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Analytic extension of Birkhoff normal forms for

Hamiltonian systems of one degree of freedom
‐ Simple pendulum and free rigid body dynamics

By

Daisuke TARAMA * and Jean‐Pierre FRANCsOISE
**

Abstract

Birkhoff normal form is a power series expansion associated with the local behavior of a

Hamiltonian system near the critical point. It is known that one can take convergent canonical

transformation which puts the Hamiltonian into Birkhoff normal form for integrable systems
under some non‐degeneracy conditions. By means of an expression of the inverse of Birkhoff

normal form by a period integral, analytic continuation of the Birkhoff normal forms is consid‐

ered for two examples of Hamiltonian systems of one degree of freedom, the simple pendulum
dynamics and the free rigid body dynamics on SO(3) . It is shown that the analytic continua‐

tion of the inverse derivative for the Birkhoff normal forms has monodromy structure, which is

explicitly calculated, and that in the free rigid body case the monodromy coincides with that

of an elliptic fibration which naturally arises from the dynamics.

§1. Introduction

Birkhoff normal form is a normal form of the Hamiltonian for a Hamiltonian sys‐

tem, which is at first defined locally around an equilibrium. It is first considered by
G. Birkhoff [3, 4] as a formal power series in relation to the stability of Hamiltonian

systems around the equilibria. Although it is known that the canonical transformation

which puts the Hamiltonian into Birkhoff normal form is divergent in general from the
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result by C. L. Siegel [20], the completely integrable Hamiltonian systems (in the sense

of Liouville) admit the convergence of the canonical transformation which makes the

Hamiltonian into Birkhoff normal form under some non‐degeneracy or, more weakly,
non‐resonance conditions.

In the present paper, considered is a global aspect of Birkhoff normal forms for ana‐

lytic Hamiltonian systems of one degree of freedom via analytic extension, while the pre‐

vious researches on Birkhoff normal forms mainly concern with their local aspects. Note

that a Hamiltonian system of one degree of freedom is necessarily completely integrable
and that the convergence of the canonical transformation which makes the Hamiltonian

into Birkhoff normal form around elliptic and hyperbolic equilibria is known [21].
After giving preliminary facts about Birkhoff normal form in Section 2, certain

formulae are given for the derivative of the inverse Birkhoff normal form in Section 3.

Using those formulae, one studies the analytic extension of Birkhoff normal forms for

the dynamical systems of the simple pendulum and of the free rigid body in Sections 4

and 5. As to Birkhoff normal forms for the Hamiltonian systems of the simple pendulum
and of the free rigid body, detailed studies have been done in [8, 9]. In [8, 9], Birkhoff

normal forms are calculated by means of the argument of relative cohomology. As an

interesting result of [9], it is discovered that all the coefficients of the inverse Birkhoff

normal form of the free rigid body dynamics are polynomials in one variable whose

roots are on the unit circle in C. Nevertheless, the global behavior of Birkhoff normal

forms has not been considered yet. Since the system of the simple pendulum and

that of the free rigid body have natural complexification, one can consider the analytic
continuation of (the derivatives of the inverse for) Birkhoff normal forms as functions of

the energy level viewed as a complex variable. An important feature of the derivatives

of the inverse Birkhoff normal forms is their relation to a special Gauß hypergeometric
differential equation. As a main result, the monodromy of the analytic continuation

for the derivative of the inverse Birkhoff normal forms is found by means of the Gauß

hypergeometric differential equation.
It is certainly a new viewpoint to ask the global behavior of Birkhoff normal forms,

as far as the knowledge of the authors. Although this problem seems rather naive,
one can observe meaningful results on the analytic continuation of the derivative of the

inverse Birkhoff normal forms for the simple pendulum and the free rigid body dynamics
in this article. Furthermore, the results for the free rigid body dynamics have much to

do with the geometry of elliptic fibrations which naturally arise from the dynamics.
In fact, the monodromy of the analytic continuation of the derivatives for the inverse

Birkhoff normal forms exactly gives the monodromy of the elliptic fibrations which were

studied in [16].
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§2. Birkhoff normal forms for Hamiltonian systems

We start with the definition of Hamiltonian systems. Since we concentrate ourselves

to the (real) analytic integrable systems in the present paper, all the geometric settings
are considered in the (real) analytic category. Let M be a real analytic symplectic
manifold of dimension 2n

,
whose symplectic form is denoted by  $\omega$. ( $\omega$ is a closed

two‐form, i.e. \mathrm{d} $\omega$=0 ,
on M which is non‐degenerate, i.e. ) Take

a real analytic function H on M as the Hamiltonian and considner the Hamiltonian

system (M,  $\omega$, H) ,
which is determined by the Hamiltonian vector field X_{H} given by

$\iota$_{X_{H}} $\omega$=-\mathrm{d}H ,
where  $\iota$ denotes the interior product of a tensor field with a vector field.

Taking a Darboux coordinates (pl, . . .

,  p_{n} ;ql, . . .

, q_{n} ), for which  $\omega$=\displaystyle \sum_{i=1}^{n}\mathrm{d}p_{i}\wedge \mathrm{d}q_{i} ,
the

Hamiltonian vector field X_{H} determines the Hamilton�s equation

\left\{\begin{array}{l}
\frac{\mathrm{d}p_{i}}{\mathrm{d}t}=-\frac{\partial H}{\partial q_{i}},\\
\frac{\mathrm{d}q_{i}}{\mathrm{d}t}=\frac{\partial H}{\partial p_{i}},
\end{array}\right. i=1
,

. . .

,
n.

Consider an isolated elliptic equilibrium x_{0}\in M of the Hamiltonian vector field X_{H},

i.e., X_{H}(x_{0})=0 . We assume H(x_{0})=0 without loss of generality. Suppose that there

exists a Darboux coordinate system (pl, . . .

, p_{n};q_{1}, \ldots, q_{n} ) with the origin at x_{0} ,
such

that the Hamiltonian H can be written as H=\displaystyle \mathcal{H}(\frac{p_{1}^{2}+q_{1}^{2}}{2}, \cdots,\frac{p_{n}^{2}+q_{n}^{2}}{2}) ,
where \mathcal{H} is

a power series in n variables. Then, the power series \mathcal{H} is called Birkhoff normal form. It

is known that the power series \mathcal{H} is uniquely determined in the category of formal power

series. If the equilibrium has another type of stability than elliptic, the corresponding
Birkhoff normal form is defined in a similar manner. Although the canonical transforma‐

tion which puts the Hamiltonian into Birkhoff normal form is not convergent in general
from the result by Siegel [20], it was shown by Vey in [22] that (real) analytic completely

integrable systems in the sense of Liouville admit a convergent canonical transformation

which makes the Hamiltonian into Birkhoff normal form around the isolated equilibrium

x_{0} ,
if x_{0} is non‐degenerate in the sense that the linearization matrices of the Hamilto‐

nian vector fields X_{f_{1}}, \cdots, X_{f_{n}} at x_{0} form a Cartan subalgebra in sp (T_{x_{0}}M, $\omega$_{x_{0}}) . The

case of two degrees of freedom was solved by H. Rüssmann [19]. Here, the analytic

completely integrable Hamiltonian system in the sense of Liouville is a Hamiltonian

system (M,  $\omega$, H) such that there exist functionally independent n analytic functions

f_{1} ,
. . .

, f_{n-1}, f_{n}(=H) on M which are in involution \{f_{i}, f_{j}\}=0, i, j=1, \cdots, n
,

with

respect to the Poisson bracket } defined through \{f, g\}= $\omega$(X_{f}, X_{g}) ,
where f, g are

smooth functions on M . The convergence under the non‐resonance condition was proved

by Ito [12]. Here, the non‐resonance, in the case of an elliptic equilibrium, means the
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rational independence of the eigenvalues $\lambda$_{1}, \cdots, $\lambda$_{n} of the Hessian of the Hamiltonian

H with which the quadratic term of H is written as \displaystyle \sum_{i=1}^{n}\frac{$\lambda$_{i}}{2}(x_{i}^{2}+y_{i}^{2}) for some Darboux

coordinates (x_{1}, \cdots, x_{n};y_{1}\cdots, y_{n}) . The non‐resonance condition is weaker than the

non‐degeneracy condition. In fact, around a non‐degenerate isolated equilibrium of a

completely integrable system, one can take a linear combination of the first integrals
which is non‐resonant. The case of C^{\infty} completely integrable Hamiltonian systems was

proved by Eliasson [6] under the non‐degeneracy condition. Later, a more geometric

proof in the analytic case was given by Nguyen Tien Zung [23] in view of torus actions,
which first concerns with the non‐resonant case and which can in fact be extended also

to resonant cases.

Since the present paper concerns with the Hamiltonian systems of one degree of

freedom, which are obviously completely integrable, we mention Birkhoff normal forms

around elliptic and hyperbolic equilibria for those Hamiltonian systems. Take a real

analytic two‐dimensional symplectic manifold (M,  $\omega$) and an analytic function H on M

as the Hamiltonian.

Theorem 2.1. If x_{0}\in M is an elliptic equilibrium of the (real) analytic Hamil‐

tonian vector field X_{H} ,
where H(x_{0})=0 ,

then there exists a Darboux coordinate system

(p, q) with the origin at x_{0} such that  $\omega$=\mathrm{d}p\wedge \mathrm{d}q and the Hamiltonian H is in Birkhoff

normal fo rm H=\displaystyle \mathcal{H}(\frac{p^{2}+q^{2}}{2}) with a convergent power series \mathcal{H} in one variable.

Note that the power series \mathcal{H} is invertible, since the equilibrium is isolated. This

theorem is known from [21].
For the hyperbolic equilibrium, we have a similar theorem.

Theorem 2.2. If x_{0}\in M is a hyperbolic equilibrium of the (real) analytic
Hamiltonian vector field X_{H} ,

where H(x_{0})=0 ,
then there exists a Darboux coordi‐

nate system (P, Q) with the origin at x_{0} such that  $\omega$=\mathrm{d}P\wedge \mathrm{d}Q and the Hamiltonian

H is in Birkhoff normal fo rm H=\mathcal{H}(PQ) with a convergent power series \mathcal{H} in one

variable.

§3. Expression of Birkhoff normal forms in terms of period integrals

On the basis of the existence of Birkhoff normal forms around elliptic and hyper‐
bolic equilibria, we give an expression for the derivative of the inverse of Birkhoff normal

form in terms of period integrals in this section. Let x_{0}\in M be an elliptic equilibrium
of a Hamiltonian system (M,  $\omega$, H) of one degree of freedom. We can assume that

H(x_{0})=0 without loss of generality. By Theorem 2.1, we can take a Darboux coor‐

dinate system (p, q) with the centre at x_{0} such that  $\omega$=\mathrm{d}p\wedge \mathrm{d}q and the Hamiltonian
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H is in Birkhoff normal form H=\displaystyle \mathcal{H}(\frac{p^{2}+q^{2}}{2}) with an invertible analytic function

\mathcal{H} on a neighbourhood U of the origin (p, q)=(0,0) . We denote the inverse of \mathcal{H} by
 $\Phi$ . Let  $\eta$ be an arbitrary one‐form defined on  U\backslash \{(0,0)\} such that  $\omega$= $\eta$\wedge \mathrm{d}H . The

one‐form  $\eta$ has the ambiguity of the additive factor  g\mathrm{d}H where g is an analytic function

on U\backslash \{(0,0

Theorem 3.1. The derivative of the inverse  $\Phi$ of Birkhoff normal form \mathcal{H} around

the elliptic equilibrium where H=0 can be written as

$\Phi$'(h)=-\displaystyle \frac{1}{2 $\pi$}\int_{H=h} $\eta$.
Here, the constant h denotes the level of the Hamiltonian H around the critical value

H=0.

For the proof of this theorem, see [10].
Similarly, we give an expression of the derivative for the inverse  $\Psi$ of Birkhoff

normal form around a hyperbolic equilibrium  x_{0}\in M . By Theorem 2.2, there is a

Darboux coordinate system (P, Q) with the centre at x_{0} such that the Hamiltonian H

is in Birkhoff normal form H=\mathcal{H}(PQ) ,
where \mathcal{H} is a convergent power series in one

variable and where  $\omega$=\mathrm{d}P\wedge \mathrm{d}Q . Since all the setting is considered in the real analytic

category, the symplectic two form  $\omega$ and the Hamiltonian  H can be extended to the

complexification M^{\mathbb{C}} of M . Note that the complexification M^{\mathbb{C}} is a complex manifold

of complex dimension two which, regarded as a real four‐dimensional analytic manifold,
contains M as a real two‐dimensional submanifold, such that T_{x}M^{\mathbb{C}}=T_{x}M\oplus\sqrt{-1}T_{x}M
at any point x\in M . It is known that the complexification of a real‐analytic manifold

is unique as a complex neighbourhood and that every para‐compact real analytic man‐

ifold has a complexification which is a Stein manifold. See [13, Chapter I] for a brief

explanation on the complexification of real analytic manifolds.

Now, we take a real closed arc  $\gamma$ :  P=\sqrt{ $\epsilon$}e^{\sqrt{-1} $\theta$}, Q=\sqrt{ $\epsilon$}e^{-\sqrt{-1} $\theta$} ,
with a small

positive number  $\epsilon$>0 and with the parameter  $\theta$\in[0, 2 $\pi$] ,
in the complexification M^{\mathbb{C}}

of M . The arc  $\gamma$ is included in the complexified integral curve  H=h in M^{\mathbb{C}}
,

where the

constant h=\mathcal{H}( $\epsilon$) denotes the energy level. We take a one‐form $\eta$' such that  $\omega$=$\eta$'\wedge \mathrm{d}H
and the inverse  $\Psi$ of Birkhoff normal form \mathcal{H} for the hyperbolic equilibrium x_{0}\in M.

Theorem 3.2. The derivative of the inverse  $\Psi$ of Birkhoff normal form \mathcal{H}f^{0or}
the Hamiltonian H around the hyperbolic equilibrium x_{0}\in M can be written as

$\Psi$'(h)=\displaystyle \frac{1}{2 $\pi$\sqrt{-1}}\int_{ $\gamma$}$\eta$'
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This theorem can be deduced from the previous one through the (complex) coor‐

dinate change

P=\displaystyle \frac{p+\sqrt{-1}q}{2}, Q=\frac{p-\sqrt{-1}q}{2},
since this coordinate change maps the hyperbolic equilibrium at the origin in the real

coordinates (P, Q) into an elliptic equilibrium at the origin in the new real coordinates

(p, q) .

Remark 3.1. From the viewpoint of complex analytic geometry, the elliptic and

the hyperbolic equilibria of \mathrm{a} (real) analytic Hamiltonian system (M,  $\omega$, H) of one degree
of freedom can be regarded as an A_{1} ‐singularity of the complex curve H=0 in the

complexification M^{\mathbb{C}} of M . Further, the family of complex curves H=h in M^{\mathbb{C}}
,

where

the energy level h is seen as a complex parameter around 0 ,
forms a deformation of the

A_{1} ‐singularity on the complex curve H=0 . Then, we can take the integral paths in the

previous two theorems as vanishing cycles in the complex curve H=h in M^{\mathbb{C}}
,

which

vanish into the A_{1} ‐singular point when the parameter h approaches to zero.

Remark 3.2. In [7, Theorem1], a similar formula to Theorems 3.1 and 3.2 is given

by taking another kind of one‐form  $\xi$ such that \mathrm{d} $\xi$= $\omega$ . In a neighbourhood of an elliptic

equilibrium, the period integral ‐ \displaystyle \frac{1}{2 $\pi$}\int_{H=h} $\xi$ coincides with the inverse function \mathcal{H}^{-1} of

the Birkhoff normal form, while the period integral ‐ \displaystyle \frac{1}{2 $\pi$}\int_{H=h} $\eta$ in Theorem 3.1, where

 $\eta$\wedge \mathrm{d}H= $\omega$ , represents the derivative of the inverse function \mathcal{H}^{-1} . Around a hyperbolic

equilibrium, the period integral \displaystyle \frac{1}{2 $\pi$\sqrt{-1}}\int_{ $\gamma$} $\xi$ coincides with the inverse function \mathcal{H}^{-1}

of the Birkhoff normal form, while the period integral \displaystyle \frac{1}{2 $\pi$\sqrt{-1}}\int_{ $\gamma$}$\eta$' in Theorem 3.2,

where  $\eta$'\wedge \mathrm{d}H= $\omega$ , represents the derivative of the inverse function \mathcal{H}^{-1} . Taking the

latter formulae, the analytic continuation can more easily be considered than taking the

former.

In the subsequent sections, we apply the expression of the derivative of the inverse

Birkhoff normal form for the simple pendulum and the free rigid body dynamics, in

order to consider the global property of Birkhoff normal forms.

§4. Simple pendulum dynamics

As applications of the results in the previous section, we start with the Hamiltonian

systems of simple pendulums. We follow the notations in [8]. The phase space for a

simple pendulum is the two‐dimensional cylinder \mathbb{R}\times S^{1}=\mathbb{R}\times(\mathbb{R}/2 $\pi$ \mathbb{Z}) with the

coordinates (B,  $\beta$) of the universal covering \mathbb{R}^{2} where  $\beta$\equiv $\beta$+2 $\pi$ . Here,  $\beta$ denotes the
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angle of the pendulum measured from the vertical axis in the direction of the top and

 B stands for the momentum of the pendulum. See Figure 1.

 $\beta$=0

⑥

Figure 1. Simple pendulum

The symplectic form on the phase space is given as  $\omega$=\mathrm{d}B\wedge \mathrm{d} $\beta$ . We assume that

the length of the string is 1, while the mass of the pendulum is  I(>0) . The gravity
constant is written as g^{2} , although it is normally written as g . Then, the Hamiltonian

of the motion for the simple pendulum is given by

H(B,  $\beta$)=\displaystyle \frac{B^{2}}{2I}-Ig^{2}(1-\cos $\beta$) .

The motion is described by Hamilton�s equation

(4.1) \left\{\begin{array}{l}
\dot{B}=-\frac{\partial H}{\partial $\beta$}=Ig^{2}\sin $\beta$,\\
\partial H B\\
\dot{ $\beta$}=\overline{\partial B}=\overline{I}.
\end{array}\right.
It is easy to observe that there are two equilibria at (B,  $\beta$)=(0,0) and (B,  $\beta$)=(0,  $\pi$) .

The point (B,  $\beta$)=(0,0) ,
which corresponds to the pendulum at the top, is a hyperbolic

equilibrium, while the point (B,  $\beta$)=(0,  $\pi$) ,
which corresponds to the pendulum at

the bottom, is an elliptic equilibrium. This is obvious, since the linearization of the

Hamilton�s equation (4.1) at (B,  $\beta$)=(0,0) is given by the linearization matrix

\left(\begin{array}{l}
I0g^{2}\\
\frac{1}{I}0
\end{array}\right),
which has two real eigenvalues with opposite signs and since the linearization at (B,  $\beta$)=
(0,  $\pi$) is given by the matrix

\left(\begin{array}{ll}
0 & -Ig^{2}\\
\frac{1}{I} & 0
\end{array}\right)
which has two purely imaginary eigenvalues. Note that H(0,0)=0, H(0,  $\pi$)=-2Ig^{2}.
The phase portrait of the simple pendulum dynamics is given as in Figure 2.
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Figure 2. Phase portrait for simple pendulum dynamics

\mathrm{h} > 0

\mathrm{h} < 0

Now, we calculate the derivative of the inverse of Birkhoff normal forms at the

two equilibria (B,  $\beta$)=(0,0) and (0,  $\pi$) , using the formulae given in Section 3. First,
we concentrate ourselves in the elliptic equilibrium (B,  $\beta$)=(0,  $\pi$) . We consider the

one‐form  $\eta$ which satisfies  $\omega$= $\eta$\wedge \mathrm{d}H . Since \displaystyle \mathrm{d}H=\frac{B}{I}\mathrm{d}B-Ig^{2}\sin $\beta$ \mathrm{d} $\beta$ ,
the one‐form  $\eta$

can be written as

 $\eta$=-s\displaystyle \frac{\mathrm{d}B}{Ig^{2}\sin $\beta$}-(1-s)\frac{I}{B}\mathrm{d} $\beta$,
where s is an arbitrary parameter. An integral curve near the elliptic equilibrium is given

B^{2}
by the equation H=\overline{2I} ‐Ig2(1‐cos  $\beta$ ) =h

,
with the energy level h near -2Ig^{2} . Note

that h\geq-2Ig^{2} . Since h is near -2Ig^{2} ,
we see that the integral curve is parameterized

by  $\beta$\in[2\mathrm{A}\mathrm{r}\mathrm{c}\sin\sqrt{\frac{-h}{2Ig^{2}}}, 2 $\pi$-2\mathrm{A}\mathrm{r}\mathrm{c}\sin\sqrt{\frac{-h}{2Ig^{2}}}] with which the momentum is written as

B=\pm\sqrt{2I\{h+Ig^{2}(1-\cos $\beta$)\}}=\pm\sqrt{2Ih}\cdot\sqrt{1+\frac{2Ig^{2}}{h}\sin^{2}\frac{ $\beta$}{2}}.
By Theorem 3.1, the derivative of the inverse for Birkhoff normal form around the

elliptic equilibrium (B,  $\beta$)=(0,  $\pi$) can be calculated as

-\displaystyle \frac{1}{2 $\pi$}\int_{H=h} $\eta$ = \frac{I}{ $\pi$}\int_{2\mathrm{A}\mathrm{r}\mathrm{c}\sin\sqrt{\frac{-h}{2Ig^{2}}}}^{2 $\pi$-2\mathrm{A}\mathrm{r}\mathrm{c}\sin\sqrt{\frac{-h}{2Ig^{2}}}}\underline{\mathrm{d} $\beta$}\sqrt{2Ih} \sqrt{1+\frac{2Ig^{2}}{h}\sin^{2}\frac{ $\beta$}{2}}

$\beta$'= $\beta$/2=\displaystyle \frac{1}{ $\pi$}\sqrt{\frac{2I}{h}}\int_{\mathrm{A}\mathrm{r}\mathrm{c}\sin\sqrt{\frac{-h}{2Ig^{2}}}}^{ $\pi$-\mathrm{A}\mathrm{r}\mathrm{c}\sin\sqrt{\frac{-h}{2Ig^{2}}}}\frac{\mathrm{d}$\beta$'}{\sqrt{1+\frac{2Ig^{2}}{h}\sin^{2}$\beta$'}}
= \displaystyle \frac{2}{ $\pi$ g}\sqrt{\frac{2Ig^{2}}{h}}\int_{\mathrm{A}\mathrm{r}\mathrm{c}\sin\sqrt{\frac{-h}{2Ig^{2}}}}^{\frac{ $\pi$}{2}}\frac{\mathrm{d}$\beta$'}{\sqrt{1+\frac{2Ig^{2}}{h}\sin^{2}$\beta$'}}

x=\displaystyle \sin$\beta$'=\frac{2}{ $\pi$ g}\sqrt{\frac{2Ig^{2}}{h}}\int_{\sqrt{\frac{-h}{2Ig^{2}}}}^{1}\frac{\mathrm{d}x}{\sqrt{(1-x^{2})(1+\frac{2Ig^{2}}{h}x^{2})}}
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= \displaystyle \frac{2}{ $\pi$ g}\sqrt{-\frac{2Ig^{2}}{h}}\int_{0}^{1}\frac{\mathrm{d}x}{\sqrt{(1-x^{2})(1-(1+\frac{2Ig^{2}}{h})x^{2})}}
= \displaystyle \frac{2}{ $\pi$ g}\sqrt{-\frac{2Ig^{2}}{h}}\mathcal{K}(1+\frac{2Ig^{2}}{h})
= \displaystyle \frac{2}{ $\pi$ g}\mathcal{K}(\frac{h+2Ig^{2}}{2Ig^{2}})

Here, \displaystyle \mathcal{K}( $\lambda$)=\int_{0}^{\frac{ $\pi$}{2}}\frac{\mathrm{d} $\theta$}{\sqrt{1- $\lambda$\sin^{2} $\theta$}}=\int_{0}^{1}\frac{\mathrm{d}x}{\sqrt{(1-x^{2})(1- $\lambda$ x^{2})}} is the complete elliptic

integral of the first kind. We have used the formulae

\displaystyle \int_{1/\sqrt{ $\lambda$}}^{1}\frac{\mathrm{d}x}{\sqrt{(1-x^{2})(1- $\lambda$ x^{2})}}=\sqrt{-1}\mathcal{K}(1- $\lambda$)=\sqrt{-1}\int_{0}^{1}\frac{\mathrm{d}x}{\sqrt{(1-x^{2})(1-(1- $\lambda$)x^{2})}},
which is equivalent to \displaystyle \mathcal{K}(\frac{1}{ $\lambda$})=\sqrt{ $\lambda$}(\mathcal{K}( $\lambda$)+\sqrt{-1}\mathcal{K}(1- $\lambda$)) ,

and

\displaystyle \mathcal{K}(\frac{ $\lambda$}{ $\lambda$-1})=\sqrt{1- $\lambda$}\mathcal{K}( $\lambda$) .

See [11, Chapter 8, (8.128)] for these formulae of the complete elliptic integral of the

first kind.

As to the hyperbolic equilibrium (B,  $\beta$)=(0,0) ,
we choose the real closed arc

 $\gamma$:\left\{\begin{array}{l}
B=\sqrt{2Ih}\cos $\theta$,\\
 $\beta$=2\mathrm{A}\mathrm{r}\mathrm{c}\mathrm{s}\mathrm{i}\mathrm{n} (\sqrt{-\frac{h}{2Ig^{2}}}\sin $\theta$) ,
\end{array}\right.
parameterized by  $\theta$\in[0, 2 $\pi$] in the complexified integral curve H(B,  $\beta$)=\displaystyle \frac{B^{2}}{2I} ‐Ig2(1‐
\cos $\beta$)=h ,

where (B,  $\beta$) are regarded as the coordinates of the complexified phase

space \mathbb{C}\times \mathbb{C}^{*} . Using Theorem 3.2, the derivative for the inverse of Birkhoff normal form

around the hyperbolic equilibrium (B,  $\beta$)=(0,0) can be calculated as

\displaystyle \frac{1}{2 $\pi$\sqrt{-1}}\int_{ $\gamma$} $\eta$=\frac{1}{2 $\pi$\sqrt{-1}}\int_{0}^{2 $\pi$}\frac{I\mathrm{d} $\beta$}{B}

=\displaystyle \frac{I}{2 $\pi$\sqrt{-1}}\int_{0}^{2 $\pi$}\frac{1}{\sqrt{2Ih}\cos $\theta$}\cdot 2\frac{\sqrt{-\frac{h}{2Ig^{2}}}\cos $\theta$}{\sqrt{1+\frac{h}{2Ig^{2}}\sin^{2} $\theta$}}\mathrm{d} $\theta$
=\displaystyle \frac{1}{2 $\pi$ g}\int_{0}^{2 $\pi$}\frac{\mathrm{d} $\theta$}{\sqrt{1+\frac{h}{2Ig^{2}}\sin^{2} $\theta$}}
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=\displaystyle \frac{2}{ $\pi$ g}\int_{0}^{ $\pi$/2}\frac{\mathrm{d} $\theta$}{\sqrt{1+\frac{h}{2Ig^{2}}\sin^{2} $\theta$}}
=\displaystyle \frac{2}{ $\pi$ g}\mathcal{K}(-\frac{h}{2Ig^{2}}) .

Therefore, the derivatives of the inverse Birkhoff normal forms around the elliptic

and the hyperbolic equilibria, which are respectively written as \displaystyle \frac{2}{ $\pi$ g}\mathcal{K}(1- $\lambda$) , \displaystyle \frac{2}{ $\pi$ g}\mathcal{K}( $\lambda$) ,

are analytic functions of the variable  $\lambda$=-\displaystyle \frac{h}{2Ig^{2}} . Note that the two functions depend

only on this variable  $\lambda$ and have no other parameter than  $\lambda$
,

since the gravity constant

 g^{2} is a universal constant. As to the global behavior of these two functions, we consider

their analytic continuation with respect to the variable  $\lambda$=-\displaystyle \frac{h}{2Ig^{2}} . Since the phase

space \mathbb{R}\times S^{1} with the coordinates (B,  $\beta$) can be naturally complexified to \mathbb{C}\times \mathbb{C}^{*} and

B^{2}
since the symplectic form  $\omega$ and the Hamiltonian  H(B,  $\beta$)=--Ig^{2}(1-\cos $\beta$) can be

2I
considered as an analytic form and an analytic function on \mathbb{C}\times \mathbb{C}^{*} with the coordinates

(B,  $\beta$) ,
we concentrate ourselves into the complexified system from now on.

In view of the analytic continuation, the key observation is the relation of the

derivatives, \displaystyle \frac{2}{ $\pi$ g}\mathcal{K}(1- $\lambda$) , \displaystyle \frac{2}{ $\pi$ g}\mathcal{K}( $\lambda$) ,
of the inverse Birkhoff normal forms to the special

Gauß hypergeometric differential equation

(4.2) (1- $\lambda$) $\lambda$\displaystyle \frac{\mathrm{d}^{2}f}{\mathrm{d}$\lambda$^{2}}+(1-2 $\lambda$)\frac{\mathrm{d}f}{\mathrm{d} $\lambda$}-\frac{1}{4}f=0.
In fact, the functions \displaystyle \frac{2}{ $\pi$ g}\mathcal{K}(1- $\lambda$) and \displaystyle \frac{2}{ $\pi$ g}\mathcal{K}( $\lambda$) are independent solutions and hence form

a basis of the solution space of the linear differential equation (4.2). By the properties
of the Gauß hypergeometric differential equation (4.2), we see that the analytic contin‐

uation of the derivative of the inverse Birkhoff normal forms has the monodromy. We

can compute this monodromy, by using the connection formula of the equation (4.2).
See [5, 7.405‐7.406, pp.167‐169] for the detail. As a result, the closed contour in the

Gauß plane \mathbb{C} with the affine coordinate  $\lambda$=-\displaystyle \frac{h}{2Ig^{2}} which counterclockwise encloses

the origin  $\lambda$=0 gives rise to the monodromy matrix

(_{01}^{1-2\sqrt{-1}})
with respect to the above basis \displaystyle \frac{2}{ $\pi$ g}\mathcal{K}(1- $\lambda$) , \displaystyle \frac{2}{ $\pi$ g}\mathcal{K}( $\lambda$) ,

while the closed arc in the Gauß

plane \mathbb{C} which counterclockwise goes around the point  $\lambda$=1 corresponds to the mon‐
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odromy matrix

(_{-2\sqrt{-1}1}10)
with respect to the same basis.

To sum up, the analytic continuation of the derivatives of the inverse Birkhoff

normal forms for the simple pendulum dynamics reveals their global behavior as the

monodromy which are represented by the above monodromy matrices.

Remark 4.1. The above computation of the derivative of the inverse for Birkhoff

normal form around the hyperbolic equilibrium (B,  $\beta$)=(0,0) agrees with the result

in [8], while that around the elliptic equilibrium (B,  $\beta$)=(0,  $\pi$) does not. In fact,
the argument in Appendix \mathrm{C} of [8] uses \mathrm{a} (complex) transformation of the parameters

which does not preserve the energy level, although it is not cared there. Note that the

energy at the elliptic equilibrium (B,  $\beta$)=(0,  $\pi$) is H=-2Ig^{2} ,
while the energy at

the hyperbolic equilibrium (B,  $\beta$)=(0,0) is H=0 . Thus, the calculation in Appendix
\mathrm{C} of [8] should be understood by taking the change of the energy levels through the

transformation of the parameters into account.

§5. Free rigid body dynamics

As the second application of the results in Section 3, we briefly mention the free rigid

body dynamics. The detailed discussion can be found in [10]. A free rigid body means a

rigid body under no external force. Taking the coordinates with the origin at the centre

of mass of the body, we can omit the translation of the body and the rotational motion

can mathematically be formulated as a Hamiltonian system on the cotangent bundle

T^{*}SO(3) to the rotation group SO(3) . Since this Hamiltonian system on T^{*}SO(3) has

the symmetry with respect to the left‐translation by SO(3) ,
the system can be reduced

to the Hamiltonian system on (the dual to) the Lie algebra so(3), which is isomorphic
to (\mathbb{R}^{3}, \times) ,

where \times denote the exterior product with respect to the standard inner

product. of \mathbb{R}^{3} . This procedure is called the Lie‐Poisson reduction. See [18] for the

details on the reduction of Hamiltonian systems. The reduced system on \mathbb{R}^{3} for the free

rigid body dynamics can be described by Euler equation

(5.1) \displaystyle \frac{\mathrm{d}P}{\mathrm{d}t}=P\times(\mathcal{I}^{-1}(P)) , P=(p_{1},p_{2},p_{3})\in \mathbb{R}^{3},
where \mathcal{I} is the inertia tensor of the rigid body, which is determined by its mass dis‐

tribution. The inertia tensor \mathcal{I} is a linear operator \mathbb{R}^{3}\rightarrow \mathbb{R}^{3} given by the diagonal
matrix diag (I_{1}, I_{2}, I3) where I_{1}, I_{2}, I3>0 . The vector P=(p_{1},p_{2},p_{3})\in \mathbb{R}^{3} is called

the angular momentum of the rigid body. Note that the equation (5.1) is the Hamilton�s
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equation for the Hamiltonian H(P)=\displaystyle \frac{1}{2}P\cdot(\mathcal{I}^{-1}(P)) with respect to the Lie‐Poisson

bracket } defined through \{F, G\}(P)=P\cdot(\nabla F(P)\times\nabla G(P)) , P\in \mathbb{R}^{3} ,
where F, G

are smooth functions on \mathbb{R}^{3} and \nabla F(P) denotes the derivative of F at P.

An important feature of Euler equation (5.1) is its first integral L(P)=\displaystyle \frac{1}{2}P\cdot P.
Thus, the system (5.1) can be restricted to the level surfaces of L:L(P) =\ell (constant),
which is a two‐dimensional sphere. The Lie‐Poisson bracket } naturally induces the

symplectic form

 $\omega$=\displaystyle \frac{\mathrm{d}p_{1}\wedge \mathrm{d}p_{2}}{3p_{3}}=\frac{\mathrm{d}p_{2}\wedge \mathrm{d}p_{3}}{3p_{1}}=\frac{\mathrm{d}p_{3}\wedge \mathrm{d}p_{1}}{3p_{2}}
on  L=\ell . The restricted system on the level surface  L=\ell is, in fact, a Hamiltonian

system for the Hamiltonian  H restricted to  L=\ell with respect to the symplectic form

 $\omega$ . Therefore, we have a Hamiltonian system of one degree of freedom, for which we can

apply the results in Section 3.

The phase portrait of the restricted system on  L=\ell is well known and can be

found e.g. in [15]. Assume that  I_{1}<I_{2}<I_{3} . Then, there are six equilibria on the level

sphere  L=\ell
,

which are the intersection of  L=\ell and the three principal axes. Four of

these equilibria on the  p_{1^{-}} and p_{3} ‐axes are elliptic, while the other two on the p_{2} ‐axis

are hyperbolic.

Now, we calculate the derivative of the inverse for Birkhoff normal form around

each equilibrium. We first consider that around the elliptic equilibrium (p_{1}, p_{2},p_{3})=
(\sqrt{2\ell}, 0,0) on the p_{1} ‐axis, where (p_{2}, p_{3}) can be regarded as the local coordinates of

 L=\ell . We take the one‐form

$\eta$_{s}=(1-s)\displaystyle \frac{\mathrm{d}p_{2}}{3(\frac{1}{I_{3}}-\frac{1}{I_{1}})p_{3}p_{1}}+s\frac{\mathrm{d}p_{3}}{3(\frac{1}{I_{1}}-\frac{1}{I_{2}})p_{1}p_{2}},
where s is an arbitrary parameter. One can easily verify that $\eta$_{s}\wedge \mathrm{d}H= $\omega$.

We denote the inverse function of Birkhoff normal form H-\displaystyle \frac{\ell}{I_{1}}=\mathcal{H}_{1} around

the elliptic equilibrium (\sqrt{2\ell}, 0,0) by $\Phi$_{1} . From Theorem 3.1, we have the following
expression of its derivative.

Theorem 5.1. The derivative of the inverse Birkhoff normal forms around the

elliptic equilibria (p_{1},p_{2},p_{3})=(\pm\sqrt{2\ell}, 0,0) on the p_{1} ‐axis can be given by

(5.2) $\Phi$_{1}'(h)=-\displaystyle \frac{1}{3 $\pi$}\sqrt{\frac{2}{\ell}}\frac{1}{\sqrt{(d-c)(a-b)}}\mathcal{K}(\frac{(d-a)(b-c)}{(d-c)(b-a)}) ,

where a=\displaystyle \frac{1}{I_{1}}, b=\displaystyle \frac{1}{I_{2}}, c=\displaystyle \frac{1}{I_{2}}, d=\displaystyle \frac{h}{\ell} and where \displaystyle \mathcal{K}( $\lambda$)=\int_{0}^{1}\frac{\mathrm{d}x}{\sqrt{(1-x^{2})(1- $\lambda$ x^{2})}} is the

complete elliptic integral of the first kind.
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For the proof of this theorem, see [10]. We denote the right hand side of (5.2)
by S(a, b, c, d) . Note that the two elliptic equilibria (p_{1}, p_{2}, p_{3})=(\pm\sqrt{2\ell}, 0,0) on the

p_{1} ‐axis have the same Birkhoff normal form.

Similarly, we have the expression of the derivative of the inverse $\Phi$_{3} for Birkhoff

normal form H-\displaystyle \frac{\ell}{I_{3}}=\mathcal{H}_{3} around the elliptic equilibria (p_{1}, p_{2}, p_{3})=(0,0, \pm\sqrt{2\ell}) on

the p_{3} ‐axis.

Theorem 5.2. The derivative of the inverse Birkhoff normal forms around the

elliptic equilibria (p_{1},p_{2},p_{3})=(0,0, \pm\sqrt{2\ell}) on the p_{3} ‐axis can be given by

$\Phi$_{3}'(h)=-\displaystyle \frac{1}{3 $\pi$}\sqrt{\frac{2}{\ell}}\frac{1}{\sqrt{(d-a)(c-b)}}\mathcal{K}(\frac{(d-c)(b-a)}{(d-a)(b-c)})=S(c, b, a, d) ,

where a=\displaystyle \frac{1}{I_{1}}, b=\displaystyle \frac{1}{I_{2}}, c=\displaystyle \frac{1}{I_{2}}, d=\displaystyle \frac{h}{\ell} and \mathcal{K}( $\lambda$) is the complete elliptic integral of the

first kind.

We consider the derivatives of the inverse for Birkhoff normal forms around the

hyperbolic equilibria (p_{1},p_{2}, p_{3})=(0, \sqrt{2\ell}, 0) on the p_{2} ‐axis, where (p_{1}, p_{3}) serves as

the local coordinate systems of  L=\ell . We take the one‐form

$\eta$_{s}'=(1-s)\displaystyle \frac{\mathrm{d}p_{3}}{3(\frac{1}{I_{1}}-\frac{1}{I_{2}})p_{1}p_{2}}+s\frac{\mathrm{d}p_{1}}{3(\frac{1}{I_{2}}-\frac{1}{I_{3}})p_{2}p_{3}},
with an arbitrary parameter s as before, and the closed arc

 $\gamma$:p_{3}=\sqrt{2\ell\frac{\frac{1}{I_{2}}-\frac{h}{p}}{\frac{1}{I_{2}}-\frac{1}{I_{3}}}}\cos $\theta$, p_{1}=\sqrt{2\ell\frac{\frac{1}{I_{2}}-\frac{h}{p}}{\frac{1}{I_{2}}-\frac{1}{I_{1}}}}\sin $\theta$,  $\theta$\in[0, 2 $\pi$],
around the equilibrium (p_{1},p_{2},p_{3})=(0, \sqrt{2\ell}, 0) . Note that the arc  $\gamma$ is a cycle in the

complexified integral curve  H=h
,
where h is the energy level, in the complexified phase

space  L=\ell . From Theorem 3.2, we can calculate the derivative of the inverse $\Phi$_{2} for

Birkhoff normal form H-\displaystyle \frac{\ell}{I_{2}}=\mathcal{H}_{2} around the equilibrium (p_{1},p_{2},p_{3})=(0, \sqrt{2\ell}, 0) as

$\Phi$_{2}'(h)=\displaystyle \frac{1}{2 $\pi$\sqrt{-1}}\int_{ $\gamma$}$\eta$_{s}' . As a result, we have the following expression.

Theorem 5.3. The derivative of the inverse of Birkhoff normal fo rms around

the hyperbolic equilibria (p_{1},p_{2}, p_{3})=(0, \pm\sqrt{2\ell}, 0) on the p_{2} ‐axis can be given by

$\Phi$_{2}'(h)=\displaystyle \frac{\sqrt{-1}}{3 $\pi$}\sqrt{\frac{2}{\ell}}\frac{1}{\sqrt{(d-c)(b-a)}}\mathcal{K}(\frac{(d-b)(a-c)}{(d-c)(a-b)})=-\sqrt{-1}S(b, a, c, d) ,

where a=\displaystyle \frac{1}{I_{1}}, b=\displaystyle \frac{1}{I_{2}}, c=\displaystyle \frac{1}{I_{2}}, d=\displaystyle \frac{h}{\ell} and \mathcal{K}( $\lambda$) is the complete elliptic integral of the

first kind.



232 Daisuke Tarama and Jean‐Pierre Francoise

Note that the two hyperbolic equilibria on the p_{2} ‐axis have the same Birkhoff

normal form.

Remark 5.1. The above computation of the derivative for the inverse Birkhoff

normal forms in Theorems 5.1, 5.2, 5.3 agrees with the results in [9].

Thus, we have the concrete expression of the derivatives for the inverse Birkhoff

normal forms around each pair of the six equilibria on the three principal axes in terms

of complete elliptic integral of the first kind. Since the phase space \mathbb{R}^{3} with the affine

coordinates (p_{1},p_{2},p_{3}) can be naturally complexified to \mathbb{C}^{3} with (p_{1},p_{2},p_{3}) being re‐

garded as the complex affine coordinates, and since the restricted phase space  L=\ell as

well as its symplectic form  $\omega$ are naturally complexified, all the systems are now consid‐

ered to be complex analytic Hamiltonian systems. Then, the derivatives of the inverse

for Birkhoff normal forms can be seen as complex analytic functions in the energy level
\ell \ell \ell

 h around any point of the open set h\neq\overline{I_{1}}, \overline{I_{2}}, \overline{I_{3}}
in C.

On the basis of the previous results in Theorems 5.1, 5.2, 5.3, we consider the

analytic continuation of the derivatives of the inverse Birkhoff normal forms around the

three pairs of equilibria on the principal axes with respect to the energy level h . As in

the case of the simple pendulum dynamics, we use the relation between the complete

elliptic integral \mathcal{K}( $\lambda$) of the first kind and the special Gauß hypergeometric differential

equation (4.2).
By means of the connection formula of the equation (4.2) [5, 7.405‐7.406, pp.167‐

169], we can show the following formula of the derivatives $\Phi$_{1}'(h) , $\Phi$_{2}'(h) , $\Phi$_{3}'(h) for the

inverse Birkhoff normal forms around the equilibria.

Proposition 5.4. The analytic continuation of the function

S(a, b, c, d)=-\displaystyle \frac{1}{3 $\pi$}\sqrt{\frac{2}{\ell}}\frac{1}{\sqrt{(d-c)(a-b)}}\mathcal{K}(\frac{(d-a)(b-c)}{(d-c)(b-a)})
satisfies the formula

S(a, b, c, d)+S(b, a, c, d)=S(c, b, a, d) ,

which means

$\Phi$_{1}'(h)+\sqrt{-1}$\Phi$_{2}'(h)=$\Phi$_{3}'(h) .

As in the case of the simple pendulum dynamics, the derivatives $\Phi$_{1}'(h) , $\Phi$_{2}'(h) ,

$\Phi$_{3}'(h) for the inverse Birkhoff normal forms can be analytically extended with respect
\ell \ell \ell

to the energy level  h on the open set h\neq\overline{I_{1}}, \overline{I_{2}}, \overline{I_{3}}
in C. One can observe that the

analytic continuation of these functions has the monodromy, which can be calculated
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as follows:

The closed real arc which counterclockwise encloses the point h=\displaystyle \frac{\ell}{I_{1}} corresponds to

the monodromy

S_{1}\mapsto S_{1}, S_{2}\mapsto 2S_{1}+S_{2}, S_{3}\mapsto 2S_{1}+S_{3},

where S_{1}=$\Phi$_{1}'(h)=S(a, b, c, d) , S_{2}=\sqrt{-1}$\Phi$_{2}'(h)=S(b, a, c, d) ,
and S3=$\Phi$_{3}'(h)=

S(c, b, a, d) . The closed real contour which counterclockwise goes around the point

h=\displaystyle \frac{\ell}{I_{2}} gives rise to the monodromy

S_{1}\mapsto S_{1}-2S_{2}, S_{2}\mapsto S_{2}, S_{3}\mapsto S_{3}-2S_{2}.

The closed real arc which encloses the point h=\displaystyle \frac{\ell}{I_{3}} corresponds to the monodromy

S_{1}\mapsto S_{1}-2S_{3}, S_{2}\mapsto S_{2}+2S_{3}, S_{3}\mapsto S_{3}.

Thus, we have observed the monodromy as the global behavior of the derivatives for

the inverse Birkhoff normal forms around the equilibria of the free rigid body dynamics.
The detailed proofs of the above results can be found in [10].

As to the free rigid body dynamics, one can consider some elliptic fibration which

naturally arises from the dynamics. In fact, the integral curve of Euler equation for the

free rigid body dynamics is given as the intersection of the two quadric level surfaces of

the first integrals:

\left\{\begin{array}{l}
H=\frac{1}{2}(\frac{p_{1}^{2}}{I_{1}}+\frac{p_{2}^{2}}{I_{2}}+\frac{p_{3}^{2}}{I_{3}})=h,\\
L=\frac{1}{2}(p_{1}^{2}+p_{2}^{2}+p_{3}^{2})=\ell,
\end{array}\right.
where (p_{1},p_{2},p_{3}) is the angular momentum of the rigid body. This quadrics intersection

can be complexified and projectified by the projective space curve

(5.3) \left\{\begin{array}{l}
ax^{2}+by^{2}+cz^{2}+dw^{2}=0,\\
x^{2}+y^{2}+z^{2}+w^{2}=0,
\end{array}\right.
where (x: y: z: w) are the homogeneous coordinates of the projective space P_{3}(\mathbb{C})
which are related to the original affine coordinates of the angular momentum as p_{1}=

\displaystyle \sqrt{-2\ell}\frac{x}{w}, p_{2}=\displaystyle \sqrt{-2\ell}\frac{y}{w}, p_{3}=\displaystyle \sqrt{-2\ell}\frac{z}{w} . And a=\displaystyle \frac{1}{I_{1}}, b=\displaystyle \frac{1}{I_{2}}, c=\displaystyle \frac{1}{I_{2}}, d=\displaystyle \frac{h}{\ell} ,
as before.

It is known that the curve (5.3) is a smooth elliptic curve, if the parameters a, b, c, d are

distinct. See [16] or [1] for the proof of this fact. Furthermore, the same equation (5.3)
defines a smooth four‐dimensional variety F in the product of two projective spaces

P_{3}(\mathbb{C})\times P_{3}(\mathbb{C}) with the coordinates ((x: y: z: w), (a: b: c:d)) . The restriction of the

projection P_{3}(\mathbb{C})\times P_{3}(\mathbb{C})\ni((x:y:z:w), (a:b:c:d))\mapsto(a:b:c:d)\in P_{3}(\mathbb{C}) onto
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F gives rise to an elliptic fibration $\pi$_{F} : F\rightarrow P_{3}(\mathbb{C}) ,
whose fibres can be seen as the

compactified and complexified integral curves of the dynamics.

Although the four‐dimensional variety F is smooth and rational, the elliptic fibra‐

tion $\pi$_{F} : F\rightarrow P_{3}(\mathbb{C}) is not trivial at all. It does not admit either holomorphic or

meromorphic section and it is further not flat, i.e. it has a two‐dimensional fibre. See

[16] for these basic facts on the elliptic fibration $\pi$_{F} . Here, we mention the classification

of the singular fibres of the fibration $\pi$_{F}.

\bullet If only two of the parameters  a, b, c, d are equal, the fibre consists of two smooth

rational curves intersecting at two points. This is a singular fibre of type \mathrm{I}_{2} in

Kodaira�s notation [14, 2].

\bullet If two of  a, b, c, d are equal and the other two are also equal without further coinci‐

dence, the fibre consists of four smooth rational curves intersecting cyclically. This

is a singular fibre of type \mathrm{I}_{4} in Kodaira�s notation.

\bullet If three of  a, b, c, d are equal without further coincidence, the fibre is a smooth

rational curve, as a point set, but with multiplicity two. This singular fibre is not

in the list of singular fibres of elliptic surfaces by Kodaira.

\bullet If  a=b=c=d
,

the fibre is a space quadric surface x^{2}+y^{2}+z^{2}+w^{2}=0.

The regular locus of the fibration $\pi$_{F} is the open set R:=P_{3}(\mathbb{C})\backslash \{a=b, a=c, a=

d, b=c, b=d, c=d\}.
The fundamental group $\pi$_{1}(R, *) of the regular locus for the fibration $\pi$_{F} is calcu‐

lated in [10] by means of the arguments on the fundamental groups of the complements
of hyperplane arrangements (cf. [17]). We denote the generators h_{12}, h_{13}, h_{14}, h_{23},

h_{24} , h34 of $\pi$_{1}(R, *) which are respectively represented by real closed arcs enclosing the

irreducible components a=b, a=c, a=d, b=c, b=d, c=d of the singular locus.

Theorem 5.5. The fundamental group $\pi$_{1}(R, *) of the regular locus f^{0or} the fi‐
bration $\pi$_{F} is generated by h_{12}, h_{13}, h_{14}, h_{23}, h_{24}, h_{34} ,

with the relations

h_{12}h_{23}h_{13}=h_{23}h_{13}h_{12}=h_{13}h_{12}h_{23},

h_{23}h_{34}h_{24}=h_{34}h_{24}h_{23}=h_{24}h_{23}h_{34},

h_{12}h_{24}h_{14}=h_{24}h_{14}h_{12}=h_{14}h_{12}h_{24},

h_{34}h_{14}h_{13}=h_{14}h_{13}h_{34}=h_{13}h_{34}h_{14},

h_{12}h_{34}=h_{34}h_{12},

h_{13}h_{23}^{-1}h_{24}h_{23}=h_{23}^{-1}h_{24}h_{23}h_{13},
h_{23}h_{14}=h_{14}h_{23},

h_{13}h_{12}h_{23}h_{34}h_{24}h_{14}=1.



Analytic extension of Birkhoff normal forms 235

It is shown in [10] that the derivatives S_{3}, S_{1} of the inverse Birkhoff normal forms

around the equilibria on the p_{3^{-}} and p_{1} ‐axes form a basis of the first cohomology group

of the regular fibre of the fibration $\pi$_{F} . From this, we see that the monodromy of the

inverse Birkhoff normal forms for the free rigid body dynamics corresponds exactly to

the monodromy of the elliptic fibration $\pi$_{F} . In [10], the following theorem is obtained.

Theorem 5.6. The basis of the first cohomology group for the regular fibre of
the fibration $\pi$_{F} : F\rightarrow P_{3}(\mathbb{C}) is given by the analytic continuations of S3 and of S_{1},
which are proportional to the derivative of the inverse Birkhoff normal fo rms around

the p_{3^{-}} and p_{1} ‐axes, respectively. The monodromy of the fibration $\pi$_{F} with respect to S3
and S_{1} is given by the correspondence of the generators h_{12}, h_{13}, h_{14}, h_{23}, h_{24} , h34 of
the fundamental group $\pi$_{1}(P_{3}(\mathbb{C})\backslash Supp (D)) to the matrices in SL(2, \mathbb{Z}) as fo llows:

h_{14}, h_{23}\mapsto\left(\begin{array}{l}
12\\
01
\end{array}\right), h_{13}, h_{24}\mapsto\left(\begin{array}{l}
-12\\
-23
\end{array}\right), h_{12}, h_{34}\mapsto\left(\begin{array}{ll}
1 & 0\\
-21 & 
\end{array}\right)
The monodromy of the elliptic fibration $\pi$_{F} described here is essentially the same

as the monodromy which we have above calculated for the analytic extension of the

derivatives for the inverse Birkhoff normal forms. The detail of these geometric aspects

of the elliptic fibration $\pi$_{F} which naturally arises from the free rigid body dynamics,

including the calculation of the fundamental group of the regular locus of $\pi$_{F} ,
are de‐

scribed in [10] from the viewpoint of the close relation to the analytic extension of the

derivatives of the inverse Birkhoff normal forms.

§6. Concluding remarks

Based on the expression of the derivatives of the inverse functions for Birkhoff nor‐

mal forms around the elliptic and the hyperbolic equilibria, their analytic extension has

been considered for two basic examples in analytical mechanics, the simple pendulum
and the free rigid body dynamics. In both cases, the derivatives of the inverse Birkhoff

normal forms are expressed in terms of the complete elliptic integral of the first kind,
and by means of its relation with the special Gauß hypergeometric differential equation,
the monodromy has been calculated explicitly. This result indicates that the problem
on the global behavior of Birkhoff normal forms which has been posed in Section 1

has been answered with the nontrivial monodromy of the analytic extension for the

derivative of their inverse functions. In the case of the free rigid body dynamics, the

monodromy of the analytic extension for the derivatives of the inverse Birkhoff normal

forms is closely related with the monodromy of the elliptic fibration which naturally
arises from the dynamics.
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