RIMS Koékyiroku Bessatsu
B52 (2014), 237253

Summability of formal solutions to partial differential
equations

To Professor T. Aoki on the occasion of his 60th birthday

By

Grzegorz LYSIK*

Abstract

We give a survey of results on convergence and summability of formal power series solutions
to the initial value problem for non-Kowalevskian partial differential equations. A special
attention is paid on heat type equations.

§1. Introduction

One of the main problems arising in the analytic theory of partial differential equa-
tions is a characterization of data given on a manifold S for which a solution of a
boundary value problem is an analytic function in a variable normal to S. In general,
one can easily construct a formal power series solution in the normal to S variable, and
by the Cauchy-Kowalevski theorem it is convergent if S is not the characteristic variety
of the equation. In other cases formal solutions need not to be convergent. At this point
there arise natural questions:

e under which conditions on the data the formal solution is convergent?
e what is the meaning of a divergent formal solution?

e is it an asymptotic expansion of an actual solution?
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e can and how the actual solution be constructed from the formal one?

In the case of ordinary differential equations answers to those questions were given
in 80-ties and 90-ties of the XX century by the (multi-)summability theory. On the other
hand in the case of partial differential equations the study of those problems started at
the end of the XX century and, besides linear equations with constant coefficients in
two variables, practically there are no general results.

In the paper we shall give a survey of solutions to those problems for some classes
of partial differential equations. Namely under the assumption that S C {t = 0}, we
shall consider equations of the form

P(t, z,@t,Vz,Vﬁ, cou(t z) = f(t, 2),

where P is a differential operator (not necessary linear) with holomorphic coefficients.
We shall assume that the order of P with respect to z is at least 2.

§2. One dimensional case.

The starting point in the study of summability of formal solutions to PDE’s is the
paper by Lutz, Miyake and Schéfke [LMS-99]. They studied the initial value problem
to the one dimensional heat equation

Oyu — 0?u =0,
Uj=0 =ug € A(B),

(1)
where B is a ball in R. Its formal power series solution u is given by

00 oy

0% ug(2)

~ — J

(2) u(t,z) = Z 7 t7.
§=0

In general the series u is divergent, but Gevrey of order k = 1, i.e.,

0% ,
I—lfo(z)| < CITGH* with k=1,

4!
locally uniformly in B. The problem of a characterization of the initial data ug ensuring
convergence of the formal solution (2) was already solved in 1875 by Kowalevskaya
([Kow]). She proved that the solution @ is convergent if and only if the initial data ug

can be analytically extended to an entire function of exponential order 2.
To state the main result of [LMS-99] recall

Definition 2.1. Let d € R mod 27 be a direction in C, U an open subset of C"
and ¢; € O(U) for j € Ng. A formal power series

o 2i(2)
Blt,2) = ELZ
=0
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is said to be k-summable (Borel summable if k = 1) with respect to ¢ in the direction
d if its k- Borel transform defined on B, x U with some € > 0 by

o0

o i)
(Bkw)(saz) = Z - I‘g(jl(-kj/k)s

J=0

extends holomorphically to a domain (B,S U S(d, e)) x U and the extension satisfies for
any Uy €U and 0 < €1 < ¢,

sup |(l/5’\kg5)(s,z)| < AP for se S(d,er)

zeUy
with some A, B < oo. Here B, is a ball in C of radius ¢ centered at the origin and
S(d,e) is a sector {z € C: |argz — d| < €}. If so, then the function

S = [ B ), p-dl<e,

is called the k-Borel sum of @.

Theorem 2.2.  ([LMS-99]). Let ug be a function real analytic in a ball B in R
centered at the origin. The formal power series solution (2) of (1) is Borel summable in
a direction d locally uniformly in B iff ug extends analytically to a function holomorphic
on a domain

D(d,e) D S(d/2,e) US(d/2+ 7,¢)

with some € > 0 which has in D(d,e) at most exponential growth of order at most 2
locally uniformly in B.

The above result was extended to the case of multisummable solutions of (1) by
Balser [B-99]; to formal power series satisfying certain differential recursion formulas by
Balser and Miyake [BMi-99]; to the equation 0Yu = 0%u, p < ¢, by Miyake [Mi-99] and
by Ichinobe [I-01], who also gave explicite integral representations of the Borel sums of
solutions in terms of the Barnes hypergeometric series ;F},—;.

General linear partial differential equations with constant coefficients in one space

variable
m

O p(02) u— > O 'pi(0:) u =0,
i=1
where p and p; are polynomials, were investigated by Balser. In [B-02] he studied
the case when the Newton polygon of the equation has only one slope and proved k-
summability of a (unique) normalized solution. While in [B-04] he proved multisumma-
bility of normalized solutions to equations with Newton polygon having several slopes.
The results were further extended in [B-05] to solutions of some integral-differential
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equations in two variables. Another proof of Balser’s results in a more general frame-
work of fractional equations was given by Michalik [M-10].
In [I-03] Ichinobe studied the following problem

w0, > p2 1,
8fu|t:0 =0 for k=0,...,pv—2,
Ot upmo = up € A(B).

He proved that its formal power series solution u is p/(q — p)-summable in a direction
d (also in d’ with d’ = d mod (27/p)) iff ug extends holomorphically to a domain D
containing union of some sectors in C and has in D at most exponential growth of order
at most ¢/(p—q) locally uniformly in B. He also gave an explicite integral representation
of the Borel sum of @ in terms of the Meijer function G}%;". Ichinobe also studied the
Cauchy problem to the equation

Oyu = P(t,0,)u where P(t,0,)= Z it 02,

Assuming that the Newton polygon of P has only one slope he proved that the formal
solution is k-summable if the initial data are holomorphic in a sum of sectors with
suitable exponential growth.

From the above papers it follows that formal solutions of non-Kowalevskian PDEs
are summable only if the initial data satisfy quite restrictive conditions.

§3. Multidimensional case

The study of the multidimensional equations was initiated by Ouchi [0-02]. He
studied the summability of formal solutions to linear PDEs of the form

8?%“ + Z aj,0 (t)agagu = f(t7 Z):
(3) ‘ (j,a)€A
Oiuj—o =i for 1=0,...,m—1.

If ord¢ aj, > max(0,5 —m + 1) for (j,a) € A, then the problem has a unique formal
solution, which is convergent if j +|a| < m for all (j, ) € A. Ouchi defined the Newton
polygon N(F) and proved that if (j + ||, ord; ajo — j) € intN(E) for (j,a) € A with
a # 0 (this condition guaranties that the equation (3) can be treated as a perturbation
of an ordinary differential equation), then the formal solution of (3) is multisummable
in a suitable multidirection; the levels of summability are the slopes of N(FE).

In [Y-12] Yamazawa studied the equation

Opu = 02u + t(t0;)u.
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He proved that if initial data is an entire function of exponential order 2, then the
solution is Borel summable in directions d ¢ {0,7}. Later he showed that the same
conclusion holds for functions of finite exponential order. Motivated by this and similar
examples Tahara posed the following problem.

Assuming that initial data and f are entire functions of exponential order v determine
minimal vy guaranteeing summability of a formal solution to (3).

To solve this problem he and Yamazawa introduced in [TY-13]: ¢-Newton polygon
Ny(FE), the set of admissible exponents C and the set of singular directions Z. They
proved that under some conditions if initial data and f are entire functions of exponen-
tial order v € C, then the formal solution of (3) is (kp,. .., k1 )-multisummable in any
direction d ¢ Z where k; are the slopes of N;(FE). This result is in accordance with

previous ones.

§4. Multidimensional heat equation

In the case of the multidimensional heat equation

() {&u—Azu:O,

Ujt=0 =ug € A(Q), Q C R,
where A is the n-dimensional Laplace operator, conditions for k-summability of formal
solutions were obtained by Balser and Malek [BM-04]. However the conditions were
stated in terms of some auxiliary function expressed in terms of the formal solution
itself and not directly in terms of the initial data.

Using the modified Borel transformation, which transforms the heat equation into
the wave equation, Michalik obtained in [M-06] conditions for Borel summability in
terms of the initial data, only. He proved that the (unique) formal power series solution
of (4) is Borel summable in a direction d iff the auxiliary function

faB(l) uo(z + 7y) dS(y) if n is odd,
wiry) g

Jooy i

is holomorphic at the origin in 2z variable and can be analytically continued with respect

D, (z,7) =

if n is even

to 7 in sectors in directions d/2 and m + d/2, and this continuation is of exponential
order at most 2.

8§5. Mean values

Studying the paper [M-06] we have arrived at the idea that conditions for conver-
gence and Borel summability of solutions to the heat equation can be expressed in terms
of integral means of the initial data over balls or spheres.
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§5.1. Spherical and solid means.

Let ©Q be a domain in R” and « € Q. For 0 < R < dist(x, 02) define solid and
spherical means of a continuous function u € C°(Q2) by

1
M(u; z,R) = W /B(a:,R) u(y) dy,
1
N 0B = ot [y U450

where o(n) is the volume of the unit ball in R”. The relations between M (u; z, R) and
N(u; z, R) are given by

Lemma 5.1.  ([L-11, Lemma 1]). Let u € C%(Q). Then for any x € Q and
0 < R < dist(x,090),

R 0
(Zﬁ + 1)M(u, x,R) = N(u; x, R).
If u € C%(Q), then
n 0
E@N(u’ z,R) = M(Au; z, R).
§5.2. Characterization of real analyticity

It appears that real analyticity of a function can be characterized in terms of its
integral means by the so-called Pizzetti series.

Theorem 5.2.  (Mean-value property, [L-12, Theorem 3.1)).  Let u € A(Q2),

x € Q. Then M(u; x,R) and N(u; x, R) are analytic functions at the origin and for
small R,

= Aku(@ 2k

5) M(u; x, R) = _— ,
(5) ( ) ,§4k(g+1)kk!

= Aku(z)
(6) N(u;z,R) = ) ==
,;, 4k(5) k!
Here (a)y = a(a+1)---(a+ k — 1) is the Pochhamer symbol.

Proof. If x = 0 the proof of (5) is done by expending u into Taylor series

and then computing the integral of y* = yfl .-y over B(R). Next, applying Lemma,
5.1 we get (6). O
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Theorem 5.3.  (Converse to the mean value property, [L-12, Theorem 3.2]). Let
p € C°QRT) and u € C(Q). If

- Aku(x) 2k

. ~ = Aly(x)
(respectwely, M(x,R) = 2 w R?k )

is convergent locally uniformly in {(x,R) : x € Q,|R| < p(z)}, then u € A(Q2) and

N(u; z,R) = N(z, R) (respectively, M (u; z, R) = M(z, R)) for x € Q, R < min (p(z),
dist(z, 692)).

Proof. We first derive that for any compact set K & €2 one can find C' < oo such
that for k € Ny,
sup |AFu(z)| < P (2k).

rzeK
But by [ACL, Theorem 2.2 in Chapter II] this inequality implies that v € A(Q2). Finally,
by Theorem 5.2 we get N(z, R) = N(u; z, R) and M (u; , R) = M(z, R) O

§5.3. Functions of Laplacian growth.

In order to control the growth of iterated Laplacians of smooth functions Aronszajn,
Creese and Lipkin introduced the notion of the Laplacian growth.

Definition 5.4. ([ACL]). Let o > 0 and 7 > 0. A function u smooth on 2 C R”
is of Laplacian growth (o, 7) if for every K € Q2 and € > 0 one can find C' = C(K,¢) < oo
such that for k € Ny,

) sup [Afu(z)| < O(r + €)™ (2k)1 712,
zeK

Recall also the definition of functions of exponential growth.

Definition 5.5. ([Boas]). Let ¢ > 0 and 7 > 0. An entire function F is said to
be of exponential growth (o, T) if for every € > 0 one can find C; such that for any R <

00
sup |F(2)| < Coexp{(T +¢)R°}.
2I<R
The exponential growth of an entire function can be also expressed in terms of
estimations of its Taylor coefficients.

It appears that a function u of Laplacian growth (o, 7) on Q is in fact real-analytic on
2 (see [ACL, Theorem 2.2 in Chapter II]). So the spherical and solid means N (u; x, R)
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and M (u; z, R) are expressed by the Pizzetti series valid for €  and R small enough.
However due to estimation (7) both functions N(u; z, R) and M (u; x, R) can be ex-
tended to entire functions of exponential growth.

Theorem 5.6.  ([L-12, Theorem 4.5]). Let u € A(Q), 0 >0 and 7 > 0. If u is
of Laplacian growth (o,7), then N(u; x,R) and M (u; x, R) extend holomorphically to
entire functions of exponential growth (0,72/0) locally uniformly in Q.

Theorem 5.7.  ([L-12, Theorem 4.6]). Let v € A(Q). If M(u; z,R) defined
forz € Q and 0 < R < dist(z,00) extends as a function of R to an entire function

M (u; x, 2z) of exponential growth (o, 7) locally uniformly in Q, then w is of Laplacian
growth (Q, (QT)I/Q). Analogous result holds for N(u; z, R).

§5.4. Application to the heat equation

Using Theorems 5.6 and 5.7 with p = 2 we get

Theorem 5.8.  ([L-12, Theorem 5.1]). Let 0 < T < o0, ug € A(Q). The formal
power series solution

o
A ;

(8) atz) =Y “,—?(Z)tﬂ

=0

of the n-dimensional heat equation (4) is convergent for |t| < T locally uniformly in

iff N(ug; z, R) and/or M(ug; z, R) extend to an entire function of exponential growth

(2,1/(4T)) locally uniformly in €.

Proof.  Assume that u(t, z) is convergent for |[t| < T locally uniformly in 2. Then
for any compact set K € §2 and € > 0 there exist C = C(K,e) < oo such that for all
k e Np,

1 k
k < — A
51612|A uo(2)| _C’(T—i-a) k!

2k
< Cg((QT)_l/Q + e) - (2k)1V/2,

Hence ug is of Laplacian growth (2,1/v/2T) and by Theorem 5.6, N(uo; z, R) and
M (ug; z, R) extend to entire functions of exponential growth (2,1/(47")) locally uni-
formly in €.

On the other hand assume that N(ug; z, R) or M(ug; z, R) extends to an entire
function of exponential growth (2,1/(47)) locally uniformly in Q. Then by Theorem
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5.7, ug is of Laplacian growth (2,1/v/2T) locally uniformly in 2. Hence for |t| < T and
small € > 0,

2k
(1/V2T 21172tk
supZ|A Ny <,y Z 0/ +5)k, CORSUS

which can be estimated by

CZ[( +z—:>|t|] < 0.

So u(t, z) is convergent for |t| < T locally uniformly in €. O

Using the above ideas and results from his previous paper [M-06] S. Michalik ob-
tained a characterization of Borel summable solutions of the heat equation (4).

Theorem 5.9.  ([M-12, Theorem 4.1]). Let d € R, U C C" and let u be the
formal power series solution (8) of the heat equation (4) with ug € O(U). Then the
following conditions are equivalent:

1. u is 1-summable in the direction d;

2. The solid mean M (uo; z, R) extends to U x (S(d/2,€) U S(d/2 + 7, €)) with 0 < e
and for any Uy €U, 0 < €1 <€ and R € S(d/2,e1) U S(d/2+ m,€1),

2
sup.cp, | M (uo; 2, R)| < AeBIEI";
3. The spherical mean N(ug; z, R) satisfies the same condition as in 2.

Furthermore, if the above conditions hold, then the 1-sum of u is given by
1 —e'|z|?
d
- (A Yot 10
u’(t, 2) (At 72 /(eid/zR)n exp o Juolz+z)de

provided that the integral is well defined.

§5.5. A perturbed heat equation

Set A%Y = A + (a,V) + b for a € R", b € R. Then the unique formal power series
solution w(t, z) to the initial value problem

_ Aa,b —
() {8tw A%Pw =0,

’U)|t=0 =W € A(Q),
is given by
N oo Aa,b kw P
(10) W(t,z) = ()k—!o()tk.

k=0
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On the other hand w(t,z) satisfies (9) iff u(t,2) = exp{3{(a,2) — ct}w(t,z) with ¢ =
1a? — 3370 a; + b is a solution of the heat equation (4).
Set

M (uwy; 2, R) = / wo(€) exp{L(a, €)1} de,

B(z,R)

N(uwn; 5 B) = [ (@) exp{3 0.} dS(¢).

S(z,R)

Since the multiplication by an exponential function has no influence on convergence and
divergence properties of its Taylor series by Theorems 5.6 and 5.7 we get

Corollary 5.10. Let 0 < T < oo. The formal power series solution (10) of the
initial value problem (9) is convergent for |t| < T locally uniformly in Q iff M*(wo; z, R)
and/or N*(wq; z, R) as functions of R extend holomorphically to entire functions of
exponential growth (2,1/(4T)) locally uniformly in €.

§6. Heat equation with variable coefficients

The general one dimensional heat equation d;u — a(z)0%u = q(t, z) with a variable
coefficient a(z) and inhomogeneity q(t,z) was studied by Balser and Loday-Richaud
[BLR-09]. In fact they stated results for the equivalent equation

(1—a(2)0;102) alt, 2) = f(t,2)

with a(z) € O(D,), f(t, z) € O(D,)[[t]]. Then its formal solution u(t, z) = Z;X;O ujj—(!z)tj

satisfies the recurrence equations

uj(2) = fi(2) + a(2)uj (), jeN

Balser and Loday-Richaud proved that the map u +— (1 —a(z)0; 183) u gives a linear
isomorphism of O(D,)[[t]] onto itself. Furthermore, assuming that a(0) # 0 or a’(0) # 0,
the formal solution @ is 1-summable in a direction d iff fand the first two terms @, o
and U, 1 of U(t,z) = >0, ﬂ*,n(t)zn—i are l-summable in d. In special cases a(z) = a
and a(z) = bz the conditions on 1-summability of & are given in terms of the initial
data, only.

Costin, Park and Takei in [CPT-12] studied Borel summability of the IVP

ou = a(2)0%u,

u(0,z2) = H% ,
where a(z) is a quartic polynomial with 4 distinct roots.  Setting y(z) =
f;o a(€)"Y2d¢ and z = ¢(y), the inverse to y(z), they obtained the integral equation
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for the function g(y, s) (related to the Borel transform of u),

+5)+ ut(s—5)
o(y,o) = PUEDZIOD 4 27T gty s

where

_ . " ~1/4 _a"(e(y) _ 3(d(e)))?
90(y) = uo(e))ale®) ", ny) 1 o)

Since ¢(y) can be expressed in terms of the Weierstrass elliptic function P(y; g2, g3)

with parameters go and g3 related to coefficients of a(z), they were able to describe
singularities of g(y,s) and prove its Laplace transformability. They also treated the
case a(z) = z and obtained the detailed resurgence structure of the singular manifold
(which even in this simple case is quite intricate), see [CPT-12, Theorem 10].

§7. Heat type equations on manifolds

Let M be a real analytic manifold of dimension n and Xj,..., Xy real analytic
linearly independent vector fields on M. Define a Laplace type operator on M by
A = X2+ .-+ X2 and consider the initial value problem

(1) {8tv—Av:O,

V)t=0 = o, vo € AM).
The formal power series solution of (11) is given by

[e’e] ~k’U
(12) Wty =Y Ak—(;(y)tk.

k=0

It is well known that if vector fields X; commute,

(13) (X, X;]=0 for 4,j=1,...,n,
then for a fixed y € M one can find a real analytic diffeomorphism ® : R” D Q onto, 7
M such that § € V = &) and o;1(X;) = % for i = 1,...,n.

Set Bo(y,R) = ®(B(z,R)), So(y,R) = ®(S(z,R)) with z = &7 *(y), 0 < R <
dist(z,09). Let ug (respectively, dSs) be a measure on V' (respectively, on Sg) de-
fined by ue(A) = J. p-1(a) d¢ for a Borel measurable set A C V (respectively, dSg(A) =
fcp—l(A) dS (&) for a Borel measurable set A C Sg).
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Theorem 7.1.  ([L-14, Theorem 2]). Let 0 < T < oo. The formal power series
solution (12) of the heat type equation (11) is convergent for |t| < T locally uniformly
in V' if and only if the solid integral mean

1
M@(”O; y;R) = 113 (Bq;(y,R)) /Bq,(y’R) 00(77) dﬂcb(n)

and/or the spherical integral mean

1
=4S (Se(y, R)) /sq)(y,R) vo(n)dSa ()

extends to an entire function of exponential growth (2,1/(4T)) locally uniformly in V.

N@(UO; Y, R)

Proof.  Assume that the formal power series solution (12) of (11) is convergent for
|t| < T locally uniformly in V. Denote its sum as v(¢,y) and set u(t, z) = v(t, ®(2)),
uo(z) = vo(®(2)) for |t| < T, z € Q. Then u satisfies the heat equation (4) and is given
by (8) with the series convergent for |t| < T locally uniformly in €. Hence by Theorem
5.8, M(ugp; z, R) extends to entire functions of exponential growth (2, 1/ (4T)) locally
uniformly in Q. But for z € Q and y = ®(z) we have

o(n)R" = / d¢ = ps (Ba(y, R)),
&1 (Bs(y,R))

/ un(€) dé = / 0o (B(€)) de = vo(n) dua (1)
B(z,R) ®-1(Bs(y,R)) Bas(y,R)

and
no(n)R" = / dS(€) = dSe (So(y, R)).
&-1(Ss(y,R))
/ up(£)dS(€) = / 00 (B(6))dS(€) = / vo(n)dSa(n).
S(z,R) &-1(S3(y,R)) Sa(y,R)
So

M((up; 2z, R) = My (vo; y, R) and N(ug,x; R) = N (vo;y, R).

Hence Mg (vo; y, R) and Ng(vo;y, R) as functions of R extend to entire functions of
exponential growth (2, 1/ (4T)) locally uniformly in V.

The proof of the converse statement is done in the same way with and replaced by
or. U

Remark 1. An analogue of Theorem 7.1 holds for solutions of heat type equations
with A perturbed by Y | a;X; +b. In that case the measure g should be replaced
by

)= [ ewlbegie  Acy.
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Repeating the proof of Theorem 7.1, but now using Theorem 5.9 in place of Theo-
rem 5.8, we get

Theorem 7.2.  ([L-14, Theorem 4]). Let M be a real analytic manifold, vy €
A(M) and X1, ..., X, real analytic linearly independent commuting vector fields on M.
Fizy e M and let , Q, V, Bg, ue and dSg be as in Theorem 7.1. Set ug = vgo® and
assume that ug and ® extend to a complex neighborhood U C C™ of Q). Then vy extends
to the neighborhood ®(U) of V in the complezification of M. Let d € R and let U be the
formal solution (12) of the heat type equation (11). Then the following conditions are
equivalent:

1. v is Borel summable in d locally uniformly in ®(U);

2. Mg (vo; 2z, R) extends to ®(U) x (D U S(d/2,€) U S(d/2+ m,€)) with 0 < € and for
any Uy €U, 0< € <eand Re€ S(d/2,e;)US(d/2+ 7, €1),

SUPco(1y) |Ma(vo; 2, R)| < AeBIRI .

3. The function Ng(vo; z, R) satisfies the same condition as in 2..

§7.1. Remarks and open problems

1. The results on convergence and Borel summability are local. It would be

interesting to obtain global analogues. In case of the one dimensional heat equation
on S! the solution to the problem can be expressed in terms of estimations of Fourier
coefficients of the initial data. The general case seems to be open.
2. It would be also interesting to obtain conditions for convergence and Borel summabil-
ity of formal solutions to (11) in cases when vector fields X; do not commute and/or are
not linearly independent. Of special interest here are the cases when A is the Grushin
operator 0% + x28§ or the Laplace operator on the Heisenberg group.

§ 8. Nonlinear equations

Until now there are only few papers devoted to the study of summability of formal
solutions to nonlinear partial differential equations. Ouchi in [O-06] considered a class
of singular partial differential equations with polynomial nonlinearity which can be
considered as a perturbation (in some sense) of ODEs. He proved that under some
technical conditions the null formal power series solutions are multisummable.

Costin and Tanveer in [CT-07] considered the Cauchy problem for a system of
quasilinear PDEs

(14) w, + P(0))u+g(t,z,{0lu}j<n) =0, u(0,2) =uy(z),
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with u in C" for small ¢ and large |z| in a poly-sector S in C". Assuming that the
principal part of P satisfies a cone condition and that the nonlinearity g and the initial
data uy are analytic and satisfy some decay conditions on S, they proved existence
and uniqueness of solutions to (14). Under further regularity conditions on g and ug
ensuring the existence of formal power series solutions for large z € S they showed that
formal series solutions are Borel summable to actual solutions, see [CT-07, Theorem 2].

In a subsequent paper [CT-09] Costin and Tanveer studied the initial value problem
to the 3-dimensional Navier-Stokes system

Ou — Au= —P(u-Vu) + f(x),
u(0,2) =ug(x), x¢€R3,

where P is the Hodge-projection operator to the space of divergence free vector fields.
Assuming that the initial data ug and the force f are divergence free and analytic they
proved [CT-09, Theorem 1.2] that the solution wu is Borel summable in 1/¢, i.e., there
exists U(p,z), analytic in p in a neighborhood of R, and exponentially bounded as
p — oo, and analytic in z for [Imz;| < e,i=1,2,3, so that

o
u(t,) = uo(a) + [ Ulp.a)e " dp
0
for ¢ > 0 small enough.

8.1. Burgers equation
In [E-09] we considered the IVP for the Burgers equation
{ Oyu — 0?u = 0, (uQ),

U|t:0 = UgQ-

(15)

The formal power series solution is given by

— u(2)

a(.1:7 Z) = kk| tk7

k=0 )

where
5 . k!
Ug+1 = O“up + v, with v = Z . '8(umu,€2), k € Ng.
HEN(Z)Y 1 2
k1+kro=k

Applying the Cole-Hopf transformation
z
u(t, z) = v(t, z) = exp { / u(t, y)dy}

which transforms (15) into the heat equation and its inverse v(t, z) — u(t, z) = (Inv(t, 2))
we proved

/
z
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Theorem 8.1.  ([L-09, Theorem 1]). Let B be a ball at {0} and let uy € A(B).
If the formal power series solution of the Burgers equation (15) is convergent locally
uniformly in B, then ug extends to a meromorphic function on C of the form

(16) uO(Z)=2az+b+§:( ! +i+z),

Z2—2n  Zn 22

where a,b € C and {zy }nen is a sequence of z, € C*U{oo} with nondecreasing modulus
such that

>
1
(17) Z|Z|—2+E<oo for any ¢ >0.
n=1 """

Conversely, if ug extends to a meromorphic function of the form (16) and (17) holds,
then the formal solution of (15) is convergent in a neighborhood of {0}.

Theorem 8.2.  ([L-09, Theorem 2]). Let ug € A(B) and d € R. If the formal
power series solution of (15) is Borel summable in the direction d locally uniformly in
a neighborhood of {0}, then ug extends analytically to a function meromorphic on a

domain
D(d,e) D S(d/2,e) US(d/2+ 7,¢)

with some € > 0 which has in D(d,€) at most simple poles with residua in N.
Conversely, if ug extends to a meromorphic function on D(d,e) of the form

> 1 1z

w(z) =Y (Z ot 2—2) +u(z),
n=1 n

where 0 # z, € D(d,e) satisfy (17), v is holomorphic on D(d,e) and |v(z)| < a|z| + b,

then the formal power series solution of (15) is Borel summable in the direction d locally

uniformly in a neighborhood of the origin.
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