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The 2‐part of the non‐abelian Brumer‐Stark

conjecture for extensions with group D_{4p} and

numerical examples of the conjecture

By

Jiro Nomura *

Abstract

Andreas Nickel formulated in [12] non‐abelian generalizations of the Brumer and Brumer‐

Stark conjectures. This paper has two main purposes. The first is to give an improvement of

[15, Theorem 5.1 (2)] on the generalized conjectures. The second is to give numerical examples
of the conjectures. Using the numerical examples, we explain the meaning of the conjectures.
Especially, we explain why it is reasonable to conjecture that Stickelberger elements come from

reduced norms, and why we need the \backslash denominator ideals�.

§1. Introduction

Let K/k be a finite Galois extension of number fields with Galois group G . In the

case G is abelian, \backslash \backslash \mathrm{t}\mathrm{h}\mathrm{e} Brumer‐Stark conjecture� and \backslash \backslash \mathrm{t}\mathrm{h}\mathrm{e} Brumer conjecture� have

been studied for many years. These conjectures predict a deep relation between the

special values of L‐functions attached to K/k and the Galois module structure of the

ideal class group of K . There exists a large body of evidence of these conjectures, see

for example [16], [10] and [5].
In the case G is non‐abelian, Andreas Nickel recently formulated non‐abelian gener‐

alizations of those two conjectures in [12] (for the explicit formulations, see §4). Several

results are obtained for these generalized conjectures, see for example [11], [13] and [15].
Let p be an odd prime, D_{4p} the dihedral group of order 4p and $\zeta$_{p} a complex

primitive p‐th root of unity. In [12] Nickel also formulated the \backslash \backslash weak versions� of the
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generalized conjectures (for the explicit formulations, see [12, §2]). Concerning Nickel�s

(weak) conjectures, the author proved the following theorem in his previous paper:

Theorem 1.1 ([15] Theorem 5.1). Let K/k be a finite Galois CM‐extension of
number fields whose Galois group is isomorphic to D_{4p} . Then

(1) f0or an odd prime l (l can be p) which does not split in \mathbb{Q}($\zeta$_{p}) , the l ‐part of the

(non‐weak) non‐abelian Brumer‐Stark conjecture is true;

(2) if the prime 2 does not split in \mathbb{Q}($\zeta$_{p}) , the 2‐part of the weak non‐abelian Brumer‐

Stark conjecture is true.

This result is proved by studying the relation between the weak version of the non‐

abelian Brumer‐Stark conjecture and that of the abelian Brumer‐Stark conjecture. In

the case G is isomorphic to D_{12} ,
the above theorem says that (a) the 2‐part of the weak

non‐abelian Brumer‐Stark conjecture is true;(b) if l\not\equiv 1 mod3, the l‐part of the non‐

abelian Brumer‐Stark conjecture is true. Even in the case that a prime l splits in \mathbb{Q}($\zeta$_{p}) ,

we know the following results by Nickel for more general G : (i) We assume k=\mathbb{Q} and

the Iwasawa  $\mu$‐invariant of  K($\zeta$_{p}) vanishes. Then if an odd prime l is ramied (resp.
unramied) in K

,
the l‐part of the non‐abelian Brumer‐Stark conjecture is true by [13,

Corollary 4.6] (resp. by [14, Corollary 0.5]). In other words, the non‐abelian Brumer‐

Stark conjecture except the 2‐part is true if k=\mathbb{Q} and the Iwasawa  $\mu$‐invariant of  K($\zeta$_{p})
vanishes. This result is proved via the non‐commutative Iwasawa main conjecture; (ii) for

more general k
,
if no prime above l splits in K/K^{+} or K^{cl}\not\subset(K^{cl})^{+}($\zeta$_{l}) ,

the odd l‐part of

the weak non‐abelian Brumer‐Stark conjecture is true unconditionally by [12, Corollary

4.2], where superscripts
cl \mathrm{a}\mathrm{n}\mathrm{d}+ mean the Galois closure over \mathbb{Q} and the maximal real

subeld, respectively. This result is proved via the strong Stark conjecture.
In this paper, we give an improvement of Theorem 1.1. More explicitly, we prove

the following:

Theorem 1.2. Let K/k be a finite Galois CM‐extension of number fields whose

Galois group is isomorphic to the dihedral group of order 4p . Then if the prime 2 does

not split in \mathbb{Q}($\zeta$_{p}) , the 2‐part of the (non‐weak) non‐abelian Brumer‐Stark conjecture is

true.

The key point of the proof of the above theorem is to use the fact that the group ring

\mathbb{Z}_{2}[D_{4p}] is a
\backslash \backslash nice Fitting order� (for the denition, see §2.2). Thanks to this fact, we

can ignore the \backslash denominator ideal�. The notion \backslash \backslash nice Fitting order� was first introduced

by H. Johnston and Nickel in [8].
In §6 we give some numerical examples of the 3‐parts of Nickel�s conjectures with

explicit extensions with group D_{12} . As far as the author knows, a numerical example
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for his conjectures is not described in the literature. Using the numerical examples,
we see why the formulations are reasonable. Nickel�s conjectures split into two parts.

The first part is concerned with the \backslash \backslash 

integrality� of the Stickelberger elements and the

second part is concerned with the \backslash annihilation� of the ideal class groups. If K/k is an

abelian extension, the first part states the modied Stickelberger elements (which are

dened in §3) belong to \mathbb{Z}[G] ,
which was proved independently in [4], [1] and [2], and the

second part states the modied elements themselves annihilate the ideal class groups. In

the non‐abelian case, however, the first part states the modied Stickelberger elements
\backslash \backslash 
come form� reduced norms over \mathbb{Z}[G] (and do not belong to \mathbb{Z}[G] in general), and the

second part states that we need extra factor the \backslash denominator ideal� to annihilate the

ideal class groups. In §6.2 we see why it is reasonable to conjecture that the modied

Stickelberger elements come from reduced norms, and in §6.3 we see why we need the

denominator ideals.

I would like to express my sincere gratitude to Masato Kurihara for his helpful

suggestions and comments. He indicated the possibility to improve [15, Theorem 5.1]. I

am deeply grateful to the referee for his/her careful reading of an earlier version of this

paper and many helpful comments.

Notation

For each ring A
,

we denote by  $\zeta$(A) the center of A . Moreover, for each natural

number n
,

we write M_{n}(A) and 1_{n\times n} for the ring of n\times n matrices over A and the

identity element in it, respectively.
For each prime number p ,

we write \mathbb{C}_{p} for the p‐adic completion of a fixed algebraic
closure \overline{\mathbb{Q}}_{p} of \mathbb{Q}_{p} ,

where \mathbb{Q}_{p} is the p‐adic completion of \mathbb{Q} . For each finite group G ,
we

denote by Irr G the set of all the \mathbb{C}_{p} ‐valued irreducible characters of G.

For a finite Galois extension K/k of number fields with Galois group G ,
an inter‐

mediate field F of K/k ,
a set S of places of k and a prime number p ,

we fix the following
notation:

S_{\infty} the set of all innite places of k

S_{ram} the set of all finite places of k which ramify in K

G' the commutator subgroup of G

K^{ab} the maximal abelian subextension of K/k i.e. K^{ab}=K^{G'}

 $\mu$(F) the group of roots of unity in F

Cl(F) the ideal class group of F

Cl (F)_{p} the Sylow p‐subgroup of Cl(F)
S_{F} the set of places of F which lie above those in S
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§2. Algebraic preliminaries

§2.1. Idempotents and projectors

Let G be a finite group. For each  $\chi$\in Irr  G ,
we set

e_{ $\chi$}:=\displaystyle \frac{ $\chi$(1)}{|G|}\sum_{ $\sigma$\in G} $\chi$($\sigma$^{-1}) $\sigma$, \mathrm{p}\mathrm{r}_{ $\chi$}:=\sum_{ $\sigma$\in G} $\chi$($\sigma$^{-1}) $\sigma$.
Then e_{ $\chi$} is a central primitive idempotent of \mathbb{C}_{p}[G] and \mathrm{p}\mathrm{r}_{ $\chi$} is the associated projector.
If  $\chi$ is a 1‐dimensional character, for each subgroup \triangle of  G which is contained in \mathrm{k}\mathrm{e}\mathrm{r} $\chi$,
we write  x\triangle for the character of  G/\triangle whose ination to  G is  $\chi$ . Then we have

(2.1)  e_{ $\chi$}=e_{x\triangle}\displaystyle \frac{1}{|\triangle|}Norm_{\triangle}, \mathrm{p}\mathrm{r}_{ $\chi$}=\mathrm{p}\mathrm{r}_{x\triangle}Norm_{\triangle}.
For each  $\chi$\in Irr  G ,

we set \mathbb{Q}_{p}() :=\mathbb{Q}_{p}( $\chi$(g);g\in G) . Then if  $\chi$ is induced by an

irreducible character of a subgroup of  G ,
we have the following lemma:

Lemma 2.1 ([15], Lemma 2.1). Let G be a finite group and let H be a subgroup

of G. If an irreducible character  $\chi$ of  G is induced by an irreducible character of H
,

we

have

(2.2) e_{ $\chi$}=\displaystyle \sum_{ $\phi$\in \mathrm{I}\mathrm{r}\mathrm{r}H/\sim_{x}},\sum_{h\in \mathrm{G}\mathrm{a}1(\mathbb{Q}_{p}( $\phi$)/\mathbb{Q}_{p}( $\chi$))}e_{$\phi$^{h}}
\mathrm{I}\mathrm{n}\mathrm{d} $\phi$= $\chi$

where Irr  H/\sim_{ $\chi$} means Irr H modulo \mathrm{G}\mathrm{a}1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p}( $\chi$)) ‐action.

For each  $\phi$\in Irr  H with \mathrm{I}\mathrm{n}\mathrm{d} $\phi$= $\chi$ ,
we have |G|/ $\chi$(1)=|H|/ $\phi$(1) . Hence multiplying

both sides of (2.2) by |G|/ $\chi$(1) ,
we get the same formula for \mathrm{p}\mathrm{r}_{ $\chi$}.

§2.2. Nice Fitting order

Let p be a prime and G a finite group. In this section, following [8], we introduce

the notion \backslash \backslash nice Fitting order� for the group ring \mathbb{Z}_{p}[G] . In [8], this notion is dened

for more general ring. We only treat group rings here. For details, see [8, §4].

Denition 2.2 ([8], Denition 2). When \mathbb{Z}_{p}[G]=\oplus_{i=1}^{k}$\Lambda$_{i} where each $\Lambda$_{i} is ei‐

ther a maximal \mathbb{Z}_{p} ‐order or a ring of matrices over a commutative ring, we say that

\mathbb{Z}_{p}[G] is a nice Fitting order.

If p does not divide the order of G, \mathbb{Z}_{p}[G] is a maximal order in \mathbb{Q}_{p}[G] . Hence, by

denition, \mathbb{Z}_{p}[G] is a nice Fitting order. The following proposition enables us to find

non‐maximal nice Fitting orders:
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Proposition 2.3 ([8], Proposition 4.4). Let G' be the commutator subgroup of
G. Then the group ring \mathbb{Z}_{p}[G] is a nice Fitting order if and only if p does not divide the

order of G'

Since the commutator subgroup of D_{4p} is a cyclic group of order p ,
we see by

this proposition that \mathbb{Z}_{2}[D_{4p}] is \mathrm{a} (non‐maximal) nice Fitting order. To prove our main

theorem, we use this fact in an essential way.

§2.3. Reduced norms and denominator ideals

Let p be a prime and G a finite group. We take a maximal \mathbb{Z}_{p} ‐order \mathfrak{m}_{p}(G) in \mathbb{Q}_{p}[G]
which contains \mathbb{Z}_{p}[G] . We denote by \mathrm{n}\mathrm{r}:\mathbb{Q}_{p}[G]\rightarrow $\zeta$(\mathbb{Q}_{p}[G]) the reduced norm of \mathbb{Q}_{p}[G]
(for the details of this map, see [3, §7D]). We extend this map to M_{n}(\mathbb{Q}_{p}[G]) for all

n\in \mathbb{N} in the natural way (we also denote the extended map by \mathrm{n}\mathrm{r} ). Note that if G is

abelian, the reduced norm of a matrix is nothing but the usual determinant map. We

set

\mathcal{I}_{p}(G):=\langle \mathrm{n}\mathrm{r}(H)|H\in M_{n}(\mathbb{Z}_{p}[G]) , n\in \mathbb{N}\rangle_{ $\zeta$(\mathbb{Z}_{p}[G])}\subset $\zeta$(\mathbb{Q}_{p}[G]) .

Then \mathcal{I}_{p}(G) is a ring. If G is abelian, this ring coincides with \mathbb{Z}_{p}[G] . However, if G is not

abelian, this ring is not contained in \mathbb{Z}_{p}[G] in general, but in \mathfrak{m}_{p}(G) . For this reason,

we need some
\backslash conductors�. First, we dene

\mathcal{H}_{p}(G) := { x\in $\zeta$(\mathbb{Z}_{p}[G])|xH^{*}\in M_{n}(\mathbb{Z}_{p}[G]) ,
for all H\in M_{n}(\mathbb{Z}_{p}[G]) and n\in \mathbb{N}},

where H^{*} is the matrix over \mathfrak{m}_{p}(G) dened in [8] such that HH^{*}=H^{*}H=\mathrm{n}\mathrm{r}(H)
1_{n\times n} . This matrix is a non‐commutative analogue of the adjoint matrix which was first

considered in [9] (H. Johnston and Nickel in [8] introduce a slightly different denition).
If G is abelian, \mathcal{H}_{p}(G) coincides with \mathbb{Z}_{p}[G] . By denition, the set \mathcal{H}_{p}(G) satises

\mathcal{H}_{p}(G)\mathcal{I}_{p}(G)\subset $\zeta$(\mathbb{Z}_{p}[G]) .

Since  $\zeta$(\mathbb{Z}_{p}[G])\subset \mathcal{I}_{p}(G) ,
the set \mathcal{H}_{p}(G) is actually an ideal of \mathcal{I}_{p}(G) . This ideal contains

non‐trivial elements, more precisely, contains the central conductor S (G) of \mathfrak{m}_{p}(G) over

\mathbb{Z}_{p}[G] . The central conductor S_{p}(G) is given by

\mathrm{F}_{p}(G) :=\{x\in $\zeta$(\mathbb{Z}_{p}[G])|x\mathfrak{m}_{p}(G)\subset \mathbb{Z}_{p}[G]\}.

By Jacobinski�s central conductor formula ([7, Theorem 3] also see [3, §27]), we have

(2.3) \displaystyle \mathrm{F}_{p}(G)\cong\bigoplus_{ $\chi$\in \mathrm{I}\mathrm{r}\mathrm{r}G/\sim}\frac{|G|}{ $\chi$(1)}\mathfrak{D}^{-1}(\mathbb{Q}_{p}( $\chi$)/\mathbb{Q}_{p})
where \mathfrak{D}^{-1}(\mathbb{Q}_{p}( $\chi$)/\mathbb{Q}_{p}) is the inverse different of \mathbb{Q}_{p}( $\chi$) over \mathbb{Q}_{p} and the direct sum runs

over the irreducible characters of G modulo \mathrm{G}\mathrm{a}1(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p}) ‐action. By denition, S_{p}(G) is
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always contained in \mathcal{H}_{p}(G) . By contrast to S_{p}(G) ,
we do not know the explicit structure

of \mathcal{H}_{p}(G) ,
in general. However, in some cases, we can determine the structure of \mathcal{H}_{p}(G) .

If the prime p does not divide the order of G (that is, \mathbb{Z}_{p}[G] is a maximal order), we

have S_{p}(G)= $\zeta$(\mathbb{Z}_{p}[G]) . Hence we have \mathcal{H}_{p}(G)=S_{p}(G) . Even in the case p divides the

order of G ,
we have the following:

Proposition 2.4 ([8], Remark 6.5 and Corollary 6.20). If\mathcal{I}_{p}(G)= $\zeta$(\mathfrak{m}_{p}(G)) and

the degrees of all the irreducible characters of G are prime to p ,
we have

\mathcal{H}_{p}(G)=S_{p}(G) .

In the case \mathbb{Z}_{p}[G] is a nice Fitting order, we get the following stronger result:

Proposition 2.5 ([8], Proposition 4.1). If \mathbb{Z}_{p}[G] is a nice Fitting order, we have

\mathcal{H}_{p}(G)=\mathcal{I}_{p}(G)= $\zeta$(\mathbb{Z}_{p}[G]) .

For an odd prime p ,
we have by [8, Example 6] (also see [15, Lemma 3.22])

\mathcal{I}_{p}(D_{4p})= $\zeta$(\mathfrak{m}_{p}(G)) ,
and each of the irreducible characters of D_{4p} is 1 or 2‐dimensional.

Moreover, \mathbb{Z}_{2}[D_{4p}] is a nice Fitting order by Proposition 2.3. Hence Propositions 2.4

and 2.5 imply the following relations:

1. \mathcal{H}_{2}(D_{4p})=\mathcal{I}_{2}(D_{4p})= $\zeta$(\mathbb{Z}_{2}[D_{4p}]) ;

2. \mathcal{I}_{p}(D_{4p})= $\zeta$(\mathfrak{m}_{p}(D_{4p})) and \mathcal{H}_{p}(D_{4p})=S_{p}(D_{4p}) ;

3. for an odd prime l\neq p ,
we have \mathcal{H}_{l}(D_{4p})=S_{l}(D_{4p})=\mathcal{I}_{l}(D_{4p})= $\zeta$(\mathbb{Z}_{l}[D_{4p}]) .

§3. Stickelberger elements

Let K/k be a finite Galois extension of number fields with Galois group G . For each

finite place \mathfrak{p} of k we fix a finite place ;\mathfrak{p} of K above \mathfrak{p} . We denote by G_{\mathfrak{P}} (resp. I_{\mathfrak{P}} ) the

decomposition subgroup (resp. inertia subgroup) of G at ;\mathfrak{p} . We take a lift \mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}} to G

of the Frobenius automorphism in G_{\mathfrak{P}}/I_{\mathfrak{P}}.
Let S be a finite set of places of k which contains S_{ram} and S_{\infty} . For each  $\chi$\in Irr  G,

we denote by L_{S}(K/k,  $\chi$, s) the S‐truncated Artin L‐function attached to  $\chi$ . We take

another finite set  T of places of k such that  S\cap T=\emptyset and set

$\delta$_{T}:=\displaystyle \sum_{ $\chi$\in \mathrm{I}\mathrm{r}\mathrm{r}G}\det(\prod_{\mathfrak{p}\in T}1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}^{-1}N\mathfrak{p}|V_{ $\chi$})e_{ $\chi$}=\mathrm{n}\mathrm{r}(\prod_{\mathfrak{p}\in T}1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}^{-1} N\mathrm{p})\in $\zeta$(\mathbb{Q}_{p}[G]) ,

where V_{ $\chi$} is an irreducible representation of G which has character  $\chi$ . We dene the

(S, T)‐modied Stickelberger element for K/k by

$\theta$_{K/k,S}^{T}:=$\delta$_{T}\displaystyle \sum_{ $\chi$\in \mathrm{I}\mathrm{r}\mathrm{r}G}L_{S}(K/k,\check{ $\chi$}, 0)e_{ $\chi$}\in $\zeta$(\mathbb{C}_{p}[G]) ,
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where \check{ $\chi$} is the contragredient character of  $\chi$ . This element is characterized by the formula

(3.1)  $\chi$($\theta$_{K/k,S}^{T}) := $\chi$(1)\displaystyle \det(\prod_{\mathfrak{p}\in T}1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}^{-1}N\mathfrak{p}|V_{ $\chi$})L_{S}(K/k,\check{ $\chi$}, 0) .

If T is empty and S=S_{ram}\cup S_{\infty} ,
we abbreviate $\theta$_{K/k,S}^{T} by $\theta$_{K/k} . In the case k=\mathbb{Q},

we always omit the trivial character component of $\theta$_{K/k,S}^{T}.
By [18, p24, Proposition 3.4], for each non‐trivial character  $\chi$\in Irr  G ,

the vanishing
order at s=0 of L_{S}(K/k,  $\chi$, s) is given by

(3.2) \displaystyle \sum_{\mathfrak{p}\in S}\dim V_{ $\chi$}^{G_{\mathfrak{P}}}.
Since S always contains S_{\infty} ,

this formula implies that if k is not totally real or K is

not totally imaginary, we always have L_{S}(K/k,  $\chi$, 0)=0 for all  $\chi$ in Irr  G . Therefore,
in this paper, we always consider the case K/k is a CM‐extension, which means that

k is a totally real field, K is a CM‐field and the complex conjugation induces a unique

automorphism j which belongs to the center of G . For each  $\chi$\in Irr  G ,
we call  $\chi$ is odd

(resp. even) if  $\chi$(j)=- $\chi$(1) (resp.  $\chi$(j)= $\chi$(1) ). Then we have by (3.2) L_{S}(K/k,  $\chi$, 0)=
0 for all even characters  $\chi$ . For odd characters  $\chi$ , by Stark�s conjecture (proved by Siegel

[17] if  G is abelian and the general result is given by Brauer induction [18, p70, Theorem

1.2]), we have

L_{S}(K/k,  $\chi$, 0)^{ $\sigma$}=L_{S}(K/k, $\chi$^{ $\sigma$}, S) ,
for all  $\sigma$\in \mathrm{A}\mathrm{u}\mathrm{t}(\mathbb{C}) .

This implies that $\theta$_{K/k,S}^{T} actually belongs to  $\zeta$(\mathbb{Q}_{p}[G]) (more precisely, belongs to  $\zeta$(\mathbb{Q}[G]) ).

§4. Statements of the conjecture

In this section, we review the formulations of Nickel�s non‐abelian generalizations
of the Brumer‐Stark and Brumer�s conjectures (for details, see the original paper [12]).
In fact, Nickel formulated \backslash 

global� and \backslash local� conjectures, however, we only review
\backslash local� conjectures here.

Let K/k be a finite Galois CM‐extension of number fields with Galois group G . We

denote by j the unique complex conjugation in G . We take two finite sets S and T of

places of k . We denote by E_{S}(K) the S_{K} ‐units of K and set E_{S}^{T} :=\{x\in E_{S}(K)|x\equiv 1

\displaystyle \mathrm{m}\mathrm{o}\mathrm{d} \prod_{\mathfrak{P}\in$\tau$_{K}^{ $\sigma$}}\mathfrak{p}\} . We refer to the following condition as Hyp(S, T) :

S contains S_{ram} and S_{\infty},

S\cap T=\emptyset,

E_{S}^{T}(K) is torsion free.
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For each  $\alpha$\in K^{*} ,
we call  $\alpha$ an anti‐unit if  $\alpha$^{1+j}=1

,
and set

S_{ $\alpha$}:= { \mathfrak{p}|\mathfrak{p} is a prime in k and \mathfrak{p} divides N_{K/k}( $\alpha$) },

where N_{K/k} is the usual norm form K to k . Finally, we set $\omega$_{K}:=\mathrm{n}\mathrm{r}(| $\mu$(K)|) . Now,
Nickel�s non‐abelian generalization of the Brumer‐Stark conjecture asserts

Conjecture 4.1 (BS(K/k, S,p Let S be a finite set of places which contains

S_{ram} and S_{\infty} . Then $\omega$_{K}$\theta$_{K/k,S} belongs to \mathcal{I}_{p}(G) ,
and f^{0or} each fractional ideal \mathfrak{A} of

K whose class in Cl(K) has p‐power order and f^{0or} each x\in \mathcal{H}_{p}(G) ,
there exists an

anti‐unit  $\alpha$= $\alpha$(\mathfrak{A}, S, x)\in K^{*} such that

\mathfrak{A}^{x$\omega$_{K}$\theta$_{K/k,S}}=( $\alpha$) ,

and foor each finite set T of places of k which satises Hyp(S\cup S_{ $\alpha$}, T) ,
there exists

$\alpha$_{T}\in E_{S}^{T}(K) such that

$\alpha$^{z$\delta$_{T}}=$\alpha$_{T}^{z$\omega$_{K}}

for any z\in \mathcal{H}_{p}(G) .

Remark. (1) If G is abelian, the first claim $\omega$_{K}$\theta$_{K/k,S}\in \mathcal{I}_{p}(G) is equivalent to

| $\mu$(K)|$\theta$_{K/k,S}\in \mathbb{Z}_{p}[G] and proved independently by [1], [2] and [4]. (2) If G is abelian,

by [18, p83, Proposition 1.2], the second claim is equivalent to

\mathfrak{A}^{$\omega$_{K}$\theta$_{K/k,S}}=( $\alpha$) ,
and K($\alpha$^{1/| $\mu$(K)|})/k is abelian.

This is exactly the claim of the Brumer‐Stark conjecture in the abelian case. Hence we

can regard Conjecture 4.1 as a generalization of the Brumer‐Stark conjecture.

For an intermediate field F of K/k and a set T of places of k
,

we write Cl (F)^{T_{F}}
for the ray class group of F to the ray \displaystyle \prod_{\mathfrak{P}F\in$\tau$_{F}^{ $\sigma$}}\mathfrak{p}_{F} and set Cl (F)_{p^{F}}^{T}:=Cl(F)^{T_{F}}\otimes \mathbb{Z}_{p}.
Then we can interpret Conjecture 4.1 as the annihilation of ray class groups as follows:

Proposition 4.2. Let S be a finite set of places of k which contains S_{\infty} and

S_{ram} . Wee assume $\theta$_{K/k,S}^{T} belongs to \mathcal{I}_{p}(G) foor each finite set T of places which satises

Hyp(S, T) . Then BS(K/k, S,p) is true if and only if f^{0or} each finite set T of places of
k such that Hyp(S, T) is satised, we have \mathcal{H}_{p}(G)$\theta$_{K/k,S}^{T}\subset \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{p}[G]}(Cl(K)_{p}^{T_{K}}) .

Remark. The following proof of the sufficiency is essentially the same as the proof
of [12, Lemma 2.9].

Proof. Concerning the necessity, the same proof as [12, Proposition 3.8] works.

Hence, we only prove the sufficiency. We take a finite set T of places of k such that
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Hyp(S, T) is satiSed. Let A be a fractional ideal of K coprime to the primes in T_{K}

whose class in Cl(K)^{T_{K}} has p‐power order. Then for each x\in \mathcal{H}_{p}(G) ,
we have

(4.1) \mathfrak{A}^{x$\omega$_{K}$\theta$_{K/k,S}}=( $\alpha$)

for some anti‐unit  $\alpha$\in K^{*} . Since A is coprime to the primes in T_{K} ,
we see that  Hyp(S\cup

 S_{ $\alpha$}, T) is satised. Hence, there exists an element $\alpha$_{T}\in E_{S_{ $\alpha$}}^{T}(K) such that

(4.2) $\alpha$^{z$\delta$_{T}}=$\alpha$_{T}^{z$\omega$_{K}}

for any z in \mathcal{H}_{p}(G) . Since \mathrm{n}\mathrm{r}(| $\mu$(K)|^{-1}) belongs to  $\zeta$(\mathbb{Q}[G]) ,
there exists a natural number

N such that N\mathrm{n}\mathrm{r}(| $\mu$(K)|^{-1})\in $\zeta$(\mathbb{Z}[G]) . Then N\mathrm{n}\mathrm{r}(| $\mu$(K)|^{-1})$\delta$_{T}\in $\zeta$(\mathfrak{m}_{p}(G)) . Since |G|
is an element in S_{p}(G)\subset \mathcal{H}_{p}(G) , by (4.1) and (4.2) we have

(\mathfrak{A}^{x$\omega$_{K}$\theta$_{K/k,S}})$\delta$_{T}=\mathfrak{A}^{x$\theta$_{K/k,S}^{T}}
=( $\alpha$)^{|G|N\mathrm{n}\mathrm{r}(| $\mu$(K)|^{-1})$\delta$_{T}}
=($\alpha$^{|G|$\delta$_{T}})^{N\mathrm{n}\mathrm{r}(| $\mu$(K)|^{-1})}
=($\alpha$_{T}^{|G|$\omega$_{K}})^{N\mathrm{n}\mathrm{r}(| $\mu$(K)|^{-1})}
=($\alpha$_{T})^{|G||N|}.

Since we assume $\theta$_{K/k,S}^{T}\in \mathcal{I}_{p}(G) and the group of fractional ideals has no torsion, the

above equation implies

\mathfrak{A}^{x$\theta$_{K/k,S=}^{T}}($\alpha$_{T}) .

This completes the proof. \square 

It is hard to give a numerical example of Conjecture 4.1 (especially the latter half

of the second claim) even if we use Proposition 4.2. In this paper, we give numerical

examples of a generalization of Brumer�s conjecture. To see the formulation, first we set

\mathfrak{A}_{S}:=\langle$\delta$_{T}|Hyp(S, T) is satiSed. \rangle_{ $\zeta$(\mathbb{Z}_{p}[G])}.

By [18, p82, Lemma1.1], if G is abelian, this module coincides with \mathbb{Z}_{p}[G] ‐annihilator

of  $\mu$(K) . Then the following is the generalization of Brumer�s conjecture by Nickel:

Conjecture 4.3 (B(K/k, S,p Let S be a finite set of places of k which con‐

tains S_{ram} and S_{\infty} . Then \mathfrak{A}_{S}$\theta$_{K/k,S}\subset \mathcal{I}_{p}(G) ,
and we have

\mathcal{H}_{p}(G)\mathfrak{A}_{S}$\theta$_{K/k,S}\subset \mathrm{A}\mathrm{n}\mathrm{n}_{ $\zeta$(\mathbb{Z}_{p}[G])} (Cl (K))

Remark. (1) If G is abelian, the first claim \mathfrak{A}_{S}$\theta$_{K/k,S}\subset \mathcal{I}_{p}(G) is equivalent to

\mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{p}[G]}( $\mu$(K))$\theta$_{K/k,S}\subset \mathbb{Z}_{p}[G] and proved independently in [1], [2] and [4]. (2) If G is

abelian, the second claim is equivalent to

\mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{p}[G]}( $\mu$(K))$\theta$_{K/k,S}\subset \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{p}[G]} (Cl (K)_{p} ).
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This is exactly the claim of Brumer�s conjecture in the abelian case. Hence we can regard

Conjecture 4.3 as a non‐abelian generalization of Brumer�s conjecture.

By [12, Lemma 2.9], BS(K/k, S, p) always implies B(K/k, S,p) .

§5. Main Theorem

Let p be an odd prime. In this section, we prove our main theorem for CM‐

extensions with group D_{4p}.

§5.1. Characters of D_{4p}

In this section, we review the character theory of D_{4p} . We first recall that the group

D_{4p} is the direct product of \mathbb{Z}/2\mathbb{Z} and D_{2p} . We denote by j the generator of \mathbb{Z}/2\mathbb{Z} and

use the presentation D_{2p}=\langle $\sigma$,  $\tau$|$\sigma$^{p}=$\tau$^{2}=1,  $\tau \sigma \tau$^{-1}=$\sigma$^{-1}\rangle . Then the commutator

subgroup of  D_{4p} is \langle $\sigma$\rangle and we have  D_{4p}/\langle $\sigma$\rangle\cong \mathbb{Z}/2\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z} . We return to the character

theory. As is well known, all the irreducible characters of D_{4p} are four 1‐dimensional

characters and p-12‐dimensional characters. Moreover, the 1‐dimensional characters

are determined by the following table: Since the center of D_{4p} is \{ 1, j\} ,
the element

Table 1. 1‐dimensional characters of D_{4p}

j corresponds to the unique complex conjugation in the case D_{4p} is the Galois group

of some CM‐extension of number fields. Hence we see that the only 1‐dimensional odd

characters are $\chi$_{1} and $\chi$_{3} . For i=1
, 3, we write $\chi$_{i}^{ab} for the character of \mathrm{G}\mathrm{a}1(K^{ab}/k)

whose ination to G is $\chi$_{i} . All the 2‐dimensional odd characters are induced by the

faithful odd characters of \langle j $\sigma$\rangle . For  m\in(\mathbb{Z}/p\mathbb{Z})^{*} ,
let $\phi$^{m} be the character of \langle j $\sigma$\rangle

which sends  $\sigma$ and  j to $\zeta$_{p}^{m} and -1
, respectively. We set $\chi$_{2m+3}=\mathrm{I}\mathrm{n}\mathrm{d}_{\langle j $\sigma$\rangle}^{D_{4p}}$\phi$^{m} (we

use this numbering so that odd subscripts correspond to odd characters). Using the

Frobenius reciprocity law and the fact that $\chi$_{2m+3}(1)=2 and $\chi$_{2m+3}(j)=-2 ,
we see

that {\rm Res}_{\langle j $\sigma$\rangle}^{D_{4p}}$\chi$_{2m+3}=$\phi$^{m}+$\phi$^{-m} and \mathrm{I}\mathrm{n}\mathrm{d}_{\langle j $\sigma$\rangle}^{D_{4p}}$\phi$^{m}=\mathrm{I}\mathrm{n}\mathrm{d}_{\langle j $\sigma$\rangle}^{D_{4p}}$\phi$^{-m} . Therefore, the number

of 2‐dimensional odd characters is (p-1)/2 . Finally, we set k_{ $\phi$}:=K^{\langle j $\sigma$\rangle}

§5.2. Proof of the main theorem

In this section, we prove our main theorem. We begin with the following proposition.
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Proposition 5.1. Let K/k be a finite Galois CM‐extension of number fields
whose Galois group G is isomorphic to D_{4p} . We take two finite sets S and T of places

of k such that Hyp(S, T) is satised. Then we have

$\theta$_{K}$\tau$_{/k,sK^{ab}/k,ss_{k_{$\phi$_{m=1}}}^{\frac{p-1}{\sum 2}}}=$\theta$^{T}\displaystyle \frac{1}{p}Norm_{G'}+$\theta$_{K/k_{ $\phi$}}^{T_{k_{ $\phi$}}},(e_{$\chi$_{2m+3}}) ,

where G' is the commutator subgroup of G. Moreover, $\theta$_{K/k,S}^{T} belongs to  $\zeta$(\mathbb{Z}_{2}[G]) .

Proof. Recalling that Artin L‐functions do not change by the ination of charac‐

ters, we have by (2.1) and (3.1)

$\chi$_{1}($\theta$_{K/k,S}^{T})e_{$\chi$_{1}}=\displaystyle \prod_{\mathfrak{p}\in T}\det(1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}^{-1}N\mathfrak{p}|V_{$\chi$_{1}})L_{S}(K/k,\check{ $\chi$}_{1},0)e_{$\chi$_{1}}
=\displaystyle \prod_{\mathfrak{p}\in T}\det(1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}^{-1}N\mathfrak{p}|V_{$\chi$_{1}^{ab}})L_{S}(K^{ab}/k, $\chi$_{1}^{\check{a}b}, 0)e_{$\chi$_{1}^{ab}}\frac{1}{p}Norm_{G'}

(5.1) =$\chi$_{1}^{ab}($\theta$_{K^{ab}/k,S}^{T})e_{$\chi$_{1}^{ab}}\displaystyle \frac{1}{p}Norm_{G'}.
The same is true for $\chi$_{3} ,

that is, we have

(5.2) $\chi$_{3}($\theta$_{K/k,S}^{T})e_{$\chi$_{3}}=$\chi$_{3}^{ab}($\theta$_{K^{ab}/k,S}^{T})e_{$\chi$_{3}^{ab}}\displaystyle \frac{1}{p} Norm:

Since $\chi$_{1}^{ab} and $\chi$_{3}^{ab} are the only odd characters of \mathrm{G}\mathrm{a}1(K^{ab}/k) ,
we have by (5.1) and (5.2)

$\chi$_{1}($\theta$_{K/k,S}^{T})e_{$\chi$_{1}}+$\chi$_{3}($\theta$_{K/k,S}^{T})e_{$\chi$_{3}}=($\chi$_{1}^{ab}($\theta$_{K^{ab}/k,S}^{T})e_{$\chi$_{1}^{ab}}+$\chi$_{3}^{ab}($\theta$_{K^{ab}/k,S}^{T})e_{$\chi$_{3}^{ab}})\displaystyle \frac{1}{p}Norm_{G'}
(5.3) =$\theta$_{K^{ab}/k,S}^{T}\displaystyle \frac{1}{p}Norm_{G'}.
Next we compute $\chi$_{2m+3}($\theta$_{K/k,S}^{T}) for m=1

, 2, :.

:; (p-1)/2 . By the induction formula

of Artin L‐functions, we have

\displaystyle \frac{$\chi$_{2m+3}($\theta$_{K/k,S}^{T})}{2}e_{$\chi$_{2m+3}} =\displaystyle \prod_{\mathfrak{p}\in T}\det(1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}^{-1}N\mathfrak{p}|V_{$\chi$_{2m+3}})L_{S}(K/k,\check{ $\chi$}_{2m+3},0)e_{$\chi$_{2m+3}}
=\displaystyle \prod_{\mathfrak{p}_{ $\phi$}\in T_{k_{ $\phi$}}}\det (  1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}^{-f_{\mathfrak{p}_{ $\phi$}}} N\mathrm{p}  $\phi$|V_{$\phi$^{m}} ) L_{S_{k_{ $\phi$}}}(K/k_{ $\phi$}, $\phi$^{-m}, 0)e_{$\chi$_{2m+3}}

=$\phi$^{m}($\theta$_{K/k_{ $\phi$}}^{T_{K_{ $\phi$}}})e_{$\chi$_{2m+3}}
where f_{\mathfrak{p}_{ $\phi$}} is the residue degree of \mathfrak{p}_{ $\phi$} . We recall that $\chi$_{2m+3}=\mathrm{I}\mathrm{n}\mathrm{d}_{\langle j $\sigma$\rangle}^{G}$\phi$^{m}=\mathrm{I}\mathrm{n}\mathrm{d}_{\langle j $\sigma$\rangle}^{G}$\phi$^{-m}.
Then we have

L_{S_{k_{ $\phi$}}}(K/k_{ $\phi$}, $\phi$^{m}, 0)=L_{S_{k_{ $\phi$}}}(K/k_{ $\phi$}, $\phi$^{-m}, 0)

\displaystyle \prod_{\mathfrak{p}_{ $\phi$}\in T_{k_{ $\phi$}}}\det (  1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}^{-f_{\mathfrak{p}_{ $\phi$}}} Np  $\phi$|V_{$\phi$^{m}} ) =\displaystyle \prod_{\mathfrak{p}_{ $\phi$}\in T_{k_{ $\phi$}}}\det (  1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}^{-f_{\mathfrak{p}_{ $\phi$}}} Np  $\phi$|V_{ $\phi$-m} )
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These equations imply that

$\phi$^{m}($\theta$_{K/k_{ $\phi$}}^{T_{K_{ $\phi$}}})=$\phi$^{-m}($\theta$_{K/k_{ $\phi$}}^{T_{K_{ $\phi$}}}) .

We have by Lemma 2.1 e_{$\chi$_{2m+3}}=e_{$\phi$^{m}}+e_{ $\phi$-m} and hence

\displaystyle \frac{$\chi$_{2m+3}($\theta$_{K/k,S}^{T})}{2}e_{$\chi$_{2m+3}}=$\phi$^{m}($\theta$_{K/k_{ $\phi$}}^{T_{K_{ $\phi$}}})(e_{$\phi$^{m}}+e_{$\phi$^{-m}})
=$\phi$^{m}($\theta$_{K/k_{ $\phi$}}^{T_{K_{ $\phi$}}})e_{$\phi$^{m}}+$\phi$^{-m}($\theta$_{K/k_{ $\phi$}}^{T_{K_{ $\phi$}}})e_{$\phi$^{-m}}
=$\theta$_{K/k_{ $\phi$}}^{T_{k_{ $\phi$}}}(e_{$\phi$^{m}}+e_{$\phi$^{-m}})
=$\theta$^{T_{k_{ $\phi$}}}K/k_{$\phi$^{e_{$\chi$_{2m+3}}}}.

This implies that

\displaystyle \frac{p-1}{\sum 2}\frac{$\chi$_{2m+3}($\theta$_{K/k,S}^{T})}{2}e_{$\chi$_{2m+3}}=\frac{p-1}{\sum 2}$\theta$_{K/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}}e_{$\chi$_{2m+3}}=$\theta$_{K/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}}(\frac{p-1}{\sum 2}e_{$\chi$_{2m+3}}) .

m=1 m=1 m=1

Combining this with (5.3), we get the first claim of Proposition 5.1.

Since K^{ab}/k is an abelian extension with Galois group G/G', $\theta$_{K^{ab}/k,S}^{T} belongs to

\mathbb{Z}[G/G'] as we remarked just after the statement of Conjecture 4.3. Therefore, we see

that $\theta$_{K^{ab}/k,S}^{T}\displaystyle \frac{1}{p}Norm_{G'} belongs to \mathbb{Z}_{2}[G] . Next we show that $\theta$_{K/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}}(\displaystyle \sum_{1}^{\frac{p-1}{m=2}}e_{$\chi$_{2m+3}})
belongs to \mathbb{Z}_{2}[\mathrm{G}\mathrm{a}1(K/k_{ $\phi$})] . First we write  $\psi$ for the character of \mathrm{G}\mathrm{a}1(K/k_{ $\phi$}) which sends

 $\sigma$ and  j to 1 and -1
, respectively. Since K/k_{ $\phi$} is also an abelian extension, $\theta$_{K/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}}

belongs to \mathbb{Z}_{2}[\mathrm{G}\mathrm{a}1(K/k_{ $\phi$})] . Moreover, we have

(5.4) $\theta$^{T_{k_{ $\phi$}}}Kk_{ $\phi$},S_{k_{ $\phi$}}=$\theta$^{T_{k_{ $\phi$}}}k_{ $\phi$},S_{k_{ $\phi$}}e $\psi$+$\theta$^{T_{k_{ $\phi$}}}(e_{$\chi$_{2m+3}})

=$\theta$^{T_{k_{ $\phi$}}}K^{ab}k_{ $\phi$},s_{k_{ $\phi$}}\displaystyle \frac{1}{p}Norm_{G'}+$\theta$^{T_{k_{ $\phi$}}}(e_{$\chi$_{2m+3}}) .

Since K^{ab}/k_{ $\phi$} is an abelian extension, $\theta$_{K^{ab}/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}} belongs to \mathbb{Z}_{2}[\mathrm{G}\mathrm{a}1(K^{ab}/k_{ $\phi$})] . Hence

$\theta$_{K^{ab}/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}}\displaystyle \frac{1}{p}Norm_{G'} belongs to \mathbb{Z}_{2}[\mathrm{G}\mathrm{a}1(K/k_{ $\phi$})] . Therefore, we see that

$\theta$^{T_{k_{ $\phi$}}}K/k_{ $\phi$},S_{k_{$\phi$_{m=1}}}^{\frac{p-1}{\sum 2}}(e_{$\chi$_{2m+3}})=$\theta$_{K/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}}-$\theta$_{K^{ab}/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}}\displaystyle \frac{1}{p}Norm_{G'}
belongs to \mathbb{Z}_{2}[\mathrm{G}\mathrm{a}1(K/k_{ $\phi$})] . The above arguments imply that $\theta$_{K/k,S}^{T} belongs to \mathbb{Z}_{2}[G] ,

in

particular, to  $\zeta$(\mathbb{Z}_{2}[G]) . \square 
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Theorem 5.2. Let K/k be a finite Galois CM‐extension of number fields whose

Galois group G is isomorphic to D_{4p} . Then if the prime 2 does not split in \mathbb{Q}($\zeta$_{p}) , the

2‐part of the non‐abelian Brumer‐Stark conjecture is true f^{0orK}/k.

Proof. First we take two finite sets S and T of places of k such that Hyp(S, T) is

satised. Then it is enough to show the following two things by Proposition 4.2:

$\theta$_{K/k,S}^{T}\in \mathcal{I}_{p}(G) and \mathcal{H}_{2}(G)$\theta$_{K/k,S}^{T}\subset \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{2}[G]} (Cl (K)_{2}^{T_{K}} ).

Since \mathbb{Z}_{2}[G] is a nice Fitting order, this is equivalent to

$\theta$_{K/k,S}^{T}\in $\zeta$(\mathbb{Z}_{p}[G]) and $\theta$_{K/k,S}^{T}\subset \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{2}[G]} (Cl (K)_{2}^{T_{K}} )

by Proposition 2.5. The claim $\theta$_{K/k,S}^{T}\in $\zeta$(\mathbb{Z}_{p}[G]) is true by Proposition 5.1. Hence we

only have to show $\theta$_{K/k,S}^{T} annihilates Cl(K)_{2}^{T_{K}}.
By [16, Theorem 2.1], the Brumer‐Stark conjecture is true for biquadratic exten‐

sions and hence true for K^{ab}/k . Observing that \displaystyle \frac{1}{p}Norm_{G'}(Cl(K)_{2}^{T_{K}})\subset Cl(K^{ab})_{2}^{T_{K^{ab}}},
we have

(5.5) $\theta$_{K^{ab}/k,S}^{T}\displaystyle \frac{1}{p}Norm_{G'}\in \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{2}[G]} (Cl (K)_{2}^{T_{K}} ).

By [6, Theorem 3.2], the 2‐part of the Brumer‐Stark conjecture is true for cyclic exten‐

sions of degree 6. If 2 does not split in \mathbb{Q}($\zeta$_{p}) , exactly the same proof works for cyclic
extensions of degree 2p . Hence we have

$\theta$_{K/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}}=$\theta$_{K^{ab}/k_{ $\phi$},S_{k_{ $\phi$}}}^{T_{k_{ $\phi$}}}\displaystyle \frac{1}{p}Norm_{G'}

+$\theta$^{T_{k_{ $\phi$}}}K/k_{ $\phi$},S_{k_{$\phi$_{m=1}}}^{\frac{p-1}{\sum 2}}(e_{$\chi$_{2m+3}})\in \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{2}[\mathrm{G}\mathrm{a}1()]} (Cl (K)_{2}^{T_{K}} ).

By [19, §3, case(c)], the Brumer‐Stark conjecture is true for quadratic extensions and

hence true for K^{ab}/k_{ $\phi$} . Therefore, we have

$\theta$^{T_{k_{ $\phi$}}} \underline{1}_{Norm_{G'}}\in \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{2}[\mathrm{G}\mathrm{a}1()]} (Cl (K)_{2}^{T_{K}} ).K^{ab}/k_{ $\phi$},S_{k_{ $\phi$ p}}

and hence

$\theta$^{T_{k_{ $\phi$}}}K/k_{ $\phi$},S_{k_{$\phi$_{m=1}}}^{\frac{p-1}{\sum 2}}(e_{$\chi$_{2m+3}})\in \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{2}[\mathrm{G}\mathrm{a}1()]} (Cl (K)_{2}^{T_{K}} ).

Combining this with (5.5), we conclude that

$\theta$_{K/k,S}^{T}\in \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{2}[G]} (Cl (K)_{2}^{T_{K}} ).
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This completes the proof. \square 

§6. Numerical examples

In this section, we give some numerical examples for the non‐abelian Brumer con‐

jecture. Throughout this section, we use the same notation as in §5. We note that all

the computations in this section are valid under GRH.

§6.1. Stickelberger elements for D_{12}‐extensions

We assume K/k is a finite Galois CM‐extension whose Galois group G is isomorphic
to D_{12} . As we observed in §5.1, D_{12} is the direct product of \mathbb{Z}/2\mathbb{Z} and D_{6}=\langle $\sigma$,  $\tau$|$\sigma$^{3}=
$\tau$^{2}=1,  $\tau \sigma \tau$^{-1}=$\sigma$^{-1}\rangle (  D_{6} coincides with the symmetric group \mathfrak{S}_{3} of degree 3). As we

have seen in §5.1, the only odd characters of D_{12} are $\chi$_{1}, $\chi$_{3} and $\chi$_{5} . Although in §5.2
we have computed the Stickelberger elements for extensions with group D_{4p} ,

in order

to give numerical examples, we write down $\theta$_{K/k,S} as its denition. By the denition of

the Stickelberger elements, we have

$\theta$_{K/k,S}=L_{S}(K/k, $\chi$_{1},0)e_{$\chi$_{1}}+L_{S}(K/k, $\chi$_{3},0)e_{$\chi$_{3}}+L_{S}(K/k, $\chi$_{5},0)e_{$\chi$_{5}}

=$\epsilon$_{$\chi$_{1},S}L_{S_{\infty}}(K/k, $\chi$_{1},0)e_{$\chi$_{1}}+$\epsilon$_{$\chi$_{3}}, s^{L_{S_{\infty}}}(K/k, $\chi$_{3},0)e_{$\chi$_{3}}+$\epsilon$_{$\chi$_{5},S}L_{S_{\infty}}(K/k, $\chi$_{5},0)e_{$\chi$_{5}}

where we set

$\epsilon$_{$\chi$_{i}},s=\displaystyle \lim_{s\rightarrow 0}\prod_{\mathfrak{p}\in S\backslash S_{\infty}}\det(1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}N\mathfrak{p}^{-s}|V_{$\chi$_{i}}^{I_{\mathfrak{P}}}) .

For i=1
, 3, we set K_{i}:=K^{\mathrm{k}\mathrm{e}\mathrm{r}$\chi$_{i}} and write $\chi$_{i}' for the character of \mathrm{G}\mathrm{a}1(K_{i}/k) whose

ination to G is $\chi$_{i} . Then

(6.1) $\theta$_{K/k,S}=$\epsilon$_{$\chi$_{1},S}L_{S_{\infty}}(K_{1}/k, $\chi$_{1}',0)e_{$\chi$_{1}}
+$\epsilon$_{$\chi$_{3},S}L_{S_{\infty}}(K_{3}/k, $\chi$_{3}', 0)e_{$\chi$_{3}}+$\epsilon$_{$\chi$_{5},S}L_{S_{\infty}}(K/k_{ $\phi$},  $\phi$, 0)e_{$\chi$_{5}}

=$\epsilon$_{$\chi$_{1}},s$\chi$_{1}'($\theta$_{K_{1}/k})e_{$\chi$_{1}}+$\epsilon$_{$\chi$_{3}},s$\chi$_{3}'($\theta$_{K_{3}/k})e_{$\chi$_{3}}+$\epsilon$_{$\chi$_{5},S} $\phi$($\theta$_{K/k_{ $\phi$}})e_{$\chi$_{5}}
This is a special case of [15, Lemma 3.1].

§6.2. Integrality of Stickelberger elements

In the case that K/k is an abelian CM‐extension, the first claim of Conjecture 4.3

is equivalent to

(6.2) \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{p}[G]}( $\mu$(K))$\theta$_{K/k,S}\subset \mathbb{Z}_{p}[G].

Hence, one may expect the same strong integrality \mathfrak{A}_{S}$\theta$_{K/k,S}\subset $\zeta$(\mathbb{Z}_{p}[G]) holds even

if G is non‐abelian. However, the following example tells us that it is reasonable to

conjecture that \mathfrak{A}_{S}$\theta$_{K/k,S} is contained in \mathcal{I}_{p}(G) not in  $\zeta$(\mathbb{Z}_{p}[G]) .
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Let  $\alpha$ be a root of the cubic equation  x^{3}-11x+7=0 and set K=\mathbb{Q}(\sqrt{-3}, \sqrt{4001},  $\alpha$) .

Then K/\mathbb{Q} is a finite Galois CM‐extension, K contains 3rd roots of unity and its Galois

group is isomorphic to

\mathrm{G}\mathrm{a}1(\mathbb{Q}(\sqrt{-3})/\mathbb{Q})\times \mathrm{G}\mathrm{a}1(\mathbb{Q}(\sqrt{4001},  $\alpha$)/\mathbb{Q})\cong \mathbb{Z}/2\mathbb{Z}\times \mathfrak{S}_{3}\cong D_{12}.

Using the same notations as §6.1, we see that

K_{1}=\mathbb{Q}(\sqrt{-3}) , K_{3}=\mathbb{Q}(\sqrt{-12003}) and k_{ $\phi$}=\mathbb{Q}(\sqrt{4001}) .

The only primes which ramify in K/\mathbb{Q} are 3 and 4001. If we suitably choose the primes

;\mathfrak{p}_{3} and ;\mathfrak{p}_{4001} of K above 3 and 4001, we see that

G_{\mathfrak{P}_{3}}=\mathrm{G}\mathrm{a}1(K/\mathbb{Q}( $\alpha$))\cong\langle j\rangle\times\langle $\tau$\rangle, I_{\mathfrak{P}_{3}}=\mathrm{G}\mathrm{a}1(K/\mathbb{Q}(\sqrt{4001},  $\alpha$))\cong\langle j\rangle,
G_{\mathfrak{P}4001}=\mathrm{G}\mathrm{a}1(K/\mathbb{Q}( $\alpha$))\cong\langle j\rangle\times\langle $\tau$\rangle, I_{\mathfrak{P}4001}=\mathrm{G}\mathrm{a}1(K/\mathbb{Q}(\sqrt{-3},  $\alpha$))\cong\langle $\tau$\rangle.

From this, we have

$\epsilon$_{$\chi$_{1},S_{ram}}=\displaystyle \lim_{s\rightarrow 0}\prod_{p\in S_{ram}}\det(1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}}p^{-s}|V_{$\chi$_{1}}^{I_{\mathfrak{P}}})=\lim_{s\rightarrow 0}\det(1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}4001}4001^{-s}|V_{$\chi$_{1}}^{\langle $\tau$\rangle})
=\displaystyle \lim_{s\rightarrow 0}\det(1-j4001^{-s}|V_{$\chi$_{1}})=2.

By the same way, we also have $\epsilon$_{$\chi$_{3},S_{ram}}=1 and $\epsilon$_{$\chi$_{5},S_{ram}}=2 . By PARI/GP, we can

compute L‐values attached to $\chi$_{1}, $\chi$_{3} and $\chi$_{5} as

L_{S_{\infty}}(K_{1}/\displaystyle \mathbb{Q}, $\chi$_{1}',0)=\frac{1}{3}, L_{S_{\infty}}(K_{3}/\mathbb{Q}, $\chi$_{3}',0)=30 ,
and L_{S_{\infty}}(K/k_{ $\phi$},  $\phi$, 0)=48.

Hence we see from (6.1) that

(6.3) $\theta$_{K/\mathbb{Q}}=\displaystyle \frac{2}{3}e_{$\chi$_{1}}+30e_{$\chi$_{3}}+96e_{$\chi$_{5}}=\frac{1}{9}(1-j)(311-121( $\sigma$+$\sigma$^{2})-22( $\tau$+ $\sigma \tau$+$\sigma$^{2} $\tau$)) .

Take the prime 7. This prime is completely decomposed in K and Hyp(S_{ram}\cup S_{\infty}, \{7\})
is satised. Also we have

$\delta$_{\{7\}}=\mathrm{n}\mathrm{r}(1-\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathfrak{P}_{7}}^{-1}7)=\mathrm{n}\mathrm{r}(1-7)=\mathrm{n}\mathrm{r}(-6) .

Then

(6.4) $\delta$_{\{7\}}$\theta$_{K/\mathbb{Q}}=\displaystyle \frac{1}{3}(1-j)(3410-1774( $\sigma$+$\sigma$^{2})+44( $\tau$+ $\sigma \tau$+$\sigma$^{2} $\tau$)) .
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Obviously this element does not belong to  $\zeta$(\mathbb{Z}_{3}[G]) and hence we can not expect the

strong inclusion \mathfrak{A}_{S}$\theta$_{K/k,S}\subset $\zeta$(\mathbb{Z}_{p}[G]) in general. However, we actually have

(6.5) $\delta$_{\{7\}}$\theta$_{K/\mathbb{Q}}=\displaystyle \mathrm{n}\mathrm{r}((1-j)(-\frac{71}{2}+\frac{1}{2} $\sigma$-11$\sigma$^{2}+19 $\tau$+\frac{13}{2} $\sigma \tau$+\frac{37}{2}$\sigma$^{2} $\tau$))\in \mathcal{I}_{3}(G) .

As long as we see this example, it seems reasonable to conjecture \mathfrak{A}_{S}$\theta$_{K/k,S}\subset \mathcal{I}_{p}(G) . In

fact, by [15, Lemma 4.1] (and [15, Lemma 3.11]), if G is isomorphic to D_{4p} ,
we always

have \mathfrak{A}_{S}$\theta$_{K/k,S}\subset \mathcal{I}_{p}(G) . Note that the preimage of $\delta$_{\{7\}}$\theta$_{K/\mathbb{Q}} is found in an ad hoc way,

and as far as the author knows, there are no theoretical approaches to find concrete

preimages of Stickelberger elements.

We have seen where \mathfrak{A}_{S}$\theta$_{K/k,S} should live. Then where does $\theta$_{K/k,S} itself live? First

we return to the case G is abelian. Since | $\mu$(K)| belongs to \mathrm{A}\mathrm{n}\mathrm{n}_{\mathbb{Z}_{p}[G]}( $\mu$(K)) ,
we have by

(6.2)

| $\mu$(K)|$\theta$_{K/k,S}\in \mathbb{Z}_{p}[G]

or equivalently,

$\theta$_{K/k,S}\displaystyle \in\frac{1}{| $\mu$(K)|}\mathbb{Z}_{p}[G].
This implies the denominator of $\theta$_{K/k,S} is at most | $\mu$(K)| . In the case G is non‐abelian,
we see by (6.3) that the denominator of $\theta$_{K/k,S} can not be bounded by | $\mu$(K)| . However,
if we believe the first claim of Conjecture 4.1, we have

$\omega$_{K}$\theta$_{K/k,S}\in \mathcal{I}_{p}(G)

and hence

(6.6) $\theta$_{K/k,S}\displaystyle \in\langle \mathrm{n}\mathrm{r}(\frac{1}{| $\mu$(K)|}H)|H\in M_{n}(\mathbb{Z}_{p}[G]) , n\in \mathbb{N}\rangle_{ $\zeta$(\mathbb{Z}_{p}[G])}.
Namely, the first claim of Conjecture 4.1 predicts that the denominators of preimages
are at most | $\mu$(K)| (not the denominators of $\theta$_{K/k,S} itself). In fact, by (6.5), we see that

(6.7) $\theta$_{K/\mathbb{Q}}=\displaystyle \mathrm{n}\mathrm{r}(\frac{1}{6}(1-j)(\frac{71}{2}-\frac{1}{2} $\sigma$+11$\sigma$^{2}-19 $\tau$-\frac{13}{2} $\sigma \tau$-\frac{37}{2}$\sigma$^{2} $\tau$)) .

The reduced norm map is not injective, but the explicit computation of the reduced norm

in Appendix tells us the preimages of $\theta$_{K/\mathbb{Q}} does not belong to \mathbb{Z}_{3}[G] . More explicitly
we see that the preimages of $\theta$_{K/\mathbb{Q}} must belong to (1/3)\mathbb{Z}_{3}[G]=(1/| $\mu$(K)|)\mathbb{Z}_{3}[G] . If

we set L=\mathbb{Q}(\sqrt{-2}, \sqrt{33},  $\beta$) (  $\beta$ satises  $\beta$^{3}-9 $\beta$+3=0 ), we have  $\mu$(L)=\{\pm 1\},
\mathrm{G}\mathrm{a}1(L/\mathbb{Q})\cong D_{12} and as computed in [15, §5.1.3]

$\theta$_{L/\mathbb{Q}}=\displaystyle \frac{2}{3}(1-j)(1+ $\sigma$+$\sigma$^{2}- $\tau$- $\sigma \tau-\sigma$^{2} $\tau$) .



The BRuMER‐Stark conjecture for extensions with group D_{4p} and numerical examples 49

Since L does not contain non‐trivial roots of unity, we expect $\theta$_{L/\mathbb{Q}} itself belongs to

\mathcal{I}_{3}(D_{12}) . In fact, we have

$\theta$_{L/\mathbb{Q}}=\mathrm{n}\mathrm{r}(2(1-j)(-1+ $\sigma$+$\sigma$^{2}- $\tau$+ $\sigma \tau-\sigma$^{2} $\tau$)) .

As long as we see these numerical examples, in the non‐abelian cases it seems that the

direct inuence of the existence of the roots of unity appears not in the denominators of

the Stickelberger elements themselves but in those of the preimages of the Stickelberger
elements.

Finally, we introduce an example which tells us that Stickelberger elements can

belong to  $\zeta$(\mathbb{Z}_{p}[G]) even if \mathbb{Z}_{p}[G] is not a nice Fitting order. We take a root  $\gamma$ of the

cubic equation  x^{3}-12x+13=0 and set M=\mathbb{Q}(\sqrt{-6}, \sqrt{29},  $\gamma$) . By the same manner

as the calculation of $\theta$_{K/\mathbb{Q}} ,
we see that

$\epsilon$_{$\chi$_{1},S_{ram}}=$\epsilon$_{$\chi$_{5},S_{ram}}=0 and $\epsilon$_{$\chi$_{3},S_{ram}}=1,

and by PARI/GP

L_{S_{\infty}}(M/\mathbb{Q}, $\chi$_{3},0)=12.

Therefore, we have

$\theta$_{M/\mathbb{Q}}=12e_{$\chi$_{3}}=\mathrm{p}\mathrm{r}_{$\chi$_{3}}

Obviously, this element belongs to  $\zeta$(\mathbb{Z}_{3}[G]) . Moreover, $\theta$_{M/\mathbb{Q}} comes from the reduced

norm. In fact, we have

$\theta$_{M/\mathbb{Q}}=\mathrm{n}\mathrm{r}(\mathrm{p}\mathrm{r}_{$\chi$_{3}}) .

Since M does not contain non‐trivial roots of unity, this is also an example of the

inclusion (6.6).

§6.3. Annihilation of ideal class groups

As we have seen in the previous section, the elements $\delta$_{T}$\theta$_{K/k,S} have denominators

in general. Therefore, they can not act on the ideal class groups just as they are. This is

one of the main reason why we adopt S_{p}(G) and \mathcal{H}_{p}(G) (in the latter half of this section,
we will see that this is not the only reason). In this section, we see how Stickelberger
elements annihilate ideal class groups with concrete Galois extensions appearing in the

previous section.

First we study K/\mathbb{Q} ,
where we recall K=\mathbb{Q}(\sqrt{-3}, \sqrt{4001},  $\alpha$) with $\alpha$^{3}-11 $\alpha$+7=0.

By PARI/GP, we can see the structure as an abelian group of the ideal class group of

K as follows:

Cl(K)\cong \mathbb{Z}/180\mathbb{Z}\oplus \mathbb{Z}/12\mathbb{Z}, Cl(K)_{3}\cong \mathbb{Z}/9\mathbb{Z}\oplus \mathbb{Z}/3\mathbb{Z}.
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We denote by c_{1} and c_{2} the basis of Cl(K)_{3} which is chosen in the computation of

PARI/GP. Then also using PARI/GP, we see the Galois action on Cl(K)_{3} as follows:

(6.8) \left\{\begin{array}{ll}
 $\sigma$(c_{1})=4c_{1}+c_{2},  $\tau$(c_{1})=-c_{1}, & j(c_{1})=-c_{1},\\
 $\sigma$(c_{2})=6c_{1}+c_{2},  $\tau$(c_{2})=c_{2}, & j(c_{2})=-c_{2}.
\end{array}\right.
The above relations imply that Cl(K)_{3} is generated by c_{1} as a \mathbb{Z}_{3}[G] ‐module.

By Proposition 2.4, \mathcal{H}_{3}(G) coincides with S_{3}(G) ,
and hence, by (2.3) each element

x in \mathcal{H}_{3}(G) is of the form

x=\displaystyle \sum_{ $\chi$\in \mathrm{I}\mathrm{r}\mathrm{r}G}x_{ $\chi$}\mathrm{p}\mathrm{r}_{ $\chi$}, x_{ $\chi$}\in \mathbb{Z}_{3}.
Then we have

x$\delta$_{\{7\}}$\theta$_{K/\mathbb{Q}}=-4x_{$\chi$_{1}}\mathrm{p}\mathrm{r}_{$\chi$_{1}}-180x_{$\chi$_{3}}\mathrm{p}\mathrm{r}_{$\chi$_{3}}+3456x_{$\chi$_{5}}\mathrm{p}\mathrm{r}_{$\chi$_{5^{:}}}

Obviously this element belongs to  $\zeta$(\mathbb{Z}_{3}[D_{12}]) . Since 180 and 3456 are multiples of 9, we

have

180x_{$\chi$_{3}}\mathrm{p}\mathrm{r}_{$\chi$_{3}}c_{1}=3456x_{$\chi$_{5}}\mathrm{p}\mathrm{r}_{$\chi$_{5}}c_{1}=0.

Moreover, we see by (6.8) that

\mathrm{p}\mathrm{r}_{$\chi$_{1}}c_{1}=(1-j)(1+ $\sigma$+$\sigma$^{2})(1+ $\tau$)c_{1}=(1-j)(1+ $\sigma$+$\sigma$^{2})(1-1)c_{1}=0.
Hence

x$\delta$_{\{7\}}$\theta$_{K/\mathbb{Q}}c_{1}=0.
Thus thank to the denominator ideal \mathcal{H}_{p}(G) (and the central conductor S_{p}(G) ), $\delta$_{\{7\}}$\theta$_{K/k,S}
becomes an element in  $\zeta$(\mathbb{Z}_{3}[G]) and annihilates Cl(K)_{3} . Then what will happen in the

case the Stickelberger elements have no denominators? If \mathbb{Z}_{p}[G] is a nice Fitting order,
we do not need \mathcal{H}_{p}(G) . However, the following calculation tells us that we need \mathcal{H}_{p}(G)
in general.

We study M/\mathbb{Q} ,
where we recall M=\mathbb{Q}(\sqrt{-6}, \sqrt{29},  $\gamma$) with $\gamma$^{3}-12 $\gamma$+13=0 . By

PARI/GP, we can see the explicit structure of the ideal class group of M and the Galois

action on it as follows:

Cl (M)\cong \mathbb{Z}/12\mathbb{Z}\oplus \mathbb{Z}/6\mathbb{Z}\oplus \mathbb{Z}/6\mathbb{Z} , Cl (M)_{3}\cong \mathbb{Z}/3\mathbb{Z}\oplus \mathbb{Z}/3\mathbb{Z}\oplus \mathbb{Z}/3\mathbb{Z}.

We denote by c_{1}, c_{2} and C3 the basis of Cl(M)_{3} which is chosen in the computation of

PARI/GP. Then we have

(6.9) \left\{\begin{array}{ll}
 $\sigma$(c_{1})=-c_{1}-c_{2},  $\tau$(c_{1})=-c_{1}, & j(c_{1})=-c_{1},\\
 $\sigma$(c_{2})=c_{1}+c_{3},  $\tau$(c_{2})=c_{1}+c_{2}-c_{3}, & j(c_{2})=-c_{2},\\
 $\sigma$(c_{3})=C3,  $\tau$(c_{1})=-C, & j(c_{3})=-c_{3}.
\end{array}\right.
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By the above relations, we can see that Cl(M)_{3} is generated by c_{1} as a \mathbb{Z}_{3}[G] ‐module.

Take the prime 173. This prime is completely decomposed in M and satises

Hyp(S_{ram}\cup S_{\infty}, \{173\}) . Also we have

$\delta$_{\{173\}}$\theta$_{M/\mathbb{Q}}=\mathrm{n}\mathrm{r}(-172)\mathrm{p}\mathrm{r}_{$\chi$_{3}}=-172e_{$\chi$_{3}}\mathrm{p}\mathrm{r}_{$\chi$_{3}}=-172\mathrm{p}\mathrm{r}_{$\chi$_{3^{:}}}

This element also belongs to  $\zeta$(\mathbb{Z}_{3}[G]) . However, from (6.9) we have

$\delta$_{\{173\}}$\theta$_{M/\mathbb{Q}}c_{1}=-172\mathrm{p}\mathrm{r}_{$\chi$_{3}}c_{1}=-172(1-j)(1+ $\sigma$+$\sigma$^{2})(1- $\tau$)c_{1}
=-172\cdot 2\cdot(-1)\cdot 2c_{3}\neq 0.

We take an element x=\displaystyle \sum_{ $\chi$\in \mathrm{I}\mathrm{r}\mathrm{r}G}x_{ $\chi$}\mathrm{p}\mathrm{r}_{ $\chi$}\in \mathcal{H}_{3}(G) . Then we have

x$\delta$_{\{173\}}$\theta$_{M/\mathbb{Q}^{C_{1}}}=-172\cdot 2\cdot(-1)\cdot 2\cdot 12x_{$\chi$_{3}} C3=0.

Therefore, even in the case that Stickelberger elements do not have denominators, we

need denominator ideal \mathcal{H}_{p}(G) .

Finally, we study why we need \mathcal{H}_{3}(G) . We recall that

e_{$\chi$_{3}}=\displaystyle \frac{1}{12}\mathrm{p}\mathrm{r}_{$\chi$_{3}} and $\theta$_{M/\mathbb{Q}}=L_{S_{\infty}}(M/\mathbb{Q}, $\chi$_{3},0)e_{$\chi$_{3}}=12e_{$\chi$_{3}}=\mathrm{p}\mathrm{r}_{$\chi$_{3}}.

The important thing here is that the L‐value attached to $\chi$_{3} is canceled by the denomi‐

nator of e_{$\chi$_{3}} and hence $\theta$_{M/\mathbb{Q}} has no information on the L‐value. However, if we multiply

$\theta$_{M/\mathbb{Q}} by x
,

we have

x$\theta$_{M/\mathbb{Q}}=x_{$\chi$_{3}}\mathrm{p}\mathrm{r}_{$\chi$_{3}}\mathrm{p}\mathrm{r}_{$\chi$_{3}}=x_{$\chi$_{3}}12\mathrm{p}\mathrm{r}_{$\chi$_{3}}=x_{$\chi$_{3}}L_{S_{\infty}}(M/\mathbb{Q}, $\chi$_{3},0)\mathrm{p}\mathrm{r}_{$\chi$_{3^{:}}}

In this way, thanks to the element x
,

we obtain information on the L‐value from $\theta$_{M/\mathbb{Q}}.
This is the reason why we need the denominator ideal \mathcal{H}_{3}(G) .

§7. Appendix: The reduced norm of \mathbb{Q}_{p}[D_{12}]

We fix a prime p . In this Appendix, we review the way how to compute the reduced

norm of \mathbb{Q}_{p}[D_{12}].
From Table 5.1, we see all the 1‐dimensional representations of D_{12} . We set

$\rho$_{$\chi$_{4}}( $\sigma$):=\left(\begin{array}{ll}
0 & -1\\
1 & -1
\end{array}\right), $\rho$_{$\chi$_{4}}( $\tau$):=\left(\begin{array}{ll}
1 & -1\\
0 & -1
\end{array}\right), $\rho$_{$\chi$_{4}}(j):=\left(\begin{array}{l}
10\\
01
\end{array}\right)
and

$\rho$_{$\chi$_{5}}( $\sigma$):=\left(\begin{array}{ll}
0 & -1\\
1 & -1
\end{array}\right), $\rho$_{$\chi$_{5}}( $\tau$):=\left(\begin{array}{ll}
1 & -1\\
0 & -1
\end{array}\right), $\rho$_{$\chi$_{5}}(j):=\left(\begin{array}{ll}
-1 & 0\\
0 & -1
\end{array}\right)
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We can easily see that these determine all the 2‐dimensional representations (there is

no deep reason we choose these forms). We also set $\rho$_{$\chi$_{i}}:=$\chi$_{i} for i=0 , 1, 2, 3. Then

we have

\mathbb{Q}_{p}[D_{12}]\rightarrow\sim \mathbb{Q}_{p}\oplus \mathbb{Q}_{p}\oplus \mathbb{Q}_{p}\oplus \mathbb{Q}_{p}\oplus M_{2}(\mathbb{Q}_{p})\oplus M_{2}(\mathbb{Q}_{p}) ,  $\alpha$\mapsto\oplus$\rho$_{$\chi$_{i}} () .

The reduced norm map is dened by the following composition map:

\det
([\mathrm{D} ]):\mathrm{p} 12 (1) \mathrm{p}

i=0 i=0

Take an element

 $\alpha$=A+B $\sigma$+C$\sigma$^{2}+D $\tau$+E $\sigma \tau$+F$\sigma$^{2} $\tau$+Gj+H $\sigma$ j+I$\sigma$^{2}j+J $\tau$ j+K $\sigma \tau$ j+L$\sigma$^{2} $\tau$ j

in \mathbb{Q}_{p}[D_{12}] . Then the coefficient of the identity of D_{12} is

\displaystyle \frac{1}{3}(A+2A^{2}+B-2AB+2B^{2}+C-2AC-2BC+2C^{2}-2D^{2}+2DE-2E^{2}+2DF
+2EF-2F^{2}+2G^{2}-2GH+2H^{2}-2GI-2HI+2I^{2}-2J^{2}+2JK-2K^{2}

+2JL+2KL-2L^{2}) .
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