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Abstract

We study the Voros coefficients of linear ordinary differential equations with a large pa‐

rameter obtained via middle convolutions. By the middle convolution, a new parameter is

introduced to the equation. We determine its dependency to the Voros coefficients explicitly.

§1. Introduction

In exact WKB analysis, two kinds of Stokes phenomena for WKB solutions have

been studied: Stokes phenomena with respect to the variable of the equation and those

with respect to parameters included in the equation. The latter is called parametric
Stokes phenomena, and substantial progress has been made in recent studies. One

of the reasons of this progress is the success of proving Sato�s conjecture ([20]) for the

explicit form of the Voros coefficient of the Weber equation without using transcendental

techniques ([25], [27] and §3 below; see also [28, §7 and Appendix \mathrm{A}] ).
A Voros coefficient, named after the important work of Voros [28], is defined as

a properly regularized integral of the logarithmic derivative of WKB solutions from

a turning point to a singular point (cf. (3.7)). It is, in a sense, formal connection

coefficients between WKB solutions normalized at turning points and those normalized

at singular points.
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Since the work of [7] and [28], Voros coefficients have been recognized as one of

the most important objects in exact WKB analysis. The explicit form of the Voros

coefficients of the Weber equation, i.e., Sato�s conjecture, becomes important since it

enables us to describe parametric Stokes phenomena explicitly. Furthermore, through
the alien calculus and the transformation theory, we can also describe parametric Stokes

phenomena for more general equations which can be reduced to the Weber equation (cf.
[3], [27] and recent results obtained by Sasaki). Similar results are also obtained for the

equations of special functions and for the equations reduced to them (cf. [1], [3], [5],
[17], [18], [22], [26]). Voros coefficients are also studied even for the Painlevé equations
in order to clarify the parametric Stokes phenomena ([12], [13], [14]) and to obtain the

asymptotic behavior of solutions ([15]). Voros coefficients also play an essential role in

a cluster algebraic structure hidden in the exact WKB analysis revealed in [16].
In this article we give an announcement of our studies on the computation of

the explicit form of Voros coefficients. Our aim is to determine Voros coefficients of,

mainly, higher order linear ordinary differential equations. We will show that such a

computation becomes transparent and can be done in a unified manner if we consider

the problem with the middle convolution (see, e.g., [23] and references cited there). By
the middle convolution, one parameter is introduced to the equation. Our main theorem

(and its corollary) gives its relevance to the Voros coefficients explicitly.
This paper is organized as follows. In §2 we recall some basic facts about the

WKB analysis and the middle convolution. In §3 we state our main theorem. In §4, to

illustrate our main theorem, we study the hypergeometric equation of type (1, 4) and

compute Voros coefficients explicitly. Although we have not succeeded in constructing

algorithms to compute Voros coefficients yet, we believe our study becomes the first

step for it. In §5 we give some remarks toward such study.
The authors express their sincere gratitude to all of the member of Monday Seminar

on exact WKB analysis at RIMS for interesting and stimulating discussions with them.

§2. Preliminaries

The main result announced in this article is concerned with exact WKB analysis
and the middle convolution. Here we recall some notations and basic facts in these

theories which will be needed to state our results. As general references, we refer the

reader to [21] for exact WKB analysis and [23] for the middle convolutions. In this

article we follow their notations.
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§2.1. WKB solution

In this article we discuss a linear ordinary differential equation of order n(\geq 1)
containing a large parameter  $\eta$>0 :

(2.1) P(x, $\eta$^{-1}\partial_{x}) $\psi$=0,

where

(2.2) P(x, $\eta$^{-1}\displaystyle \partial_{x})=\sum_{k=0}^{n}a_{k}(x)($\eta$^{-1}\partial_{x})^{k}
is a linear differential operator of polynomial coefficients. Let $\zeta$_{j}(x)(1\leq j\leq n) be the

characteristic roots of P(x, $\eta$^{-1}\partial_{x}) ; these are solutions of  $\sigma$(P)(x,  $\zeta$)=0 ,
where

(2.3)  $\sigma$(P)(x,  $\zeta$) :=\displaystyle \sum_{k=0}^{n}a_{k}(x)$\zeta$^{k}
is the total symbol of P . Throughout this article we assume

Assumption 2.1.

(i) The total symbol  $\sigma$(P)(x,  $\zeta$) is an irreducible polynomial.

(ii) The point  x=\infty is an irregular singular point of (2.1). Moreover, the behavior of

characteristic roots when  x tends to \infty is given by

(2.4) $\zeta$_{j}(x)=x^{d_{j}}(c_{j}+O(x^{-1})) ,

with some constants d_{j} and c_{j} satisfying

(2.5) (i) d_{j}\geq 0 , (ii) c_{j}\neq 0 , (iii) c_{j}\neq c_{k} if d_{j}=d_{k}.

Note that, if some of d_{j} are not integers, characteristic roots are multivalued near

 x=\infty and hence the above labeling becomes ambiguous. To avoid such an ambiguity, in

what follows we put suitable branch cuts from \infty and we regard (2.4) as the asymptotic
behavior in the cut plane.

For the equation (2.1), we can construct a formal solution, called a WKB solution,
of the form

(2.6)  $\psi$(x,  $\eta$)=\displaystyle \exp[\int^{x}S(x,  $\eta$)dx],
(2.7)  S(x,  $\eta$)=\displaystyle \sum_{k=-1}^{\infty}$\eta$^{-k}S_{k}(x)= $\eta$ S_{-1}(x)+S_{0}(x)+$\eta$^{-1}S_{1}(x)+\cdots
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(cf. [2]). Here the function  S_{-1}(x) satisfies the algebraic equation  $\sigma$(P)(x, S_{-1})=0,
and hence the leading term S_{-1}(x) of (2.7) is one of $\zeta$_{j}(x)(1\leq j\leq n) . Once the label

j of the leading term is fixed, the functions S_{k}(x) for k\geq 0 are determined uniquely
and recursively. Thus we have n WKB solutions of (2.1) of the form

(2.8) $\psi$_{j}(x,  $\eta$)=\displaystyle \exp( $\eta$\int^{x}$\zeta$_{j}(x)dx)\sum_{n=0}^{\infty}$\eta$^{-n}$\psi$_{j,n}(x) (1\leq j\leq n) ,

where $\psi$_{j,n}(x) are some functions.

For the asymptotic behavior of higher order terms S_{k}(x)(k\geq 0) ,
we obtain

Lemma 2.2. If we choose $\zeta$_{j}(x) as the leading term S_{-1}(x) of (2.7), then the

function S_{k}(x) behaves as

(2.9) S_{k}(x)=O(x^{-(d_{j}+1)k-1}) (k\geq-1)

when x tends to \infty . Here  d_{j} is defined in (2.4).

§2.2. Middle convolutions

The notion of middle convolutions is introduced by Nicholas Katz [19] in his study of

rigid local systems, and reformulated as an operation on Fuchsian systems by Dettweiler‐

Reiter [8]. A remarkable development has been made based on middle convolutions

together with additions recently. By using these operations, all of the rigid Fuchsian

equations can be built up from (or reduced to) a trivial equation in an algorithmic way.

We refer the reader to [23] for the recent studies. These operations are also studied for

equations with irregular singular points (cf., e.g., [6], [9], [10] and [29]).
Here we consider middle convolutions with a large parameter  $\eta$ . Except for this,

we follow the notation used in [23, Chapter 1] for scalar differential equations.

Definition 2.3 ([23, § 1.3]). For a linear differential operator  P(x, $\eta$^{-1}\partial_{x}) satis‐

fying Assumption 2.1 (i), and a complex number  $\mu$\neq 0 ,
define an operator \overline{P}_{ $\mu$}(x, $\eta$^{-1}\partial_{x})=

mc_{ $\mu \eta$}(P)(x, $\eta$^{-1}\partial_{x}) by

(2.10) \overline{P}_{ $\mu$}(x, $\eta$^{-1}\partial_{x})=($\eta$^{-1}\partial_{x})^{\ell}\circ \mathrm{A}\mathrm{d}(\partial_{x}^{- $\mu \eta$})P(x, $\eta$^{-1}\partial_{x}) .

Here \ell is given by \displaystyle \max\{j-k|a_{j,k}\neq 0\} ,
where a_{j,k} is defined by a_{k}(x)=\displaystyle \sum_{j=1}^{\deg a_{k}}a_{j,k}x^{j}.

The operator \overline{P}_{ $\mu$} is called the middle convolution of P.

Note that the operator \overline{P}_{ $\mu$}=mc_{ $\mu \eta$}(P) is an (n+\ell) ‐th order differential operator

of the form

(2.11) \displaystyle \overline{P}_{ $\mu$}(x, $\eta$^{-1}\partial_{x})=\sum_{k=0}^{n+\ell}\overline{a}_{k}(x,  $\eta$)($\eta$^{-1}\partial_{x})^{k},
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where

(2.12) \overline{a}_{k}(x,  $\eta$)=\overline{a}_{k,0}(x)+$\eta$^{-1}\overline{a}_{k,1}(x)+$\eta$^{-2}\overline{a}_{k,2}(x)+\cdots

is a polynomial in $\eta$^{-1} whose coefficients \overline{a}_{k,m}(x) are polynomials in x . The explicit
form of the total symbol of \overline{P}_{ $\mu$} defined by

(2.13)  $\sigma$(\displaystyle \overline{P}_{ $\mu$})(x,  $\zeta$)=\sum_{k=0}^{n+\ell}\overline{a}_{k}(x,  $\eta$)$\zeta$^{k},
is given in Lemma 2.5 below. At the level of solutions, the middle convolution is an

integral transformation

(2.14)  $\psi$(x,  $\eta$)\displaystyle \mapsto\overline{ $\psi$}(x,  $\mu$,  $\eta$)=\frac{1}{ $\Gamma$( $\mu \eta$)}\int_{x_{0}}^{x} $\psi$(z,  $\eta$)(x-z)^{ $\mu \eta$-1}dz,
where x_{0} is suitably chosen. The operation (2.14) is known to be the fractional deriva‐

tion.

Example 2.4.

(i) Since \mathrm{A}\mathrm{d}(\partial_{x}^{- $\mu \eta$})\partial_{x}=\partial_{x} and \mathrm{A}\mathrm{d}(\partial_{x}^{- $\mu \eta$})x=x- $\mu \eta$\partial_{x}^{-1} ,
we have

(2.15) mc_{ $\mu \eta$}($\eta$^{-1}\partial_{x})=$\eta$^{-1}\partial_{x},
(2.16) mc_{ $\mu \eta$}(x)=$\eta$^{-1}\partial_{x}\circ(x- $\eta \mu$\partial_{x}^{-1})=x($\eta$^{-1}\partial_{x})- $\mu$+$\eta$^{-1}

(ii) For a second order operator P=3($\eta$^{-1}\partial_{x})^{2}+2c($\eta$^{-1}\partial_{x})+x ( c\in \mathbb{C} is a constant),
we obtain

(2.17) \overline{P}_{ $\mu$}=3($\eta$^{-1}\partial_{x})^{3}+2c($\eta$^{-1}\partial_{x})^{2}+x($\eta$^{-1}\partial_{x})- $\mu$+$\eta$^{-1}

The equation P_{ $\mu$}^{-}\overline{ $\psi$}=0 will be analyzed in §4.

Since we deal with two operators P and \overline{P}_{ $\mu$}=mc_{ $\mu \eta$}(P) simultaneously, we will call

the operator P in (2.1) the original operator to avoid confusions.

Lemma 2.5. The total symbol of the operator \overline{P}_{ $\mu$} is given by

(2.18)  $\sigma$(\displaystyle \overline{P}_{ $\mu$})=\sum_{j\geq 0}\frac{(-1)^{j}}{\mathrm{j}!}[ $\mu-\eta$^{-1}\ell]_{j}\frac{\partial^{j} $\sigma$(P)}{\partial x^{j}}$\zeta$^{\ell-j},
where

(2.19) [ $\lambda$]_{j}=\left\{\begin{array}{ll}
1 & j=0,\\
 $\lambda$( $\lambda$+$\eta$^{-1})\cdots( $\lambda$+(j-1)$\eta$^{-1}) & j\geq 1.
\end{array}\right.
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It follows from Lemma 2.5 that, if we expand  $\sigma$(\overline{P}_{ $\mu$}) with respect to  $\eta$ as

(2.20)  $\sigma$(\overline{P}_{ $\mu$})(x,  $\zeta$)= $\sigma$(\overline{P}_{ $\mu$})_{0}(x,  $\zeta$)+$\eta$^{-1} $\sigma$(\overline{P}_{ $\mu$})_{1}(x,  $\zeta$)+$\eta$^{-2} $\sigma$(\overline{P}_{ $\mu$})_{2}(x,  $\zeta$)+\cdots ,

then the leading term is given by

(2.21)  $\sigma$(\displaystyle \overline{P}_{ $\mu$})_{0}(x,  $\zeta$)=$\zeta$^{\ell} $\sigma$(P)(x-\frac{ $\mu$}{ $\zeta$},  $\zeta$) .

Here  $\sigma$(\overline{P}_{ $\mu$})_{0}(x,  $\zeta$) is a polynomial in  $\zeta$ of degree  n+\ell . The characteristic roots \overline{ $\zeta$}_{j}(x,  $\mu$)
(1\leq j\leq n+\ell) of \overline{P}_{ $\mu$} are defined by the roots of  $\sigma$(\overline{P}_{ $\mu$})_{0}(x,  $\zeta$)=0 with respect to  $\zeta$.

In this article, we consider the case where the middle convolution strictly increases

the order of a differential operator:

Assumption 2.6. The original operator P(x, $\eta$^{-1}\partial_{x}) satisfies \ell>1 . Here \ell is

the index defined in Definition 2.3.

Using the relation (2.21), we can prove

Proposition 2.7. Under Assumptions 2.1 and 2.6, we can assign the label of
characteristic roots \{\overline{ $\zeta$}_{j}(x,  $\mu$)\}_{j=1}^{n+\ell} of \overline{P}_{ $\mu$} such that their asymptotic behavior is

(2.22) \overline{ $\zeta$}_{j}(x,  $\mu$)=x^{d_{j}}(1+O(x^{-1})) (1\leq j\leq n) ,

(2.23) \displaystyle \overline{ $\zeta$}_{ $\alpha$}(x,  $\mu$)=\frac{ $\mu$}{x}+O(x^{-2}) (n+1\leq $\alpha$\leq n+\ell)
as x tends to \infty . Furthermore,  for1\leq j\leq n ,

we have

(2.24) \displaystyle \overline{ $\zeta$}_{j}(x,  $\mu$)-$\zeta$_{j}(x)=-\frac{ $\mu$ d_{j}}{x}+O(x^{-2}) (x\rightarrow\infty) .

§3. The main theorem: difference equations for Voros coefficients

§3.1. Voros coefficients

Voros coefficients were introduced intrinsically in [28], and studied by [7] etc. They
are important objects in the exact WKB analysis since they appear in the expression
of monodromy or Stokes data. Moreover, Voros coefficients play crucial roles in the

analysis of parametric Stokes phenomena (see [27, 13, 5]).
A typical and historical example of the Voros coefficients is that of the Weber

equation

(3.1) ($\eta$^{-2}\displaystyle \frac{d^{2}}{dx^{2}}-(\frac{1}{4}x^{2}- $\lambda$)) $\psi$=0,
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where  $\eta$ denotes a large parameter and  $\lambda$ is a complex parameter. This equation ap‐

peared in the study of the reduction problem of the one‐dimensional Schrödinger equa‐

tions when two simple turning points are connected by a Stokes curve ([20], in that case

 $\lambda$ is a formal power series with respect to  $\eta$ ), and Sato conjectured

(3.2) \displaystyle \int_{2\sqrt{ $\lambda$}}^{\infty}(S(x,  $\eta$)- $\eta$ S_{-1}(x)-S_{0}(x))dx=\frac{1}{2}\sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}( $\lambda \eta$)^{1-2n},
where  S(x,  $\eta$)= $\eta$ S_{-1}(x)+S_{0}(x)+$\eta$^{-1}S_{1}(x)+\cdots is the logarithmic derivative of a

WKB solution, and  B_{n} is the n‐th Bernoulli number defined by

(3.3) \displaystyle \frac{w}{e^{w}-1}=1-\frac{w}{2}+\sum_{n=1}^{\infty}\frac{B_{2n}}{(2n)!}w^{2n}
The left‐hand side of (3.2) is called the Voros coefficient of the Weber equation. Al‐

though the proof of (3.2) is given in [28, Appendix \mathrm{A} ] when  $\lambda$ is a genuine constant

(i.e., when  $\lambda$ does not depend on  $\eta$ ), it was also proved by [25] and [27] without using
transcendental techniques.

Here we consider the Voros coefficients for a differential equation obtained by the

middle convolution of a certain differential equation. Let  P(x, $\eta$^{-1}\partial_{x}) be the operator of

the original equation (2.1), and \overline{P}_{ $\mu$}(x, $\eta$^{-1}\partial_{x}) be the middle convolution of P(x, $\eta$^{-1}\partial_{x})
with a complex parameter  $\mu$\neq 0 defined in Definition 2.3. For the equation

(3.4) \overline{P}_{ $\mu$}(x, $\eta$^{-1}\partial_{x})\overline{ $\psi$}=0,

we can construct a WKB solution

(3.5) \displaystyle \overline{ $\psi$}(x,  $\mu$,  $\eta$)=\exp[\int^{x}\overline{S}(x,  $\mu$,  $\eta$)dx],
(3.6) \displaystyle \overline{S}(x,  $\mu$,  $\eta$)=\sum_{k=-1}^{\infty}$\eta$^{-k}\overline{S}_{k}(x,  $\mu$)= $\eta$\overline{S}_{-1}(x,  $\mu$)+\overline{S}_{0}(x,  $\mu$)+$\eta$^{-1}\overline{S}_{1}(x,  $\mu$)+\cdots
similarly to (2.6).

Fix the label 1, . . .

,  n+\ell of characteristic roots of (3.4) near  x=\infty as is specified

by Proposition 2.7. For any  j, k\in\{1, . . . , n+\ell\} ,
consider a path $\gamma$_{j,k} (cf. Figure 1)

on the Riemann surface defined by \{ $\sigma$(\overline{P}_{ $\mu$})_{0}(x,  $\zeta$)=0\} which starts from  x=\infty on the

j‐th sheet (i.e., \overline{ $\zeta$}(x,  $\mu$)=\overline{ $\zeta$}_{j}(x,  $\mu$) on the sheet), turn around a branch point (turning
point of (3.4)), and returns to  x=\infty on the k‐th sheet (i.e., \overline{ $\zeta$}(x,  $\mu$)=\overline{ $\zeta$}_{k}(x,  $\mu$) on the

sheet). Lemma 2.2 implies that the following integral is well‐defined (as the term‐wise

integral for the coefficient of each power of $\eta$^{-1} ):

(3.7) \displaystyle \overline{V}_{j,k}( $\mu$,  $\eta$)=\frac{1}{2}\int_{$\gamma$_{j,k}}(\overline{S}(x,  $\mu$,  $\eta$)- $\eta$\overline{S}_{-1}(x,  $\mu$)-\overline{S}_{0}(x,  $\mu$))dx.
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Figure 1. The path $\gamma$_{j,k}.

Definition 3.1. The formal power series \overline{V}_{j,k}( $\mu$,  $\eta$) defined in (3.7) for j,  k\in

\{1, . . . , n+\ell\} is called the Vo ros coefficient of the type (j, k) for (3.4).

§3.2. Statement of the main Theorem

Our main theorem shows that the Voros coefficients satisfy certain difference equa‐

tions concerning the shift of the parameter  $\mu$.

Theorem 3.2. Suppose that the original operator P=P(x, $\eta$^{-1}\partial_{x}) satisfies As‐

sumptions 2.1 and 2.6. Let \overline{P}_{ $\mu$}=mc_{ $\mu \eta$}(P) the middle convolution of P. Then, the

Vo ros coefficients \overline{V}_{k,j}( $\mu$,  $\eta$) of (3.4) satisfy the following diffe rence equations:

(i) For 1\leq j, k\leq n ,
we have

(3.8) \overline{V}_{j,k}( $\mu$,  $\eta$)-\overline{V}_{j,k}( $\mu-\eta$^{-1},  $\eta$)=0.

(ii) For 1\leq j\leq n and  n+1\leq $\alpha$\leq n+\ell , we have

(3.9) \displaystyle \overline{V}_{j, $\alpha$}( $\mu$,  $\eta$)-\overline{V}_{j, $\alpha$}( $\mu-\eta$^{-1},  $\eta$)=\frac{1}{2}[1+( $\mu \eta$-\frac{1}{2})\log(1-\frac{1}{ $\mu \eta$})]
(iii) For n+1\leq $\alpha$,  $\beta$\leq n+\ell , we have

(3.10) \overline{V}_{ $\alpha,\ \beta$}( $\mu$,  $\eta$)-\overline{V}_{ $\alpha,\ \beta$}( $\mu-\eta$^{-1},  $\eta$)=0.

Here the label 1, . . .

,  n+\ell of characteristic roots of (3.4) near  x=\infty are specified by

Proposition 2. 7.

To be precise, the above equalities hold up to the sign because the Voros coefficient

\overline{V}_{j,k} depends on the orientation of the integration path $\gamma$_{j,k}.
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A similar kind of difference equations appearing in Theorem 3.2 was effectively used

in the computation of the explicit form of Voros coefficients for the Weber equation

([27]), for the Whitaker equation ([22]), for the Legendre equation ([18]) and for the

hypergeometric equation ([5]). The idea of the proof of Theorem 3.2 is also similar to

these concrete examples listed above, i.e., Takei�s method ([27]): in our case \partial_{x} becomes

the lowering operator with respect to  $\mu$ ,
that is to say, the derivative \partial_{x}\overline{ $\psi$}(x,  $\mu$,  $\eta$) of a

WKB solution for \overline{P}_{ $\mu$} becomes the constant multiple of that for \overline{P}_{ $\mu$- $\eta$-1} . The details

will be given elsewhere.

As a corollary of Theorem 3.2, the  $\mu$‐dependent part of the Voros coefficients are

completely determined:

Corollary 3.3.

(i) For  1\leq j, k\leq n, \overline{V}_{j,k}( $\mu$,  $\eta$) does not depend on  $\mu$.

(ii) For 1\leq j\leq n and  n+1\leq $\alpha$\leq n+\ell , we have

(3.11) \displaystyle \overline{V}_{j $\alpha$}( $\mu$,  $\eta$)=\frac{1}{2}\sum_{n=1}^{\infty}\frac{B_{2n}}{2n(2n-1)}( $\mu \eta$)^{1-2n}+ (  $\mu$‐independent terms).

Here  B_{2n} is the 2n ‐th Bernoulli number defined by (3.3).

(iii) For n+1\leq $\alpha$,  $\beta$\leq n+\ell, \overline{V}_{ $\alpha,\ \beta$}( $\mu$,  $\eta$) does not depend on  $\mu$.

The ( $\mu$‐independent terms� in (3.11) are not determined from the difference equa‐

tion in Theorem 3.2. In order to find their explicit form, we have to analyze the

dependence of Voros coefficients on the other parameters contained in the equation. In

next section we will give an example for which we can determine the  $\mu$‐independent
terms completely.

§4. Example: The hypergeometric equation of the type (1, 4)

In this section we will consider the following differential equation

(4.1) \overline{P}_{ $\mu$}(x, $\eta$^{-1}\partial_{x})\overline{ $\psi$}=\{3($\eta$^{-1}\partial_{x})^{3}+2c($\eta$^{-1}\partial_{x})^{2}+x($\eta$^{-1}\partial_{x})- $\mu$+$\eta$^{-1}\}\overline{ $\psi$}=0.

Here c and  $\mu$ are complex parameters. The equation (4.1) is satisfied by a certain

(confluent) hypergeometric integral which is a special solution of a degenerate Garnier

system in two variables [24]. The equation (4.1) is called the hypergeometric equation

of the type (1, 4) since the equation corresponds to  1+4
� in the confluence diagram

obtained from a linear differential equation with 5 regular singular points. The equation

(4.1) is also studied by Hirose from a viewpoint of exact WKB analysis. See [11] for

further information including Stokes geometry of (4.1).
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The goal of this section is to determine the Voros coefficients of (4.1) with the

aid of the results explained in Section 3. Recall that (4.1) is obtained by the middle

convolution from the second order equation

(4.2) P(x, $\eta$^{-1}\partial_{x}) $\psi$=\{3($\eta$^{-1}\partial_{x})^{2}+2c($\eta$^{-1}\partial_{x})+x\} $\psi$=0

(cf. Example 2.4 (ii)). Note that the equation (4.2) is nothing but the Airy equation

(with the translated and scaled variables). By straightforward computations, we obtain

asymptotic behaviors of characteristic roots:

(4.3) \left\{\begin{array}{l}
\overline{ $\zeta$}_{1}(x,  $\mu$)=+\frac{i}{\sqrt{3}}x^{\frac{1}{2}}-\frac{c}{3}-\frac{ic^{2}}{6\sqrt{3}}x^{-\frac{1}{2}}-\frac{ $\mu$}{2}x^{-1}+O(x^{-\frac{3}{2}}) ,\\
\overline{ $\zeta$}_{2}(x,  $\mu$)=-\frac{i}{\sqrt{3}}x^{\frac{1}{2}}-\frac{c}{3}+\frac{ic^{2}}{6\sqrt{3}}x^{-\frac{1}{2}}-\frac{ $\mu$}{2}x^{-1}+O(x^{-\frac{3}{2}}) ,
\end{array}\right.
for \overline{P}_{ $\mu$} and

(4.4) \{

\overline{ $\zeta$}_{3}(x,  $\mu$)= $\mu$ x^{-1}+O(x^{-2})

$\zeta$_{1}(x)=+\displaystyle \frac{i}{\sqrt{3}}x^{\frac{1}{2}}-\frac{c}{3}-\frac{ic^{2}}{6\sqrt{3}}x^{-\frac{1}{2}}+O(x^{-\frac{3}{2}}) ,

$\zeta$_{2}(x)=-\displaystyle \frac{i}{\sqrt{3}}x^{\frac{1}{2}}-\frac{c}{3}+\frac{ic^{2}}{6\sqrt{3}}x^{-\frac{1}{2}}+O(x^{-\frac{3}{2}})
for P_{ $\mu$} . Note that the labels of characteristic roots in (4.3) and (4.4) are chosen so

that they are consistent with those in Proposition 2.7. We consider the three Voros

coefficients \overline{V}_{1,2}( $\mu$,  $\eta$) , \overline{V}_{1,3}( $\mu$,  $\eta$) and \overline{V}_{2,3}( $\mu$,  $\eta$) for (4.1) since other Voros coefficients of

(4.1) are obtained from them; e.g., \overline{V}_{2,1}( $\mu$,  $\eta$)=-\overline{V}_{1,2}( $\mu$,  $\eta$) . Let $\gamma$_{j,k} be a path defining
the Voros coefficient \overline{V}_{j,k}( $\mu$,  $\eta$) .

The main theorem of this section is the following:

Theorem 4.1. The Vo ros coefficients f^{0or}(4.1) are independent of the parameter
c

,
and given explicitly as follows:

(4.5) \overline{V}_{1,2}( $\mu$,  $\eta$)=0.

(4.6) \displaystyle \overline{V}_{1,3}( $\mu$,  $\eta$)=\overline{V}_{2,3}( $\mu$,  $\eta$)=\sum_{n=0}^{\infty}\frac{B_{2n}}{2n(2n-1)}( $\mu \eta$)^{1-2n}
Here B_{2n} is the 2n ‐th Bernoulli number given by (3.3).

Again we note that the above equalities hold up to the sign, depending on the

orientation of the integration path $\gamma$_{j,k} which defines the Voros coefficient \overline{V}_{j,k} . The

rest of this section is devoted to the proof of Theorem 4.1.
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Firstly, using Theorem 3.2 (Corollary 3.3), we can decompose the Voros coefficients

into  $\mu$‐dependent part and  $\mu$‐independent part. Let \overline{f}_{j,k}(c,  $\eta$) the  $\mu$‐independent part of

\overline{V}_{j,k} :

(4.7) \overline{f}_{1,2}(c,  $\eta$)=\overline{V}_{1,2}( $\mu$,  $\eta$) ,

(4.8) \displaystyle \overline{f}_{1,3}(c,  $\eta$)=\overline{V}_{1,3}( $\mu$,  $\eta$)-\sum_{n=0}^{\infty}\frac{B_{2n}}{2n(2n-1)}( $\mu \eta$)^{1-2n},
(4.9) \displaystyle \overline{f}_{2,3}(c,  $\eta$)=\overline{V}_{2,3}( $\mu$,  $\eta$)-\sum_{n=0}^{\infty}\frac{B_{2n}}{2n(2n-1)}( $\mu \eta$)^{1-2n}
Here \overline{f}_{j,k}(c,  $\eta$) is a formal power series whose coefficients may depend on c of the form

\displaystyle \overline{f}_{j,k}(c,  $\eta$)=\sum_{m=1}^{\infty}$\eta$^{-m}\overline{f}_{j,k}^{(m)}(c) . We will show that \overline{f}_{j,k}(c,  $\eta$) vanishes.

Using a result of [11], we can show the following.

Lemma 4.2. \overline{V}_{j,k}( $\mu$,  $\eta$) (and hence, \overline{f}_{j,k}(c,  $\eta$) also) does not depend on the pa‐

rameter c.

Proof. The equation (4.1) is a restriction of a system of linear differential equations
in two variables ([11]):

(4.10) \left\{\begin{array}{l}
\{3($\eta$^{-1}\partial_{x})^{3}+2z($\eta$^{-1}\partial_{x})^{2}+x($\eta$^{-1}\partial_{x})- $\mu$+$\eta$^{-1}\}\overline{ $\phi$}=0,\\
($\eta$^{-1}\partial_{x}^{2}-\partial_{z})\overline{ $\phi$}=0.
\end{array}\right.
The restriction on \{z=c\} of (4.10) gives the equation (4.1). In [11] a WKB solution

\overline{ $\phi$}(x, z,  $\mu$,  $\eta$) of the system (4.10) was constructed. Set

T^{(1)}-(x, z,  $\mu$,  $\eta$)=\displaystyle \frac{\partial_{x}\overline{ $\phi$}(x,z, $\mu,\ \eta$)}{\overline{ $\phi$}(x,z, $\mu,\ \eta$)}=\sum_{k=-1}^{\infty}$\eta$^{-k}T_{k}^{(1)}(x, z,  $\mu$) ,

T^{(2)}-(x, z,  $\mu$,  $\eta$)=\displaystyle \frac{\partial_{z}\overline{ $\phi$}(x,z, $\mu,\ \eta$)}{\overline{ $\phi$}(x,z, $\mu,\ \eta$)}=\sum_{k=-1}^{\infty}$\eta$^{-k}T_{k}^{(2)}(x, z,  $\mu$) .

Here we note that the restriction of T^{(1)}-(x, z,  $\mu$,  $\eta$) coincides with \overline{S}(x, c,  $\mu$,  $\eta$) defined in

(3.6) for the equation (4.1): T^{(1)}-(x, c,  $\mu$,  $\eta$)=\overline{S}(x, c,  $\mu$,  $\eta$) . Moreover, it is shown in [11,
Proposition 3.1] that these formal series satisfy

(4.11) \partial_{z}T^{(1)}-(x, z,  $\mu$,  $\eta$)=\partial_{x}T^{(2)}-(x, z,  $\mu$,  $\eta$) .

Therefore, we have

(4.12) \displaystyle \partial_{z}\int_{$\gamma$_{j,k}}(T^{(1)}-(x, z,  $\mu$,  $\eta$)- $\eta$ T_{-1}^{-(1)}(x, z,  $\mu$)-$\tau$_{0}^{-(1)}(x, z,  $\mu$))dx
=(T^{(2)}-(x, z,  $\mu$,  $\eta$)- $\eta$ T_{-1}^{-(2)}(x, z,  $\mu$)-T_{0}^{-(2)}(x, z,  $\mu$))|_{x=\infty_{j}}

-(T^{(2)}-(x, z,  $\mu$,  $\eta$)- $\eta$ T_{-1}^{-(2)}(x, z,  $\mu$)-$\tau$_{0}^{-(2)}(x, z,  $\mu$))|_{x=\infty_{k}}=0.
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Thus the formal series

(4.13) \displaystyle \int_{$\gamma$_{j,k}}(T^{(1)}-(x, z,  $\mu$,  $\eta$)- $\eta$ T_{-1}^{-(1)}(x, z,  $\mu$)-$\tau$_{0}^{-(1)}(x, z,  $\mu$))dx
does not depend on z . Since the restriction of the formal series (4.13) on \{z=c\}
coincides with \overline{V}_{j,k} ,

we have proved the claim. \square 

Therefore, the  $\mu$‐independent part \overline{f}_{j,k} of \overline{V}_{j,k} takes the form

(4.14) \displaystyle \overline{f}_{j,k}( $\eta$)=\sum_{m=1}^{\infty}$\eta$^{-m}\overline{f}_{j,k}^{(m)}
with a genuine constant \overline{f}_{j,k}^{(m)}\in \mathbb{C}.

Lemma 4.3. \overline{V}_{j,k}( $\mu$,  $\eta$) is invariant under the scaling ( $\mu$,  $\eta$)\mapsto(r $\mu$, r^{-1} $\eta$)f^{0or}
any complex number r\neq 0.

Proof. Since the equation (4.1) is invariant under (x, c,  $\eta$,  $\mu$)\mapsto(r^{\frac{2}{3}}x, r^{\frac{1}{3}}c, r $\mu$, r^{-1} $\eta$) ,

the formal series \overline{S} satisfies

\overline{S}(r^{\frac{2}{3}}x, r^{\frac{1}{3}}c, r $\mu$, r^{-1} $\eta$)d(r^{\frac{2}{3}}x)=\overline{S}(x, c,  $\eta$,  $\mu$)dx.

Thus we have \overline{V}_{j,k}(r $\mu$, r^{-1} $\eta$)=\overline{V}_{j,k}( $\mu$,  $\eta$) . \square 

Lemma 4.3 implies that \overline{f}_{j,k}(r^{-1} $\eta$)=\overline{f}_{j,k}( $\eta$) for any r\neq 0 . Hence, the coefficient

\overline{f}_{j,k}^{(m)} in (4.14) must vanish for all m
,

and we have \overline{f}_{j,k}( $\eta$)=0 . Thus we have proved
Theorem 4.1.

§5. Toward an algorithm to compute Voros coefficients

In concluding this report, we give some remarks on algorithms to compute Voros

coefficients. For an operator \overline{P}_{ $\mu$} obtained by the middle convolution, we can determine

the  $\mu$‐dependent parts of Voros coefficients completely by Theorem 3.2. Since all the

rigid equations can be (or are expected to be, for the equations with irregular singular

points) obtained by the addition and the middle convolution (cf. [6], [9], [10], [23] and

[29]), and since the addition is nothing but the gauge transformation, we may expect

that we can also obtain an algorithm to compute Voros coefficients. In other words, there

seems to be a possibility of determining Voros coefficients of \overline{P}_{ $\mu$} from some information

of the original equation.
In order to construct an algorithm, we need to determine  $\mu$‐independent parts of

the Voros coefficients. In §4, we have computed the  $\mu$‐independent part in question by
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using some special properties which (4.1) has: its extensibility to a holonomic system,
and its homogeneity. Although we expect that our method can be applied to some other

equations obtained by the middle convolution of holonomic systems, it does not seem

to be applicable in general situation.

In this section we show another possibility to determine  $\mu$‐independent parts of

Voros coefficients. The idea is to take the limit  $\mu$\rightarrow 0 . If we fix the independent
variable x at a generic point, the characteristic roots \overline{ $\zeta$}_{j}(x,  $\mu$) of \overline{P}_{ $\mu$} are holomorphic in

 $\mu$ on some neighborhood of  $\mu$=0 . Due to the relation (2.21) between the total symbols,
the limit \overline{ $\zeta$}_{j}(x, 0) satisfies

(5.1) \overline{ $\zeta$}_{j}(x, 0)^{\ell} $\sigma$(P)(x,\overline{ $\zeta$}_{j}(x, 0))=0.

This implies that, under the label specified by Proposition 2.7, \overline{ $\zeta$}_{j}(x, 0) coincides with

a characteristic root $\zeta$_{j}(x) of the original operator P for 1\leq j\leq n ,
and \overline{ $\zeta$}_{ $\alpha$}(x, 0)=0

for  n+1\leq $\alpha$\leq n+\ell . Furthermore, for  1\leq j\leq n, \overline{S}(x,  $\mu$,  $\eta$) with \overline{S}_{-1}(x)=\overline{ $\zeta$}_{j}(x,  $\mu$)
coincides with S(x,  $\eta$) at  $\mu$=0 :

(5.2) \overline{S}(x,  $\mu$,  $\eta$)|_{ $\mu$=0}=S(x,  $\eta$) .

Here the right‐hand side is the formal series (2.7) defined for the original operator P

whose leading term is given by $\zeta$_{j}(x) . The equality (5.2) follows from the uniqueness of

the formal series (2.7) for a fixed leading term. Therefore, it follows from this observation

and the fact that the Voros coefficient \overline{V}_{j,k}( $\mu$,  $\eta$) does not depend on  $\mu$ for  1\leq j, k, \leq n

(cf. Corollary 3.3 (i)), if a pair of turning points of \overline{P}_{ $\mu$} does not �pinch� the path $\gamma$_{j,k}
in the limit  $\mu$\rightarrow 0 ,

the Voros coefficient \overline{V}_{j,k} coincides with a Voros coefficient of the

original operator P :

(5.3) \overline{V}_{j,k}( $\mu$,  $\eta$)=V_{j,k}( $\eta$) .

Let us examine our idea by the equation (4.1) and (4.2) discussed in §4. Turning

points and Stokes curves are shown in Figure 2. A turning point is defined by a point
at which two characteristic roots coincide. The equation (4.1) with generic c and  $\mu$ has

three turning points. If \overline{ $\zeta$}_{j}(a,  $\mu$)=\overline{ $\zeta$}_{k}(a,  $\mu$) at a turning point a
,
it is said to be �of type

(j, k . From a turning point a of type (j, k) ,
we draw Stokes curves defined by

(5.4) {\rm Im}\displaystyle \int_{a}^{x}(\overline{ $\zeta$}_{j}(x,  $\mu$)-\overline{ $\zeta$}_{k}(x,  $\mu$))dx=0.
Three Stokes curves emanate from each turning point as is shown Figure 2. If a Stokes

curve satisfies

(5.5) {\rm Re}\displaystyle \int_{a}^{x}(\overline{ $\zeta$}_{j}(x,  $\mu$)-\overline{ $\zeta$}_{k}(x,  $\mu$))dx>0,
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(a)  $\mu$=0.01 (c)  $\mu$=0(b)  $\mu$=0.001

Figure 2. Examples of the Stokes geometry for (4.1) with c=1.5i and several  $\mu$ . The

dot symbols (resp., smaller dot symbols) designate turning points (resp., virtual turning

points). The solid lines (resp., dashed lines) designate Stokes curves or �effective� parts

of new Stokes curves (resp., �non‐effective� parts of new Stokes curves).

we assign a label  j>k
�

to it. The labels used in Figure 2 are compatible with the

labels specified in (4.3). (We refer the reader to [4] concerning the explanation of virtual

turning points and new Stokes curves.)
Let us fix c to be a nonzero number. As  $\mu$ tends to  0 ,

two turning points of type

(2, 3) approach to each other, and both of them converge to the origin, as is illustrated

in Figure 2. As a result, the path $\gamma$_{2,3} is pinched by two turning points as  $\mu$ tends to

zero. The path  $\gamma$_{1,2} is not, however, pinched by any turning points in the limit  $\mu$\rightarrow 0.
Hence we obtain

(5.6) \displaystyle \overline{V}_{1,2}( $\mu$,  $\eta$)=\lim_{ $\mu$\rightarrow 0}\overline{V}_{1,2}( $\mu$,  $\eta$)=V_{1,2}( $\eta$) .

Now the problem is reduced to the computation of the Voros coefficients V_{1,2}( $\eta$) of the

original equation (4.2). But it is easy to compute: since the equation (4.2) has only
one turning point (cf. Figure 3), V_{1,2}( $\eta$) is identically zero. In this way we can confirm

again \overline{V}_{1,2}( $\mu$,  $\eta$)=0 ,
as already proved in §4.

In a general case, we can show the following: if every zero of a_{n}(x) (a zero‐th

order term of the original operator P ) is not a turning of P
,

then the path $\gamma$_{j,k} for

1\leq j, k\leq n is not pinched by turning points of \overline{P}_{ $\mu$} as  $\mu$ tends to zero. Hence we obtain

(5.3) for  1\leq j, k\leq n . (Note that this also proves Theorem 3.2 (i) since the original
Voros coefficient V_{j,k}( $\eta$) does not depend on  $\mu$. ) In this way we can compute these Voros

coefficients of \overline{P}_{ $\mu$} if we know those of P.

It is desirable that other Voros coefficients of \overline{P}_{ $\mu$} can also be expressed by those of P.

We have not, however, succeeded in finding general formulas like (5.3) of  $\mu$‐independent

parts for other Voros coefficients. It is our future problem to find an algorithm to
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Figure 3. Stokes geometry for (4.2) with  c=1.5i.

compute Voros coefficients \{\overline{V}_{j,k}( $\mu$,  $\eta$)\} from some data of P (e.g., from \{V_{j,k}( $\eta$)\} ).
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