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Summability of formal solutions to partial differential

equations

To Profe ssor T. Aoki on the occasion of his 60th birthday

By

Grzegorz LYSIK *

Abstract

We give a survey of results on convergence and summability of formal power series solutions

to the initial value problem for non‐Kowalevskian partial differential equations. A special
attention is paid on heat type equations.

§1. Introduction

One of the main problems arising in the analytic theory of partial differential equa‐

tions is a characterization of data given on a manifold S for which a solution of a

boundary value problem is an analytic function in a variable normal to S . In general,
one can easily construct a formal power series solution in the normal to S variable, and

by the Cauchy‐Kowalevski theorem it is convergent if S is not the characteristic variety
of the equation. In other cases formal solutions need not to be convergent. At this point
there arise natural questions:

\bullet under which conditions on the data the formal solution is convergent?

\bullet what is the meaning of a divergent formal solution?

\bullet is it an asymptotic expansion of an actual solution?
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\bullet can and how the actual solution be constructed from the formal one?

In the case of ordinary differential equations answers to those questions were given
in 80‐ties and 90‐ties of the XX century by the (multi‐)summability theory. On the other

hand in the case of partial differential equations the study of those problems started at

the end of the XX century and, besides linear equations with constant coefficients in

two variables, practically there are no general results.

In the paper we shall give a survey of solutions to those problems for some classes

of partial differential equations. Namely under the assumption that  S\subset\{t=0\} ,
we

shall consider equations of the form

P(t, z, \partial_{t}, \nabla_{z}, \nabla_{z}^{2}, \ldots)u(t, z)=f(t, z) ,

where P is a differential operator (not necessary linear) with holomorphic coefficients.

We shall assume that the order of P with respect to z is at least 2.

§2. One dimensional case.

The starting point in the study of summability of formal solutions to PDE�s is the

paper by Lutz, Miyake and Schäfke [LMS‐99]. They studied the initial value problem
to the one dimensional heat equation

(1) \left\{\begin{array}{l}
\partial_{t}u-\partial_{z}^{2}u=0,\\
u_{|t=0} =u_{0}\in \mathcal{A}(B) ,
\end{array}\right.
where B is a ball in R. Its formal power series solution û is given by

(2) \displaystyle \mathrm{u}(t, z)=\sum_{j=0}^{\infty}\frac{\partial^{2j}u_{0}(z)}{\mathrm{j}!}t^{j}.
In general the series û is divergent, but Gevrey of order k=1

, i.e.,

|\displaystyle \frac{\partial^{2j}u_{0}(z)}{\mathrm{j}!}|\leq C^{j+1}(j!)^{k} with k=1,

locally uniformly in B . The problem of a characterization of the initial data u_{0} ensuring

convergence of the formal solution (2) was already solved in 1875 by Kowalevskaya

([Kow]). She proved that the solution û is convergent if and only if the initial data u_{0}

can be analytically extended to an entire function of exponential order 2.

To state the main result of [LMS‐99] recall

Definition 2.1. Let  d\in \mathbb{R}\mathrm{m}\mathrm{o}\mathrm{d} 2 $\pi$ be a direction in \mathbb{C}, U an open subset of \mathbb{C}^{n}

and $\varphi$_{j}\in \mathcal{O}(U) for j\in \mathbb{N}_{0} . A formal power series

\displaystyle \hat{ $\varphi$}(t, z)=\sum_{j=0}^{\infty}\frac{$\varphi$_{j}(z)}{\mathrm{j}!}t^{j}
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is said to be k‐summable (Borel summable if k=1 ) with respect to t in the direction

d if its k‐Borel transfo rm defined on B_{ $\epsilon$}\times U with some  $\epsilon$>0 by

(\displaystyle \hat{B}_{k}\hat{ $\varphi$})(s, z)=\sum_{j=0}^{\infty}\frac{$\varphi$_{j}(z)}{\dot{j}!\cdot $\Gamma$(1+\mathrm{j}/k)}s^{j}
extends holomorphically to a domain (B_{ $\epsilon$}\cup S(d,  $\epsilon$))\times U and the extension satisfies for

any U_{1}\subset U and 0<$\epsilon$_{1}< $\epsilon$,

\displaystyle \sup_{z\in U_{1}}|(\hat{B}_{k}\hat{ $\varphi$})(s, z)|\leq Ae^{B|s|^{k}} for s\in S(d, $\epsilon$_{1})

with some A,  B<\infty . Here  B_{ $\epsilon$} is a ball in \mathbb{C} of radius  $\epsilon$ centered at the origin and

 S(d,  $\epsilon$) is a sector \{z\in \mathbb{C} : |\arg z-d|< $\epsilon$\} . If so, then the function

$\varphi$^{ $\theta$}(t, z)=\displaystyle \frac{1}{t^{k}}\int_{0}^{\infty( $\theta$)}\hat{B}_{k}\hat{ $\varphi$}(s, z)e^{-(s/t)^{k}}d(s^{k}) , | $\theta$-d|< $\epsilon$,
is called the k ‐Borel sum of \hat{ $\varphi$}.

Theorem 2.2. ([LMS‐99]). Let u_{0} be a function real analytic in a ball B in \mathbb{R}

centered at the origin. The formal power series solution (2) of (1) is Borel summable in

a direction d locally unifo rmly in B iff u_{0} extends analytically to a function holomorphic
on a domain

D(d,  $\epsilon$)\supset S(d/2,  $\epsilon$)\cup S(d/2+ $\pi$,  $\epsilon$)

with some  $\epsilon$>0 which has in D(d,  $\epsilon$) at most exponential growth of order at most 2

locally unifo rmly in B.

The above result was extended to the case of multisummable solutions of (1) by
Balser [B‐99]; to formal power series satisfying certain differential recursion formulas by
Balser and Miyake [BMi‐99]; to the equation \partial_{t}^{p}u=\partial_{z}^{q}u, p<q , by Miyake [Mi‐99] and

by Ichinobe [I‐01], who also gave explicite integral representations of the Borel sums of

solutions in terms of the Barnes hypergeometric series q^{F}p-1.
General linear partial differential equations with constant coefficients in one space

variable

\displaystyle \partial_{t}^{m}p(\partial_{z})u-\sum_{i=1}^{m}\partial_{t}^{m-i}p_{i}(\partial_{z})u=0,
where p and p_{i} are polynomials, were investigated by Balser. In [B‐02] he studied

the case when the Newton polygon of the equation has only one slope and proved k‐

summability of \mathrm{a} (unique) normalized solution. While in [B‐04] he proved multisumma‐

bility of normalized solutions to equations with Newton polygon having several slopes.
The results were further extended in [B‐05] to solutions of some integral‐differential
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equations in two variables. Another proof of Balser�s results in a more general frame‐

work of fractional equations was given by Michalik [M‐10].
In [I‐03] Ichinobe studied the following problem

\left\{\begin{array}{l}
\partial_{t}^{p_{l} $\nu$}u =\sum_{j=1}^{l $\nu$}a_{j}\partial_{t}^{p(l $\nu$-j)}\partial_{z}^{jq}u, q>p\geq 1,\\
\partial_{t}^{k}u_{|t=0} =0 \mathrm{f}\mathrm{o}\mathrm{r} k=0, . . . , p $\nu$-2,\\
\partial_{t}^{p_{l} $\nu$-1}u_{|t=0}=u_{0}\in \mathcal{A}(B) .
\end{array}\right.
He proved that its formal power series solution û is p/(q-p) ‐summable in a direction

d (also in d' with d'=d\mathrm{m}\mathrm{o}\mathrm{d} (2 $\pi$/p) ) iff u_{0} extends holomorphically to a domain D

containing union of some sectors in \mathbb{C} and has in D at most exponential growth of order

at most q/(p-q) locally uniformly in B . He also gave an explicite integral representation
of the Borel sum of û in terms of the Meijer function G_{p,q}^{m,n} . Ichinobe also studied the

Cauchy problem to the equation

\partial_{t}u=P(t, \partial_{z})u where P(t, \displaystyle \partial_{z})=\sum_{i, $\alpha$}a_{i $\alpha$}t^{i}\partial_{z}^{ $\alpha$}.
Assuming that the Newton polygon of P has only one slope he proved that the formal

solution is k‐summable if the initial data are holomorphic in a sum of sectors with

suitable exponential growth.
From the above papers it follows that formal solutions of non‐Kowalevskian PDEs

are summable only if the initial data satisfy quite restrictive conditions.

§3. Multidimensional case

The study of the multidimensional equations was initiated by \overline{\mathrm{O}} uchi [O‐02]. He

studied the summability of formal solutions to linear PDEs of the form

(3) \left\{\begin{array}{l}
\partial_{t}^{m}u + \sum a_{j, $\alpha$}(t)\partial_{t}^{j}\partial_{z}^{ $\alpha$}u=f(t, z) ,\\
(j, $\alpha$)\in $\Lambda$\\
\partial_{t}^{i}u_{|t=0}=$\varphi$_{i} \mathrm{f}\mathrm{o}\mathrm{r} i=0, . . . , m-1.
\end{array}\right.
If \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{t}a_{j, $\alpha$}\geq\max(0, j-m+1) for (j,  $\alpha$)\in $\Lambda$ ,

then the problem has a unique formal

solution, which is convergent if  j+| $\alpha$|\leq m for all (j,  $\alpha$)\in $\Lambda$.\overline{\mathrm{O}} uchi defined the Newton

polygon N(E) and proved that if (j+| $\alpha$|, \mathrm{o}\mathrm{r}\mathrm{d}_{t}a_{j, $\alpha$}-j)\in \mathrm{i}\mathrm{n}\mathrm{t}N(E) for (j,  $\alpha$)\in $\Lambda$ with

 $\alpha$\neq 0 (this condition guaranties that the equation (3) can be treated as a perturbation
of an ordinary differential equation), then the formal solution of (3) is multisummable

in a suitable multidirection; the levels of summability are the slopes of N(E) .

In [Y‐12] Yamazawa studied the equation

\partial_{t}u=\partial_{z}^{2}u+t(t\partial_{t})^{3}u.
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He proved that if initial data is an entire function of exponential order 2, then the

solution is Borel summable in directions d\not\in\{0,  $\pi$\} . Later he showed that the same

conclusion holds for functions of finite exponential order. Motivated by this and similar

examples Tahara posed the following problem.

Assuming that initial data and f are entire functions of exponential order  $\gamma$ determine

minimal  $\gamma$ guaranteeing summability of a formal solution to (3).
To solve this problem he and Yamazawa introduced in [TY‐13]:  t‐Newton polygon

N_{t}(E) ,
the set of admissible exponents C and the set of singular directions \mathcal{Z} . They

proved that under some conditions if initial data and f are entire functions of exponen‐

tial order  $\gamma$\in C ,
then the formal solution of (3) is (kp, . . .

, k_{1} )‐multisummable in any

direction d\not\in \mathcal{Z} where k_{i} are the slopes of N_{t}(E) . This result is in accordance with

previous ones.

§4. Multidimensional heat equation

In the case of the multidimensional heat equation

(4) \left\{\begin{array}{l}
\partial_{t}u-\triangle_{z}u=0,\\
u_{|t=0} =u_{0}\in \mathcal{A}( $\Omega$) ,  $\Omega$\subset \mathbb{R}^{n},
\end{array}\right.
where \triangle is the  n‐dimensional Laplace operator, conditions for k‐summability of formal

solutions were obtained by Balser and Malek [BM‐04]. However the conditions were

stated in terms of some auxiliary function expressed in terms of the formal solution

itself and not directly in terms of the initial data.

Using the modified Borel transformation, which transforms the heat equation into

the wave equation, Michalik obtained in [M‐06] conditions for Borel summability in

terms of the initial data, only. He proved that the (unique) formal power series solution

of (4) is Borel summable in a direction d iff the auxiliary function

$\Phi$_{n}(z,  $\tau$)=\left\{\begin{array}{l}
\int_{\partial B(1)}u_{0}(z+ $\tau$ y)dS(y) \mathrm{i}\mathrm{f} n \mathrm{i}\mathrm{s} \mathrm{o}\mathrm{d}\mathrm{d},\\
\int_{B(1)}\frac{u_{0}(z+ $\tau$ y)}{\sqrt{1-|y|^{2}}}dy \mathrm{i}\mathrm{f} n \mathrm{i}\mathrm{s} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}
\end{array}\right.
is holomorphic at the origin in z variable and can be analytically continued with respect

to  $\tau$ in sectors in directions  d/2 and  $\pi$+d/2 ,
and this continuation is of exponential

order at most 2.

§5. Mean values

Studying the paper [M‐06] we have arrived at the idea that conditions for conver‐

gence and Borel summability of solutions to the heat equation can be expressed in terms

of integral means of the initial data over balls or spheres.
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§5.1. Spherical and solid means.

Let  $\Omega$ be a domain in \mathbb{R}^{n} and  x\in $\Omega$ . For  0<R< dist ( x, \partial $\Omega$) define solid and

spherical means of a continuous function u\in C^{0}() by

M(u;x, R)=\displaystyle \frac{1}{ $\sigma$(n)R^{n}}\int_{B(x,R)}u(y)dy,
N(u;x, R)=\displaystyle \frac{1}{n $\sigma$(n)R^{n-1}}\int_{S(x,R)}u(y)dS(y) ,

where  $\sigma$(n) is the volume of the unit ball in \mathbb{R}^{n} . The relations between M(u;x, R) and

N(u;x, R) are given by

Lemma 5.1. ([L‐11, Lemma 1 Let u\in C^{0}( $\Omega$) . Then for any  x\in $\Omega$ and

 0<R< dist ( x, \partial $\Omega$) ,

(\displaystyle \frac{R}{n}\frac{\partial}{\partial R}+1)M(u;x, R)=N(u;x, R) .

If u\in C^{2}( $\Omega$) ,
then

\displaystyle \frac{n}{R}\frac{\partial}{\partial R}N(u;x, R)=M(\triangle u;x, R) .

§5.2. Characterization of real analyticity

It appears that real analyticity of a function can be characterized in terms of its

integral means by the so‐called Pizzetti series.

Theorem 5.2. (Mean‐value property, [L‐12, Theorem 3.1]). Let u\in \mathcal{A}( $\Omega$) ,

 x\in $\Omega$ . Then  M(u;x, R) and N(u;x, R) are analytic functions at the origin and f^{0or}
small R,

(5) M(u;x, R)=\displaystyle \sum_{k=0}^{\infty}\frac{\triangle^{k}u(x)}{4^{k}(\frac{n}{2}+1)_{k}k!}R^{2k},
(6) N(u;x, R)=\displaystyle \sum_{k=0}^{\infty}\frac{\triangle^{k}u(x)}{4^{k}(\frac{n}{2})_{k}k!}R^{2k}

Here (a)_{k}=a(a+1)\cdots(a+k-1) is the Pochhamer symbol.

Proof. If x=0 the proof of (5) is done by expending u into Taylor series

u(y)=\displaystyle \sum_{l\in \mathbb{N}_{0}^{n}}\frac{1}{\ell_{1}!\cdots\ell_{n}!}\frac{\partial^{|l|}}{\partial y^{p}}u(0)y^{p},
and then computing the integral of y^{p}=y_{1}^{p_{1}}\cdots y_{n}^{p_{n}} over B(R) . Next, applying Lemma

5.1 we get (6). \square 
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Theorem 5.3. (Converse to the mean value property, [L‐12, Theorem 3.2]). Let

 $\rho$\in C^{0}( $\Omega$, \mathbb{R}^{+}) and u\in C^{\infty}( $\Omega$) . If

\displaystyle \overline{N}(x, R)=\sum_{k=0}^{\infty}\frac{\triangle^{k}u(x)}{4^{k}(\frac{n}{2})_{k}k!}R^{2k}
(respectively, \displaystyle \overline{M}(x, R)=\sum_{k=0}^{\infty}\frac{\triangle^{k}u(x)}{4^{k}(\frac{n}{2}+1)_{k}k!}R^{2k} )

is convergent locally unifo rmly in \{(x, R) : x\in $\Omega$, |R|< $\rho$(x)\} ,
then u\in \mathcal{A}( $\Omega$) and

N(u;x, R)=\overline{N}(x, R) (respectively, M(u;x, R)=\overline{M}(x, R))_{f}0orx\in $\Omega$, R<\displaystyle \min( $\rho$(x) ,

dist (x, \partial $\Omega$) ).

Proof. We first derive that for any compact set  K\Subset $\Omega$ one can find  C<\infty such

that for  k\in \mathbb{N}_{0},

\displaystyle \sup_{x\in K}|\triangle^{k}u(x)|\leq C^{2k+1}(2k)!.
But by [ACL, Theorem 2.2 in Chapter II] this inequality implies that u\in \mathcal{A}( $\Omega$) . Finally,

by Theorem 5.2 we get \overline{N}(x, R)=N(u;x, R) and M(u;x, R)=\overline{M}(x, R) \square 

§5.3. Functions of Laplacian growth.

In order to control the growth of iterated Laplacians of smooth functions Aronszajn,
Creese and Lipkin introduced the notion of the Laplacian growth.

Definition 5.4. ([ACL]). Let  $\rho$>0 and  $\tau$\geq 0 . A function u smooth on  $\Omega$\subset \mathbb{R}^{n}

is of Laplacian growth ( $\rho$,  $\tau$) if for every  K\subset $\Omega$ and  $\epsilon$>0 one can find  C=C(K,  $\epsilon$)<\infty
such that for  k\in \mathbb{N}_{0},

(7) \displaystyle \sup_{x\in K}|\triangle^{k}u(x)|\leq C( $\tau$+ $\epsilon$)^{2k}(2k)!^{1-1/ $\rho$}.
Recall also the definition of functions of exponential growth.

Definition 5.5. ([Boas]). Let  $\rho$>0 and  $\tau$\geq 0 . An entire function F is said to

be of exponential growth ( $\rho$,  $\tau$) if for every  $\epsilon$>0 one can find C_{ $\epsilon$} such that for any R<

\infty

\displaystyle \sup|F(z)|\leq C_{ $\epsilon$}\exp\{( $\tau$+ $\epsilon$)R^{ $\rho$}\}.
|z|\leq R

The exponential growth of an entire function can be also expressed in terms of

estimations of its Taylor coefficients.

It appears that a function u of Laplacian growth ( $\rho$,  $\tau$) on  $\Omega$ is in fact real‐analytic on

 $\Omega$ (see [ACL, Theorem 2.2 in Chapter II So the spherical and solid means  N(u;x, R)
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and M(u;x, R) are expressed by the Pizzetti series valid for  x\in $\Omega$ and  R small enough.
However due to estimation (7) both functions N(u;x, R) and M(u;x, R) can be ex‐

tended to entire functions of exponential growth.

Theorem 5.6. ([L‐12, Theorem 4.5]). Let u\in \mathcal{A}( $\Omega$) ,  $\rho$>0 and  $\tau$\geq 0 . If u is

of Laplacian growth ( $\rho$,  $\tau$) ,
then N(u;x, R) and M(u;x, R) extend holomorphically to

entire functions of exponential growth ( $\rho,\ \tau$^{ $\rho$}/ $\rho$) locally unifo rmly in  $\Omega$.

Theorem 5.7. ([L‐12, Theorem 4.6]). Let u\in \mathcal{A}( $\Omega$) . If M(u;x, R) defined

 f^{0orx}\in $\Omega$ and  0\leq R< dist ( x, \partial $\Omega$) extends as a function of R to an entire function

\overline{M}(u;x, z) of exponential growth ( $\rho$,  $\tau$) locally unifo rmly in  $\Omega$
,

then  u is of Laplacian

growth ( $\rho$, ( $\rho \tau$)^{1/ $\rho$}) . Analogous result holds for N(u;x, R) .

§5.4. Application to the heat equation

Using Theorems 5.6 and 5.7 with  $\rho$=2 we get

Theorem 5.8. ([L‐12, Theorem 5.1]). Let 0<T\leq\infty, u_{0}\in \mathcal{A}( $\Omega$) . The fo rmal

power series solution

(8) \displaystyle \mathrm{u}(t, z)=\sum_{j=0}^{\infty}\frac{\triangle^{j}u_{0}(z)}{\dot{j}!}t^{j}
of the n ‐dimensional heat equation (4) is convergent for |t|<T locally unifo rmly in  $\Omega$

iff  N(u_{0};z, R) and/or M(u_{0};z, R) extend to an entire function of exponential growth

(2, 1/(4T)) locally unifo rmly in  $\Omega$.

Proof. Assume that \mathrm{U}(t, z) is convergent for |t|<T locally uniformly in  $\Omega$ . Then

for any compact set  K\subset $\Omega$ and  $\epsilon$>0 there exist  C=C(K,  $\epsilon$)<\infty such that for all

 k\in \mathbb{N}_{0},

\displaystyle \sup_{z\in K}|\triangle^{k}u_{0}(z)|\leq C(\frac{1}{T}+ $\epsilon$)^{k}\cdot k!
\leq C_{ $\epsilon$}((2T)^{-1/2}+ $\epsilon$)^{2k} (2k)!^{1/2}

Hence u_{0} is of Laplacian growth (2, 1/\sqrt{2T}) and by Theorem 5.6, N(u_{0};z, R) and

M(u_{0};z, R) extend to entire functions of exponential growth (2, 1/(4T)) locally uni‐

formly in  $\Omega$.

On the other hand assume that N(u_{0};z, R) or M(u_{0};z, R) extends to an entire

function of exponential growth (2, 1/(4T)) locally uniformly in  $\Omega$ . Then by Theorem
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5.7,  u_{0} is of Laplacian growth (2, 1/\sqrt{2T}) locally uniformly in  $\Omega$ . Hence for |t|<T and

small  $\epsilon$>0,

\displaystyle \sup_{z\in K}\sum^{\infty}\frac{|\triangle^{k}u_{0}(z)|}{k!}|t|^{k}\leq C_{ $\epsilon$}\sum^{\infty}\frac{(1/\sqrt{2T}+ $\epsilon$)^{2k}(2k!)^{1/2}|t|^{k}}{k!},
k=0 k=0

which can be estimated by

C_{ $\epsilon$}\displaystyle \sum_{k=0}^{\infty}[(\frac{1}{T}+ $\epsilon$)|t|]^{k}<\infty.
So \mathrm{U}(t, z) is convergent for |t|<T locally uniformly in  $\Omega$. \square 

Using the above ideas and results from his previous paper [M‐06] S. Michalik ob‐

tained a characterization of Borel summable solutions of the heat equation (4).

Theorem 5.9. ([M‐12, Theorem 4.1]). Let d\in \mathbb{R}, U\subset \mathbb{C}^{n} and let û be the

formal power series solution (8) of the heat equation (4) with u_{0}\in \mathcal{O}(U) . Then the

following conditions are equivalent:

1. û is 1‐summable in the direction d ;

2. The solid mean M(u_{0};z, R) extends to U\times(S(d/2,  $\epsilon$)\cup S(d/2+ $\pi$,  $\epsilon$)) with  0< $\epsilon$

and for any  U_{1}\subset U,  0<$\epsilon$_{1}< $\epsilon$ and  R\in S(d/2, $\epsilon$_{1})\cup S(d/2+ $\pi,\ \epsilon$_{1}) ,

\displaystyle \sup_{z\in U_{1}}|M(u_{0};z, R)|\leq Ae^{B|R|^{2}} ;

3. The spherical mean N(u_{0};z, R) satisfies the same condition as in 2.

Furthermore, if the above conditions hold, then the 1‐sum of û is given by

u^{d}(t, z)=\displaystyle \frac{1}{(4 $\pi$ t)^{n/2}}\int_{(e^{id/2}\mathbb{R})^{n}}\exp\{\frac{-e^{id}|x|^{2}}{4t}\}u_{0}(x+z)dx
provided that the integral is well defined.

§5.5. A perturbed heat equation

Set \triangle^{a,b}=\triangle+\langle a, \nabla\rangle+b for a\in \mathbb{R}^{n}, b\in \mathbb{R} . Then the unique formal power series

solution \hat{w}(t, z) to the initial value problem

(9) \left\{\begin{array}{l}
\partial_{t}w-\triangle^{a,b}w=0,\\
w_{|t=0} =w_{0}\in \mathcal{A}( $\Omega$) ,
\end{array}\right.
is given by

(10) \displaystyle \mathrm{W}(t, z)=\sum_{k=0}^{\infty}\frac{(\triangle^{a,b})^{k}w_{0}(z)}{k!}t^{k}
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On the other hand w(t, z) satisfies (9) iff u(t, z)=\displaystyle \exp\{\frac{1}{2}\langle a, z\rangle-ct\}w(t, z) with c=

\displaystyle \frac{1}{4}a^{2}-\frac{1}{2}\sum_{i=1}^{n}a_{i}+b is a solution of the heat equation (4).
Set

M^{a}(w_{0};z, R)=\displaystyle \int_{B(z,R)}w_{0}( $\xi$)\exp\{\frac{1}{2}\langle a,  $\xi$\rangle\}d $\xi$,
N^{a}(w_{0};z, R)=\displaystyle \int_{S(z,R)}w_{0}( $\xi$)\exp\{\frac{1}{2}\langle a,  $\xi$\rangle\}dS( $\xi$) .

Since the multiplication by an exponential function has no influence on convergence and

divergence properties of its Taylor series by Theorems 5.6 and 5.7 we get

Corollary 5.10. Let  0<T\leq\infty . The formal power series solution (10) of the

initial value problem (9) is convergent  for|t|<T locally unifo rmly in  $\Omega$ iff  M^{a}(w_{0};z, R)
and/or N^{a}(w_{0};z, R) as functions of R extend holomorphically to entire functions of
exponential growth (2, 1/(4T)) locally unifo rmly in  $\Omega$.

§6. Heat equation with variable coefficients

The general one dimensional heat equation \partial_{t}u-a(z)\partial_{z}^{2}u=\hat{q}(t, z) with a variable

coefficient a(z) and inhomogeneity \hat{q}(t, z) was studied by Balser and Loday‐Richaud

[BLR‐09]. In fact they stated results for the equivalent equation

(1-a(z)\partial_{t}^{-1}\partial_{z}^{2}) û (t, z)=\hat{f}(t, z)
with a(z)\in \mathcal{O}(D_{ $\rho$}) , \hat{f}(t, z)\in \mathcal{O}(D_{ $\rho$})[[t]] . Then its formal solution \displaystyle \mathrm{U}(t, z)=\sum_{j=0}^{\infty}\frac{u_{j}(z)}{j!}t^{j}
satisfies the recurrence equations

u_{j}(z)=f_{j}(z)+a(z)u_{j-1}''(z) , j\in \mathbb{N}.

Balser and Loday‐Richaud proved that the map \hat{u}\mapsto(1-a(z)\partial_{t}^{-1}\partial_{z}^{2})\mathrm{u} gives a linear

isomorphism of \mathcal{O}(D_{ $\rho$})[[t]] onto itself. Furthermore, assuming that a(0)\neq 0 or a'(0)\neq 0,
the formal solution û is 1‐summable in a direction d iff \hat{f} and the first two terms û * �0

and û * �1 of û (t, z)=\displaystyle \sum_{n=0}^{\infty}\mathrm{u}_{*,n}(t)\frac{z^{n}}{n!} are 1‐summable in d . In special cases a(z)=a
and a(z)=bz the conditions on 1‐summability of û are given in terms of the initial

data, only.

Costin, Park and Takei in [CPT‐12] studied Borel summability of the IVP

\left\{\begin{array}{l}
\partial_{t}u =a(z)\partial_{z}^{2}u,\\
u(0, z)=\frac{1}{1+z^{2}},
\end{array}\right.
where a(z) is a quartic polynomial with 4 distinct roots. Setting y(z) =

\displaystyle \int_{z_{0}}^{z}a( $\xi$)^{-1/2}d $\xi$ and  z= $\varphi$(y) ,
the inverse to y(z) , they obtained the integral equation
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for the function g(y, s) (related to the Borel transform of U),

g(y, s)=\displaystyle \frac{g_{0}(y+s)+g_{0}(y-s)}{2}+\frac{1}{2}\int_{0}^{s}\int_{y-(s-\tilde{s})}^{y+(s-\tilde{s})}  $\eta$ (ỹ) g(ỹ, \mathfrak{s} ) dỹdS,

where

g_{0}(y)=u_{0}( $\varphi$(y))a( $\varphi$(y))^{-1/4},  $\eta$(y)=\displaystyle \frac{a''( $\varphi$(y))}{4}-\frac{3(a'( $\varphi$(y)))^{2}}{16a( $\varphi$(y))}.
Since  $\varphi$(y) can be expressed in terms of the Weierstrass elliptic function \mathcal{P}(y;g_{2}, g_{3})
with parameters g_{2} and g_{3} related to coefficients of a(z) , they were able to describe

singularities of g(y, s) and prove its Laplace transformability. They also treated the

case a(z)=z and obtained the detailed resurgence structure of the singular manifold

(which even in this simple case is quite intricate), see [CPT‐12, Theorem 10].

§7. Heat type equations on manifolds

Let \mathcal{M} be a real analytic manifold of dimension n and X_{1} ,
. . .

, X_{d} real analytic

linearly independent vector fields on \mathcal{M} . Define a Laplace type operator on \mathcal{M} by

\triangle-=X_{1}^{2}+\cdots+X_{n}^{2} and consider the initial value problem

(11) \left\{\begin{array}{ll}
\partial_{t}v-\triangle v=0-, & \\
v_{|t=0} =v_{0}, & v_{0}\in \mathcal{A}(\mathcal{M}) .
\end{array}\right.
The formal power series solution of (11) is given by

(12) \displaystyle \mathrm{V}(t, y)=\sum_{k=0}^{\infty}\frac{\triangle^{k}v_{0}(y)-}{k!}t^{k}
It is well known that if vector fields X_{i} commute,

(13) [X_{i}, X_{j}]=0 for i, j=1 ,
. . .

, n,

then for a fixed \mathring{y}\in \mathcal{M} one can find a real analytic diffeomorphism  $\Phi$ : \mathbb{R}^{n}\supset $\Omega$\rightarrow ontoV\subset
\mathcal{M} such that \mathring{y} \in  V =  $\Phi$( $\Omega$) and $\Phi$_{*}^{-1}(X_{i}) = \displaystyle \frac{\partial}{\partial z_{i}} for i = 1, . . .

,
n.

Set B_{ $\Phi$}(y, R)= $\Phi$(B(z, R)) , S_{ $\Phi$}(y, R)= $\Phi$(S(z, R)) with z=$\Phi$^{-1}(y) , 0<R<

dist ( z, \partial $\Omega$) . Let $\mu$_{ $\Phi$} (respectively, dS_{ $\Phi$} ) be a measure on V (respectively, on S_{ $\Phi$} ) de‐

fined by  $\mu$_{ $\Phi$}(A)=\displaystyle \int_{ $\Phi$(A)}-1d $\xi$ for a Borel measurable set  A\subset V (respectively, dS_{ $\Phi$}(A)=

\displaystyle \int_{ $\Phi$(A)}-1dS( $\xi$) for a Borel measurable set A\subset S_{ $\Phi$} ).
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Theorem 7.1. ([L‐14, Theorem 2]). Let  0<T\leq\infty . The fo rmal power series

solution (12) of the heat type equation (11) is convergent for |t|<T locally unifo rmly
in V if and only if the solid integral mean

M_{ $\Phi$}(v_{0};y, R)=\displaystyle \frac{1}{$\mu$_{ $\Phi$}(B_{ $\Phi$}(y,R))}\int_{B_{ $\Phi$}(y,R)}v_{0}( $\eta$)d$\mu$_{ $\Phi$}( $\eta$)
and/or the spherical integral mean

N_{ $\Phi$}(v_{0};y, R)=\displaystyle \frac{1}{dS_{ $\Phi$}(S_{ $\Phi$}(y,R))}\int_{S_{ $\Phi$}(y,R)}v_{0}( $\eta$)dS_{ $\Phi$}( $\eta$)
extends to an entire function of exponential growth (2, 1/(4T)) locally unifo rmly in V.

Proof. Assume that the formal power series solution (12) of (11) is convergent for

|t|<T locally uniformly in V . Denote its sum as v(t, y) and set u(t, z)=v(t,  $\Phi$(z)) ,

u_{0}(z)=v_{0}( $\Phi$(z)) for |t|<T,  z\in $\Omega$ . Then  u satisfies the heat equation (4) and is given

by (8) with the series convergent for |t|<T locally uniformly in  $\Omega$ . Hence by Theorem

5.8,  M(u_{0};z, R) extends to entire functions of exponential growth (2, 1/(4T)) locally

uniformly in  $\Omega$ . But for  z\in $\Omega$ and  y= $\Phi$(z) we have

 $\sigma$(n)R^{n}=\displaystyle \int_{ $\Phi$(B_{ $\Phi$}(y,R))}-1d $\xi$=$\mu$_{ $\Phi$}(B_{ $\Phi$}(y, R)) ,

\displaystyle \int_{B(z,R)}u_{0}( $\xi$)d $\xi$=\int_{$\Phi$^{-1}(B_{ $\Phi$}(y,R))}v_{0}( $\Phi$( $\xi$))d $\xi$=\int_{B_{ $\Phi$}(y,R)}v_{0}( $\eta$)d$\mu$_{ $\Phi$}( $\eta$)
and

n $\sigma$(n)R^{n-1}=\displaystyle \int_{$\Phi$^{-1}(S_{ $\Phi$}(y,R))}dS( $\xi$)=dS_{ $\Phi$}(S_{ $\Phi$}(y, R)) ,

\displaystyle \int_{S(x,R)}u_{0}( $\xi$)dS( $\xi$)=\int_{ $\Phi$(S_{ $\Phi$}(y,R))}-1v_{0}( $\Phi$( $\xi$))dS( $\xi$)=\int_{S_{ $\Phi$}(y,R)}v_{0}( $\eta$)dS_{ $\Phi$}( $\eta$) .

So

M(u_{0};z, R)=M_{ $\Phi$}(v_{0};y, R) and N(u_{0}, x;R)=N_{ $\Phi$}(v_{0};y, R) .

Hence M_{ $\Phi$}(v_{0};y, R) and N_{ $\Phi$}(v_{0};y, R) as functions of R extend to entire functions of

exponential growth2, 1/(4T) ) locally uniformly in V.

The proof of the converse statement is done in the same way with and replaced by
or. \square 

Remark 1. An analogue of Theorem 7.1 holds for solutions of heat type equations
with \triangle- perturbed by \displaystyle \sum_{i=1}^{n}a_{i}X_{i}+b . In that case the measure $\mu$_{ $\Phi$} should be replaced

by

$\mu$_{ $\Phi$}^{a}(A)=\displaystyle \int_{ $\Phi$(A)}-1\exp\{\frac{1}{2}\langle a,  $\xi$\rangle\}d $\xi$, A\subset V.
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Repeating the proof of Theorem 7.1, but now using Theorem 5.9 in place of Theo‐

rem 5.8, we get

Theorem 7.2. ([L‐14, Theorem 4]). Let \mathcal{M} be a real analytic manifo ld,  v_{0}\in

\mathcal{A}(\mathcal{M}) and X_{1} ,
. . .

, X_{n} real analytic linearly independent commuting vector fields on \mathcal{M}.

Fix \mathring{y}\in \mathcal{M} and let  $\Phi$,  $\Omega$, V, B_{ $\Phi$}, $\mu$_{ $\Phi$} and dS_{ $\Phi$} be as in Theorem 7.1. Set  u_{0}=v_{0}\circ $\Phi$ and

assume that  u_{0} and  $\Phi$ extend to a complex neighborhood  U\subset \mathbb{C}^{n} of  $\Omega$ . Then  v_{0} extends

to the neighborhood  $\Phi$(U) of V in the complexification of \mathcal{M} . Let d\in \mathbb{R} and let \hat{v} be the

fo rmal solution (12) of the heat type equation (11). Then the following conditions are

equivalent:

1. \hat{v} is Borel summable in d locally unifo rmly in  $\Phi$(U) ;

2. M_{ $\Phi$}(v_{0};z, R) extends to  $\Phi$(U)\times(D_{ $\epsilon$}\cup S(d/2,  $\epsilon$)\cup S(d/2+ $\pi$,  $\epsilon$)) with  0< $\epsilon$ and for

any  U_{1}\subset U,  0<$\epsilon$_{1}< $\epsilon$ and  R\in S(d/2, $\epsilon$_{1})\cup S(d/2+ $\pi,\ \epsilon$_{1}) ,

\displaystyle \sup_{z\in $\Phi$(U_{1})}|M_{ $\Phi$}(v_{0};z, R)|\leq Ae^{B|R|^{2}} ;

3. The function N_{ $\Phi$}(v_{0};z, R) satisfies the same condition as in 2..

§7.1. Remarks and open problems

1. The results on convergence and Borel summability are local. It would be

interesting to obtain global analogues. In case of the one dimensional heat equation
on S^{1} the solution to the problem can be expressed in terms of estimations of Fourier

coefficients of the initial data. The general case seems to be open.

2. It would be also interesting to obtain conditions for convergence and Borel summabil‐

ity of formal solutions to (11) in cases when vector fields X_{i} do not commute and/or are

not linearly independent. Of special interest here are the cases when \triangle-\mathrm{i}\mathrm{s} the Grushin

operator \partial_{x}^{2}+x^{2}\partial_{y}^{2} or the Laplace operator on the Heisenberg group.

§8. Nonlinear equations

Until now there are only few papers devoted to the study of summability of formal

solutions to nonlinear partial differential equations. \overline{\mathrm{O}} uchi in [O‐06] considered a class

of singular partial differential equations with polynomial nonlinearity which can be

considered as a perturbation (in some sense) of ODEs. He proved that under some

technical conditions the null formal power series solutions are multisummable.

Costin and Tanveer in [CT‐07] considered the Cauchy problem for a system of

quasilinear PDEs

(14) \mathrm{u}_{t}+\mathcal{P}(\partial_{z}^{j})\mathrm{u}+g(t, z, \{\partial_{z}^{j}\mathrm{u}\}_{|j|\leq n})=0, \mathrm{u}(0, z)=\mathrm{u}_{\mathrm{I}}(z) ,
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with \mathrm{u} in \mathbb{C}^{r} for small t and large |z| in a poly‐sector S in \mathbb{C}^{r} . Assuming that the

principal part of \mathcal{P} satisfies a cone condition and that the nonlinearity g and the initial

data \mathrm{u}_{\mathrm{I}} are analytic and satisfy some decay conditions on S , they proved existence

and uniqueness of solutions to (14). Under further regularity conditions on g and \mathrm{u}_{\mathrm{I}}

ensuring the existence of formal power series solutions for large z\in S they showed that

formal series solutions are Borel summable to actual solutions, see [CT‐07, Theorem 2].
In a subsequent paper [CT‐09] Costin and Tanveer studied the initial value problem

to the 3‐dimensional Navier‐Stokes system

\left\{\begin{array}{l}
\partial_{t}u-\triangle u=-\mathcal{P}(u\cdot\nabla u)+f(x) ,\\
u(0, x) =u_{0}(x) , x\in \mathbb{R}^{3},
\end{array}\right.
where \mathcal{P} is the Hodge‐projection operator to the space of divergence free vector fields.

Assuming that the initial data u_{0} and the force f are divergence free and analytic they

proved [CT‐09, Theorem 1.2] that the solution u is Borel summable in 1/t , i.e., there

exists U(p, x) , analytic in p in a neighborhood of \mathbb{R}_{+} and exponentially bounded as

 p\rightarrow\infty ,
and analytic in  x for |{\rm Im} x_{i}|< $\epsilon$, i=1

, 2, 3, so that

u(t, x)=u_{0}(x)+\displaystyle \int_{0}^{\infty}U(p, x)e^{-p/t}dp
for t>0 small enough.

8.1. Burgers equation

In [L‐09] we considered the IVP for the Burgers equation

(15) \left\{\begin{array}{l}
\partial_{t}u-\partial_{z}^{2}u=\partial_{z}(u^{2}) ,\\
u_{|t=0} =u_{0}.
\end{array}\right.
The formal power series solution is given by

\displaystyle \mathrm{u}(t, z)=\sum_{k=0}^{\infty}\frac{u_{k}(z)}{k!}t^{k},
where

u_{k+1}=\partial^{2}u_{k}+v_{k} with v_{k}= \displaystyle \sum_{ $\kappa$\in \mathbb{N}_{0}^{2}}, \displaystyle \frac{k!}{$\kappa$_{1}!$\kappa$_{2}!}\partial(u_{$\kappa$_{1}}u_{$\kappa$_{2}}) , k\in \mathbb{N}_{0}.

$\kappa$_{1}+$\kappa$_{2}=k

Applying the Cole‐Hopf transformation

u(t, z)\displaystyle \mapsto v(t, z)=\exp\{\int^{z}u(t, y)dy\}
which transforms (15) into the heat equation and its inverse v(t, z)\mapsto u(t, z)=(\ln v(t, z))_{z}'
we proved
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Theorem 8.1. ([L‐09, Theorem 1 Let B be a ball at \{0\} and let u_{0}\in \mathcal{A}(B) .

If the fo rmal power series solution of the Burgers equation (15) is convergent locally

unifo rmly in B
,

then u_{0} extends to a meromorphic function on \mathbb{C} of the fo rm

(16) u_{0}(z)=2az+b+\displaystyle \sum_{n=1}^{\infty}(\frac{1}{z-z_{n}}+\frac{1}{z_{n}}+\frac{z}{z_{n}^{2}}) ,

where a, b\in \mathbb{C} and \{z_{n}\}_{n\in \mathbb{N}} is a sequence of z_{n}\in \mathbb{C}^{*}\cup\{\infty\} with nondecreasing modulus

such that

(17) \displaystyle \sum_{n=1}^{\infty}\frac{1}{|z_{n}|^{2+ $\epsilon$}}<\infty for any  $\epsilon$>0.

Conversely, if u_{0} extends to a meromorphic function of the form (16) and (17) holds,
then the fo rmal solution of (15) is convergent in a neighborhood of \{0\}.

Theorem 8.2. ([L‐09, Theorem 2]). Let u_{0}\in \mathcal{A}(B) and  d\in R. If the fo rmal

power series solution of (15) is Borel summable in the direction  d locally unifo rmly in

a neighborhood of \{0\} ,
then u_{0} extends analytically to a function meromorphic on a

domain

D(d,  $\epsilon$)\supset S(d/2,  $\epsilon$)\cup S(d/2+ $\pi$,  $\epsilon$)

with some  $\epsilon$>0 which has in D(d,  $\epsilon$) at most simple poles with residua in N.

Conversely, if u_{0} extends to a meromorphic function on D(d,  $\epsilon$) of the form

u_{0}(z)=\displaystyle \sum_{n=1}^{\infty}(\frac{1}{z-z_{n}}+\frac{1}{z_{n}}+\frac{z}{z_{n}^{2}})+v(z) ,

where 0\neq z_{n}\in D(d,  $\epsilon$) satisfy (17), v is holomorphic on D(d,  $\epsilon$) and |v(z)|\leq a|z|+b,
then the formal power series solution of (15) is Borel summable in the direction d locally

unifo rmly in a neighborhood of the origin.
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