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Abstract

Let F(x) be an analytical, real valued function defined on a compact domain B\subset \mathbb{R} . We

show that the potential irrationality of F(x) evaluated at x_{0}\in B can be stated with respect to

the lack of convergence of the phase of a suitable integral I(h) ,
defined on an open, bounded

domain, for h that goes to infinity. In particular, this allows us to introduce an analytical
characterization of rational numbers.

§1. Introduction

Establishing the irrationality of special numbers has been a slow process dominated

by powerful theories that, however, apply to the pointwise evaluation of limited classes

of special, relatively simple functions (for an overview of the field we refer for example
to the classic [2]), while establishing directly the irrationality of series, and of pointwise
evaluation of complex functions, has been, mostly, the domain of ad‐hoc methods (see
for example [3, 6]).

In this paper we suggest that, for real irrational numbers, another viewpoint is

available, that transforms the problem of the irrationality of F(x_{0}) into the geometric

problem of finding zeros of a systems of equations on a four dimensional open, bounded

domain. This problem is then phrased in terms of a phase integral method we de‐

velop specifically to solve general real geometry problems for analytic functions. This
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characterization of the irrationality of function evaluations may offer a new perspective
on some old problems and we suggest at the end of this contribution some potential

ways in which our main results may allow analytical techniques for the asymptotic and

non‐perturbative study of complex phase integrals to become relevant for irrationality

problems.

§2. Characterization of the irrationality of analytic functions at a point

The main concern of our paper is to characterize when F(x_{0}) is irrational, assuming
that F(x) is analytical in a neighborhood of x_{0} . To this purpose, we consider the system
of equations

F(x)- $\alpha$=0, x\in[x_{0}- $\delta$, x_{0}+ $\delta$]

x-x_{0}=0,  $\alpha$\in F([x_{0}- $\delta$, x_{0}+ $\delta$])
(2.1)

\displaystyle \sin\frac{ $\pi$}{m}=\sin\frac{ $\pi$}{n}=0, m, n\in(0,1]
 $\alpha$ m-n=0

and we note that the system in (2.1) has a solution if and only if F(x_{0}) is a rational

number. The problem is however not simpler in this geometric context, as it involves

the determination of the zero set of a system of real analytic equations, and we lack a

theoretical frame to approach these problems in their generality.

Despite this difficulty, it is our belief that the real geometry of solutions of analytic

equations is rich enough to allow for a coherent and structured approach to a variety of

seemingly unrelated problems, following an initial suggestion we made in [7], where we

showed how a problem on the global robustness properties of dynamical systems could

be translated into a problem about the existence (and stability under perturbations)
of real solutions of an appropriate analytic equation. Moreover, in [7] we showed how

there is a canonical way to move from real analytical geometric problems to questions
about the asymptotical properties of the complex phase of appropriate ((geometric� path

integrals. Indeed, while these geometric path (and higher dimensional field) integrals
are suitable in principle not only to study the existence of solutions of real analytical

equations, but also of solutions of real analytical‐differential equations, simpler phase

integrals are sufficient to approach the problem of the existence of zeros of the system
in (2.1).

More specifically, consider p real analytic functions F_{1} ,
. . .

, F_{p} defined on a compact

set B\subset \mathbb{R}^{p} ,
and the vector function \mathrm{F}(x)=[F_{1}(x), F_{p}(x)] . Then we can construct

the associated function L(x)=\displaystyle \sum_{i=1}^{p}F_{i}(x)^{2} ; clearly L(x)=0 if and only if F_{i}(x)=0
for all i . Moreover, it is immediate to see that every point such that L(x)=0 is also

a critical point for L(x) . The relations between critical points of L(x) and solutions of
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the system of equations \mathrm{F}(x)=0 can be made more compelling by building a suitable

phase integral, whose asymptotic behavior depends on the existence of solutions to the

system itself. Indeed the following theorem holds, [8]:

Theorem 2.1. Let \mathrm{F}(x)=[F_{1}(x), F_{p}(x)] be an analytical, vectorial function

defined on a compact domain B\subset \mathbb{R}^{p} , let L(x)=\displaystyle \sum_{i=1}^{p}F_{i}(x)^{2} have only isolated critical

points in B ,
and let \mathcal{A} be a closed interval in \mathbb{R} that does not contain the origin. Consider

the complex valued integral

(2.2) I(h)=\displaystyle \int_{\mathcal{A}}\int_{B}e^{ihL(x)y^{2}}dxdy, y\in \mathcal{A}\subset \mathbb{R}, x\in B\subset \mathbb{R}^{p},
and denote by  $\phi$(I(h)) the complex phase (argument) of I(h) . Then the system \mathrm{F}(x)=0
has a solution in B if and only if  $\phi$(I(h)) has a limit forh going to infinity.

We call L(x) the geometric Lagrangian associated to \mathrm{F}(x)=0 . We use this termi‐

nology in analogy to the Lagrangian functions used in defining path and field integrals

[1], trusting that it will be suggestive of further crossfertilization of ideas and methods.

We will sketch the proof of this result at the end of this paper, and we only note

here that the result depends on the evaluation of the phase contribution of critical points
of L(x) in B , using standard stationary phase approximation methods [5, 9], to which

we refer for the necessary background material.

We now use Theorem 2.1 to study the system in (2.1). We build to this purpose

the geometric Lagrangian function:

(2.3) L(x,  $\alpha$, m, n)=(F(x)- $\alpha$)^{2}+(x-x_{0})^{2}+\displaystyle \sin^{2}\frac{ $\pi$}{m}+\sin^{2}\frac{ $\pi$}{n}+( $\alpha$ m-n)^{2}
Again, L(x,  $\alpha$, m, n)=0 if and only if the previous system has a solution, and we will

show that the limit for  h\rightarrow\infty of the phase of the following integral characterizes the

rationality of  F(x_{0}) :

(2.4) I_{L}(h)=\displaystyle \int_{y\in \mathcal{A}}\int_{ $\omega$\in$\Omega$_{ $\delta$}}e^{ihL( $\omega$)y^{2}}d $\omega$ dy, 0\not\in \mathcal{A}
where  $\omega$=(x,  $\alpha$, m, n) and we denote by $\Omega$_{ $\delta$} the tensor product of the domains allowed

for each of the components of  $\omega$ in (2.1).
The main complication, with respect to the setting of Theorem 2.1, is the existence

of infinitely many critical points, every time there is at least one point such that  L( $\omega$)=



4 Domenico Napoletani and Daniele C. Struppa

0. Indeed a critical point of L( $\omega$) has to satisfy:

\displaystyle \frac{\partial L}{\partial x}=2(F(x)- $\alpha$)\frac{dF(x)}{dx}+2(x-x_{0})=0
\displaystyle \frac{\partial L}{\partial $\alpha$}=-2(F(x)- $\alpha$)+2( $\alpha$ m-n)=0

(2.5)

\displaystyle \frac{\partial L}{\partial m}=2\sin\frac{ $\pi$}{m}\cos\frac{ $\pi$}{m}(- \frac{ $\pi$}{m^{2}})+2( $\alpha$ m-n) $\alpha$=0
\displaystyle \frac{\partial L}{\partial n}=2\sin\frac{ $\pi$}{n}\cos\frac{ $\pi$}{n}(- \frac{ $\pi$}{n^{2}})-2( $\alpha$ m-n)=0,

and we can see that if $\omega$_{0}=(x_{0}, $\alpha$_{0}, m_{0}, n_{0}) is a solution of L($\omega$_{0})=0 ,
then it is also a

critical point of L . However, also $\omega$_{i}=(x_{0}, $\alpha$_{0}, m_{i}, n_{i}) will be a zero and a critical point
of L

,
where m_{i}=\displaystyle \frac{m_{0}}{i} and n_{i}=\displaystyle \frac{n_{0}}{i}, i any integer (this can be seen by simple substitution

in  $\alpha$ m-n=0 , assuming $\alpha$_{0}m_{0}-n_{0}=0 ). Note that all critical points with L( $\omega$)=0
need to have x=x_{0} and  $\alpha$=$\alpha$_{0}=F(x_{0}) .

To gain some degree of control on the proliferation of critical points we cut the

domain of m and n as m\in[M ,
1 ] and n\in[N ,

1 ] with 0<M, N<1 and define the

domain

(2.6) $\Omega$_{ $\delta$}(M, N)=[x_{0}- $\delta$, x_{0}+ $\delta$]\times F([x_{0}- $\delta$, x_{0}+ $\delta$])\times[M, 1] \times[N, 1].

We then have the following theorem:

Theorem 2.2. Let F(x) be an analytical function in the interval [x_{0}- $\delta$, x_{0}+ $\delta$],
with  $\delta$ sufficiently small, and assume  F'(x_{0})\neq 0 . Consider the fo llowing phase integral,
the restriction of I_{L}(h) to the domain $\Omega$_{ $\delta$}(M, N) :

(2.7) I_{L}(h, M, N)=\displaystyle \int_{y\in \mathcal{A}}\int_{ $\omega$\in$\Omega$_{ $\delta$}(M,N)}e^{ihL( $\omega$)y^{2}}d $\omega$ dy, 0\not\in \mathcal{A}
where L is defined in (2.3). Let  $\phi$(I_{L}(h, M, N)) be the complex phase of I_{L}(h, M, N) .

F(x_{0}) is a rational number if and only if the following limit converges:

(2.8) \displaystyle \lim_{M,N\rightarrow 0}\lim_{h\rightarrow\infty} $\phi$(I_{L}(h, M, N

Proof. We will present a full proof of this theorem elsewhere, and for the time

being we refer the reader to [8]. We only note here that the core of the argument
consists in proving that, for  $\delta$ small enough, all critical points in  $\Omega$_{ $\delta$} are isolated, and in

controlling the size of the Hessian determinant at those points. \square 

Note that the phase integral in (2.4) depends functionally on F(x) ,
so that the

local behavior of F(x) for x\sim x_{0} becomes relevant for the irrationality of F(x_{0}) . This



A phase integral approach to irrationality 5

shift of perspective may prove itself to be the key in approaching some old problems
with our method. We formally write only one such potential application for a number,
the gamma constant  $\gamma$ ,

whose irrationality is not known. The Digamma function  $\Psi$

can be used to define the Euler‐Mascheroni  $\gamma$ constant as  $\Psi$(1)=- $\gamma$ ,
and since  $\Psi$(x)

is analytical at x=1
,

with $\Psi$'(1)=\displaystyle \frac{$\pi$^{2}}{6}\neq 0 we can state the following Corollary to

Theorem 2.2, where we assume  $\delta$ has already been chosen sufficiently small:

Corollary 2.3. Consider the geometric Lagrangian associated to the Digamma

function  $\Psi$ :

 L(x,  $\alpha$, m, n)=( $\Psi$(x)- $\alpha$)^{2}+(x-1)^{2}+\displaystyle \sin^{2}\frac{ $\pi$}{m}+\sin^{2}\frac{ $\pi$}{n}+(2.9)
( $\alpha$ m-n)^{2}

The Euler‐Mascheroni constant  $\gamma$ is rational if and only if the fo llowing limit converges

(2.10) \displaystyle \lim_{M,N\rightarrow 0}\lim_{h\rightarrow\infty} $\phi$(I_{L}(h, M, N
We can also use Theorem 2.2 to characterize explicitly the set of rational numbers

with phase integrals. More particularly we have the following result:

Corollary 2.4. Let  a_{0}.a_{1}a_{2}a_{3}\ldots be the decimal expansion of a real number  A,
and consider the function F(x)=\displaystyle \sum_{i=0}^{\infty}\frac{a_{i}}{10^{i}}x^{i} . Consider the following geometric La‐

grangian:

L(x,  $\alpha$, m, n)=(F(x)- $\alpha$)^{2}+(x-1)^{2}+\displaystyle \sin^{2}\frac{ $\pi$}{m}+\sin^{2}\frac{ $\pi$}{n}+(2.11)
( $\alpha$ m-n)^{2}

Then A is rational if and only if the fo llowing limit converges

(2.12) \displaystyle \lim_{M,N\rightarrow 0}\lim_{h\rightarrow\infty} $\phi$(I_{L}(h, M, N

Proof. We only need to prove that F(x) is analytical in a neighborhood of x=1

and that F'(1)\neq 0 . Now F(x)=\displaystyle \sum_{i=0}^{\infty}\frac{a_{i}}{10^{i}}x^{i} has a radius of convergence  $\rho$ defined by

 1/ $\rho$=\displaystyle \lim\sup_{i\rightarrow\infty}(a_{i}/10^{i})^{1/i} ,
and this supremum limit is either 0 ,

if A has finite nonzero

decimal representation, or 1/10 if the nonzero decimal representation is unending. It

follows in both cases that x=1 is well within the interval of convergence, and F(x)
is analytical in a neighborhood of 1. Suppose now that F'(1)=0 ,

this implies that

\displaystyle \sum_{i=1}^{\infty}\frac{i*a_{i}}{10^{i}}=0 ,
but this is a sum of positive numbers, and it cannot equal zero, so we

are also assured that F'(1)\neq 0 and the corollary follows from Theorem 2.2. \square 
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§3. Further Developments

In this section we would like to sketch some further potential developments of our

approach. Suppose for example that we are interested in the problem of finding whether

F(x)=0, x\in B has rational solutions, with B a compact domain in \mathbb{R}^{p} . The method

described in Section 2 can be formally applied, using the Geometric Lagrangian:

(3.1) L(x, m, n)=F(x)^{2}+\displaystyle \sum_{i=1}^{p}\sin^{2}\frac{ $\pi$}{m_{i}}+\sin^{2}\frac{ $\pi$}{n_{i}}+(x_{i}m_{i}-n_{i})^{2}
A full adaptation of Theorem 2.2 to this case requires a careful evaluation of convergence

of multiple series associated to critical points with F(x)=0 ,
and this is problematic

if there are infinitely many discrete rational solutions of F(x)=0 in B . However, the

method directly applies when F(x)=0 has finitely many rational solutions on B ,
as in

this case the evaluation of the corresponding phase integral reduces to the evaluation

of a finite number of phase integrals each on a domain that has at most a single critical

point, reducing the problem to the setting of Theorem 2.2. This consideration implies
that a slightly modified version of Theorem 2.2 holds for the study of rational curves of

genus bigger than 1 since such curves always have at most finitely many rational points

[4].
Diophantine equations could be similarly approached. If we are interested in the

existence of finitely many integer solutions of F(x)=0 on \mathbb{R}^{p}
,

the following geometric

Lagrangian would be suitable:

(3.2) L(x, m)=F(x)^{2}+\displaystyle \sum_{i=1}^{p}\sin^{2}\frac{ $\pi$}{m_{i}}+(x_{i}m_{i}-1)^{2}
Note that here we assume integration on unbounded domains since we did not

restrict ourselves to subsets of \mathbb{R}^{p} . The implication is that the method would distinguish
the case of finitely many integer solutions from both the case of infinitely many solutions,
and the case of no solutions.

Also the problem of determining whether F(x_{0}) is algebraic of degree K can also

be stated in terms of phase integrals on geometric Lagrangians of the type:

L(x,  $\alpha$, a, m, n)=(F(x)- $\alpha$)^{2}+(x-x_{0})^{2}+g( $\alpha$)^{2}+

(3.3)

\displaystyle \sum_{j=1}\sin^{2}\frac{ $\pi$}{m_{j}}K+(a_{j}m_{j}-1)^{2}
where g( $\alpha$) is a polynomial of degree at most K, a_{j} are its (integer) coefficients and we

denote by a the vector of all a_{j} . We note however that the phase integral defined by
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this Lagrangian would require integration over an unbounded domain in the aj�s, since

we cannot restrict a priory the size of the coefficients. It is also not clear whether the

phase integral method can be adapted to discriminate algebraic numbers, of any degree
K

,
from transcendental numbers.

We have already stressed in the previous section the importance of keeping a func‐

tional dependence of the phase integral from F(x) . This dependence can be used to say

a little more about the structure of the geometric Lagrangians defined so far, as they
can all be split into three components. Indeed some of the Lagrangians in this section

could have been written in more compact ways, but we specifically wanted to keep this

tripartite structure. Let us focus for simplicity on the geometric Lagrangian for the

irrationality test in Section 2 (the same arguments extend easily to the Lagrangians
sketched in this section).

The geometric Lagrangian L(x,  $\alpha$, m, n)=(F(x)- $\alpha$)^{2}+(x-x_{0})^{2}+\displaystyle \sin^{2}\frac{ $\pi$}{m}+
\displaystyle \sin^{2}\frac{ $\pi$}{n}+( $\alpha$ m-n)^{2} can be written as L(x,  $\alpha$, m, n)=L_{1}(x,  $\alpha$)+L_{2}(m, n)+L_{3}( $\alpha$, m, n) ,

now the functions L_{1}(x,  $\alpha$)=(F(x)- $\alpha$)^{2}+(x-x_{0})^{2} and L_{2}(m, n)=\displaystyle \sin^{2}\frac{ $\pi$}{m}+\sin^{2}\frac{ $\pi$}{n} can

be seen as two distinct Lagrangians, each leading to geometric phase integrals whose

phase is always convergent, while L_{3}( $\alpha$, m, n)=( $\alpha$ m-n)^{2} can be seen as a �coupling

Lagrangian� that provides the interaction between the first two Lagrangians.
This discussion is inspired by the language of quantum field theory, where in‐

teraction among free fields is often mediated by only some of the terms in the as‐

sociated Lagrangian ([1], chapter 5). If we push this analogy even further, we can

say that, for any small coupling parameter  $\beta$>0 the Lagrangian L_{ $\beta$}(x,  $\alpha$, m, n)=
(F(x)- $\alpha$)^{2}+(x-x_{0})^{2}+\displaystyle \sin^{2}\frac{ $\pi$}{m}+\sin^{2}\frac{ $\pi$}{n}+ $\beta$( $\alpha$ m-n)^{2}=L_{1}(x,  $\alpha$)+L_{2}(m, n)+L_{3, $\beta$}( $\alpha$, m, n)
isjust as suitable to study the irrationality of F(x_{0}) . For  $\beta$ very small, this modification

allows to expand the phase integral associated to  L_{ $\beta$} in terms of powers of L_{3, $\beta$} , since,
for  $\beta$ sufficiently small,  L_{3, $\beta$}= $\beta$ L_{3}= $\beta$( $\alpha$ m-n)^{2} will also be small on $\Omega$_{ $\delta$} . More

particularly, for  $\beta$ very small, and under the conditions of Theorem 2.2, we have the

following equalities:

\displaystyle \int_{y\in \mathcal{A}}\int_{ $\omega$\in$\Omega$_{ $\delta$}(M,N)}e^{ihL_{ $\beta$}( $\omega$)y^{2}}d $\omega$ dy=
(3.4) \displaystyle \int_{y\in \mathcal{A}}\int_{ $\omega$\in$\Omega$_{ $\delta$}(M,N)}e^{ih(L_{1}( $\omega$)+L_{2}( $\omega$))y^{2}}e^{ihL_{3, $\beta$}( $\omega$)y^{2}}d $\omega$ dy=

\displaystyle \int_{y\in \mathcal{A}}\int_{ $\omega$\in$\Omega$_{ $\delta$}(M,N)}e^{ih(L_{1}( $\omega$)+L_{2}( $\omega$))y^{2}}\sum_{j=0}^{\infty}\frac{(ihL_{3, $\beta$}( $\omega$)y^{2})^{j}}{\mathrm{j}!}d $\omega$ dy.
And, being mindful of the contrasting tension between the requirement  h\rightarrow\infty and

 $\beta$\rightarrow 0 ,
the study of the convergence of the phase of the first integral in (3.4) could be

replaced by the study of the convergence of the phase of the following series of integrals,
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potentially allowing perturbative and renormalization methods to be relevant here:

(3.5) \displaystyle \sum_{j=0}^{\infty}\frac{(ih $\beta$)^{j}}{\mathrm{j}!}\int_{y\in \mathcal{A}}\int_{ $\omega$\in$\Omega$_{ $\delta$}(M,N)}L_{3}( $\omega$)^{j}y^{2j}e^{ih(L_{1}( $\omega$)+L_{2}( $\omega$))y^{2}}d $\omega$ dy.
Not only, it is possible to construct an entire family of Lagrangians \{L_{ $\beta$}\} ,

and study
the structure of the �flow� of the associated phase integrals as  $\beta$\rightarrow 0 . Note that, for

any  $\beta$\neq 0 ,
if F(x_{0}) is irrational, there will be no phase convergence of I(h, M, N) as

defined in Theorem 2.2, but for  $\beta$=0 there will always be phase convergence since

the Lagrangians L_{1} and L_{2} will be decoupled in that case, and there will always be

solutions to the associated geometric problem. So the problem of irrationality of F(x_{0})
can also be approached as an abrupt qualitative transition, at  $\beta$=0 ,

of the structure

of the family of phase integrals associated to the Lagrangians \{L_{ $\beta$}\} , again enriching

irrationality problems with the methodologies that have been developed to study phase
transitions in physics.

While this heuristic discussion is brief and very informal, it is included in the paper

to be suggestive of the significant conceptual shift that is possible, by using Theorem

2.2 as a starting point for a renewed study of irrationality.

§4. Sketch of the proof of Theorem 2.1

We will use standard stationary phase approximation methods [9, 5] to calculate

the integral in (2.2), for  h\rightarrow\infty
,

with respect to the critical points of  L(x) in B . By

denoting with H(x_{*}) the Hessian matrix of L(x) evaluated at x_{*} ,
and $\sigma$_{*} the signature

of H(x_{*}) ,
and by assuming that there is at least one critical point with Hessian different

from zero, we can evaluate the limit

\displaystyle \lim_{h\rightarrow\infty}I(h)=\int_{y\in \mathcal{A}}\sum_{L(x_{i})=0}(\frac{2 $\pi$}{h})^{\frac{p}{2}}\frac{1}{y^{p}(\det H(x_{i}))^{1/2}}e^{i\frac{ $\pi$}{4}$\sigma$_{i}}dy+
(4.1)

\displaystyle \int_{y\in \mathcal{A}}\sum_{L(x_{j})\neq 0}(\frac{2 $\pi$}{h})^{\frac{p}{2}}\frac{1}{y^{p}(\det H(x_{j}))^{1/2}}e^{ihL(x_{j})y^{2}+i\frac{ $\pi$}{4}$\sigma$_{j}}dy
by considering separately its two summands. To begin with, the first summand can be

written as

\displaystyle \lim_{h\rightarrow\infty}I_{1}(h)=\lim_{h\rightarrow\infty}\int_{y\in \mathcal{A}}\sum_{L(x_{i})=0}(\frac{2 $\pi$}{h})^{\frac{p}{2}}\frac{1}{y^{p}(\det H(x_{i}))^{1/2}}e^{i\frac{ $\pi$}{4} $\sigma$}idy=
(4.2)

\displaystyle \lim_{h\rightarrow\infty} \sum (\frac{2 $\pi$}{h})^{\frac{p}{2}}\frac{1}{(\det H(x_{i}))^{1/2}}e^{i\frac{ $\pi$}{4}$\sigma$_{i}}S
L(x_{i})=0
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where S=\displaystyle \int_{\mathcal{A}}\frac{1}{y^{p}}dy , and, being the last term a finite sum, and factoring out \displaystyle \frac{1}{h^{p/2}} ,
the

phase of I_{1}(h) is shown to be independent of h and dependent only on the critical points

xi�s, or more exactly, on the signatures $\sigma$_{i}.

As to the second summand in (4.1), we see that

(4.3) I_{2}(h)=\displaystyle \int_{y\in \mathcal{A}}\sum_{L(x_{j})\neq 0}(\frac{2 $\pi$}{h})^{\frac{p}{2}}\frac{1}{y^{p}(\det H(x_{j}))^{1/2}}e^{ihL(x_{j})y^{2}+i\frac{ $\pi$}{4}$\sigma$_{j}}dy=
(4.4) =\displaystyle \int_{y\in \mathcal{A}}(\frac{2 $\pi$}{h})^{\frac{p}{2}}\frac{1}{y^{p}(\det H(x_{j}))^{1/2}}e^{ihL(x_{j})y^{2}+i\frac{ $\pi$}{4}$\sigma$_{j}}dy=

(4.5) =(\displaystyle \frac{2 $\pi$}{h})^{\frac{p}{2}}\frac{1}{(\det H(x_{j}))^{1/2}}e^{i\frac{ $\pi$}{4}$\sigma$_{j}}\int_{y\in \mathcal{A}}\frac{1}{y^{p}}e^{ihL(x_{j})y^{2}}dy
which is a phase integral in y computed over an interval that does not include a critical

point (y=0) . Such integral decreases at least like O(\displaystyle \frac{1}{hL(x_{j})}) ,
the leading contribution

from the boundary points of \mathcal{A} ([9], page 488; [5], page 52). And therefore

(4.6) \displaystyle \lim_{h\rightarrow\infty}I_{2}(h)=\lim_{h\rightarrow\infty}(2 $\pi$)^{\frac{p}{2}}\sum_{L(x_{j})\neq 0}\frac{1}{(\det H(x_{j}))^{1/2}}e^{i\frac{ $\pi$}{4}$\sigma$_{j}}O(\frac{1}{h^{p/2+1}L(x_{j})})
Since there is at least one point x_{j} with \det H(x_{j})\neq 0 ,

and we know there are

finitely many critical points for which L(x_{j})\neq 0 we have that all the values L(x_{j}) can

be bounded away from 0 ,
and the entire sum above can be estimated as

(4.7) \displaystyle \lim_{h\rightarrow\infty}I_{2}(h)=O(\frac{1}{h^{p/2+1}})
This is a negligible quantity with respect to I_{1}(h)\displaystyle \sim\frac{1}{h^{p/2}} . We can conclude that the

limit for  h\rightarrow\infty of  I(h)=I_{1}(h)+I_{2}(h) has constant phase if L(x)=0 for at least

a specific x_{j} . If there are no values for which L(x)=0 ,
the phase will not converge,

this is easy to see in the case we do have at least a critical point x_{j} with L(x_{j})\neq 0
and \det H(x_{j})\neq 0 ,

since in that case the term e^{ihL(x_{j})y^{2}} in I_{2}(h) will each continue to

change phase as h goes to infinity.

Suppose finally that there are no critical points at all, then the integral in (2.2) is

dominated by the evaluation of some derived phase integral on the boundary of \mathcal{A}\times B,
more particularly, it is true that (adapted from [9], page 488):

(4.8) I(h)\displaystyle \sim-\frac{i}{h}\int_{\partial(A\times B)}Ge^{ihL(x)y^{2}}da



10 Domenico Napoletani and Daniele C. Struppa

where \partial(\mathcal{A}\times B) is the boundary of \mathcal{A}\times B, da is a suitable measure on the boundary,
and G is a multiplier function dependent on L(x)y^{2}.

Now, \mathcal{A}\times B is an hypercube, and a recursive application of the result in (4.8), to

lower and lower dimensional boundaries of its hyperfaces, will reduce the asymptotic
evaluation of I(h) to a sum of suitable multiples of evaluations of e^{ihL(x)y^{2}} at the vertices

of the hypercube. None of these values is independent of h
,

since we assumed there are

no critical points of L on \mathcal{A}\times B ,
and therefore L(x)y^{2}\neq 0 everywhere. This implies

that \displaystyle \lim_{h\rightarrow\infty} $\phi$(I(h)) does not exist when there are no critical points on \mathcal{A}\times B.
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