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Abstract

We study the singularity structure of the Landau‐Nakanishi surface determined by a

hooked 3‐lines diagram, and this gives a new light on Sato�s postulates on the S‐matrix.

§1. Introduction

This paper is the first step of our trial to cast a new light on Sato�s postulates

([11]) on the singularity structure of the S‐matrix by assuming the Borel summability

([2]) of its perturbation series expansion in the coupling constant. In this paper we put

our emphasis on the study of its geometric aspect, particularly near its three particle
threshold (hereafter abbreviated as 3PT). In order to make our study concrete and

simple, we assume that the space‐time dimension is 2 and that all the masses associated

with internal lines are equal to m(\geq 0) , and, having the 3 to 3 S‐matrix element in

mind, we investigate, with the help of a computer, the concrete shape of the  positive- $\alpha$
Landau‐Nakanishi surfa ce determined by a hooked 3‐lines diagram, whose definition is

given in Section 2.

Received March 24, 2014. Revised August 20, 2014. Accepted August 23, 2014.

2010 Mathematics Subject Classification(s): Primary  81\mathrm{Q}30 ; Secondary 32\mathrm{S}40.

Key Words: Landau‐Nakanishi geometry, hooked 3‐lines graph, 3‐particle threshold.
*

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, 060‐0810, Japan.
Supported in part by JSPS KAKENHI Grant Number 23540178.

\mathrm{e}‐mail: honda@math. sci.hokudai. ac. jp
** Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606‐8502, Japan.

Supported in part by JSPS KAKENHI Grant Number 24340026.
*** Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, U.S.A.

© 2014 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



12 Naofumi Honda, Takahiro Kawai and Henry P. Stapp

Throughout this paper we use the same notations and terminologies used in [4]
except for the wording �Landau‐Nakanishi surfaces� (instead of �Landau‐Nakanishi va‐

rieties�) that means the projection of the Landau‐Nakanishi varieties to the base man‐

ifold; for the sake of reference we also note that the notations and terminologies used

here are basically the same as in [11]. In what follows �Landau‐Nakanishi surfaces� are

abbreviated to LN surfaces�

Our conclusion is that the geometry is surprisingly simple and reasonable; we find

a concretely defined exceptional set N
,

which we believe to correspond to what Sato

([11]) had in mind, at least near 3PT ,
and we confirm (Section 3) that, outside a

neighborhood of N
,

we encounter only finitely many \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces associated

with hooked 3‐lines diagrams. Furthermore the singularities of the resulting surfaces

are quite natural despite the appearance of higher codimensional components basically
due to the existence of non‐external vertices in hooked 3‐lines diagrams. The higher
codimensional components we encounter are simply intersections of real hypersurfaces

(Sections 3 and 4), and we do not encounter any annoying singularities such as acnodes.

As we note in Section 4, the existence of an acnode indicates the existence of (possibly
infinitely many) complex singularities which accumulate to the acnode. The absence

of acnodes in \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces is consistent with the strong asymptotic causality

(SAC) proposed in [1]. In Appendix A we further clarify the mechanism how acnodes

appear in the study of LN surfaces in the real domain. We want to emphasize that the

visualization of the LN surfaces with the help of a computer was an important step of

our study to understand the origin of acnodes in LN surfaces ([3]). To stand on the

safer side we note that we use the wording �pinch (point)� following the tradition in

geometry; thus it is different from �pinch� used, say, in [3]. Our �pinch point� means

the most singular point in Whitney�s umbrella. (Cf. Appendix A.)
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§2. Some preparations

As the first step toward a better understanding of the geometric aspect of Sato�s

postulates near the 3 particle threshold (=3PT) we study the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ Landau‐

Nakanishi surface  L^{+}(h_{q}) of a hooked 3‐lines h_{q} defined below, having in mind the

perturbation series expansion of the 3 to 3 S‐matrix element. As noted in the introduc‐

tion, we use the wording LN surfaces to mean the projection to the base manifold of the

LN varieties in the cotangent bundle. We note that, in some context of our discussions

below, we will be concerned with some particular higher codimensional components

which are contained in the �surfaces�

In what follows we always assume that the space‐time dimension is 2 and that the

masses associated to the internal lines of the graph h_{q} are all equal to m>0 . We

assume the graph h_{q} is oriented so that

(2.1) k_{l,0}>0 holds for every internal line kp of h_{q}.

Definition 2.1. (i) A hooked 3‐lines h_{q} with q hooks consists of 3 lines, the

upper line, the middle line and the lower line, such that the middle line moves in a

zigzag between the upper line and the lower line forming q hooks labeled by u (a hook

formed by the upper line and the middle line) or d (a hook formed by the lower line

and middle line) as shown below as an example in Figure 2.1.

u u u

h_{6} :

Figure 2.1. An example of a hooked 3‐lines.

We identify, for example, h_{6} in Figure 2.1 with the sequence of labels

(2.2) duduud or dudu^{2}d for short.

As a convention we assume that no u^{p}(p\geq 3) or d^{q}(q\geq 3) appears in the label.

(ii) If 3 lines meet at one point we label the point  $\varpi$ and call it a pit. A hooked 3‐lines

with a pit is called a pitted hooked 3‐lines.
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Remark 2.2. (i) As we are interested in the geometric aspect of the problem we

have introduced the above convention; the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface associated with D_{1} in

Figure 2.2 coincides with that associated with D_{2} in the same figure.

D_{1} D_{2}

Figure 2.2.

(ii) A pitted hooked 3‐lines graph is important in studying the contraction of a hooked

3‐lines diagram; for example let us contract the leftmost slant in Figure 2.3 below.

Figure 2.3.

Then we encounter the following pitted 3‐lines in Figure 2.4.

Figure 2.4.

In order to avoid possible confusions we always qualify a hooked 3‐lines as pitted when

it contains a pit.

(iii) In what follows, a bead means a part of the graph that has the form u^{2} or d^{2}
, using

this wording, we find that a hooked 3‐lines without beans is nothing but a truss‐bridge
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graph discussed in [4]. For example, the graph given in Figure 2.3 is a truss‐bridge graph
with 3 trusses, i.e., T3 in the expressions of [4].

Definition 2.3. (i) We denote by H(q) the totality of hooked 3‐lines with q

hooks.

(ii) We denote by  $\varpi$ H(q) (resp. H^{ $\varpi$}(q) ) the totality of a pitted hooked 3‐lines whose

leftmost (resp. rightmost) hook is a pit and which contains q hooks (including a pit).

Remark 2.4. For example, the graph given in Figure 2.4 belongs to  $\varpi$ H(4) .

We next introduce the set N
,

which plays a central role in studying the geometric

aspect of Sato�s postulates.

Definition 2.5. The set N is, by definition, N_{+}\cup N_{-} ,
where  N\pm are given by

the following:

(2.3)  N_{+}=\displaystyle \bigcup_{k^{2}=m^{2}}\{(p_{1}, p_{2}, p_{3})\in \mathbb{R}^{6};_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} $\sigma$ \mathrm{o}\mathrm{f}\{1,2}^{p_{ $\sigma$(1)}=k\mathrm{a}\mathrm{n}\mathrm{d}p_{ $\sigma$(2)}+p_{ $\sigma$(3)}=2k}, 3\}

hold

} ,

(2.4) N_{-=\bigcup_{k^{2}=m^{2}}}\{(p_{4},p_{5},p_{6})\in \mathbb{R}^{6};_{\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} $\tau$ \mathrm{o}\mathrm{f}\{4,5}^{p_{ $\tau$(4)}=k\mathrm{a}\mathrm{n}\mathrm{d}p_{ $\tau$(5)}+p_{ $\tau$(6)}=2k}, 6\}

hold

}
Remark 2.6. We often regard  N\pm as subsets in \mathbb{R}^{10}=\{(p_{1}, \ldots, p_{6})\in \mathbb{R}^{12};p_{1}+

p_{2}+p_{3}=p_{4}+p_{5}+p_{6}\}.

Remark 2.7. We emphasize that p_{ $\sigma$(1)} and p_{ $\tau$(4)} are confined to be on mass‐shell.

As we will see in Section 3, this phenomenon is closely tied up with the existence of

non‐external vertices in the graph, i.e., the fact that the graph contains vertices upon

which no external vectors are incident.



16 Naofumi Honda, Takahiro Kawai and Henry P. Stapp

§3. Finiteness theorem for the leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ Landau‐Nakanishi

surfaces outside  N

Let us denote by L^{\oplus}(G) the leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface determined by the graph
G ,

that is, the part of L^{+}(G) where all $\alpha$_{l}\geq 0 . Our first theorem is:

Theorem 3.1. L^{\oplus}(T_{n})\subset N forn\geq 4.

We note that we are considering the problem under the assumption that the space‐

time dimension is 2. Hence the following lemma is evident.

Lemma 3.2. Suppose

(3.1) k_{l}^{2}=m^{2}, k_{l,0}>0 (\ell=1,2,3,4)

and

(3.2) k_{1}+k_{2}=k_{3}+k_{4}.

Then we find either

(3.3) (k_{3}, k_{4})=(k_{1}, k_{2})

or

(3.4) (k_{3}, k_{4})=(k_{2}, k_{1}) .

Proof of Theorem 3.1. To prove Theorem 3.1 using Lemma 3.2, we first consider

the case n=4 . As will become clear later, the point is that T_{4} contains two non‐external

vertices V and W below.

By applying Lemma 3.2 to the vertex V we find either [I] or [II] in Figure 3.1. Note

that we abbreviate kp as \ell in the subsequent figures.

[I] or [II]

Figure 3.1.
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Let us first consider the case [I]. Then it follows from the closed loop condition for

the truss formed by B, V and W that

(3.5) k_{4}=k_{2}.

Hence Lemma 3.2 applied to the vertex W implies

(3.6) k_{5}=k_{6}=k_{2}.

Hence the closed loop condition for the trusses \triangle VWC and \triangle CWD respectively entails

(3.7) k_{1}=k_{2} ,
and k_{7}=k_{2}.

Finally the closed loop condition for the leftmost truss \triangle ABV reads as

(3.8) k_{3}=k_{2},

as k_{1}=k_{2} . Thus all k_{l} �s are the same, and hence we find

(3.9) L^{\oplus}(T_{4})\subset N

in case [I].

In case [II] we apply Lemma 3.2 to vertex W and separate the situation into 2

subcases [II. \mathrm{i} ] and [II.ii] in Figure 3.2 and Figure 3.3 respectively;

[II. \mathrm{i} ]

\mathrm{i}.\mathrm{e}. (k_{5}, k_{6})=(k_{1}, k_{4}) ,

Figure 3.2.

[II. ii]

i.e. (k_{5}, k_{6})=(k_{4}, k_{1}) .

Figure 3.3.

Let us first consider the case [II. \mathrm{i}]. First, the closed loop condition for the truss

\triangle VWC implies

(3.10) k_{2}=k_{1}.

Then the closed loop condition for the truss \triangle BVW entails

(3.11) k_{4}=k_{1}.
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Hence the closed loop condition for the truss \triangle WCD leads to

(3.12) k_{7}=k_{1}.

Similarly it follows from (3.10) that

(3.13) k3=k_{1}.

Thus we find all the internal lines are equal in [II. \mathrm{i}]. The reasoning in the situation

[II.ii] is slightly subtler; we consider two trusses \triangle BVW and \triangle VWC simultaneously
to deduce from the closed loop conditions for them that

(3.14) k_{2}=k_{4}.

Hence the closed loop condition for the truss \triangle BVW implies

(3.15) k_{1}=k_{2},

showing also

(3.16) k_{3}=k_{7}=k_{2}.

Thus we have confirmed

(3.17) L^{\oplus}(T_{4})\subset N ;

we note that in our reasoning we have used only the fact that both V and W are non‐

external vertices, together with the closed loop conditions for several trusses. Thus it

is clear that all the internal vectors that appear in the configuration of L^{\oplus}(T_{n})(n\geq 5)
are the same, and hence we find

(3.18) L^{\oplus}(T_{n})\subset N.

This completes the proof of Theorem 3.1. \square 

Remark 3.3. An important point in Theorem 3.1 is that, although the external

vector p_{r}(r=1,2, \ldots, 6) are not confined to the mass‐shell manifold in the Landau‐

Nakanishi equations, which we are using in this paper, some external vectors are confined

to the mass‐shell manifold in the leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces L^{\oplus}(T_{n})(n\geq 4) .

In parallel with Theorem 3.1 we find the following.

Theorem 3.4. If the number q of the hooks is equal to or bigger than 12, then

(3.19) L^{\oplus}(h_{q})\subset N

holds.
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Proof. Let (p, k) be the set of vectors which realizes the diagram L^{\oplus} (hq), and let

\{k_{l}\}_{l\in R} be the totality of internal vectors that do not form a bead in h_{q} . Then, by the

procedure to be described below, we use (p, \{k_{l}\}_{l\in R}) to form a configuration L^{\oplus}(T_{n}) ,

where T_{n} is a truss‐bridge graph with \tilde{q} vertices, where \tilde{q}\geq q/2.

Figure 3.4.

Figure 3.5.

The procedure is as follows: first, we note that, for some bead (see Figure 3.4)
which is with some internal lines being incident upon each of vertices d_{1} and d_{2} ,

we find

a part u_{1}d_{1}d_{2}u_{2} in h_{q} because of the convention that d^{3} is not allows in h_{q} . Then we

can form a triangle using the vectors associated with u_{1}d_{1} and u_{1}d_{1} together with the

parallel displacement of the vector associated with d_{2}u_{2} so that it may leave from d_{1} as

indicated in Figure 3.5 where dlũ2 is parallel to d_{2}u_{2} . On the other hand, if two lines

entering d_{1} or two lines leaving from d_{2} are external, then we just collapse the bead

d_{1}d_{2}.

By this procedure we find a leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ Landau‐Nakanishi surface  L^{\oplus}(T_{n})
associated with a truss‐bridge graph T_{n} with \tilde{q} vertices, where

\tilde{q}=q-\# (beads in  h_{q} ) /2\geq q/2.

Since q is supposed to be bigger than or equal to 12, the number of trusses in T_{n} , i.e.,
n is bigger than or equal to 4. Hence Theorem 3.1 entails the point p in question is in

N. \square 

Remark 3.5. Although the number 4 in Theorem 3.1 is the best possible one,

the number 12 in Theorem 3.4 is not so. For example we can easily confirm

(3.20) L^{\oplus}(u^{2}dud^{2})\subset N.

But, at the same time, one can confirm that L^{\oplus}(u^{2}du^{2}d) is not contained in N
,

as we

find the following configuration described in Figure 3.6 by making use of the so‐called

ice‐cream cone diagram in Figure 3.7. (See Section 5 [II] for the details.) By examining
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p_{6}

Figure 3.7.
Figure 3.6.

all the cases individually we can find that the best possible number q in Theorem 3.4 is

8; we find

(3.21) L^{\oplus}(h_{q})\subset N if q\geq 8.

We leave the concrete verification of (3.21) to the reader, but as a typical example we

show how to confirm

(3.22) L^{\oplus}(u^{2}d^{2}u^{2}d^{2})\subset N.

It is clear that the truss‐bridge graph used in the proof of Theorem 3.4 is T_{2} . However,

by keeping the beads in the diagram in Figure 3.8 below, we confirm (3.22) as follows:

in Figure 3.8 Lemma 3.2 implies DE=DG=k and BE=DE =\ell . Hence \ell=k.

Figure 3.8.

Then the closed loop conditions entail BC=FG=k . Again by using Lemma 3.2 we

then find all internal lines in L^{\oplus}(u^{2}d^{2}u^{2}d^{2}) are equal to k . By the reasoning of this sort

we can confirm

(3.23) L^{\oplus}(h)\subset N for any h in H(8)
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by checking all hooked 3‐lines with 8 hooks individually. On the other hand, it follows

from the definition of a hooked 3‐lines diagram that, if

(3.24) L^{\oplus}(h)\subset N holds for every h in H(q) ,

then

(3.25) L^{\oplus}(\tilde{h})\subset N holds for any \tilde{h} in H(q+1) .

Thus we can prove Theorem 3.4 by the induction on q , starting from q=8.

Remark 3.6. In the course of the study mentioned in the preceding remark, we

have obtained the following list of hooked 3‐lines whose leftmost hook is u and that

gives us leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces that are not contained in N . We have listed

only one graph among graphs which are topologically isomorphic, like D_{1} and D_{2} in

Figure 3.9.

D_{1} D_{2}

Figure 3.9.

[I] H(1) : The diagram in Figure 3.10.

Figure 3.10. H(1) .

[II] H(2) : The ones in Figures 3.11 and 3.12.

[III] H(3) : The ones in Figures 3.13 and 3.14.

[IV] H(4) : The ones in Figures 3.15, 3.16, 3.17 and 3.18.

[V] H(5) : The ones in Figures 3.19, 3.20, 3.21, 3.22 and 3.23.

[VI] H(6) : The ones in Figures 3.24 and 3.25.

[VII] H(7) : The one in Figure 3.26.
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Figure 3.11. H(2) .

Figure 3.13. H(3) .

Figure 3.12. H(2) .

Figure 3.14. H(3) .

Figure 3.15. \mathrm{H}(4) . Figure 3.16. H(4) .

Figure 3.17. H(4)T_{2}.

Figure 3.19. H(5) . Figure 3.20. H(5) .

Figure 3.18. H(4) .

Figure 3.21. H(5) . Figure 3.22. H(5) .

Figure 3.23. H(5)T_{3}.
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Figure 3.24. H(6) . Figure 3.25. H(6) .

Figure 3.26. H(7) .

Remark 3.7. The leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces associated with Figures 3.15

and 3.19 might be regarded to be contained in N
,

because all the internal lines are

parallel, but we keep them in this list in view of our definition of N
,

which is given in

terms of the conditions on external lines.

Remark 3.8. The diagram in Figure 3.24 is the same as that of Figure 3.6 in

Remark 3.5. The leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces for diagrams in Figures 3.20, 3.22,
3.25 and 3.26 can be found also with the help of the ice‐cream cone diagram in Figure
3.7.

Remark 3.9. All diagrams listed in Remark 3.6 play important roles in our sub‐

sequent reasoning. Although some of them (e.g., those mentioned in Remark 3.8) are

of higher codimension, they are all intersections of real hypersurfaces, as we will see

later. We also note that, with the understanding in Remark 3.7, we first find in H(6)
a hooked 3‐lines diagram whose leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface is contained in N

,
like

Figures 3.27, 3.28, 3.29 and so on.

Figure 3.27. Figure 3.28. Figure 329

Needless to say, T_{4} is among them, as we have seen in Theorem 3.1.
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In Section 4 we further need the following.

Theorem 3.10. For h in  $\varpi$ H(q)(q\geq 4) we find

(3.26) L^{\oplus}(h)\subset N.

Proof. In view of the definition of  $\varpi$ H(q) ,
we find that it suffices to confirm (3.26)

Figure 3.31.

Figure 3.30.

for h in  $\varpi$ H(4) . Clearly we may assume without loss of generality that the leftmost

two hooks of h is  $\varpi$ u . Since  $\varpi$ may be regarded as either  u or d arbitrarily,  $\varpi$ u^{2} is not

allowed by our convention. Hence h has the form  $\varpi$ udu or  $\varpi$ ud^{2} ; the leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$
 LN surface of  $\varpi$ udu is described as L^{\oplus} (�the diagram in Figure 3.30�).

Then Lemma 3.2 implies that BC=BD=k ,
and hence by the closed loop

conditions we find that all the internal vectors are equal to k . Thus we find (3.26) for

h= $\varpi$ udu . For the leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface of h= $\varpi$ ud^{2}
,

the configuration is

given by L^{\oplus} (�the diagram in Figure 3.31�). Again by Lemma 3.2 we find that AC=

BC=k ,
and hence by the closed loop condition we find that all internal vectors are

equal to k . Thus we have confirmed (3.26) for h in  $\varpi$ H(4) , completing the proof of

Theorem 3.10. \square 
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§4. Landau‐Nakanishi surfaces near the 3 particle threshold (=3PT)

The result in Section 3 give the impression that the exceptional set that [11] men‐

tions is the set N near 3PT . However, a wider region might be needed in the context

of [11] p. 25, because we have so far discussed \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces; as [3] p. 106

indicates, a \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface, as an object in the real domain by its definition,

might contain singularities originating from complexified LN surfaces. For example, if

there were two real‐valued real analytic function f(p) and g(p) such that there exists a

real point p_{0} in 3PT ,
but outside N

,
where

(4.1) f(p_{0})=g(p_{0})=0,

and

(4.2) \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{p}f(p) and \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{p}g(p) are linearly independent at p_{0},

and if the complexification of the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface had components L_{n}(n=
1

, 2, 3, . . . ) given by

(4.3) (f(p)+\sqrt{-1}ng(p))(f(p)-\sqrt{-1}ng(p))=0,

then such a point p_{0} should be included in the exceptional set in the sense of [11] p. 25.

Although non‐existence of such points in the leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces follow from

the strong asymptotic causality condition ([1], [7]) we want to confirm this directly and,
more important, in a domain �slightly� outside physical region. For this purpose we

want to study concretely \displaystyle \bigcup_{h}L^{+}(h) near 3PT ,
but outside N

,
where h ranges over

\displaystyle \bigcup_{q}H(q) . The subtlety of the notion of the complexification in this context is explained
in Appendix A.

Thus our first task is to list up all \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces associated with hooked

3‐lines diagrams that may have some intersections with 3PT outside N . We will then

study their geometric characters in detail in Section 5. Here we note that it is not

in general enough to employ the complex Landau‐Nakanishi equations to describe the

characteristic variety of the holonomic system that the Feynman function in question
satisfies. To be more precise, Landau‐Nakanishi equations are not adequate to describe

the cotangential component of the characteristic variety in consideration except for

rather restricted cases. (Cf. [9], [11].) Hence in this paper and the subsequent one ([6])
we first consider \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces and their local complexification, and we then

try to dominate the characteristic variety by the union of the closure of the conormal

set of each stratum of the stratification of the locally complexified LN surfaces. The

discussion in what follows is designed to be the first step toward this program.

To begin with we show the following.



26 Naofumi Honda, Takahiro Kawai and Henry P. Stapp

Proposition 4.1. Positive- $\alpha$ LN surfa ces associated with \displaystyle \bigcup_{q^{ $\varpi$}}H(q) that may

intersect with 3PT outside N are given by some of the fo llowing diagrams (a) \sim (e)
below if we list up only one among isomorphic ones such as diagrams in Figures 4.1 and

4.2.

Figure 4.1. Figure 4.2.

(a) (d)

(b)

(e)

(c)

Figure 4.3.

Proof. As  $\varpi$ H(1) contains only the diagram in Figure 4.4, we study elements in

Figure 4.4.

 $\varpi$ H(q) with q\geq 2 . We choose  $\varpi$ u in  $\varpi$ H(2) ,
which is isomorphic to another element  $\varpi$ d
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in  $\varpi$ H(2) . The \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface associated with  $\varpi$ u is a two particle threshold

given by (b) ,
and it is not our main concern. But it still intersect with 3PT ,

and

it plays an important role in making our subsequent induction run smoothly. As a

representative element of  $\varpi$ H(3) ,
we can choose without loss of generality the so‐called

Figure 4.6.

Figure 4.5.

ice‐cream cone diagram in Figure 4.5, whose \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface (i.e., the union of

LN surfaces associated with some contraction of the ice‐cream cone diagram) contains

the diagram in Figure 4.6. For h in  $\varpi$ H(4) we know by Theorem 3.10 that

(4.4) L^{\oplus}(h)\subset N,

and hence we have to contract some internal lines of h to find \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces

which are not contained in N . We may assume without loss of generality that h in

 $\varpi$ H(4) to be studied has the form in Figure 4.7 or Figure 4.8.

Figure 4.8.
Figure 4.7.

Let us first consider the case in Figure 4.7. Then we can readily confirm that the

contractions of the diagram in Figure 4.7 result in

\bullet the diagram in Figure 4.9 through the contraction of  AB,

\bullet the one in Figure 4.10 through the contraction of  BC,

\bullet the one in Figure 4.11 through the contraction of  AC,

\bullet the one in Figure 4.12 through the contraction of  BD,



28 Naofumi Honda, Takahiro Kawai and Henry P. Stapp

Figure 4.10.

Figure 4.9.

Figure 4.12. Figure 4.13.

Figure 4.11.

\bullet or the one in Figure 4.13 through the contraction of  CD.

Here we note that the contraction of AC (resp. BD ) forces the contraction of

\triangle ABC (resp. \triangle BCD ) because of the orientation of relevant segments. We also note

that we regard both‐ends‐pitted elements such as Figure 4.13 to be equivalent to Figure

4.12, as we are concerned with the geometric aspect of the problem.

Figure 4.14. Figure 4.15.
Figure 4.16.

Figure 4.17.

Next we consider the case in Figure 4.8. Then we find that its contractions result

in

\bullet the diagram in Figure 4.14 through the contraction of  AB,

\bullet the one in Figure 4.15 through the contraction of  BC,

\bullet the one in Figure 4.16 through the contraction of  AC (and hence that of \triangle ABC),

\bullet or the one in Figure 4.17 through the contraction of  CD.

Thus we have found (a) \sim(d) ; the remaining one (e) found by examining h is in

 $\varpi$ H(5) .
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Figure 4.19. Figure 4.20.

Figure 4.18.

We may assume the left‐most 3 hooks of h to be studied has the form in Figure
4.18. Then by contracting AB

,
we find an element in  $\varpi$ H(4) ,

whereas the contraction

of BC results in a diagram in which Figure 4.19 is hinged at its right‐end with another

element g in  $\varpi$ H(3) ; actually if the starting h in  $\varpi$ H(5) is the diagram in Figure 4.20,
the diagram g is the ice‐cream cone diagram. Thus we find (e) .

By examining other elements in  $\varpi$ H(5) whose left‐most 3 hooks are  $\varpi$ ud
, namely,

 $\varpi$ udu^{2} and  $\varpi$ ud^{2}u
,

we find the diagrams (a) \sim (e) cover all the cases.

For  h in  $\varpi$ H(q)(q\geq 6) ,
we know

(4.5) L^{\oplus}(h)\subset N,

and hence we should contract some internal lines of h to find a \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface

outside N . If the contraction is made in the ice‐cream cone diagram located in the

left‐most part of h
,

the same reasoning as that used for Figure 4.20 yields some \tilde{h} in

 $\varpi$ H(q')(q'\leq q-1) or the diagram in Figure 4.21 hinged with some g in  $\varpi$ H(q-2)

Figure 4.21. Figure 4.22.

from the right since we regard the diagram in Figure 4.22 to be the same as the one in

Figure 4.21 in this paper, the resulting diagram is given by one of (a) \sim(e) . If the

contraction is made in other parts, we find a both‐ends‐pitted diagram hinged with \tilde{g}
in  $\varpi$ H(q')(q'\leq q-2) from right; since the both‐sides‐pitted part is regarded to be

equivalent to Figure 4.21, the resulting diagram is again given by one of (a) \sim (e) .

This completes the proof of the proposition. \square 

Completely in parallel with Proposition 4.1 we find

Proposition 4.2. Positive- $\alpha$ LN surfa ces associated with \displaystyle \bigcup_{q}H^{ $\varpi$}(q) that may

intersect with 3PT outside N are given by some of the fo llowing diagrams (a')\sim(e')



30 Naofumi Honda, Takahiro Kawai and Henry P. Stapp

given below, if we list only one among isomorphic ones such as Figure 4.23 and Figure

4.24.

Figure 4.23. Figure 4.24.

(d')

(b')

(e')

(c')

Figure 4.25.

To summarize our results in Theorem 4.6 below we prepare the following definitions.

Definition 4.3. If a hooked 3‐lines diagram h has the form

(4.6) g\cdot g'

where g (resp. g' ) is in H^{ $\varpi$}(q) (resp.  $\varpi$ H(q') ) and g\cdot g' means they are hinged at the

rightmost (resp. leftmost) pit of g (resp. g then we say h is a pinned 3‐lines diagram,
and the totality of pinned 3‐lines diagrams is denoted by \wp.

Remark 4.4. A typical example of a pinned 3‐lines diagram is the one in Figure
4.26 which appears as the contraction of the middle slant u_{2}d_{2} of T_{4} given in Figure
4.27.
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Figure 4.27.

Figure 4.26.

Definition 4.5. Let L denote

(4.7) \displaystyle \bigcup_{h\in B}L^{+}(h) ,

where B denotes the following set:

(\displaystyle \bigcup_{q\leq 5}H(q))\cup(\bigcup_{q\leq 3}(^{ $\varpi$}H(q)\cup H^{ $\varpi$}(q)))\cup
(4.8)

{  h\in\wp with  h=g\cdot g' ,
where g\displaystyle \in\bigcup_{q\leq 3}H^{ $\varpi$}(q) and g'\displaystyle \in\bigcup_{q\leq 3^{ $\varpi$}}H(q) }.

With these terminologies we find

Theorem 4.6. For any h in H(q)(q\geq 6) its positive- $\alpha$ LN surfa ce L^{+}(h) is

contained in L outside N.

Proof. Let us first consider the case when h is in H(6) . Then we find the following
two diagrams h(1) in Figure 4.28 and h(2) in Figure 4.29 are the elements in H(6) whose

leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces are not contained in N. (Cf. Remark 3.6 [VI].) As is

noted in Remark 3.8, their leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces are realized respectively as

configurations in Figures 4.30 and Figures 4.31.

Figure 4.28. h(1) .

Figure 4.29. h(2) .
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Figure 4.30.

Figure 4.31.

Let us first consider the case in Figure 4.30. In this case AB, BC, CD and DE

are all parallel. Hence, by keeping all vectors (p, k) intact, we can slide the vertices B

and D so that either of them may coincide with C ; thus we find

(4.9) L^{\oplus}(h(1))\subset L^{\oplus}(h(3))\cap L^{\oplus}(h(4)) ,

where h(3) and h(4) are in Figures 4.32 and 4.33 respectively.

\mathrm{B}, \mathrm{C}

Figure 4.32. h(3) . Figure 4.33. h(4) .

Since we are concerned only with the location of singularities, ignoring the problem
related to the multiplicity, we find L^{\oplus}(h(3)) and L^{\oplus}(h(4)) coincide; they are described

by the pinned diagram (b') (c) . If we want to consider the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface

determined by some contraction of h(1) ,
it is almost evident that it should be handled

by some hooked 3‐lines, possibly pitted or pinned, with q hooks with q\leq 5 . To stand on

the safer side, let us described the procedure concretely. We hope the argument below

may help the reader to understand logical structure of our reasoning.
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If the contraction is performed at a bead, then the resulting diagram belongs to

H(5) . Hence its \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface is contained in L . If we contract a slant (i.e., ud

or du) a pit appears and hence the contracted diagram either belongs to H^{ $\varpi$}(5) or has

the pinned form

(4.10) g\cdot g'

where g (resp. g' ) is in H^{ $\varpi$}(\ell) (resp.  $\varpi$ H(r) ) with \ell+r\leq 6(\ell, r\geq 1) . (In general, it

may belong to  $\varpi$ H(5) ,
but in the case of h(1) this cannot be observed. We encounter

some element in  $\varpi$ H(5) in the same reasoning applied to h(2). ) Parenthetically we

note that, because of the orientation of the diagram in question, contraction of internal

lines which are neither slants nor beads forces some slant automatically contracted; for

example if BD in h(1) is contracted, then the triangle \triangle BCD is contracted out.

Let us return to (4.10); if \ell (resp. r) is equal to or bigger than 4, then we further

contract internal lines of  g (resp. g' ) to find a \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface outside N . Thus

we eventually find

(4.11) \ell, r\leq 3

in (4.10). Thus we have confirmed that the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface determined by h(1)
(including its contractions) is contained in L.

The above reasoning for h(1) is equally applicable to h(2) ; this time the counterpart

of (4.9) is

(4.12) L^{\oplus}(h(2))\subset L^{\oplus}(h(5)) ,

where h(5) denotes the hinged ice‐cream cone diagrams given by Figure 4.26. Then the

rest of the reasoning in dealing with the contracted diagrams is exactly the same as in

the case of h(1) .

It is now clear how to argue for h in H(6) which is different from h(1) or h(2) . For

such h we know

(4.13) L^{\oplus}(h)\subset N

and hence we are to contract some of its internal lines. Then the argument is exactly the

same as in handling the contracted diagrams of h(1) . Thus we have confirmed Theorem

4.6 for h in H(6) .

The above reasoning equally applies to H(7) ; the only element in H(7) whose

leading \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface is not contained in N is

(4.14) h(6)=ud^{2}ud^{2}u,

and L^{\oplus}(h(6)) is realized by the following configuration in Figure 4.34 where AB, BC,
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Figure 4.34.

BD, CD and DE are all parallel. As in the case of h(1) ,
we then find

(4.15) L^{\oplus}(h(6))\subset L^{\oplus}(h(5)) ;

thus the geometric result is the same for h(2) ,
and the reasoning for handling the

contraction goes equally well as in the case of h(1) ,
since our understanding of LN

surfaces for h in H(6) has already been completed. It is clear that the treatment of

other elements in H(7) can be done in a similar manner.

Since

(4.16) L^{\oplus}(h)\subset N

holds for any h in H(q)(q\geq 8) ,
we can confirm by the induction on q that L^{+}(h) is

contained in L for any h in H(q)(q\geq 8) . This completes the proof of Theorem 4.6. \square 
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§5. Concrete description of Landau‐Nakanishi surfaces of some basic

diagrams in \cup H(q)

In view of Theorem 4.6 we now want to study the concrete shape of the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$
 LN surfaces associated with \mathrm{a} (possibly pitted or pinned) hooked 3‐lines diagrams in B,
so that we may confirm that they do not contain, at least near 3PT , any pathological

singularities such as acnodes; as we will show in Appendix A there are some delicate

issues relevant to acnodes and cusps from the theoretical viewpoint. As this paper is

designed to be the first step in the better understanding of [11], we content ourselves

here in concretely describing the LN surfaces associated with some basic diagrams in

B with the help of a computer. Here we note that we use a computer so that it may

draw a figure using the exact formula. See Appendix A for example.
In our subsequent paper ([6]) we plan to make some more analytic (vs. geometric)

study of this issue from the view point of holonomic structure of Feynman integrals in

question.

[I] The first diagram we want to study is the ice‐cream cone diagram I_{R} :

Figure 5.1.

The leading real (i.e., not necessarily \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ )  LN surface L^{\times}(I_{R}) is described in

[4] Figure 1. The surface presents the so‐called Whitney�s umbrella, as shown below in

Figure 5.2. Here we observe a pinch point singularity at N_{-} and a cusp (self‐intersection
points) emanating from the pinch point. An important point is that, outside N_{-}

,
the

cusp does not appear in the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface L^{+}(I_{R}) . Thus its �slice� outside N_{-}

takes the form in Figure 5.3, where the dotted part designates the slice of \mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$

part of  L^{\times}(I_{R}) ; the curved segment C_{2}C_{3} shrinks as we let the slice approach to N_{-},
and eventually at N_{-} they coincide with N_{-} . Thus we do not observe any pathologies
near C3 outside N_{-}.
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10

Pinch point

-2

-4

Self intersection (cusps)2.05

2.1

2.15

2.2

2.25 2.53.54.5

Figure 5.2. The shapes of L^{\times}(I_{R}) and L^{\oplus}(I_{R}) are the almost same as those of T_{1} . See

Figures A.2 and A.3 in Appendix A also.

2\mathrm{P}\mathrm{T}

3\mathrm{P}\mathrm{T}

Figure 5.3.



On the geometric aspect of Sato�s postulates on the S‐matrix 37

[II] The second example we study is T_{2} ,
which is the same as the so‐called crossed

square diagram given by Figure 5.4.

Figure 5.4.

Assuming that we consider its leading real LN surface outside N
,
it takes the form

in Figure 5.5.

a:Pinch pont $\tau$ u

 $\tau$ u

 $\tau$ u

 $\tau$ u

Intersecton
 $\tau \alpha$

 $\tau$ m

1

3 pinch points

Figure 5.5. L^{\times}(T_{2}) viewed in the far

distance.

Figure 5.5. L^{\times}(T_{2}) viewed in the far

distance.

Figure 5.6. The \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ parts of  L^{\times}(T_{2})
\mathrm{a}^{)}re \triangle abc and \triangle ade on the surface.

We observe 3 pinch points and several cusps passing through the pinch points.

However, we can confirm that the cusps are not contained in the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ region. At

the same time we also find that at least 2 pinch points  P_{1} and P3 are associated with

the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ Landau‐Nakanishi diagram. (The pinch point  P_{2} is a limiting point of
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a sequence of points in \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surface.) These 3 pinch points merge at N
,

but

more important is the following fact; the pinch point P_{1} is associated with the following

diagram D_{0} in Figure 5.7:

Figure 5.8.

Figure 5.7. The diagram D_{0}.

In order to confirm that L^{\oplus}(D_{0}) can be realized in the above form, we argue as

follows: first we consider L^{\oplus} (�the diagram in Figure 5.8�) which has the form

(5.1) {p; $\varphi$(p_{C},p_{D})=0 ,
where p_{C}=p_{5}+p_{6} }.

Then (q_{1}, q_{2}, k) is determined by p_{c} and p_{D} ,
as u‐vectors in the LN equations are

described in this case by \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{(p_{C},p_{D})} $\varphi$ . Using (q_{1}, q_{2}, k) ,
we realize the configuration D_{0}

in Figure 5.9 by choosing the triangle \triangle BCD to be the same as \triangle ÃCD,  u_{B}-u_{A}= $\alpha$ k

Figure 5.9. The configuration D_{0}.

for an arbitrary positive number  $\alpha$ and (p_{A}, p_{B})=(2k, q_{1}) . This construction of the
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diagram D_{0} shows

(5.2) L^{\oplus}(D_{0})\subset\{ $\varphi$(p_{C},p_{D})=0\}\cap\{p_{A}=2k\}.

Thus we find

(5.3) \mathrm{c}\mathrm{o}\dim L^{\oplus}(D_{0})=3.

Needless to say, we have

(5.4) p_{A}^{2}=4m^{2},

and hence

(5.5) L^{\oplus}(D_{0})\subset\{ $\varphi$(p_{C},p_{D})=0\}\cap\{p_{A}^{2}=4m^{2}\}.

In view of this geometry, we feel it worth noting its resemblance to, and at the same

time, its difference from Figure 5.10. (Cf. Remark 3.8; this configuration appears,

when we delete the leftmost bead in Figure 3.6 to simplify the logical structure of the

discussion below.) In diagram D_{1} ,
we use the flexibility of the vertex F so that we may

D_{1}=udu^{2}d :

Figure 5.10. D_{1}=udu^{2}d.

D_{2} :

Figure 5.11. D_{2}.

reach the configuration D_{2} in Figure 5.11 with keeping the external vectors (and hence

the internal vectors also) intact. Although

(5.6) L^{\oplus}(D_{2})\subset\{ $\varphi$(p_{C},p_{D})=0\}\cap\{p_{A}^{2}=4m^{2}\},

we cannot reach D_{2} by changing the Landau constants $\alpha$_{l} �s in D_{0} . This difference

of D_{0} and D_{1} indicates the difference of holonomic structure of F_{T_{2}} and F_{h}(h=
udu^{2}d) . Actually, as we will see in [6], F_{T_{2}} satisfies a simple holonomic microdifferential

equations, whereas the multiplicity of the holonomic system that F_{h} satisfies is bigger
than 1.
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As the principal purpose of this paper is to clarify the geometric situation of the

intersection of 3PT and the \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ LN surfaces associated with hooked 3‐lines

diagrams, and as the pinch point in question is away from 3PT outside N
,

we had better

stop our discussion around here concerning the problems relevant to the pinch points.
But we cannot resist the temptation to raise, at least, the following question: through
the contraction of CD in Figure 5.9 we encounter an ice‐cream cone diagram, and hence

we expect L^{\oplus}(T_{2}) and L^{\oplus} (� \mathrm{t}\mathrm{h}\mathrm{e} diagram in Figure 5.12�) touch near the pinch point in

Figure 5.12. The ice‐cream cone diagram.

question. This is really the case as show in Figure 5.13 below.

The leading surface

Pinch pont

1X

 $\tau$ \mathrm{n}

tu

 $\tau$ \mathrm{n}

``

Ice‐cream cone|\mathrm{c}\mathrm{e}‐cre

 $\tau$.

Figure 5.13.

On the other hand, F_{T_{2}}(p) ,
the Feynman integral associated with T_{2} is well‐defined

near the intersection of the closure of L^{\oplus}(T_{2}) and L^{\oplus} (� \mathrm{t}\mathrm{h}\mathrm{e} diagram in Figure 5.12�) as



On the geometric aspect of Sato�s postulates on the S‐matrix 41

a microfunction. (Cf. [11], [9].)

Now, is it possible to write it more explicitly without using the integration proce‐

dure?

Remark 5.1. In conjunction with the above problem in microlocal analysis, we

note that it seems not to be appropriate to mention ([8] p. 115) F_{T_{2}} as an possible

example of applications of general theory of simple holonomic systems with non‐singular
characteristic variety; in fact the cusps observed in Figure 5.5 seem to be wilder than

that expected in [8] p. 116. We plan to discuss this point in more detail in our future

work.

To end this item concerning T_{2} ,
we show how the closure of L^{\oplus}(T_{2}) intersects

with 3PT ; as is expected outside N it cleanly intersect with 3PT along a submanifold

of codimension 2 in the closure of L^{\oplus}(T_{2}) ; the intersection is realized through the

contraction of AB and DC in Figure 5.4. See the concrete figure shown in Figure 5.14.

3\mathrm{P}\mathrm{T}
\mathrm{t}

1

1

\mathrm{t}

0

on

The \Vert \mathrm{e}\mathrm{a}\mathrm{d}\mathrm{i}\mathbb{R}\mathrm{g} surface

2

\mathrm{t}\mathrm{s}

2
1

2
1\ovalbox{\tt\small REJECT}

2 1

1

2\mathrm{t}B

Figure 5.14.
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[III] Finally let us study T_{3} . Although L^{\times}(T3) presents several interesting features, we

concentrate our attention on its behavior near 3PT . As some of the figures below are

too complicated to grasp their details, we present in [5] some colored figures which may

help the understanding of the reader.

Concerning the geometric feature of the leading LN surface L^{\times} (T3), the most

remarkable one is the existence of codimension 2 component in L^{\times}(T3) (actually in

L^{\oplus}(T_{3}) as we see below). See also [4].
The relevance of the codimension 2 component and the codimension 1 component

of L^{\times}(T3) is seen in Figure 5.15 below. Here we show the figure away from N . See

Appendix \mathrm{B} and [5] for the figure near N.

codimension 2 component

2.05

pinch points
1.95

1.9

2.005
2.01

2.015
2.02

2.025
2.03

1.3 1.21.8 1.7 1.6 1.5 1.4

codimension 1 component

Figure 5.15.
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D_{0} :

Figure 5.16. D_{0}.

As is observed in [4], the codimension 2 component is given by the following con‐

figuration D_{0} in Figure 5.16. The flexibility of the vertex C indicates that

(5.7) L^{\oplus}(D_{0})\subset L^{\oplus}(I_{L})\cap L^{\oplus}(I_{R})

should hold, where I_{L} is in Figure 5.17 and I_{R} is in Figure 5.18, and we can validate

I_{L} :

Figure 5.17. I_{L}.

I_{R} :

Figure 5.18. I_{R}.

(5.7) by the actual computation as shown in Figure 5.19.

Furthermore Figure 5.20 below shows how L^{\oplus}(T_{3}) , L^{\oplus}(I_{L}) , L^{\oplus}(I_{R}) and 3PT are

located outside N . We note that the cusps in L^{\times}(T3) do not appear in L^{\oplus}(T_{3}) . We

also note, just in parallel with the case of [L^{\oplus}(T_{2})] ,
that [L^{\oplus}(T_{3})] touches 3PT along

a submanifold of 3PT with codimension 2, which corresponds to the simultaneous con‐

traction of AB and DE . The intersection of [L^{\oplus}(T3)] and 3PT that corresponds to the

contraction of the pair (BC, DE ) or the pair (AB, CD) is not covered in Figure 5.20.

The shape of L^{\times}(T3) and its relevance to 3PT are visualized in Appendix \mathrm{B} and [5].
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= codimension 2 component

L^{\times}(I_{R})

2.05

2

1.95

I.9

1.85

I.6

1.75

1.7

1 1.1.99

2.

1.1

L^{\times}(I_{L}) 1.15

1.2

125

1B

a
2.

2.01

Figure 5.19.

L^{\times}(I_{R})

codimension 1 component
2.05

2

1.95

1.9

1.85

1.8

1.75

1.7

1.1 1.2 1.3 1.4 1.5 1.6

L^{\times}(I_{L})

3\mathrm{P}\mathrm{T}

\mathrm{Z}0^{2_{1}}1.9^{\mathrm{I}}\dot{9}^{98}
\mathrm{a}^{2.02}\mathrm{o}\mathrm{e}

Figure 5.20.
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§6. Future problems and concluding remarks

The obvious problem that remains to be done is to extend the results in this paper

to the situation where the space‐time dimension  $\nu$ is 4. At this point we only point
out that we need to study hooked 3‐twine diagrams instead of hooked 3‐lines diagram;
it will remove the somewhat artificial impression on the definition of a hooked 3‐lines

where the middle line plays a special role; study of hooked 3‐twine diagrams will enable

us to study diagrams of the form in Figure 6.1 for example.

Figure 6.1.

Such an extension is certainly important and interesting, still we think we had

better first deepen our analysis in the 2‐dimensional case. The reason is as follows:

since we are primarily concerned with the finiteness problem near  3PT ,
we have not fully

discussed in this article the geometrically interesting problem related to pinch points
and cusps. At the same time, cusps appear in \mathrm{m}\mathrm{i}\mathrm{x}\mathrm{e}\mathrm{d}- $\alpha$ (i.e., not necessarily \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}- $\alpha$ )
 LN surfaces and they play important roles in studying the bubble diagram functions,
a basic objects in analytic S‐matrix theory. (See [9], [10] and references cited therein.)
Furthermore our experience strongly indicates that better understanding of cusps should

be important in analyzing the holonomic structure of Feynman integrals and the S‐

matrix. We also believe that some systematic understanding of pinch points and acnodes

should be mathematically important and charming problem. The background of this

belief is explained in Appendix A. Although the result there is, from the mathematical

viewpoint, an elementary one, we believe no explanation of the origin of acnodes has

ever been given at least in the literature of the S‐matrix theory. Thus we see so many

important and intriguing geometric problems remain in the study of LN surfaces even

when the space‐time dimension is 2. Further, the study of holonomic structure of

Feynman integrals and the S‐matrix has not yet been begun in this paper. We hope
our geometric study in this paper will become a nice starting point of such analysis.

In this context we note that the study of holonomic systems with higher multi‐

plicities is particularly important in rectifying Sato�s postulates, which assume that

relevant holonomic systems are simple ([11]). The estimation of the multiplicities of

holonomic systems involved would lead to some tameness, other than holonomicity, of

the singularity structure of the S‐matrix even near m‐particle threshold (m\geq 3) if we
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could appropriately combine the result with the Borel summability of the perturba‐
tion series expansion of the S‐matrix in the coupling constant. At this point we dare

say also that it should be an interesting problem to study the Borel summability, or

even the Borel transformability, of the perturbation series expansion of the S‐matrix in

energy‐momentum space.

In ending this paper, we emphasize that the study of holonomic structure of indi‐

vidual Feynman integrals near N is an important problem, although our study in this

paper is basically concerned with the points away from N . Concerning this point, we

refer the reader to Appendix \mathrm{B} where the concrete figure of L^{\times}(T3) near N is shown,

together with L^{\times}(I_{L}) and L^{\times}(I_{R}) .
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§ Appendix A. Geometric study of L^{\times}(T_{1})

The purpose of this appendix is twofold; first we want to show concretely how to

visualize the leading LN surface L^{\times}(T_{1}) with the help of a computer. The techniques
shown below are equally applicable to the study L^{\times}(T_{2}) etc. given in Section 5. Sec‐

ond we clarify why some complex singularities creep into the study of the singularity
structure of Feynman integrals despite the fact that such singularities seem not to be

anticipated from their behavior on the physical region. (Cf. [3] p. 106.) Although

L^{\times}(T_{1}) is basically irrelevant to 3PT ,
its simplicity helps the reader to understand the

core of the discussions in Section 5. Having these in mind, we include some elementary

expositions here.

T_{1} :

Figure A.1.

Our target is the diagram in Figure A.1 where all internal lines are attached with

equal mass m=1 . In view of the over‐all energy‐momentum conservation law, the

(leading) LN surface L^{\times}(T_{1}) of T_{1} is drawn in \mathbb{R}_{p_{1}}^{2}\times \mathbb{R}_{p_{2}}^{2} . We further employ the

coordinate transformation of \mathbb{R}_{(\tilde{p}_{1},\tilde{p}_{2})}^{2} to \mathbb{R}_{(\tilde{x}_{1},\tilde{x}_{2})}^{2} given by

(A.1) \tilde{x}_{1}=p_{0}+p_{1}, \tilde{x}_{2}=p_{0}-p_{1}.

Thus the Minkowsky metric on \mathbb{R}_{(\tilde{x}_{1},\tilde{x}_{2})}^{2} is given by

(A.2) \tilde{x}_{1}\tilde{x}_{2}.

We may assume without loss of generality that

(A.3) p_{1}=(p, 0) with p>0.

Hence L^{\times}(T_{1}) is described by 3 real variables (x, y, z) which satisfy

(A.4) p_{1}=(x, x) , p_{2}=(y, z) .

Since we are considering the problem in the 2‐dimensional situation, the closed loop
condition is satisfied for any triplet (k_{1}, k_{2}, k_{3}) ,

if we set aside the positivity assumption
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on the Landau constants $\alpha$_{l}' \mathrm{s} . Hence in view of the Minkowsky metric (A.2), we find

that L^{\times}(T_{1}) is described by the following relations with positive parameters (s, t) :

(A.5) x=s+s^{-1},

(A.6) y=s+t,

(A.7) z=s^{-1}+t^{-1},

if we choose

(A.8) k_{1}=(s, s^{-1}) , k_{2}=(s^{-1}, s) , k_{3}=(t, t^{-1}) .

Then the computation (with a computer) gives us the following figure (Figure A.2).

u

\dot{u}
Pinch

\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}$\iota$_{\backslash }\searrow

Figure A.2.

Furthermore the closed loop condition with positive $\alpha$_{l} �s is met, barring the case

where two k_{l} �s (and hence all k_{l} �s under the closed loop condition) are equal, if

(A.9) s^{-1}<s<t , i.e., 1<s<t

or

(A.10) t<s<s^{-1} , i.e., 0<t<s<1.
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Here we have compared the first component of kp�s, having in mind their Minkowsky

lengths are equal. Thus we find L^{\oplus}(T_{1}) in the following Figure A.3.

Figure A.3.

Thus there are no singular points in L^{\oplus}(T_{1}) except for the pinch point; the pint

point corresponds to the following configuration in Figure A.4, where p_{3}=0 and all

k_{l} �s are equal.

p_{1} p_{2}

Figure A.4.

The cusp (i.e., self‐intersection points) in L^{\times}(T_{1}) is outside L^{\oplus}(T_{1}) . Thus, outside

N
,

we do not observe any pathologies in L^{\oplus}(T_{1}) . At the same time Figure A.2 indicates

that L^{\times}(T_{1}) should be isomorphic to the so‐called Whitney�s umbrella W given by

(A.11) X^{2}=ZY^{2}, Z\geq 0.

It is really the case, and hence the �complexification� of L^{\times}(T_{1}) requires some attention.

Actually the complexification of some portion of Whitney�s umbrella may be interpreted
in either one of the following two interpretations:
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(i) If we want to complexify W locally outside its pinch point (i.e., \mathrm{X}=\mathrm{Y}=\mathrm{Z}=0 ), i.e., if

we consider a small complex neighborhood of w_{0}(\neq 0) in W ,
then it suffices to extend

W in the neighborhood; in this case, for example, the points where X^{2}=ZY^{2} with

Z<0 are irrelevant to the complexification if the neighborhood is sufficiently small.

The extra component \mathrm{x} = \mathrm{y} = \mathrm{z}

Pinch pont

Self intersection of the surface

Figure A.5.

(ii) If we want to regard W as a complex variety defined globally, the points where

X^{2}=ZY^{2} with Z<0 are automatically contained in the complexification. Thus, if we

use polynomials to define LN surfaces, as physicists usually do, then it means that we

employ the standpoint (ii). Actually the cubic equation that Eden et al. use to describe

L^{\times}(T_{1}) (cf. [3] p. 62; (2.3.17)) assumes the following form in our variables (x, y, z) :

(A.12) (y-x)(z-x)yz+(z-y)^{2}=0.

Then the extra component \{x=y=z\} appears in the real domain as is shown in

Figure A.5. The appearance of this codimension 2 component in the real domain is a

prototype of the acnodes in L^{\times}(T_{2}) that was studied in detail in [3] and the references

cited there, in conjunction with the Mandelstam representation.
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§ Appendix B. Geometric study of L^{\times}(T3) near N

As we concentrate our attention on the geometric study of LN surfaces outside N in

Section 5, we present here some instructive figures near N with some simple comments.

The details will be discussed in [6]. We refer the reader to see [5] where some colored

figures are shown.

First we show the following figure (Figure B.1) that shows the shape of L^{\times}(T_{3})
near N.

2.025 -

‐

2.02

2.015

2.01

2.005 ‐

2

2.0052
2.01

Pinch point 2.015

intersection
2.02

2.025

2. \mathrm{o}\mathrm{e}1.04 1.05 1.06

Figure B.1. The surface forms a double covering over a cone.

The following figure (Figure B.2) shows how [L^{\times} (T3)] touches with 3PT . This

makes a clear contrast to Figure 5.20.

In order to show how special the set N is we present Figure B.3 below, although
it might be too complicated to decipher. We call the attention of the reader to the fact

that [L^{\times} (T3)], [L^{\times}(I_{L})], [L^{\times}(I_{R})] all meet at N . Thus the set N is seen to be important
in studying the holonomic structure of the individual Feynman integral, say F_{T_{3}} . We

plan to discuss this point in more detail in [6].
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Figure B.2.
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Figure B.3.
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