, we easily see that

M (f)(z) < Cvy(f)(@) + Cvyar(f)(@) + - + Crgan(f) (@) + CMTF(f)(2).

Note that M7+F(f) is bounded by the Hardy-Littlewood maximal function if 7 is suffi-
ciently close to Re(f). Thus, applying Proposition 3, we get the weighted inequality as
claimed. O

Define the spherical maximal operator M by

M(f)(x) = sup

t>0

/ fl@ — ty) do(y)| .
Sn—l

We note that M(f)(x) = cM2(f)(z). The following weighted norm inequality for M is
due to Duoandikoetxea and Vega [15].

Theorem J.  Suppose that n > 2 and n/(n — 1) < p. Then the inequality

[ ptp@ple de < e [ 1Pl o

n

holds for 1 —n < a <p(n—1) —n.

This was partly proved by Rubio de Francia [26].

When a = 0, Theorem J was proved by Stein [38] for n > 3 and by Bourgain
[3] for n = 2. We can find in Sogge [35] a proof of the result of Bourgain which has
some features in common with a proof, also given in [35], of Carbery’s result [4] for the
maximal Bochner-Riesz operator on R2.

We can give a different proof of Theorem J when n > 3, 1 —n < a < 0 and
p >n/(n — 1) by applying Proposition 4. To see this, first we note that

(8.1) /JMﬂﬁ@WWPMSC/Iﬂ@WWWx

n

when 1 < p<oo, —n < a <n(p—1) and Re(f) > 1, since Mf(f) is pointwise bounded
by the Hardy-Littlewood maximal function. On the other hand, by Proposition 4 we
have

(52 | M p@pPlardr < [ (f@pPial .
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if Re(8) > (2—n)/2 and —1 < a < 0. By an interpolation argument involving (8.1) and
(8.2), we see that for any p > n/(n—1) and o € (1 —n,0), there exist r € (n/(n—1),p)
and 7 € (1 —n,«) such that

/n IM(f)(@)]"|z|" do < C/Rn |f(x)]"|2|" de.

Interpolating between this estimate and the unweighted L” estimate for M, since 7 <
a < 0, we have

| pen@rialde<c [ el de

Since r < p < 00, interpolating between this and the obvious L (|z|%) estimate for M,
we get the LP(|x|*) boundedness of M as claimed. (A similar argument can be found
in [29]; see also [30].)

Finally, we prove Theorem J whenn > 2,0 < a <p(n—1)—nandp > n/(n—1) by
the methods of [15]. We write wq (x) = |z|*. It is known that the pointwise inequality
M(wq) < Cw, holds if and only if o € (1 — n,0] (see [15]). Let

Talg) = wy " M(wag)
for a € (1 —n,0]. Then, T, is bounded on L, as we see that

(8.3) 1Ta (@)oo < llglloollwa* M(wa)llso < Cllglloo-

Let r € (n/(n —1),p). Since M is bounded on L", we have

80 [ m@@re@d= [ Plug@l < [ o)) d.

n Rn

Interpolation between (8.3) and (8.4) will imply that

[ tto@puiar < [ gl

This can be expressed as

[ pp@pe; 7@ s <c [ (f@pe @) ds

R

for any a € (1 —n,0] and r € (n/(n — 1),p), which implies the result as claimed.
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