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Topological instability of laminar flows for the

two‐dimensional Navier‐Stokes equation with circular

arc no‐slip boundary conditions

By

Tsuyoshi Yoneda *

Abstract

In the non‐stationary two‐dimensional Navier‐Stokes equation with circular arc no‐slip
boundary conditions, topologically changing flow, namely, some kind of instability is observed.

§1. Introduction and main result

Ohya and Karasudani [12] developed a new wind turbine system that consists of a dif‐

fuser shroud with a broad‐ring at the exit periphery and a wind turbine inside it. Their

experiments show that a diffuser‐shaped (not nozzle‐shaped) structure can accelerate

the wind at the entrance of the body (we say \backslash \backslash \mathrm{w}\mathrm{i}\mathrm{n}\mathrm{d}‐lends phenomena�). A strong vortex

formation with a low‐pressure region is created behind the broad brim. Accordingly, the

wind flows into a low‐pressure region, the wind velocity is accelerated further near the

entrance of the diffuser. In general, creation of a vortex needs separation phenomena
near a boundary (namely, topologically changing phenomena), and before separating
from the boundary, the flow moves toward reverse direction near the boundary against
the laminar flow direction.

In \backslash 

boundary layer theory� (BLT) point of view, such phenomena itself is well studied.

Our main purpose isjust propose
\backslash local pressure analysis method� through (well‐known)

separation phenomena. In the beginning of 20th century, Prandtl proposed BLT, and

it has been developing extensively (see Rosenhead [13] and Bakker [1] for example).
Basically, BLT equations can be deduced from the Navier‐Stokes equations. Van Dom‐

melen and Shen [3] made a key observation of shock singularities, which helps us to
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analyze separation phenomena deeply. Ma and Wang [9] provided a characterization of

the boundary layer separation of 2‐D incompressible viscous fluids. They considered a

separation equation linking a separation location and a time with the Reynolds number,
the external forcing and the initial velocity field. Due to the limitation of space and the

vast literature in the BLT, we do not try to do a complete survey here.

However, we need to mention the results related to the BLT (in other words, wake region)
in pure mathematics. Using the Oseen system is one of the mathematical approach to

analyze the wake region. For the detailed discussion of the Oseen system, we refer

the reader to [6]. In a convex obstacle case, the character of the system is elliptic
in front of the obstacle. To the contrary, its character changes into parabolic type

(wake region) behind the obstacle (see [8] for example). Maekawa [10] considered the

two‐dimensional Navier‐Stokes equations in a half plane under the no‐slip boundary
condition. He established a solution formula for the vorticity equations and got a

sufficient condition on the initial data for the vorticity to blow up to the inviscid limit.

In this paper we show that a diffuser‐shaped boundary induces the reverse flow even near

the entrance of the diffuser (by using
\backslash local pressure analysis method�). Let us be more

precise. We consider the two‐dimensional Navier‐Stokes equation in  $\Omega$\subset \mathbb{R}^{2} (dene  $\Omega$

later) with no‐slip and inow‐outow conditions on @. We need to handle a shape of the

boundary @  $\Omega$ precisely, thus we set a parametrized smooth boundary  $\varphi$ : [0, S]\rightarrow \mathbb{R}^{2} as

|\partial_{s} $\varphi$(s)|=1, |\partial_{s}^{2} $\varphi$(s)|= $\kappa$ (curvature),  $\varphi$(0)=(0,0) , @  $\phi$ (0) =(1,0) , \partial_{s}^{2} $\varphi$(0)=(0, - $\kappa$) .

We choose S later (should be sufficiently small). We dene n=n(s) :=(\partial_{s} $\varphi$(s))^{\perp} as a

unit normal vector and  $\tau$= $\tau$(s) = @  $\phi$ (s) as a unit tangent vector, where \perp represents

upward direction. In order to dene the domain  $\Omega$
,

we need the following coordinate.

Denition 1.1. (Normal coordinate.) For  s\in[0, S] and r\in[0, R] ,
let

 $\Phi$(s, r)=$\Phi$_{ $\varphi$}(s, r):=n(s)r+ $\varphi$(s) .

Remark 1.2. Since @n(s) = $\kappa \tau$(s) (Frenet‐Serret formulas), we see that

(@)(s; r)=n(s) and (@ )(s; r)=(r $\kappa$+1) $\tau$(s) .

Now we dene the domain  $\Omega$ as follows:

 $\Omega$=$\Omega$_{S,R}:=\{ $\Phi$(s, r)\in \mathbb{R}^{2}:s\in(0, S) , r\in(0, R

Note that we will take S and R to be sufficiently small depending on the initial data

and the inow condition (see Remark 1.6). The non‐stationary two‐dimensional Navier‐

Stokes equation is expressed as

(1.1) \left\{\begin{array}{ll}
\partial_{t}u-v\triangle u+(u\cdot\nabla)u=-\nabla p, & \nabla\cdot u=0 in  $\Omega$\subset \mathbb{R}^{2},\\
u|_{\bigcup_{\mathrm{s}=0}^{s} $\varphi$(s)}=0, & 
\end{array}\right.
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where u=u(x)=u(x, t)=(u^{1}(x_{1}, x_{2}, t), u^{2}(x_{1}, x_{2}, t)) . In this paper we sometimes

abbreviate the time t not x.

Denition 1.3. (Inow condition) Let u_{in}(r) :=(u\cdot $\tau$)( $\Phi$(0, r)) be \mathrm{a} (smooth)
inow with rightward direction, namely, \partial_{r}u_{in}(r)>0 . Also assume (u\cdot n)( $\Phi$(0, r))=0
(this condition is just for a technical reason, expressing parallel prole to the boundary).
Let $\alpha$_{1}, $\alpha$_{2}, $\alpha$_{3}\in C^{\infty}([0, \infty)) be coefficients of the time dependent inow condition,

namely,

u_{in}(r)=(u\displaystyle \cdot $\tau$)( $\Phi$(0, r))=$\alpha$_{1}(t)r-\frac{$\alpha$_{2}(t)}{2!}r^{2}+\frac{$\alpha$_{3}(t)}{3!}r^{3}+O(r^{4})_{:}
Since \partial_{r}u_{in}(r)>0 ,

we see that $\alpha$_{1}(t)>0 . Assume also the inow does not grow

polynomially for r direction (this is due to the observation of \backslash 

boundary layer�, since

the inow prole should be a uniform one away from the boundary), thus, it is reasonable

to focus on the following two cases:

\bullet (Poiseuille type prole) $\alpha$_{1}(t)>0, $\alpha$_{2}(t)>0 and $\alpha$_{3}(t) is small compare with $\alpha$_{1}(t)
and $\alpha$_{2}(t) ,

\bullet (Before separation prole) $\alpha$_{2}(t)<0, $\alpha$_{3}(t)<0 and $\alpha$_{1}(t) is small compare with

$\alpha$_{2}(t) and $\alpha$_{3}(t) .

In this point of view, the following assumption is acceptable:

$\kappa$^{2}$\alpha$_{1}(t)+2 $\kappa \alpha$_{2}(t)-$\alpha$_{3}(t)>C>0 (see Theorem 1.10):

Remark 1.4. The case $\alpha$_{1}(t)\searrow 0(t\rightarrow t_{0}) expresses nothing more than @‐

singular (see [9]) which represents separation at the origin and a time t_{0} . Namely, if

separation occurs, $\alpha$_{1}(t) must be zero.

We assume that there exists a smooth solution except for the origin, namely, assume

that there exists a pair of solution (u,p) to (1.1) in

u, p\in C^{\infty}([0, T]\times D)\cap C^{\infty}((0, T]\times(\overline{ $\Omega$}\backslash B)) for any  D\subset $\Omega$ and  $\epsilon$>0,

where B_{ $\epsilon$}=\{x\in \mathbb{R}^{2} : |x|< $\epsilon$\} . In the physical point of view, finite energy should be

required. More precisely,

u\in L^{\infty}(0, T;L^{2} and \nabla u\in L^{2}(0, T;L^{2}

should be required. Since we only consider the flow near the origin,
\backslash local finite energy

near the origin� must be the condition we need to check. It is out of the main topic in

this paper, thus we do not mention more about it.
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Remark 1.5. Combining a result of Navier‐Stokes initial value problem in Lip‐
schitz domain [11], a boundary regularity result [7] (We believe we can generalize their

result to various smooth domains) and an inhomogeneous boundary result [5] (see also

[4]), the above existence and smoothness assumptions should become true. However,

regularity at the origin should be more delicate. If the origin is smooth, the following
ODE (which comes from the inow condition) must have a solution (see Remark 1.11

also):
\partial_{t}$\alpha$_{1}(t)=-v(4$\alpha$_{1}(t) $\beta$(t)+$\kappa$^{2}$\alpha$_{1}(t)+2 $\kappa \alpha$_{2}(t)-$\alpha$_{3}(t)) ,

where  $\beta$(t) is a quantied geometrical behavior of the laminar flow (see Denition 1.8).
The point it that the coefficient $\alpha$_{1}(t) is determined by $\alpha$_{2}(t) , $\alpha$_{3}(t) ,  $\beta$(t) and  $\kappa$ . This

means that we cannot set arbitrary smooth inow in order to have the smoothness at

the origin.

Remark 1.6. We can avoid interior blow‐up by taking sufficiently small  R.

Thus we only need to care boundary regularity not interior regularity. Moreover we

can also avoid boundary blow‐up except for the origin by taking sufficiently small S.

Thus it is reasonable to assume T to be sufficiently large (for sufficiently small S and

R) .

Denition 1.7. (Laminar flow.) u is \backslash laminar flow� (near the origin) iff u is

smooth (including the origin) in \overline{ $\Omega$}, |u(x)|\neq 0 for  x\in $\Omega$ and the flow  u is to the

rightward direction (laminar flow direction), namely,

(u\cdot $\tau$)(x)>0

for x\in $\Omega$.

We mainly consider a geometrical shape of the laminar flow near the origin. In this

case, one of the five situations only occur (for fixed time t ): (geometrically) diffusing,
almost parallel, concentrating laminar flows, topologically changing flow (inducing the

reverse flow) or non‐smoothness (singularity) at the origin. Sometimes we write u\cdot $\tau$=

(u\cdot $\tau$)(s, r)=(u\cdot $\tau$)(s, r, t)=(u\cdot $\tau$)(x, t) with x= $\Phi$(s, r) unless confusion occurs.

Denition 1.8. (Classication of Navier‐Stokes flow for fixed time.) Let

\mathcal{L}_{t}(s, r)=\mathcal{L}(s, r) :=(r $\kappa$+1)\displaystyle \frac{u\cdot.n}{u $\tau$} (slope of the velocity with Riemannian metric)

and let  $\beta$ be a quantied geometrical behavior of the laminar flow (near the origin):

 $\beta$= $\beta$(t):=\displaystyle \lim_{s,r\rightarrow 0}\partial_{s}\partial_{r}\mathcal{L}(s, r) .
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\bullet Diffusing laminar flow: We call (geometrically) diffusing laminar flow iff  u,  p\in

 C^{\infty}() and

 $\beta$(t)>0.

\bullet Almost parallel laminar flow: We call (geometrically) almost parallel laminar flow

iff  u, p\in C^{\infty}() and

 $\beta$(t)=0.

\bullet Concentrating laminar flow: We call (geometrically) concentrating laminar flow iff

 u, p\in C^{\infty}() and

 $\beta$(t)<0.

\bullet Topologically changing flow (not laminar flow case): We say topologically changing
flow iff  u, p\in C^{\infty}() and there is  x\in $\Omega$ such that |u(x)|=0 or (u\cdot $\tau$)(x)\leq 0.

\bullet Non‐smoothness at the origin: We say non‐smoothness at the origin (for fixed t) iff

 u t)\not\in C^{\infty}( $\Omega$\cap B_{ $\epsilon$}) or p t)\not\in C^{\infty}( $\Omega$\cap B_{ $\epsilon$}) for  $\epsilon$>0.

In order to give the main theorem, we need to dene \backslash \backslash 

trajectory�

Denition 1.9. (Trajectory.) Let \tilde{ $\gamma$}_{X} : [0, T) \rightarrow $\Omega$ be such that

\partial_{t}\tilde{ $\gamma$}_{X}(t)=u(\tilde{ $\gamma$}_{X}(t), t) , $\gamma$_{X}(0)=X\in $\Omega$.

Note that the equation (1.1) can be rewritten to @ (u(\tilde{}(t); t))=(\triangle u-\nabla p)(\sim(t), t) .

The following is the main theorem.

Theorem 1.10. (Horizontally stopping particles phenomena.) Let the initial da‐

tum u_{0} satises the diffusing laminar flow condition, namely,  $\beta$(0)>0 . For any given
smooth inow u_{in}(r) with $\kappa$^{2}$\alpha$_{1}+2 $\kappa \alpha$_{2}-$\alpha$_{3}>C>0 (see Denition 1.3) then the

topologically changing flow (or non‐smoothness at the origin) must occur in finite time.

In other words, particles near the boundary slow down and finally stop horizontally in

finite time. More precisely, there is \overline{R}<R such that if \overline{r}<\overline{R} , then

\displaystyle \lim_{t\rightarrow\tilde{T}}(u\cdot $\tau$)(\tilde{ $\gamma$}_{ $\Phi$(0,\overline{r})}(t), t)=0,
where \tilde{T}(<T) is depending on \overline{r}, v,  $\kappa$, $\alpha$_{1}, $\alpha$_{2} and $\alpha$_{3}.

Remark 1.11. In order to keep the smoothness at the origin, $\alpha$_{1}(t) must satisfy

\partial_{t}$\alpha$_{1}(t)=-v(4$\alpha$_{1}(t) $\beta$(t)+$\kappa$^{2}$\alpha$_{1}(t)+2 $\kappa \alpha$_{2}(t)-$\alpha$_{3}(t)) .

Otherwise, non‐smoothness immediately occurs. This is due to the �breaking effect�

(see [15]). In this case, we have $\alpha$_{1}(t)\searrow 0 as t\rightarrow\tilde{T} (this expresses @‐singular, see [9]).
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Remark 1.12. There are direct and indirect evidences for the validity of the
\backslash Kutta condition� in restricted regions (see [2]). The method used in the above theorem

may give another support for the validity of the Kutta condition in pure mathematical

sense. Moreover, we may be able to apply the method to
\backslash 

Taylor vortices� (see Chapter

II, Section 4 in [14]) which is closely related to the bifurcation theory.

Now we give outline of the proof briey. Basically, we need to estimate trajectory of a

particle near the boundary. In order to do so, we need to estimate each \triangle u and \nabla p near

the boundary. First we construct
�

streamline coordinate
�

and then we can estimate

\triangle u directly. Next we construct �pressure coordinate
�

based on level set of the pressure

and no‐slip boundary condition. In this case, \triangle u=\nabla p on the boundary is the crucial

point. Third we calculate some kind of Riemannian metric of the �pressure coordinate�

at the origin (the pressure is nonlocal operator, nevertheless we can estimate it by using
orders of approximation). For the detailed proof, see [15].
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