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Abstract

In this note we discuss the sheaf of Laplace hyperfunctions in several variables and its

fundamental properties. To construct the sheaf we give an edge of the wedge theorem for the

sheaf of holomorphic functions of exponential type.

§1. Introduction

A Laplace hyperfunction in one variable was first introduced by H. Komatsu ([5]‐
[10]) to consider the Laplace transform of a hyperfunction, which was effectively em‐

ployed in giving justification of the Heaviside operational calculus on a wider class of

functions. After his success, the authors of this note also constructed the sheaf of one

dimensional Laplace hyperfunctions in the paper [1]. Here, in order to localize the

notion of Laplace hyperfunctions, we also established the vanishing theorem of global

cohomology groups on a Stein domain with values in the sheaf of holomorphic functions

of exponential type (see [1]).
The purpose of this note is to construct the sheaf of Laplace hyperfunctions in

several variables and establish some fundamental properties. Its construction depends
on several vanishing theorems such as that of global cohomology groups on a Stein

domain with coefficients in the sheaf \mathcal{O}_{\mathrm{D}^{2n}}^{\exp} of holomorphic functions of exponential

type, pure n‐codimensionality of the radial compactification of the Euclidean space \mathbb{R}^{n}

with respect to \mathcal{O}_{\mathrm{D}^{2n}}^{\exp} which is often called �an edge of the wedge theorem� and so on.
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As the proofs of these vanishing theorems are rather long and technical, in this note,

we only announce the main theorems and related results of their importance. For their

details and proofs, we refer the reader to the paper [1], [12], [13] and the forthcoming
one [2].

§2. A vanishing theorem of global cohomology groups on a Stein domain

for the sheaf \mathcal{O}_{\mathrm{D}^{2n}}^{\exp}

In this section, we review the vanishing theorem of global cohomology groups on a

Stein domain with coefficients in holomorphic functions of exponential type, which was

established in our previous paper [1]. The theorem stated here is the most fundamental

one for construction of the sheaf of Laplace hyperfunctions in several variables. The

essential idea in the proof of the theorem relies on the theory of L^{2} ‐estimates for the \overline{\partial}

operator obtained by L. Hörmander [3] as in the paper [4], [11].

Let \mathrm{D}^{2n} be the radial compactification of \mathbb{C}^{n} , i.e., the disjoint union of \mathbb{C}^{n} and the

real (2n-1) ‐dimensional unit sphere  S^{2n-1}\infty equipped with an appropriate topology.
Let  U be an open subset in \mathrm{D}^{2n} . A holomorphic function f in U\cap \mathbb{C}^{n} is said to be

of exponential type if f satisfies the following condition: For any compact set K in U,
there exist positive constants C_{K}, H_{K} such that |f(z)|\leq C_{K}e^{H_{K}|z|} for z\in K\cap \mathbb{C}^{n}.

Let us denote by \mathcal{O}_{\mathrm{D}^{2n}}^{\exp} the sheaf of holomorphic functions of exponential type on \mathrm{D}^{2n}.

Note that the restriction of \mathcal{O}_{\mathrm{D}^{2n}}^{\exp} to \mathbb{C}^{n} is the sheaf \mathcal{O}_{\mathbb{C}^{n}} of holomorphic functions.

We introduce the regularity condition at \infty for an open subset in \mathrm{D}^{2n}.

Definition 2.1. Let A be a subset in \mathrm{D}^{2n} . The set \mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}_{\infty}^{1}(A)\subset S^{2n-1}\infty consists

of a point  z\in S^{2n-1}\infty which satisfies the condition below:

\left\{\begin{array}{l}
\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e} \mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t} \mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s} \{z_{k}\}_{k} \mathrm{i}\mathrm{n} A\cap \mathbb{C}^{n} \mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\\
z_{k}\rightarrow z \mathrm{i}\mathrm{n} \mathrm{D}^{2n} \mathrm{a}\mathrm{n}\mathrm{d} \frac{|z_{k+1}|}{|z_{k}|}\rightarrow 1 \mathrm{a}\mathrm{s} k\rightarrow\infty.
\end{array}\right.
Set N_{\infty}^{1}(A) :=S^{2n-1}\infty\backslash \mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}_{\infty}^{1}(\mathbb{C}^{n}\backslash A) . An open subset U in \mathrm{D}^{2n} is said to be

regular at \infty if  N_{\infty}^{1}(U)=U\cap S^{2n-1}\infty is satisfied.

Theorem 2.2 ([1], Theorem 3.7). Let  $\Omega$ be an open subset in \mathrm{D}^{2n} . If  $\Omega$\cap \mathbb{C}^{n}

is pseudoconvex in \mathbb{C}^{n} and if  $\Omega$ is regular at \infty
,

then we have

(2.1)  H^{k}( $\Omega$, \mathcal{O}_{\mathrm{D}^{2n}}^{\exp})=0 for k\neq 0.

Note that, if n=1
,

the above theorem holds for any open subset  $\Omega$ without the

regularity condition ([1], Theorem5.2). However, if  n\geq 2 ,
the theorem does not hold

anymore without the regularity condition as the following example shows.
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Example 2.3 ([1], Example 3.17). We consider the following open set  $\Omega$ in \mathrm{D}^{4}.

 $\Omega$:=(\overline{U})^{\mathrm{o}}\backslash \{p\infty\},

U:=\{(z_{1}, z_{2})\in \mathbb{C}^{2};|\arg(z_{1})|< $\pi$/4, |z_{2}|<|z_{1}|\}.

Here  p\infty is the point (+1,0,0,0) in  S^{3}\infty . The closure and the interior of  U are taken

in \mathrm{D}^{4} . We see that  $\Omega$\cap \mathbb{C}^{2} is pseudoconvex in \mathbb{C}^{2} , however,  $\Omega$ is not regular at \infty . In

this case, we have  H^{1}( $\Omega$, \mathcal{O}_{\mathrm{D}^{2n}}^{\exp})\neq 0.

§3. An edge of the wedge theorem for the sheaf \mathcal{O}_{\mathrm{D}^{2n}}^{\exp}

Let us first show the Martineau type theorem for holomorphic functions of expo‐

nential type. This theorem plays an essential role in the proof of the edge of the wedge
theorem for the sheaf \mathcal{O}_{\mathrm{D}^{2n}}^{\exp} . All the proofs of results stated here are given in [13] and

our forthcoming paper [2].
We denote by \overline{\mathbb{R}^{n}}(n\geq 1) the closure of \mathbb{R}^{n} in \mathrm{D}^{2n}.

Theorem 3.1. Let [a, \infty](a\in \mathbb{R}) be a closed subset in \overline{\mathbb{R}}, S\subset K closed polydiscs
in \mathbb{C}^{n-1} and V\subset U non‐empty connected Stein open subsets in \mathbb{C}^{m}(m\geq 0) . Then the

fo llowing canonical morphism is injective.

(3.1) H_{[a}^{n}, \infty]\times S\times U(\mathrm{D}^{2}\times \mathbb{C}^{n-1}\times U, \mathcal{O}_{\mathrm{D}^{2}\times \mathbb{C}^{n-1}\times U}^{\exp})
\rightarrow H_{[a}^{n}, \infty]\times K\times V(\mathrm{D}^{2}\times \mathbb{C}^{n-1}\times V, \mathcal{O}_{\mathrm{D}^{2}\times \mathbb{C}^{n-1}\times V}^{\exp}) .

By making use of Oka�s embedding and the above theorem, we get the following
result.

Theorem 3.2. Let [a, \infty](a\in \mathbb{R}) be a closed subset in \overline{\mathbb{R}} . Let S and K be two

compact analytic polyhedra in \mathbb{C}^{n-1} ,
and let U be a Stein domain in \mathbb{C}^{m} . Then

(3.2) H_{[a}^{k}, \infty]\times(K\backslash S)\times U(\mathrm{D}^{2}\times \mathbb{C}^{n-1}\times U, \mathcal{O}_{\mathrm{D}^{2}\times \mathbb{C}^{n-1}\times U}^{\exp})=0 for 0\leq k\leq n-1.

From this theorem, the following main theorem easily follows:

Theorem 3.3. The closed set \overline{\mathbb{R}^{n}}\subset \mathrm{D}^{2n} is purely n‐codimensional relative to

the sheaf \mathcal{O}_{\mathrm{D}^{2n}}^{\exp} , i.e.,

(3.3) \displaystyle \mathscr{H}\frac{k}{\mathbb{R}^{n}}(\mathcal{O}_{\mathrm{D}^{2n}}^{\exp})=0 for k\neq n.

According to the edge of the wedge theorem for the sheaf \mathcal{O}_{\mathrm{D}^{2n}}^{\exp} ,
the global sections

of the sheaf \displaystyle \mathscr{H}\frac{n}{\mathbb{R}^{n}}(\mathcal{O}_{\mathrm{D}^{2n}}^{\exp}) can be written in terms of cohomology groups. For an open

subset  $\Omega$ in \overline{\mathbb{R}^{n}}
,

we have

 $\Gamma$( $\Omega$, \displaystyle \mathscr{H}\frac{n}{\mathbb{R}^{n}}(\mathcal{O}_{\mathrm{D}^{2n}}^{\exp}))=H_{ $\Omega$}^{n}(U, \mathcal{O}_{\mathrm{D}^{2n}}^{\exp}) ,
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where U is an arbitrary neighborhood of  $\Omega$ in \mathrm{D}^{2n} . Moreover we have the following
result.

Theorem 3.4. The boundary \partial \mathbb{R}^{n} of \mathbb{R}^{n} in \overline{\mathbb{R}^{n}} is purely n‐codimensional rela‐

tive to the sheaf \mathcal{O}_{\mathrm{D}^{2n}}^{\exp} , i.e.,

(3.4) \mathscr{H}_{\partial \mathbb{R}^{n}}^{k}(\mathcal{O}_{\mathrm{D}^{2n}}^{\exp})=0 for k\neq n.

§4. The sheaf of Laplace hyperfunctions on \overline{\mathbb{R}^{n}}

In this section, we define the sheaf of Laplace hyperfunctions on \overline{\mathbb{R}^{n}} and show

several properties of this sheaf.

Let \mathbb{Z}_{\overline{\mathbb{R}^{n}}} be the constant sheaf on \overline{\mathbb{R}^{n}} having stalk Z.

Definition 4.1. Let $\omega$_{\overline{\mathbb{R}^{n}}} be the orientation sheaf \displaystyle \mathscr{H}\frac{n}{\mathbb{R}^{n}}(\mathbb{Z}_{\mathrm{D}^{2n}}) on \overline{\mathbb{R}^{n}} . The sheaf

B\displaystyle \frac{\exp}{\mathbb{R}^{n}} of Laplace hyperfunctions on \overline{\mathbb{R}^{n}} is defined as

(4.1) B\displaystyle \frac{\exp}{\mathbb{R}^{n}}:=\mathscr{H}\frac{n}{\mathbb{R}^{n}}(\mathcal{O}_{\mathrm{D}^{2n}}^{\exp})_{\mathbb{Z}\frac{\otimes}{\mathbb{R}^{n}}}$\omega$_{\overline{\mathbb{R}^{n}}}.
It is obvious that the restriction of the sheaf B\displaystyle \frac{\exp}{\mathbb{R}^{n}} on \mathbb{R}^{n} is isomorphic to the sheaf

B_{\mathbb{R}^{n}} of hyperfunctions. By Theorem 3.4, we have the relation between B\displaystyle \frac{\exp}{\mathbb{R}^{n}} and B_{\mathbb{R}^{n}} as

follows. Let j:\mathbb{R}^{n}\mapsto\overline{\mathbb{R}^{n}} be the natural embedding.

Proposition 4.2. The natural morphism B\displaystyle \frac{\exp}{\mathbb{R}^{n}}\rightarrow j_{*}B_{\mathbb{R}^{n}} is surjective.

This proposition asserts that every hyperfunction can be extended to a Laplace

hyperfunction.
Let i : \overline{\mathbb{R}^{n}}\mapsto \mathrm{D}^{2n} be the canonical closed embedding. The sheaf \displaystyle \mathcal{A}\frac{\exp}{\mathbb{R}^{n}} of real

analytic functions of exponential type on \overline{\mathbb{R}^{n}} is defined by

(4.2) \displaystyle \mathcal{A}\frac{\exp}{\mathbb{R}^{n}}:=i^{-1}\mathcal{O}_{\mathrm{D}^{2n}}^{\exp}=\mathcal{O}_{\mathrm{D}^{2n}}^{\exp}|_{\overline{\mathbb{R}^{n}}}.

Proposition 4.3. There exists the canonical morphism \displaystyle \mathcal{A}\frac{\exp}{\mathbb{R}^{n}}\rightarrow B\frac{\exp}{\mathbb{R}^{n}} which is

injective.

Hence, through the morphism, a real analytic function of exponential type is nat‐

urally regarded as a Laplace hyperfunction. Furthermore the sheaf of Laplace hyper‐
functions enjoys the following good property:

Theorem 4.4. The sheaf B\displaystyle \frac{\exp}{\mathbb{R}^{n}} of Laplace hyperfunctions is soft on \overline{\mathbb{R}^{n}}.
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