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a-Modulation Spaces and the Cauchy Problem for
Nonlinear Schrodinger Equations
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Abstract

The a-modulation spaces, introduced by P. Grébner [11], are proposed as intermediate
function spaces between modulation space and Besov space. In this paper we survey our
recent works on some properties of a-modulation spaces including its dual spaces, complex
interpolation, algebra structures, scaling property and the embedding between different «-
modulation spaces and Besov spaces. We then outline our recent results on the initial value
problem of nonlinear Schrédinger equations in a-modulation spaces. Our results contain the
global in time solutions with small initial data in a-modulation spaces My'{", which can be out
of the control of critical Sobolev spaces H?®¢.

§1. Backgrounds

It is well known that Besov space can be constructed via dyadic decomposition to
frequency space. Let {¢p; };";0 be a sequence of smooth functions with ¢g supported in
the unit ball B(0,1) and ¢; (j > 1) supported in the dyadic C; = {£ € R" : 2172 <
€] < 2772} satisfying

D (@) =1, VEeR™
j=0
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Let 6(R™) and &'(R™) be the Schwartz space and its dual space, respectively. For
0 <p,q<ooandseR, we can define Besov space as

1
q

By (R") =S fe &R :[|flss, = | D 2" e;(D)fl, | <oy,
=0

with some usual modification when ¢ = oco.

Modulation spaces which were introduced by Feichtinger [10] in 1983 can be de-
fined via the frequency-uniform decompositions. Let {0y }xez» be a sequence of smooth
functions with oy supported in k 4+ [—1, 1]™ satisfying

d o) =1, VEeR™

kezn

For 0 < p,q < oo and s € R, modulation spaces are defined as

My ,(R") == fe &' R"): [ fllagg, = (Z (k>sqllak(D)f||qu> <00,

kezr

with some usual modification when ¢ = oo.
One easily sees that the essential difference between these two types of decomposi-
tions is that the diameters of supp ¢, and supp o are O(27) and O(1), respectively.
The a-modulation spaces My, introduced by Grébner [11], are proposed to be
intermediate function spaces to connect modulation space and Besov space, with respect
to parameters a € [0, 1], using the concepts of a-covering to frequency space and the
corresponding p-BAPU. A countable set Q of subsets @ € R" is called an a-covering
provided that!
Ue=r" @~ )" Y&Heq,
QeQ
and for any @, there exists at most finitely many Q' € Q which intersects @ and the
number of such @’ has a finite upper bound which is independent of (). This forms
a third decomposition to R"™, where we want to emphasize that the diameter of @) is
equivalent to (dist(0, @))®.
Corresponding to an a-covering Q, a sequence {pg}geco of smooth functions is
called a bounded admissible partition of unity of order p (p-BAPU), provided that pg
is supported in ) and

sup |Q P THF ool pine <00, D pe(§) =1,¥ £ €R™
QeQ Oco

1|@Q| denotes the Lebesgue measure of Q
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For 0 < a < 1,0 < p,qg < oo and s € R, one can introduce Grobner’s a-modulation
spaces in the following way

Q=

My (R™) := ¢ f € &' (R™) : || fllagge == | D (dist(0,Q))*[lpo(D)fI|%, | <oop,
QeQ

with some usual modification when ¢ = oco.

Modulation space is special a-modulation space in the case a = 0, and Besov space
can be regarded as the limit case of a-modulation space when o 1. Modulation spaces
were first introduced by Feichtinger in the study of time-frequency analysis to consider
the decay property of a function in both physical and frequency spaces and his original
idea is to use the short-time Fourier transform of a tempered distribution equipping with
a mixed L?(LP)-norm to generate M . Grochenig’s book [12] systematically discussed
the theory of time-frequency analysis and modulation spaces.

In the past decade, many works are devoted to the global well-posedness problem
for the nonlinear evolution equations with initial data in modulation spaces, particularly,
for the NLS (cf. [1, 2, 5, 6, 7, 8, 9, 15, 20, 21, 22, 23])

(1.1) i0pu + Au = £|u*u, u(0) = u,
where k € N, u is a complex valued function of (¢,z) € R xR™, A denotes the Laplacian
on R" and ug is the initial data at t = 0.

It is well known that Cazenave-Weissler [4] obtained the local well-posedness result
for NLS in the critical space H %_%, and the local solution is global if the initial data
in H%~% is small enough. Namely, we can solve NLS in critical and subcritical Sobolev

spaces H® (s > n/2—1/k). However, up to now there is no systematic method to solve
NLS in the supercritical Sobolev spaces H® (s < n/2 —1/k). Recall the embedding

My C B3y C H®, My4®™ ¢ B3?, s1 < sa.
If we can solve NLS in a-modulation spaces My} for some s < n/2 — 1/k, then we

obtain the well-posedness of NLS with a class of data out of the critical Sobolev spaces
1

H=z %,

§2. Definition and basic properties of a-modulation spaces

First, we define a-modulation spaces using a delicate p-BAPU ([3]). Let us denote
01 (2" LP) = {{gtrezr : gk € & (R™), [|[(F)T= [lgrllp || .. < o0} -
If there is no explanation, we will always assume that

seR, 0<p,g<o0, 0<a<l.
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Let us start with the third partition of unity on frequency space for o € [0,1). We
suppose ¢ < 1 and C' > 1 are two positive constants, which relate to the space dimension
n, and a Schwartz function sequence {ny }rczn satisfying

(2.1a) R 21, VE: |6 — (k)T k| < c(k) TR,
(2.1b) suppry C {€: 6 — (k)T k| < O(k) T };
(2.1¢) D g WE =1, VEER™,

(2.1d) (k)T | DPnR(€)| S 1, VEE€R™

We denote

(2:2) T = {{n% trezr : {0} }uezn satisfies (2.1a) — (2.1d) }

Corresponding to every sequence {ng }rez» € T, one can construct an operator sequence
denoted by {00} ez~ , and

(2.3) F =TS

T is nonempty. Indeed, let p be a smooth radial bump function supported in B(0,2),
satisfying p(§) =1 as || < 1, and p(§) =0 as |{| > 2. For any k € Z", we set

pE(©) = o (6= () ™=k /(1) T
and denote i
i (&) = pi(§) (Z P?‘(é)) :
lez™
It is easy to verify that {n} }xcz» satisfies (2.1). This type of decomposition on frequency
space is a generalization of the uniform decomposition and the dyadic decomposition.

When 0 < a < 1, on the basis of this decomposition, we define the a-modulation space
by

24)  MEe®R") ={f € &'®R") : |fllags = 105 frczr g . gz < 00}

We mention that either {ny }rezn or {p} }rezn forms p-BAPU according to Grébner’s
definition, and generates the same a-modulation spaces with equivalent norms.
Strictly speaking, the definition (2.4) dose not cover the case a = 1, however, we
will denote M;’;; = B, , for convenience.
The basic properties of a-modulation spaces include:

Proposition 2.1 (Completeness). My3 is a quasi-Banach space, and is a Ba-
nach space unless 1 < p< oo and 1 < g < oo. We have

(2.5) S(R") C MZS(R") C & (R™).

Moreover, if 0 < p,q < oo, then S(R"™) is dense in Mgo
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Proposition 2.2 (Embedding).  Suppose p1 < p2, we have
(i) if g1 < g2 and s1 > $o —I—na(i — l), then

P D2
(2.6) Myt © Mo,
(i) if @ > q2 and s1 > o + na(pll — piz) +n(l— a)(qi2 — qil), then
o) Mg © Mz,

Proposition 2.3.  My5 (R") = H*(R") with equivalent norms.

It is known that the dual space of Besov space By , is B f;;;l*(l({] (\5)1/31)_1) (see [19])

and the dual space of modulation space My, is M7\ 1)- (see [21]). The duality

for a-modulation spaces is:

Theorem 2.4.  Suppose 0 < p,q < oo, then we have

s.a\ * —s+na %—1
(2.8) (Mye) =M (1),

T (vp)*r,(ve)*

The complex interpolation for Besov spaces has a perfect theory; cf. [19]. Without
any essential difference, we imitate the counterpart for the Besov space to construct the
complex interpolation for a-modulation spaces, which will be repeatedly used in the
following argument.

Theorem 2.5.  Suppose 0 < 0 <1 and
1 1-6 40 1 1-6 0

(2.9) s=(1-0)sp+0sy, —= + L, S = + 2
p Po Y41 q do q1

then we have

(2.10) (Myos, Mpbet) ) = Mye'.

Po,9q0° P1,491

8§ 3. Scaling property of a-modulation spaces

Suppose f € &'(R™) and A > 0, we write fy(-) = f(A:). For Besov space, it is well
known that

(3.1) Il SAFAV A Sz,

For modulation spaces with s =0 and 1 < p, g < oo, the dilation property was obtained
in Sugimoto and Tomita [17] and they obtained a sharp result:

(32) Il 37 (1v a8 G Y g
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In order to study the scaling property of a-modulation spaces, for 0 < p,q < oo and
(a1, ) € [0,1] x [0, 1], we define

(3-3) R(p,q;a1,a2) =0V [ (a1 —a2)(; — %)] Vv [n(oél —az)(3+ 37— 1)] :

Then, Rﬁ_ is divided into three sub-domains in two ways (see Fig.1). One way is,
R%— = Sl U SQ U S3 with

s={G-Pergz3 <)
S={( e fri>11>4):
S3 = R2\{S; USs},

Another way is, R = T; UTy U T3 with
n={GDer }> 1> 4
- {(G ] eRif+ g i)

T3 = R3\{T; UTs}.

If a1 > a, then

n(ar —az)(; — 1), (3:9) €515
(3.4) R(p,q; o1, 02) =  nfar — az) (5 + 2 — 1), (3:9) €S2
0, (5:¢) €3

Else if a; < as, then

07 (% %) € T37
(3.5) R(p,qia1,00) = {n(a —a) (2 +2—1),  (£,1) €Ty
n(al — 052)(% - %), (%, %) € Tl

Let us write s, =n(1/(1 Ap)—1) and

R(p,q;1, ), A> 1,

(3.6) Se =
_R(p7Q; Oé,l), A < 1.
The scaling property for a-modulation spaces can be stated as:

Theorem 3.1. Let0<a <1,A>0 and s # —sc. Then for any f € My, w
have

(3.7) Ifallarge S AT [V AP VAT | fllaggs-
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(1,0) 1
' /P 0,0)"

Vo

Figure 1. Distribution of s.. The left-hand side figure is for A > 1, the right-hand side figure
is for A < 1.

Conversely, if there exists some F : (0,00) — R such that

1A lazze S AP FN)Fllage

for all f € M3%, then F(\) > (1V \)% Vv \STse,

p,q 7’

§4. Embedding between different a-modulation spaces and Besov space

As 1 < p,q < oo, some sufficient conditions for the inclusions between modulation
and Besov spaces were obtained by Grobner [11], then Toft [18] improved Grdbner’s
sufficient conditions, which were proven to be necessary by Sugimoto and Tomita [17].
Their results were generalized to the cases 0 < p,q < oo in [21, 22]. Grobner [11]
also considered the inclusions between «;-modulation and as-modulation spaces for
1 < p,q < co. We improve Grobner’s results in the cases 1 < p,q < oo and the cases
0 < p,q < 1 will also be considered.

The embedding between different a-modulation spaces is the following.

Theorem 4.1.  Let (a1,a2) € [0,1) x [0,1). Then

(4.1) Myt € Mp5ee
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if and only if s > so + R(p,q; a1, 2).
The embedding between a-modulation spaces and Besov space is the following.

Theorem 4.2.  Let a € [0,1). Then Bp!, C M3%® if and only if s1 > sa +

R(p,q;1,). Conversely, MjL.* C B2, if and only if s1 > s2 + R(p,q; , 1).

85. Algebraic property of a-modulation spaces

The algebraic property of a-modulation spaces is important, which provides the
ways to get the estimate of the nonlinear terms of the partial differential equations.

For Besov space, it is well known that if s > n/p, B, , forms a multiplication alge-
bra. But for a-modulation space, the issue is much more complicated. The conditions
for which M7 constitutes a multiplication algebra, are quite different from those of
Besov and modulation spaces. Up to now, it is not very clear for us to know the sharp
low bound of the index s for which M, constitutes a multiplication algebra. When
(1/p, 1/q) € [0,1] x [0,1] (the case of Banach space), the expected ideal critical value

| " w(1-1),

is
p q

but it seems hard to reach it in some area of (1/p,1/q). We introduce a parameter,

denoted by sog = so(p, q; @), to describe the regularity for which M- with s > sg forms

a multiplication algebra. Denote (see Figure 2)

11 2.1 2 1 1 _ 2
Di={(3 1) er::1>2 1<} D, =RI\D,

and
1 na(l—a) (1 _ 2 11
o = %—I—n(l—a)(l—l/\a)—l— 5 o (1(6)_1_7)’ (E’E)EDI’
1,1 1 na(l—a 1,1 11
Theorem 5.1.  If s > so, then Mpy* is a multiplication algebra, which is equiv-
alent to say that for any f,g € My g, we have
(5.1) 1f9llaege S N Fllaagellgllarg e

We sketch the ideas in the proof of the algebraic structure. According to the
definition,

1/q
(5.2) | Follarzy = (Z <k>qs/(1_°‘)|I3‘1n?S(fg)II%p(Rn)> ,

kezn
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Dy 1
(2,1)

(0,0) %)

Figure 2. Distribution of sg

where
suppry C {€: € — (k)T k| < C(k)™= }.

One has that

(5.3) Or(fo) = Y. > RS DYwg)

kD) eczn k(2 ezn

If we insert (5.3) into (5.2), then we have three summations

20 2 2L

kezm  kMezn k(2 ezn

So, we must remove the summation on k € Z™. The case for modulation spaces (« = 0)
is easier, since

suppny, C {|€ — k| < C},

which leads to
k— kY — k@ <.

So, the summation on k is, in fact finite. However, if 0 < a < 1, from

D%(ngf DZ(z)Q) #0
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we have
(5:4) (B) 75 (= ) < (kD) 5 (1) + 0) + (k@) == (17 + €),
(5-5) (k)T (ky + C) > (BO)T7 (kY — 0) + (k) 77 (k52 - ©).

Namely, the summation on k satisfies (5.4) and (5.5). To control the summation on
k, one needs to carefully calculate the number of k in (5.4) and (5.5). The condition
s > s¢ is mainly used for controlling summation on k.

Remark. We know that Mgo’l is an algebra. But for M>%, we only showed

oo,1

that for s > %, it becomes a Banach algebra. Up to now, we do not know if
s > %;O‘) is necessary for the algebraic structure of M3". We can show that our

results are optimal in some special cases:

Theorem 5.2. Let0<a <1, (1/p,1/q) € D2, p>1. If s < sg, then Mg is
not a Banach algebra.

8§6. Global well-posedness for NLS in a-modulation spaces

From Theorem 4.2, we see that if s; > so, then M;}l’o‘ C B;?l. However, if s1 < s9,
then M5y ¢ By?. In fact, we define f by

o~ —n— 51—":22
- Ik|z>>:1<k> Xy T k)

Direct calculation shows that || f]] My <1 but || f]] Bz = 00 (which implies || f|| =2 =
00). So, for any s < n/2—1/k, there exist a class of data, which are small in M;[* but
can be arbitrarily large in H"/2-1/%,

Now we state a global well posedness result for the NLS in My} Let 6 € [0,1] be
a parameter. We set p1,q1;p2,qe by:

1 _ 1-6 0 1 _ 1-9 0
(6 1) 1 - o + 2642 72 2k + 26+2
) 1104 0 ’ 1104 0
p1 2 2k+2 p2 o0 2k+2

For n > 1, we define 0,605 and 603 as

[k + 1+ a(nk—2)]0; =k +1,

[m+1+a(nﬁ—2)]egz% [(1—a) <@+%+1)

(6.2) —-2k+1—-a) (s— % + 3)] ,
[m+1+a(nn—2)]93=(12j_(2—;1_)1 [(2—04) (s—ﬁ-l-g)
+(1+0z)f<a— 1—04(1—04)(7%;—!—2)]

2K

9
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and for n = 1, we additionally define

(6.3) 6+ 1+ (s — 2)]0s = (26 +2) (a—s—%).

We assume that 6 satisfies

(64) 0\/(92§(9§(93/\91, n22,
(6.5) O0VOs VO, <O<O5N01, 00y, n=1

The components to construct the compound function spaces:

”u“Pl»ql;l = Z Z <k> =

i=1 kezZr,|k[>1
n

lllpaguis = - D (Rye= - CoOCE =) 0ol g g e
i=1keZn T @) it

I [F—— k) T55 ~ 155 5553 |02 2nse.
P3,43; k Lta:
kczn ’

(+55 008 | O o s
T ()it

The working space X is defined as:

X ={ue&R"):[lulx = |ul

N2_ (pi,qi3l) < OO}

We set

_na o« a(l —a)(nk +2)
(6:6) Se = R 2k[(1+a)k+1—q]

2

Theorem 6.1. Let nk > 2, 0 < a <1 and 0 be as in (6.4) and (6.5). Suppose
ug € M3\ with s > s. and ||U0||M§;f“ < § for some small positive number 6. Then NLS
(1.1) has a unique solution

ue C(R,M;T)NX,

and ||lul|x < 9.

Remark.  Noticing that s, = 0 for « = 0 and s, = n/2 — 1/k for a = 1, which
are the critical indices for NLS in modulation and Sobolev spaces, respectively. So,
Theorem 6.1 is optimal in the end point cases a = 0, 1.
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