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Abstract

Algebraic local cohomology classes attached to Lê cycles of isolated line singularities are

considered. A simple method that uses algebraic local cohomology classes to guess the microlo‐

cal \mathrm{b}‐functions associated with line singularities is described. The correctness of the method is

shown by using the index theorem of regular singular ordinary differential equations and the

notion of vertical monodromy on the stratum of singular locus of a line singularity.

§1. Introduction

In 1978, T. Yano [32] studied \mathrm{b}‐functions from the point of view of algebraic anal‐

ysis. He considered \mathrm{b}‐functions of hypersurfaces in several cases and computed in par‐

ticular explicite forms of \mathrm{b}‐functions for many cases by using the concept of algebraic
local cohomology and holonomic \mathrm{D}‐modules. Algebraic local cohomology classes were

used in [32] as eigenvectors of the action of local monodromy on vanishing cycles.
In 2002, I considered (micro‐)local \mathrm{b}‐functions of non‐isolated quasi‐homogeneous

functions and examined in particular (micro‐)local \mathrm{b}‐functions of hypersurfaces with a

smooth one‐dimensional singular locus  $\Sigma$ stratified by two strata  $\Sigma$-\{O\} and \{O\}.
Based on an observation and a guess, I obtained an elementary but conjectural method

to determine microlocal \mathrm{b}‐functions for these line singularities. The main idea of the

study is an use of the concept of Lê cycles that correspond to multiplicity structures of

characteristic varieties or micro‐supports of vanishing cycle sheaves.
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The purpose of this paper is to give a correct interpretation of the observation that

was obtained in 2002 and to explain the reason why the elementary method works.

In section one we consider the (micro‐) local \mathrm{b}‐function of Whitney umbrella by

using algebraic local cohomology classes and present the guess obtained in 2002.

In section two, we examine (micro‐)local \mathrm{b}‐functions of non‐isolated quasi‐homogeneous

hypersurfaces with isolated line singularities by using results of computation. We de‐

scribe the elementary but conjectural method to determine microlocal \mathrm{b}‐functions for

these singularities.
In section three, we examine microlocal \mathrm{b}‐functions of hypersurfaces with simple

line singularities. We show that how the conjectural method works for these case.

In section four, we compute \mathrm{D}‐modules relevant to the vaniching cycle sheaves for

two cases and compute their algebraic local cohomology solution spaces, supported on

the stratum  $\Sigma$-\{O\} and on \{O\} respectively, that describe local systems of vanishing

cycles ([3], [5]). By using these data, we study monodromy structures of vanishing

cycles and microlocal \mathrm{b}‐functions. Note that the notion of vertical monodromy, due to

D. Siersma ([25], [26]), is the key to find a correct interpretation of the observation.

We use the computer algebra system Risa/Asir developed by M. Noro et al ([17])
to study (micro‐)local \mathrm{b}‐functions, algebraic local cohomology classes and \mathrm{D}‐modules.

I obtained the guess and the conjectural method to find microlocal \mathrm{b}‐functions of

line singularities in 2002, while I stayed at RIMS, Kyoto University as a short term

visiting researcher. I am grateful to Kyoji Saito and Lê Dũng Tráng. I also would like

to thank Research Institute of Mathematical Science for hospitality. An especially big
�thank you� goes to Toshinori Oaku.

§2. Whitney umbrella

Let f(t, x, y)=y^{2}-x^{3}-tx^{2} and let S=\{(t, x, y)\in X|f(t, x, y)=0\} ,
where X is

an open neighborhood in \mathbb{C}^{3} of the origin. The hypersurface S is the Whitney umbrella.

The singular locus  $\Sigma$ of  S is the t‐axis. For t_{0}\in \mathbb{C} ,
let H_{t_{0}} denote the hyperplane

H_{t_{0}}=\{(t, x, y)\in X t=t_{0}\} . Then, for t_{0}\neq 0 the curve S\cap H_{t_{0}} has a node at

(t_{0},0.0) and for t_{0}=0 the curve S\cap H_{0} has a cusp at O=(0,0,0) . The singular locus

 $\Sigma$ is therefore stratified by two strata :  $\Sigma$=( $\Sigma$-\{O\})\cup\{O\} . In fact, the primary

decomposition of the Jacobian ideal <\displaystyle \frac{\partial f}{\partial t}, \displaystyle \frac{\partial f}{\partial x}, \displaystyle \frac{\partial f}{\partial y}> is <x, y>\cap<t, x^{2}, y>.

Set r(x, y)=f(1, x, y) . Since r(x, y) is a Morse function of two variables, the b‐

function b_{r} of r is b_{r}(s)=(s+1)^{2} . The \mathrm{b}‐function b_{f}(s) of the Whitney umbrella S is

b_{f}(s)=(s+1)^{2}(s+\displaystyle \frac{3}{2}) . Therefore, the factor s+\displaystyle \frac{3}{2} in b_{f} comes from the origin \{O\}.

Let \left\{\frac{\partial f}{\partial x} & 1 & \frac{\partial f}{\partial y}\right\} denote the algebraic local cohomology class in \mathcal{H}_{[V]}^{2}(\mathcal{O}_{X}) ,
where []
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is the Grothendieck symbol, V is the variety

V=V(\displaystyle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})=\{(t, x, y)\in X|2tx+3x^{2}=y=0\},
\mathcal{O}_{X} is the sheaf on X of holomorphic functions. Since the primary decomposition of

the ideal <\displaystyle \frac{\partial f}{\partial x}, \displaystyle \frac{\partial f}{\partial y}> is <x, y>\cap<2t+3x, y>, \left\{\frac{\partial f}{\partial x} & 1 & \frac{\partial f}{\partial y}\right\}|_{ $\Sigma$-\{O\}} is well‐defined on

the stratum  $\Sigma$-\{O\} as a local cohomology class. We have

\displaystyle \left\{\frac{\partial f}{\partial x} & 1 & \frac{\partial f}{\partial y}\right\}|_{ $\Sigma$-\{O\}}=-\frac{1}{2(2t+3x)}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\}|_{ $\Sigma$-\{O\}},
which is equal to − \displaystyle \frac{1}{4t}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\} on  $\Sigma$-\{O\} . Note that the local cohomology class

\displaystyle \frac{1}{t}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\} can be regarded as a section of a local system on  $\Sigma$-\{O\}

Now we consider the weighted degrees of algebraic local cohomology classes, sup‐

ported on the stratum \{O\} ,
to study the microlocal \mathrm{b}‐function. Since the polar variety

$\Gamma$^{1} of the Whitney umbrella is $\Gamma$^{1}=\{(t, x, y)|2t+3x=y=0\} ,
the zero‐dimensional

Lê cycle (see [15]) $\Lambda$^{0}
,

as an ideal in the ring \mathcal{O}_{X,O} of germs of holomorphic functions,
is defined to be

$\Lambda$^{0}=<\displaystyle \frac{\partial f}{\partial t}, 2t+3x, y>=<2t+3x, x^{2}, y>
Let

H_{J_{O}}=\{ $\eta$\in \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X})|J_{O} $\eta$=0\} and H_{$\Lambda$^{0}}=\{ $\eta$\in \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X})|$\Lambda$^{0} $\eta$=0\},
where J_{O} stands for the primary component <t, x^{2}, y> at the origin of the Jacobian

ideal in \mathcal{O}_{X,O}. H_{J_{O}} (resp H_{$\Lambda$^{0}} ) is the set of algebraic local cohomology classes in

\mathcal{H}_{[O]}^{3}(\mathcal{O}_{X}) that are annihilated by the zero‐dimensional ideal J_{O} (resp $\Lambda$^{0} ). We have

H_{J_{O}}=\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\left\{\begin{array}{l}
1\\
txy
\end{array}\right\}, \left\{\begin{array}{l}
1\\
tx^{2}y
\end{array}\right\}\}
and

H_{$\Lambda$^{0}}=\displaystyle \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\left\{\begin{array}{l}
1\\
txy
\end{array}\right\}, \left\{\begin{array}{l}
1\\
tx^{2}y
\end{array}\right\}-\frac{3}{2}\left\{\begin{array}{l}
1\\
t^{2}xy
\end{array}\right\}\}.
The defining function f is a weighted homogeneous polynomial of weight (\displaystyle \frac{1}{3}, \frac{1}{3}, \frac{1}{2})

and thus the weighted degree of the algebraic local cohomology class \left\{\begin{array}{l}
1\\
txy
\end{array}\right\} is − \displaystyle \frac{7}{6} and

that of \left\{\begin{array}{l}
1\\
tx^{2}y
\end{array}\right\} and of \displaystyle \left\{\begin{array}{l}
1\\
tx^{2}y
\end{array}\right\}-\frac{3}{2}\left\{\begin{array}{l}
1\\
t^{2}xy
\end{array}\right\} are both equal to − \displaystyle \frac{3}{2}.
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Since the algebraic local cohomology class \left\{\begin{array}{l}
1\\
tx^{2}y
\end{array}\right\} (or \displaystyle \left\{\begin{array}{l}
1\\
tx^{2}y
\end{array}\right\}-\frac{3}{2}\left\{\begin{array}{l}
1\\
t^{2}xy
\end{array}\right\} ) is an

eigenvector of the Euler operator

E=\displaystyle \frac{1}{3}t\frac{\partial}{\partial t}+\frac{1}{3}x\frac{\partial}{\partial x}+\frac{1}{2}y\frac{\partial}{\partial y}
and its eigenvalue is equal to − \displaystyle \frac{3}{2} ,

one can regard the weighted degree of the algebraic

local cohomology class \left\{\begin{array}{l}
1\\
tx^{2}y
\end{array}\right\} (or \displaystyle \left\{\begin{array}{l}
1\\
tx^{2}y
\end{array}\right\}-\frac{3}{2}\left\{\begin{array}{l}
1\\
t^{2}xy
\end{array}\right\} ) as an eigenvalue of the mon‐

odromy action for the local system on \{O\} of vanishing cycles. In contrast, even though

the algebraic local cohomology class \left\{\begin{array}{l}
1\\
txy
\end{array}\right\} is an eigenvector of the Euler operator E,

one can not regard it as a section on \{O\} of the local system of vanishing cycles, because

its eigenvalue − \displaystyle \frac{7}{6} is not a root of \mathrm{b}‐function b_{f}.
Now, with an intension to seek a method to compute microlocal \mathrm{b}‐functions, we

consider algebraic local cohomology classes supported on the stratum  $\Sigma$-\{O\} and on

the stratum \{O\}.
Let i denote the open inclusion map  i: $\Sigma$-\{O\}\rightarrow $\Sigma$ and consider the boundary

value map ([14])
bv:  i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{2}(\mathcal{O}_{X}))\rightarrow \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X}) .

Set  $\sigma$=\displaystyle \frac{1}{t}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\}\in i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{2}(\mathcal{O}_{X})) . Then we have \mathrm{b}\mathrm{v}( $\sigma$)=\left\{\begin{array}{l}
1\\
txy
\end{array}\right\}\in H_{$\Lambda$^{0}}.
Therefore, it seems natural to guess as follows: Since the algebraic local cohomology

class \left\{\begin{array}{l}
1\\
txy
\end{array}\right\} is the boundary value of the section  $\sigma$ of the local system on  $\Sigma$-\{O\} ,
the

class \left\{\begin{array}{l}
1\\
txy
\end{array}\right\} supported on \{O\} is not a section of the local system on \{O\} of vanishing

cycles.
This is just a guess, but is in accord with a result of Siersma on Betti number of

the Milnor fibre ([24]).

§3. Siersma�s isolated line singularities

In 1983, D. Siersma ([23]) considered germs of holomorphic functions f with a

smooth one‐dimensional critical set  $\Sigma$ such that the transversal singularity of  f at each

point in  $\Sigma$-\{O\} is of type A_{1} . These singularities are called isolated line singularities.
He studied in particular the homotopy type of the Milnor fibre of isolated line singularity

by using relative Morsification ([23], [24]).
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In this section, we consider \mathrm{b}‐functions of isolated line singularities by using the

concept of algebraic local cohomology classes and examine in particular two cases by

using the computer algebra system Risa/Asir.

Example 3.1.

Let f(x, y)=x^{5}y^{2}+y^{3} and let S=\{(x, y)\in X f(x, y)=0\} ,
where X is a

neighborhood of the origin 0 in \mathbb{C}^{2} . The singular locus  $\Sigma$ of  S is the x‐axis:  $\Sigma$=

\{(x, y) y=0\} . The defining function f is a weighted homogeneous polynomial of

weight (1, 5) and the weighted degree of f is equal to 15.

Set r(y)=f(1, y)=y^{2}+y^{3} . Since r is a Morse function, the \mathrm{b}‐function b_{r} of the

function r is b_{r}(s)=(s+1)(s+\displaystyle \frac{1}{2}) . The factor s+1 comes from the non‐singular part of

S and thus s+\displaystyle \frac{1}{2} is the (micro‐)local \mathrm{b}‐function of f on the stratum  $\Sigma$-\{O\} . We first

compute the \mathrm{b}‐function b_{f} of f by using the algorithm constructed by T. Oaku ([18]).
We have

b_{f}(s)=(s+1)(s+\displaystyle \frac{1}{2})(s+\frac{6}{15})(s+\frac{7}{15})(s+\frac{8}{15})(s+\frac{9}{15})
\displaystyle \times(s+\frac{11}{15})(s+\frac{12}{15})(s+\frac{13}{15})(s+\frac{14}{15})(s+\frac{16}{15})(s+\frac{17}{15})(s+\frac{18}{15})(s+\frac{19}{15}) .

We see b_{r}|b_{f} ([9], [32]) and \deg(b_{f})-\deg(b_{r})=12.
The primary decomposition of the ideal <\displaystyle \frac{\partial f}{\partial y}> is <y>\cap<2x^{5}+3y> . Since

the polar variety $\Gamma$^{1} is V(2x^{5}+3y) ,
we define the zero‐dimensional Lê cycle $\Lambda$^{0}

,
as an

ideal in the local ring \mathcal{O}_{X,0} of germs of holomorphic functions, by <\displaystyle \frac{\partial f}{\partial x}, 2x^{5}+3y>.
Let H_{$\Lambda$^{0}}=\{ $\eta$\in \mathcal{H}_{[O]}^{2}(\mathcal{O}_{X})|$\Lambda$^{0} $\eta$=0\} . Then, it is easy to see that the following 14

algebraic local cohomology classes constitute a basis of the vector space H_{$\Lambda$^{0}}.

\displaystyle \left\{\begin{array}{l}
1\\
x^{i}y
\end{array}\right\}, \left\{\begin{array}{l}
1\\
x^{i}y^{2}
\end{array}\right\}-\frac{3}{2}\left\{\begin{array}{l}
1\\
x^{5+i}y
\end{array}\right\}, i=1, 2, 3, 4, 5
and

\displaystyle \left\{\begin{array}{l}
1\\
x^{i}y^{3}
\end{array}\right\}-\frac{3}{2}\left\{\begin{array}{l}
1\\
x^{5+i}y^{2}
\end{array}\right\}, i=1, 2, 3, 4 .

The dimension of the vector space H_{$\Lambda$^{0}} is 14. Note that, since H_{$\Lambda$^{0}} is dual to

\mathcal{O}_{X,0}/$\Lambda$^{0} ,
the Grothendieck local duality implies that

\dim_{\mathbb{C}}(\mathcal{O}_{X,0}/$\Lambda$^{0})=\dim_{\mathbb{C}}(H_{$\Lambda$^{0}})=14.

The weighted degree of these algebraic local cohomology classes are

-\displaystyle \frac{5+i}{15}, -\displaystyle \frac{10+i}{15}, i=1
, 2, 3, 4, 5 and -\displaystyle \frac{15+i}{15}, i=1

, 2, 3, 4.

Notice that the rational number − \displaystyle \frac{10}{15} in the list above is not a root of the \mathrm{b}‐function b_{f}
and the rational number -1 in the list above is a root of the \mathrm{b}‐function b_{r} . The others

are roots of b_{f}.
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Consider the algebraic local cohomology class \left\{\begin{array}{l}
1\\
\frac{\partial f}{\partial y}
\end{array}\right\}|_{ $\Sigma$-\{O\}} defined on the stratum

 $\Sigma$-\{O\} . We have the following

\displaystyle \left\{\begin{array}{l}
1\\
\frac{\partial f}{\partial y}
\end{array}\right\}|_{ $\Sigma$-\{O\}}=\frac{1}{2x^{5}+3y}\left\{\begin{array}{l}
1\\
y
\end{array}\right\}|_{ $\Sigma$-\{O\}}=\frac{1}{2x^{5}}\left\{\begin{array}{l}
1\\
y
\end{array}\right\}|_{ $\Sigma$-\{O\}}.
Set  $\sigma$=\displaystyle \frac{1}{x^{5}}\left\{\begin{array}{l}
1\\
y
\end{array}\right\}\in i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{1}(\mathcal{O}_{X})) ,

where i is the open inclusion map

i: $\Sigma$-\{O\}\rightarrow $\Sigma$.

Then we have \mathrm{b}\mathrm{v}( $\sigma$)=\left\{\begin{array}{l}
1\\
x^{5}y
\end{array}\right\}\in H_{$\Lambda$^{0}} ,
where bv is the boundary value map

bv: i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{1}(\mathcal{O}_{X,O}))\rightarrow \mathcal{H}_{[O]}^{2}(\mathcal{O}_{X}) .

The wieghted degree of the algebraic local cohomology class \mathrm{b}\mathrm{v}( $\sigma$) is equal to − \displaystyle \frac{10}{15}.
This is consistent with the guess that − \displaystyle \frac{10}{15} is not a root of the \mathrm{b}‐function b_{f}

Example 3.2.

Let f(x, y)=x^{2}y^{2}+y^{7} and let S=\{(x, y)\in X f(x, y)=0\} . The singular
locus of S is  $\Sigma$=\{(x, y)|y=0\} . The defining function f is a weighted homogeneous

polynomial of weight (5, 2) and the weighted degree of f is equal to 14.

Let r(y)=f(1, y)=y^{2}+y^{7} . The \mathrm{b}‐function b_{r} of r(y) is b_{r}(s)=(s+1)(s+\displaystyle \frac{1}{2}) .

The \mathrm{b}‐function b_{f} of f is given by

b_{f}(s)=(s+1)^{2}(s+\displaystyle \frac{1}{2})^{2}(s+\frac{9}{14})(s+\frac{11}{14})(s+\frac{13}{14})(s+\frac{15}{14})(s+\frac{17}{14})(s+\frac{19}{14}) .

Thus, we see b_{r}|b_{f} and \deg(b_{f})-\deg(b_{r})=8.
The primary decomposition of the ideal <\displaystyle \frac{\partial f}{\partial y}> is <y>\cap<2x^{2}+7y^{5}> . The

polar variety $\Gamma$^{1} is therefore V(2x^{5}+7y^{5}) . We define $\Lambda$^{0} by <\displaystyle \frac{\partial f}{\partial x}, 2x^{5}+7y^{5}>.
Let H_{$\Lambda$^{0}}=\{ $\eta$\in \mathcal{H}_{[O]}^{2}(\mathcal{O}_{X})|$\Lambda$^{0} $\eta$=0\} . The vector space H_{$\Lambda$^{0}} is generated by the

following 9 algebraic local cohomology classes :

\left\{\begin{array}{l}
1\\
xy^{j}
\end{array}\right\}, j=1 , 2, 3, 4, 5 \left\{\begin{array}{l}
1\\
x^{2}y^{k}
\end{array}\right\} and \displaystyle \left\{\begin{array}{l}
1\\
x^{3}y^{k}
\end{array}\right\}-\frac{2}{7}\left\{\begin{array}{l}
1\\
xy^{5+k}
\end{array}\right\}, k=1
,
2.

The weighted degree of these algebraic local cohomology classes are

-\displaystyle \frac{5+2j}{14}, j=1 , 2, 3, 4, 5, and -\displaystyle \frac{10+2k}{14}, -\displaystyle \frac{15+2k}{14}, k=1
,
2.

The rational number − \displaystyle \frac{12}{14} in the list above is not a root of b_{f} and the others are roots

of b_{f} . Let E_{$\Lambda$^{0}} be the set of weighted degrees of algebraic local cohomology classes in
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H_{$\Lambda$^{0}}, R_{\{O\}} the set of roots of the microlocal \mathrm{b}‐function on the conormal T_{\{O\}}^{*}X . Then

we have

E_{$\Lambda$^{0}}=R_{\{O\}}\displaystyle \cup\{-\frac{12}{14}\}.
Now we consider the algebraic local cohomology class \left\{\begin{array}{l}
1\\
\frac{\partial f}{\partial y}
\end{array}\right\}|_{ $\Sigma$-\{O\}} defined on the

stratum  $\Sigma$-\{O\} . We have

\displaystyle \left\{\begin{array}{l}
1\\
\frac{\partial f}{\partial y}
\end{array}\right\}|_{ $\Sigma$-\{O\}}=\frac{1}{2x^{2}+7y^{5}}\left\{\begin{array}{l}
1\\
y
\end{array}\right\}|_{ $\Sigma$-\{O\}}=\frac{1}{2x^{2}}\left\{\begin{array}{l}
1\\
y
\end{array}\right\}|_{ $\Sigma$-\{O\}}.
Set  $\sigma$=\displaystyle \frac{1}{x^{2}}\left\{\begin{array}{l}
1\\
y
\end{array}\right\}\in i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{1}(\mathcal{O}_{X,O})) . Then we have \mathrm{b}\mathrm{v}( $\sigma$)=\left\{\begin{array}{l}
1\\
x^{2}y
\end{array}\right\}\in H_{$\Lambda$^{0}}.

The weighted degree of the \mathrm{b}\mathrm{v}( $\sigma$) is equal to − \displaystyle \frac{12}{14} ,
which is not a root of b_{f} . These

facts are consistent with the guess presented in the previous section.

Based on these type of results presented above, I obtained in 2002 the following
observation for isolated line singularities.

\bullet The set of weighted degrees of the weighted homogeneous algebraic local cohomology
classes in the vector space  H_{$\Lambda$^{0}} contains the roots of the microlocal \mathrm{b}‐function on

the conormal T_{\{O\}}^{*}X
\bullet There is a possibility that the weighted degree of the boundary value of the local

cohomology class  $\sigma$\in i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{\mathrm{c}\mathrm{o}\dim $\Sigma$}(\mathcal{O}_{X,O})) is not a root of the microlocal b‐

function on the conormal T_{\{O\}}^{*}X.
Now assume that a germ of weighted homogeneous holomorphic function f with a

line singularity is given. Assume further that the transversal singularities of f at each

point in  $\Sigma$-\{O\} are of the same type, for instance of type A_{3} . For such a general case,

it is natural to consider a $\lambda$^{1} ‐dimensional vector space of algebraic local cohomology
classes that represents the multiplicity structure of the stratum  $\Sigma$-\{O\} ,

where $\lambda$^{1}

stands for the Le number of the stratum  $\Sigma$-\{O\} ([15], [16]). Based on this guess, I

arrived at in 2002 the following elementary but conjectura method to determine the

microlocal \mathrm{b}‐functions on the conormal T_{\{O\}}^{*}X for simple line singularities.

A method to quess microlocal b‐functions on the conormal T_{\{O\}}^{*}X for simple line singu‐
larities.

\bullet compute Lê cycles $\Lambda$^{1}, $\Lambda$^{0} and the Lê numbers $\lambda$^{1}, $\lambda$^{0}.

\bullet compute the vector space  H_{$\Lambda$^{0}} and the set E_{$\Lambda$^{0}} of weighted degree of weighted

homogeneous algebraic local cohomology classes in H_{$\Lambda$^{0}}.
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\bullet compute the algebraic local cohomology class  $\sigma$\in i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{\mathrm{c}\mathrm{o}\dim $\Sigma$}(\mathcal{O}_{X,O})) by using

partial derivative of f.

\bullet compute a basis  N of the $\lambda$^{1} ‐dimensional vector space of algebraic local cohomol‐

ogy classes that represent Noetherian operators of the multiplicity structure of the

stratum  $\Sigma$-\{O\} (see section three).

\bullet compute the set  B_{\{O\}} of weighted degree of the boundary values of the algebraic
local cohomology classes in N.

Then, we may have H_{ $\Lambda$}-R_{\{O\}}\subseteq B_{\{O\}} , probably R_{\{O\}}=H_{ $\Lambda$}-B_{\{O\}} ,
where R_{\{O\}}

stands for the set of the roots of microlocal \mathrm{b}‐function on the conormal T_{\{O\}}^{*}X.

§4. de Jong�s simple line singularities

In 1988, T. de Jong ([8]) studied some classes of line singularities by extending
methods of D. Siersma. We examine, in this section, transverse A_{2} and transverse A3

type singularities studied by T. de Jong.
We will use an algorithm, derived by T. Oaku in [19], for computing holonomic

systems of algebraic local cohomology classes to study A3 type singularity.

Example 4.1.

Let f(x, y, z)=xy^{3}+z^{2} and let S=\{(x, y, z)\in X f(x, y, z)=0\} ,
where

X is a neighborhood of the origin O in \mathbb{C}^{3} . The singular locus  $\Sigma$ of  S is the x‐axis

:  $\Sigma$=\{(x, y, z) y=z=0\} . The defining function f is a weighted homogeneous

polynomial of weight (1, 1, 2) and the weighted degree of f is equal to 4. The function

f has a transverse singularity of type A_{2} at each point on the stratum  $\Sigma$-\{O\}.
Set r(y, z)=f(1, y, z)=y^{3}+z^{2} . Since r is a weighted homogeneous polynomial of

weight (\displaystyle \frac{1}{3}, \frac{1}{2}) and the MIlnor number is equal to 2, the \mathrm{b}‐function b_{r} of r(y, z) is

b_{r}(s)=(s+1)(s+\displaystyle \frac{5}{6})(s+\frac{7}{6}) .

The \mathrm{b}‐function b_{f} of f is

b_{f}(s)=(s+1)(s+\displaystyle \frac{5}{6})(s+\frac{7}{6})(s+\frac{3}{2}) .

We see b_{r}|b_{f} and the factor s+\displaystyle \frac{3}{2} comes from the origin.
The primary decomposition of the ideal <\displaystyle \frac{\partial f}{\partial y}, \displaystyle \frac{\partial f}{\partial z}> is <x, z>\cap<y^{2}, z> . Since

the polar variety $\Gamma$^{1} is V(x, z) ,
we define $\Lambda$^{0} to be <\displaystyle \frac{\partial f}{\partial x}, x, z> . Let

H_{$\Lambda$^{0}}=\{ $\eta$\in \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X})|$\Lambda$^{0} $\eta$=0\}.
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Then, algebraic local cohomology classes \left\{\begin{array}{l}
1\\
xy^{i}z
\end{array}\right\}, i=1
, 2, 3 constitute a basis of the

vector space H_{$\Lambda$^{0}} . The weighted degree of these algebraic local cohomology classes are

-1, -\displaystyle \frac{5}{4}, -\displaystyle \frac{3}{2} . The rational numbers -1 and − \displaystyle \frac{5}{3} are not roots of b_{f}.
We have the following.

\displaystyle \left\{\frac{\partial f}{\partial y} & 1 & \frac{\partial f}{\partial z}\right\}|_{ $\Sigma$-\{O\}}=\frac{1}{6x}\left\{\begin{array}{l}
1\\
y^{2}z
\end{array}\right\}|_{ $\Sigma$-\{O\}}.
Note that the pair \displaystyle \{\frac{1}{x}\left\{\begin{array}{l}
1\\
yz
\end{array}\right\}|_{ $\Sigma$-\{O\}}, \frac{1}{x}\left\{\begin{array}{l}
1\\
y^{2}z
\end{array}\right\}|_{ $\Sigma$-\{O\}}\} can be regarded as the Noether

operators ([6], [21], [27], [28], [29]) on  $\Sigma$-\{O\} of the primary ideal <y^{2}, z>

We set  $\sigma$=\displaystyle \frac{1}{x}\left\{\begin{array}{l}
1\\
y^{2}z
\end{array}\right\}\in i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{2}(\mathcal{O}_{X,O})) ,
where i is the open inclusion map

i: $\Sigma$-\{O\}\rightarrow $\Sigma$.

Then we have

bv ( $\sigma$)=\left\{\begin{array}{l}
1\\
xy^{2}z
\end{array}\right\} ,
bv (y $\sigma$)=\left\{\begin{array}{l}
1\\
xyz
\end{array}\right\},

where bv is the boundary value map

bv :i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{2}(\mathcal{O}_{X,O}))\rightarrow \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X}) .

The wieghted degree of the algebraic local cohomology class \mathrm{b}\mathrm{v}( $\sigma$) is equal to -1 and

that of \mathrm{b}\mathrm{v}(y $\sigma$) is equal to − \displaystyle \frac{5}{4}.

Example 4.2.

Let f(x, y, z)=xz^{2}+y^{3} and let S=\{(x, y, z)\in X|f(x, y, z)=0\} . The singular
locus of S is  $\Sigma$=\{(x, y, z) y=z=0\} . The defining function f is a weighted

homogeneous polynomial of weight (1, 1, 1) and the weighted degree of f is equal to 3.

Set r(y, z)=f(1, y, z)=y^{3}+z^{2} . Then

b_{r}(s)=(s+1)(s+\displaystyle \frac{5}{6})(s+\frac{7}{6}) .

The \mathrm{b}‐function of f is

b_{f}(s)=(s+1)(s+\displaystyle \frac{5}{6})(s+\frac{7}{6})(s+\frac{4}{3})(s+\frac{5}{3}) .

Then, b_{r}|b_{f} and \deg(b_{f})-\deg(b_{r})=2 . The two factors s+\displaystyle \frac{4}{3}, s+\displaystyle \frac{5}{3} come from the origin.
The primary decomposition of the ideal <\displaystyle \frac{\partial f}{\partial y}, \displaystyle \frac{\partial f}{\partial z}> is <x, y^{2}>\cap<y^{2}, z>

Since $\Gamma$^{1}=V(x, y^{2}) ,
we define $\Lambda$^{0} by <\displaystyle \frac{\partial f}{\partial x}, x, z>.
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Let H_{$\Lambda$^{0}}=\{ $\eta$\in \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X})|$\Lambda$^{0} $\eta$=0\} . Then, algebraic local cohomology classes

\left\{\begin{array}{ll}
1 & \\
xy^{j} & z^{k}
\end{array}\right\}, j=1, 2, k=1, 2
constitute a basis of the vector space H_{$\Lambda$^{0}} . The weighted degree of these algebraic local

cohomology classes are

-1, -\displaystyle \frac{4}{3}, -\frac{4}{3}, -\frac{5}{3}.
Note that the weighted degree of \left\{\begin{array}{l}
1\\
xy^{2}z
\end{array}\right\} and that of \left\{\begin{array}{l}
1\\
xyz^{2}
\end{array}\right\} coincide. We have

\displaystyle \left\{\frac{\partial f}{\partial y} & 1 & \frac{\partial f}{\partial z}\right\}|_{ $\Sigma$-\{O\}}=\frac{1}{6x}\left\{\begin{array}{l}
1\\
y^{2}z
\end{array}\right\}|_{ $\Sigma$-\{O\}}.
Set

 $\sigma$=\displaystyle \frac{1}{x}\left\{\begin{array}{l}
1\\
y^{2}z
\end{array}\right\}\in i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{2}(\mathcal{O}_{X,O})) ,

where i is the open inclusion map  i: $\Sigma$-\{O\}\rightarrow $\Sigma$ . Then we have

bv ( $\sigma$)=\left\{\begin{array}{l}
1\\
xy^{2}z
\end{array}\right\} ,
bv (y $\sigma$)=\left\{\begin{array}{l}
1\\
xyz
\end{array}\right\},

where bv is the boundary value map

bv :i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{2}(\mathcal{O}_{X,O}))\rightarrow \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X}) .

The weighted degree of the algebraic local cohomology class \mathrm{b}\mathrm{v}( $\sigma$) is equal to − \displaystyle \frac{4}{3}
and that of \mathrm{b}\mathrm{v}(y $\sigma$) is equal to -1.

Example 4.3.

Let f(x, y, z)=xz^{2}+y^{2}z . The singular locus of the hypersurface  S=\{(x, y, z)\in
 X|f(x, y, z)=0\} is the x‐axis :  $\Sigma$=\{(x, y, z)|y=z=0\} . The defining function f is

a weighted homogeneous polynomial of weight (1, 1, 1) and the weighted degree of f is

equal to 3. The function f has transversal singularities of type A3 at each point on the

stratum  $\Sigma$-\{O\}.
Set r(y, z)=f(1, y, z)=y^{2}z+z^{2} . The \mathrm{b}‐function of r(y, z) is

b_{r}(s)=(s+1)^{2}(s+\displaystyle \frac{3}{4})(s+\frac{5}{4}) .

The \mathrm{b}‐function of f is

b_{f}(s)=(s+1)^{2}(s+\displaystyle \frac{3}{4})(s+\frac{5}{4}) .
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Since b_{f}=b_{r} ,
no new factor comes from the origin.

The primary decomposition of the ideal <\displaystyle \frac{\partial f}{\partial y}, \displaystyle \frac{\partial f}{\partial z}> is

<\displaystyle \frac{\partial f}{\partial y}, \displaystyle \frac{\partial f}{\partial z}>=<x, y>\cap<z^{2} , yz , 2xz+y^{2}>

Note that the associated prime of the ideal <z^{2} , yz, 2xz+y^{2}> is <y, z> . Since

$\Gamma$^{1}=V(x, y) ,
we define $\Lambda$^{0} by <\displaystyle \frac{\partial f}{\partial x}, x, y> ,

which is equal to <x, y, z^{2}>.

Let H_{$\Lambda$^{0}}=\{ $\eta$\in \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X})|$\Lambda$^{0} $\eta$=0\} . Then, algebraic local cohomology classes

\left\{\begin{array}{l}
1\\
xyz^{i}
\end{array}\right\}, i=1
,

2 constitute a basis of the vector space H_{$\Lambda$^{0}} . The weighted degree of

these algebraic local cohomology classes are -1, -\displaystyle \frac{4}{3}.

Let \left\{\frac{\partial f}{\partial y} & 1 & \frac{\partial f}{\partial z}\right\} be the algebraic local cohomology class in \mathcal{H}_{[V]}^{2}(\mathcal{O}_{X,O}) ,
where

V=V(\displaystyle \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})=V(yz, 2xz+y^{2}) .

In order to analyze the algebraic local cohomology class above, we first compute the

holonomic system of this algebraic local cohomology class ([10]) by using the algorithm
constructed by T. Oaku([19]).

We have the following set of partial differential operators as a set of generators of

annihilating ideals.

xz^{2}, 2xz+y^{2} , yz , y\displaystyle \frac{\partial}{\partial x}, 2xz\displaystyle \frac{\partial}{\partial y}-y, -x\displaystyle \frac{\partial}{\partial x}+z\frac{\partial}{\partial z}+1,

y\displaystyle \frac{\partial}{\partial y}+2z\frac{\partial}{\partial z}+5, z^{2}\frac{\partial}{\partial z}+2z, (z\frac{\partial}{\partial z}+2)\frac{\partial}{\partial x}
Since the strutum  $\Sigma$-\{O\} is non‐singular, the holonomic system above on  $\Sigma$-\{O\} is

simple as D‐Module ([9], [10]). The dimension of the algebraic local cohomology sotution

space on the stratum  $\Sigma$-\{O\} is therefore equal to one. By solving the holonomic system,
we have

\left\{\frac{\partial f}{\partial y} & 1 & \frac{\partial f}{\partial z}\right\}|_{ $\Sigma$-\{0\}}= const . (\displaystyle \frac{1}{x}\left\{\begin{array}{l}
1\\
yz^{2}
\end{array}\right\}-2\left\{\begin{array}{l}
1\\
y^{3}z
\end{array}\right\}) .

Set  $\sigma$=\displaystyle \frac{1}{x}\left\{\begin{array}{l}
1\\
yz^{2}
\end{array}\right\}-2\left\{\begin{array}{l}
1\\
y^{3}z
\end{array}\right\}\in i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{2}(\mathcal{O}_{X,O})) . The set \{ $\sigma$, y $\sigma$, z $\sigma$\} can be regarded,

by residue theorem, as the Noetherian operators on the stratum  $\Sigma$-\{O\} associated

with the primary ideal <z^{2} , yz, 2xz+y^{2}>
We have

\mathrm{b}\mathrm{v}( $\sigma$)=\left\{\begin{array}{l}
1\\
xyz^{2}
\end{array}\right\}, \mathrm{b}\mathrm{v}(y $\sigma$)=0, \mathrm{b}\mathrm{v}(z $\sigma$)=\left\{\begin{array}{l}
1\\
xyz
\end{array}\right\},
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where bv is the boundary value map

bv :i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{2}(\mathcal{O}_{X,O}))\rightarrow \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X}) .

We find

H_{$\Lambda$^{0}}=\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{\mathrm{b}\mathrm{v}( $\sigma$), \mathrm{b}\mathrm{v}(z $\sigma$)\},

which is consistent with the guess presented previously.

Example 4.4.

Let f(x, y, z)=xy^{4}+z^{2} and let S=\{(x, y, z)\in X|f(x, y, z)=0\} . The singular
locus of S is  $\Sigma$=\{(x, y, z) y=z=0\} . The defining function f is a weighted

homogeneous polynomial of weight (2, 1, 3) and the weighted degree of f is equal to 6.

Set r(y, z)=f(1, y, z)=y^{4}+z^{2} . Then

b_{r}(s)=(s+1)^{2}(s+\displaystyle \frac{3}{4})(s+\frac{5}{4}) .

The \mathrm{b}‐function of f is

b_{f}(s)=(s+1)^{2}(s+\displaystyle \frac{3}{4})(s+\frac{5}{4})(s+\frac{3}{2}) .

Then, b_{r}|b_{f} and the factor s+\displaystyle \frac{3}{2} comes from the origin.
The primary decomposition of the ideal <\displaystyle \frac{\partial f}{\partial y}, \displaystyle \frac{\partial f}{\partial z}> is <x, z>\cap<y^{3}, z>

Since $\Gamma$^{1}=V(x, z) ,
we define $\Lambda$^{0} by <\displaystyle \frac{\partial f}{\partial x}, x, z>.

Let H_{$\Lambda$^{0}}=\{ $\eta$\in \mathcal{H}_{[O]}^{3}(\mathcal{O}_{X})|$\Lambda$^{0} $\eta$=0\} . Then, algebraic local cohomology classes

\left\{\begin{array}{ll}
1 & \\
xy^{j} & z
\end{array}\right\}, j=1, 2, 3, 4
constitute a basis of the vector space H_{$\Lambda$^{0}} . The weighted degree of these algebraic local

cohomology classes are

-1, -\displaystyle \frac{7}{6}, -\frac{4}{3}, -\frac{3}{2}.
We have

\displaystyle \left\{\frac{\partial f}{\partial y} & 1 & \frac{\partial f}{\partial z}\right\}|_{ $\Sigma$-\{O\}}=\frac{1}{8x}\left\{\begin{array}{l}
1\\
y^{3}z
\end{array}\right\}|_{ $\Sigma$-\{O\}}.
Set

 $\sigma$=\displaystyle \frac{1}{x}\left\{\begin{array}{l}
1\\
y^{3}z
\end{array}\right\}\in i_{*}i^{-1}(\mathcal{H}_{[ $\Sigma$]}^{2}(\mathcal{O}_{X,O})) ,

where i is the open inclusion map  i: $\Sigma$-\{O\}\rightarrow $\Sigma$ . Then we have

bv ( $\sigma$)=\left\{\begin{array}{l}
1\\
xy^{3}z
\end{array}\right\} ,
bv (y $\sigma$)=\left\{\begin{array}{l}
1\\
xy^{2}z
\end{array}\right\} ,

bv (y^{2} $\sigma$)=\left\{\begin{array}{l}
1\\
xyz
\end{array}\right\}
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The weighted degrees of these algebraic local cohomology classes are equal to

-1, -\displaystyle \frac{7}{6}, -\displaystyle \frac{4}{3} . This result is again consistent with our guess

Remark

In [30], [31], an algorithm for computing algebraic local cohomology classes attached

to zero‐dimensional ideals is described. The algorithm, which is free from \mathrm{S}‐polynomials

computation and standard bases, has been implemented in the computer algebra system

Risa/Asir. By using the algorithm, one can compute bases of the vector space H_{$\Lambda$^{0}}

efficiently.

§5. Computer experiment with T. Oaku

Let f be a weighted homogeneous polynomial with non‐isolated singularities and

let E be the Euler operator with respect to the weight vector of f such that Ef=f.
Let \mathcal{A}nn_{D_{X}[s]}f^{s} be the annihilation ideal of f^{s} in the ring D_{X}[s] of partial differential

operators.

We consider the following ideal (cf. [9], [32])

I=(\mathcal{A}nn_{D_{X}[s]}f^{s}+D_{X}(E-s)+D_{X}J_{f})\cap D_{X},

where J_{f} is the Jacobian ideal of f . Note that the Euler operator E is used to eliminate

the indeterminate s from the ideal in parenthesis. We set M=D_{X}/I.
We use algorithms, derived by T. Oaku ([18]) for computing \mathcal{A}nn_{D_{X}[s]}f^{s} and the

multiplicities of the characteristic variety \mathrm{C}\mathrm{h}(M) of the holonomic D_{X} ‐module M as‐

sociated with hypersurface with isolated line singularities. We also compute algebraic
local cohomology solutions, supported on the stratum  $\Sigma$-\{O\} ,

of relevant holonomic

systems. We present, in this section, results of these computation.

Example 5.1.

Let f(t, x, y)=y^{2}-x^{3}-tx^{2} . The annihilator \mathcal{A}nn_{D_{X}[s]}f^{s} is generated by

(2t+3x)\displaystyle \frac{\partial}{\partial t}-x\frac{\partial}{\partial x}, 3y\frac{\partial}{\partial t}-y\frac{\partial}{\partial x}-tx\frac{\partial}{\partial y},
2y\displaystyle \frac{\partial}{\partial t}-x^{2}\frac{\partial}{\partial y}, x\frac{\partial}{\partial t}-x\frac{\partial}{\partial x}-y\frac{\partial}{\partial y}+2s.

Note that, in the list above, the factor 2t+3x appears as the coefficient of \displaystyle \frac{\partial}{\partial t} of a

partial differential operator( cf. [7], [15]). The Euler operator is

E=\displaystyle \frac{1}{3}t\frac{\partial}{\partial t}+\frac{1}{3}x\frac{\partial}{\partial x}+\frac{1}{2}y\frac{\partial}{\partial y}.
Set
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I=(\mathcal{A}nn_{D_{X}[s]}f^{s}+D_{X}(E-s)+D_{X}J_{f})\cap D_{X} and M=D_{X}/I,

where J_{f} is the Jacobian ideal of f . The characteristic variety \mathrm{C}\mathrm{h}(M) of the holonomic

system M consists of two components. One is the Lagrangian variety T_{ $\Sigma$}^{*}X and the

other is the conormal to the origin, T^{*} X
,
where  $\Sigma$ is the singular locus of the Whitney\{O\}

umbrella S=\{(t, x, y)|f(t, x, y)=0\} . The Hilbert‐Samuel polynomial of the primary
ideal associated with T_{\{O\}}^{*}X is given by

\displaystyle \frac{2}{3!}u^{3}+\frac{3}{2}u^{2}+\frac{13}{6}u+1.
Thus, the multiplicity of the component T_{\{O\}}^{*}X is equal to two.

Notice that the Lê numbers $\lambda$^{1}, $\lambda$^{0} are equal to 1, 2 respectively ([7], [15]). Thus,
we see what we have computed in section two is the multiplicity of the characteristic

varieties of the holonomic system.
Let

M_{s}=D[s]/(\mathcal{A}nn_{D_{X}[s]}f^{s}+D_{X}J_{f}) .

On the stratum  $\Sigma$-\{O\} ,
the differental system M_{s} has algebraic local cohomology

solutions if and only if s+1=0 and the set of algebraic local cohomology solutions, is

a one‐dimensional vector space generated by t^{-\frac{1}{2}}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\} ,
that is a section on  $\Sigma$-\{O\},

of the local system of vaniching cycles.

Further, on the stratum \{O\} ,
the differental system M_{s} has algebraic local coho‐

mology solutions if and only if s+\displaystyle \frac{3}{2}=0 and the set of algebraic local cohomology

solution space, is a one‐dimensional vector space generated by \left\{\begin{array}{l}
1\\
tx^{2}y
\end{array}\right\}-\left\{\begin{array}{l}
1\\
t^{2}xy
\end{array}\right\} . Note

that the algebraic local cohomology class \left\{\begin{array}{l}
1\\
txy
\end{array}\right\} is not a solution of the differential

system M_{s} for any s.

In section two we used the algebraic local cohomology class \displaystyle \frac{1}{t}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\} to represent the

horizontal monodromy structure of the vanishing cycles in the transverse directions to

the stratum  $\Sigma$-\{O\} . But the class \displaystyle \frac{1}{t}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\} do not represent the monodromy structure

of the local system on the stratum  $\Sigma$-\{O\} of the vanishing cycles ([1], [25], [26]), which

is correctly described by the algebraic local cohomology class t^{-\frac{1}{2}}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\}.
In terms of ordinary differential equations, the algebraic local cohomology class

\displaystyle \frac{1}{t}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\} satisfies (t\displaystyle \frac{\partial}{\partial t}+1)u=0 and the class \left\{\begin{array}{l}
1\\
txy
\end{array}\right\} supported on \{O\} is an algebraic

local cohomology sotution of this equation.
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In contrast, the algebraic local cohomology class t^{-\frac{1}{2}}\left\{\begin{array}{l}
1\\
xy
\end{array}\right\} satisfies the ordinary

differential equation (t\displaystyle \frac{\partial}{\partial t}+\frac{1}{2})u=0 that has no algebraic local cohomology sotution

supported on \{O\}.

Therefore, the weighted degree of the algebraic local cohomology class \left\{\begin{array}{l}
1\\
txy
\end{array}\right\} has

to be discarded from the list of roots of the (micro‐)local \mathrm{b}‐function.

These fact implies that what we have observed is an effect of a kind of index theorem

of differential equations with regular singularities ([13]).

Example 5.2. Let f(x, y)=x^{5}y^{2}+y^{3} . The annihilator \mathcal{A}nn_{D_{X}[s]}f^{s} is generated

by

(2x^{5}+3y)\displaystyle \frac{\partial}{\partial x}-5x^{4}y\frac{\partial}{\partial y} and x\displaystyle \frac{\partial}{\partial x}+5y\frac{\partial}{\partial y}-15s.
Note also that, in the list above, 2x^{5}+3y appears as the coefficient of \displaystyle \frac{\partial}{\partial x} of a

partial differential operator. The Euler operator is

E=\displaystyle \frac{1}{15}x\frac{\partial}{\partial x}+\frac{1}{3}y\frac{\partial}{\partial y}.
Set

I=(\mathcal{A}nn_{D_{X}[s]}f^{s}+D_{X}(E-s)+D_{X}J_{f})\cap D_{X} and M=D_{X}/I.

The characteristic variety \mathrm{C}\mathrm{h}(M) of the holonomic system M consists of two compo‐

nents. One is the Lagrangian variety T_{ $\Sigma$}^{*}X and the other is the conormal to the origin,
T^{*} X

,
where  $\Sigma$ is the singular locus of  S . The multiplicity of T_{ $\Sigma$}^{*}X is equal to one.

\{O\}
The Hilbert‐Samuel polynomial of the primary ideal associated with T_{\{O\}}^{*}X is given by

\displaystyle \frac{14}{2!}u^{2}-70u+287.
Thus, the multiplicity of the component T^{*} X is equal to 14. Notice that the Lê num‐

\{O\}
bers $\lambda$^{1}, $\lambda$^{0} are equal to 1, 14 respectively ([7], [15]). Thus, in section 3, the multiplicities
of the characteristic varieties are correctly computed. The algebraic local cohomology
solution space on the stratum  $\Sigma$-\{O\} of the holonomic system is a one‐dimensional

vector space generated by x^{-\frac{5}{2}}\left\{\begin{array}{l}
1\\
y
\end{array}\right\}
Note that the algebraic local cohomology class \displaystyle \frac{1}{x^{5}}\left\{\begin{array}{l}
1\\
y
\end{array}\right\} that satisfies the ordinary

differential equation (x\displaystyle \frac{\partial}{\partial x}+5)u=0 is used in section three to represent the horizontal

monodromy structure of the vanishing cycles in the transverse directions to the stratum
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 $\Sigma$-\{O\} ,
whereas this class do not describe the monodromy stracture of the local system

on the stratum  $\Sigma$-\{O\} of the vanishing cycles.

Note also that the algebraic local cohomology class x^{-\frac{5}{2}}\left\{\begin{array}{l}
1\\
y
\end{array}\right\} satisfies (x\displaystyle \frac{\partial}{\partial x}+\frac{5}{2})u=0
that has no algebraic local cohomology sotution supported on \{O\}.

The set of algebraic local cohomology solution space, on the stratum \{O\} is a 13

dimensional vector space generated by

\displaystyle \left\{\begin{array}{l}
1\\
x^{i}y
\end{array}\right\}, \left\{\begin{array}{l}
1\\
x^{i}y^{3}
\end{array}\right\}-\frac{3}{2}\left\{\begin{array}{l}
1\\
x^{5+i}y^{2}
\end{array}\right\}, i=1, 2, 3, 4 .

and

\displaystyle \left\{\begin{array}{l}
1\\
x^{i}y^{2}
\end{array}\right\}-\frac{3i}{5+2i}\left\{\begin{array}{l}
1\\
x^{5+i}y
\end{array}\right\}, i=1, 2, 3, 4, 5
The algebraic local cohomology class \left\{\begin{array}{l}
1\\
x^{5}y
\end{array}\right\} ,

which is an algebraic local coho‐

mology solution of the differential equation (x\underline{\partial}+5)u=0 is not a solution of the
\partial x

holonomic system. These facts are all consistent with the interpretation.

To conclude the paper, we give the following observation.

Structures of the vertical monodromy of vanishing cycles are encoded in relevant holo‐

nomic \mathrm{D}‐modules.
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