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Semi‐formal solution and monodromy of some

confluent hypergeometric equations

Dedicated to Profe ssor Ta kashi AOKI for his sixtieth birthday
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Abstract

This paper studies the monodromy of some class of confluent hypergeometric equations.

By using the convergent semi‐formal solution introduced in [1] we will show the concrete formula

of the monodromy for some class of confluent hypergeometric equations.

§1. Introduction

In this note we will study the monodromy of some class of confluent hypergeometric

equations which can be written in a Hamiltonian system. In [1] it was shown that

monodromy in the class of formal power series can be calculated if one uses semi‐formal

solutions in expressing monodromy. We will use the convergent semi‐formal solutions

defined by first integrals of the Hamiltonian system which are identical to the ones given
in [1]. More precisely, a convergent semi‐formal solution is defined in terms of sufficiently

many functionally independent first integrals. There are similarities between our idea

and the so‐called KAM theory. The definition of the monodromy via first integrals
enables us to calculate the monodromy in an elementary way. We will give examples
for which one can calculate the monodromy concretely. We hope that our method may

be extended to more general class of equations in a future paper.

This paper is organized as follows. In section 2 we study the convergent semi‐formal

solutions. In section 3 we introduce a class of confluent hypergeometric system written

Received March 22, 2014. Revised April 21, 2014. Accepted April 21, 2014.

2010 Mathematics Subject Classification(s): Primary 34\mathrm{M}35 ; Secondary 34\mathrm{M}25, 34\mathrm{M}40.

Key Words: convergent semi‐formal solution, confluent hypergeometric equation, monodromy.
Partially supported by Grant‐in‐Aid for Scientific Research (No. 20540172), JSPS, Japan.

*

Department of Mathematics, Hiroshima University, Hiroshima 739‐8526, Japan.

© 2014 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



256 Masafumi Yoshino

in a Hamiltonian form. In section 4 we construct functionally independent first integrals
and calculate the monodromy for a certain example.

§2. Semi‐formal solution via first integrals

Let n\geq 2 and  $\sigma$\geq 1 be integers. Consider the Hamiltonian system

(2.1) z^{2 $\sigma$}\displaystyle \frac{dq}{dz}=\nabla_{p}\mathcal{H}(z, q,p) , z^{2 $\sigma$}\frac{dp}{dz}=-\nabla_{q}\mathcal{H}(z, q, p) ,

where q= (q2, . . . , q_{n}) , p= (p2, . . . , p_{n}) ,
and where \mathcal{H}(z, q,p) is analytic in z\in \mathbb{C} in

some neighborhood of the origin and entire in (q,p)\in \mathbb{C}^{n-1}\times \mathbb{C}^{n-1} . We note that, by

taking q_{1}=z as a new unknown function (2.1) is written in an equivalent form for the

Hamiltonian function H, H(q_{1}, q, p_{1},p) :=p_{1}q_{1}^{2 $\sigma$}+\mathcal{H}(q_{1}, q,p)

(2.2) q_{1}=H_{p_{1}}=q_{1}^{2 $\sigma$}, p_{1}=-H_{q_{1}}=-2 $\sigma$ p_{1}q_{1}^{2 $\sigma$-1}-\partial_{q_{1}}\mathcal{H}(q_{1}, q,p) ,

\dot{q}=\nabla_{p}H=\nabla_{p}\mathcal{H}(q_{1}, q, p) , \dot{p}=-\nabla_{q}H=-\nabla_{q}\mathcal{H}(q_{1}, q, p) .

The solution of (2.1) is given in terms of that of (2.2) by taking q_{1}=z as an independent
variable.

Semi‐formal solution. We define the semi‐formal solution of (2.1) following [1].
Let \mathcal{O}(\tilde{S}_{0}) be the set of holomorphic functions on \tilde{S}_{0} ,

where \tilde{S}_{0} is the universal covering

space of the punctured disk of radius r, S_{0}=\{|z|<r\}\backslash 0 for some r>0 . The

(2n-2) ‐vector \check{x}(z, c) of formal power series of c

(2.3) \displaystyle \check{x}(z, c) :=\sum_{| $\nu$|\geq 0}\check{x}_{l $\nu$}(z)c^{l $\nu$}=\check{x}_{0}(z)+X(z)c+\sum_{| $\nu$|\geq 2}\check{x}_{l $\nu$}(z)c^{l $\nu$}
is said to be a semi‐formal solution of (2.1) if \check{x}_{l $\nu$}\in(\mathcal{O}(\tilde{S}_{0}))^{2n-2} and (q(z, c),p(z, c)) :=

\check{x}(z, c) is the formal power series solution of (2.1). As for the properties of the semi‐

formal series (2.3) we refer to [1]. Here X(z) is \mathrm{a}(2n-2) square matrix with component

belonging to \mathcal{O}(\tilde{S}_{0}) . If X(z) is invertible, then we say that (q(z, c),p(z, c)) is a complete

semi‐formal solution. We say that a semi‐formal solution is a convergent semi‐formal

solution (at the origin) if the following condition holds. For every compact set K in

\tilde{S}_{0} there exists a neighborhood U such that the formal series converges for q_{1}\in K and

c\in U . The semi‐formal solution at the general point z_{0}\in \mathbb{C} is defined similarly.

Monodromy function. We consider (2.1). Let z_{0} be any point in \mathbb{C} and let q and

p be semi‐formal solutions of (2.1) around z_{0} . We define the monodromy function v(c)
around z_{0} by

(2.4) (q,p)((z-z_{0})e^{2 $\pi$ i}+z_{0}, v(c))=(q,p)(z, c) ,
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where v(c)=(v_{j}(c)) . The existence of v(c) is proved in [1]. If we denote the linear

part of v(c) by M^{-1}c
,

then by considering the linear part of the monodromy relation

we have X((z-z_{0})e^{2 $\pi$ i}+z_{0})=X(z)M . Hence M is the so‐called monodromy factor.

In the following we will show that the convergent semi‐formal solutions of (2.1) can

be obtained by solving certain system of nonlinear equations given by first integrals.
We consider (2.2). Given functionally independent first integrals H(q_{1}, q,p_{1},p) and

$\psi$_{j}\equiv$\psi$_{j}(q_{1}, q,p)(j=1,2, \ldots, 2n-2) of (2.2), where the functional independentness
means that there exists a neighborhood V of the origin of (q, p,p_{1}) such that the matrix

(2.5) {}^{t}(\nabla_{q,p,p_{1}}H, \nabla_{q,p,p_{1}}$\psi$_{i})_{j\downarrow 1,2,\ldots,2n-2}
has full rank 2n-1 on (q_{1},p_{1}, q,p)\in\tilde{S}_{0}\times V . We assume that every coefficient of $\psi$_{j}
expanded in the power series of q, p is holomorphic with respect to q_{1} on \tilde{S}_{0}.

Let the point (q_{1,0},p_{1,0}, q_{0},p_{0}) and the values c_{j,0}(j=1,2, \ldots, 2n-2) satisfy that

(2.6) H(q_{1,0},p_{1,0}, q_{0},p_{0})=0, $\psi$_{j}(q_{1,0}, q_{0}, p_{0})=c_{j,0}, (j=1,2, \ldots, 2n-2) .

For c_{j}=\tilde{c}_{j}+c_{j,0}, \tilde{c}=(\tilde{c}_{1}, \ldots,\tilde{c}_{2n-2})\in \mathbb{C}^{2n-2} we consider the system of equations of

p_{1}, q and p

(2.7) H(q_{1},p_{1}, q, p)=0, $\psi$_{j}(q_{1}, q,p)=c_{j}, (j=1,2, \ldots, 2n-2) .

If (2.7) has a solution, then we denote it by q\equiv q(q_{1}, c) , p\equiv p(q_{1}, c) , p_{1}\equiv p_{1}(q_{1}, c) . We

see that q, p and p_{1} are holomorphic functions of q_{1} in \tilde{S}_{0} and \tilde{c} in some neighborhood
of the origin if we assume (2.5). We have

Theorem 2.1. Suppose that H(q_{1}, q, p_{1}, p) and $\psi$_{j}\equiv$\psi$_{j}(q_{1}, q,p)(j=1,2, \ldots,

2n-2) be functionally independent. Assume (2.6). Then the solution of (2.7) gives the

convergent complete semi‐formal solution (q(z, c),p(z, c))(q_{1}=z) of (2.1) provided q

or p is not a constant function.

Proof. Define \tilde{q}=(q_{1}, q) , \tilde{p}=(p_{1},p) and write G^{(j)}:=$\psi$_{j} . For the sake of sim‐

plicity we write q and p instead of \tilde{q} and \tilde{p} , respectively. By assumption and the implicit
function theorem q, p and p_{1} are convergent semi‐formal series in some neighborhood of

c=c^{0} . In order to show that they are the solution of (2.2) we differentiate (2.7) with

respect to the time variable. Then we have

(2.8) qH_{q}+pH_{p}=0, \dot{q}G_{q}^{(j)}+\dot{p}G_{p}^{(j)}=0, (j=1,2, \ldots, 2n-2) ,

where \dot{q}=dq/dt and so on. Because G^{(j)} is the first integral it follows that

(2.9) H_{p}G_{q}^{(j)}-H_{q}G_{p}^{(j)}=0, (j=1,2, \ldots, 2n-2) .
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By assumption on the functional independentness we see, from (2.8) and (2.9), that the

vectors (q,p) and (H_{p}, -H_{q}) are contained in some two dimensional plane  $\Pi$ . Note that

these vectors are orthogonal to (H_{q}, H_{p})\neq 0 . If (H_{q}, H_{p})\in $\Pi$ ,
then there exists  c(t)

such that \dot{q}=c(t)H_{p}, \dot{p}=-c(t)H_{q} . In order to show that the assertion holds in case

(H_{q}, H_{p})\not\in $\Pi$ ,
we note that the orthogonal projection of (H_{q}, H_{p}) to  $\Pi$, (\tilde{H}_{q},\tilde{H}_{p}) does

not vanish by the assumption on (2.5). By (2.8) we have that q\tilde{H}_{q}+p_{\tilde{H}_{p}}=0 . On the

other hand, by (2.9) (H_{p}, -H_{q}) is orthogonal to (H_{q}, H_{p})-(\tilde{H}_{q},\tilde{H}_{p}) . Since (H_{p}, -H_{q})
is orthogonal to (H_{q}, H_{p}) ,

it follows that H_{p}\tilde{H}_{q}-H_{q}\tilde{H}_{p}=0 . Hence we have the same

assertion.

If |q|^{2}+|p|^{2}\neq 0 ,
then c(t) does not vanish. Because H_{p}, H_{q}\in \mathcal{O}(\tilde{S}_{0}) do not vanish

similutaneously, we see that c(t)\in \mathcal{O}(\tilde{S}_{0}) . If we introduce s by \dot{s}=c(t) ,
then

(2.10) dq/ds=H_{p}, dp/ds=-H_{q}.

We will remove the assumption |\dot{q}|^{2}+|p|^{2}\neq 0 . If q and p are not a constant function,
then either q or p does not vanish except for a discrete set because they are analytic
functions. Hence, by continuity we see that q and p satisfy (2.10). We note that the

invertibility of X in (2.3) is verifed because (2.5) has a full rank. If we come back

to the original notation, then by definition and the relation between (2.1) and (2.2)
(q(z, c),p(z, c))(z=q_{1}) is the convergent semi‐formal solution of (2.1). \square 

§3. Confluent hypergeometric equation

We consider a class of hypergeometric system introduced by Okubo (cf. [2])

(3.1) (z-C)\displaystyle \frac{dv}{dz}=Av,
where C is a diagonal matrix and A is a constant matrix. The system has only regular

singular points on \mathbb{C}\cup\{\infty\} . Set v={}^{t}(q,p ) \in \mathbb{C}^{n} and assume that C and A are block

diagonal matrices

(3.2) C=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\Lambda$_{1}, $\Lambda$_{1}) , A=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(A_{1}, -{}^{t}A_{1})

where $\Lambda$_{1} and A_{1} are n-1 square diagonal and constant matrices, respectively such

that

(3.3) (z-$\Lambda$_{1})A_{1}=A_{1}(z-$\Lambda$_{1}) , \forall z\in C.

Define

(3.4)  H:=\langle(z-$\Lambda$_{1})^{-1}p, A_{1}q\rangle.
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Then one can write (3.1) in the Hamiltonian form

(3.5) \displaystyle \frac{dq}{dz}=H_{p}(z, q,p) , \frac{dp}{dz}=-H_{q}(z, q,p) .

We will introduce the irregular singularity by the confluence of singularities. Let

$\lambda$_{j}(j=2, \ldots, n) be the diagonal elements of $\Lambda$_{1} . We assume $\lambda$_{j}\neq 0 for all j . Take

nonempty sets J and J' such that J\cup J'=\{2, 3, . . . , n\} and $\lambda$_{i}\neq$\lambda$_{j} for every i\in J and

j\in J' . Without loss of generality one may assume J=\{2, 3, . . . , n_{0}\} for some n_{0}\geq 2.

We merge all regular singular points z=$\lambda$_{j}(j\in J') to the infinity. First, by setting

 z=1/ $\zeta$ in (3.5) we have

(3.6) -$\zeta$^{2}\displaystyle \frac{dq}{d $\zeta$}=(\frac{1}{ $\zeta$}-$\Lambda$_{1})^{-1}A_{1}q, -$\zeta$^{2}\frac{dp}{d $\zeta$}=-{}^{t}A_{1}(\frac{1}{ $\zeta$}-$\Lambda$_{1})^{-1}p.
Subsitute  $\zeta$=$\epsilon$^{-1} $\eta$ in (3.6). Replace  $\lambda$_{l $\nu$} with  $\epsilon \lambda$_{l $\nu$} if  $\nu$\in J and multiply the  $\mu$‐th

row of  A_{1} with $\epsilon$^{-1} if  $\mu$\in J' . Then we let  $\epsilon$\rightarrow 0 . Define the diagonal matrix A by
\mathfrak{A}:= diag (\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}) where \mathfrak{A}_{l $\nu$} is given by -$\lambda$_{l $\nu$}^{-1} if  $\nu$\in J' and ($\eta$^{-1}-$\lambda$_{ $\mu$})^{-1} if  $\mu$\in J,

respectively. Then we obtain

(3.7) -$\eta$^{2}\displaystyle \frac{dq}{d $\eta$}=\mathfrak{A}A_{1}q, -$\eta$^{2}\frac{dp}{d $\eta$}=-{}^{t}A_{1}\mathfrak{A}p.
We will write (3.7) in a Hamiltonian form. Set  $\eta$=q_{1} ,

and define H by

(3.8) H(q_{1},p_{1}, q,p) :=p_{1}q_{1}^{2}-\langle \mathfrak{A}(q_{1})A_{1}q, p\rangle.

One can easily see that \displaystyle \dot{q}=$\eta$^{2}\frac{dq}{d $\eta$} and \displaystyle \dot{p}=$\eta$^{2}\frac{dp}{d $\eta$} . Because -\mathfrak{A}A_{1}q=H_{p} and -{}^{t}A_{1}\mathfrak{A}p=

H_{q} ,
one easily sees that (3.7) is equivalent to the Hamiltonian system with the Hamil‐

tonian function (3.8).
If $\lambda$_{j} �s are mutually different, then it follows from (3.3) that A_{1} is a diagonal matrix.

Denote the diagonal entries of A_{1} by $\tau$_{j} . Then we have

(3.9) H(q_{1},p_{1}, q,p)=p_{1}q_{1}^{2}+\displaystyle \sum_{j=2}^{n}\frac{$\tau$_{j}}{$\lambda$_{j}}q_{j}p_{j}+\sum_{j\in J}\frac{$\tau$_{j}}{$\lambda$_{j}^{2}}\frac{q_{j}p_{j}}{q_{1}-$\lambda$_{j}^{-1}}.
§4. Calculation of monodromy

In this section we will calculate the monodromy for the Hamiltonian (3.9) via first

integrals. We assume that $\lambda$_{j} �s are mutually different. First, we construct first integrals
of the Hamiltonian vector field

(4.1) $\chi$_{H}:=q_{1}^{2}\displaystyle \frac{\partial}{\partial q_{1}}-2q_{1}p_{1}\frac{\partial}{\partial p_{1}}-\sum_{j\in J}\frac{$\tau$_{j}}{$\lambda$_{j}^{2}}\frac{q_{j}p_{j}}{(q_{1}-$\lambda$_{j}^{-1})^{2}}\frac{\partial}{\partial p_{1}}
+\displaystyle \sum_{j=2}^{n}\frac{$\tau$_{j}}{$\lambda$_{j}}(q_{j}\frac{\partial}{\partial q_{j}}-p_{j}\frac{\partial}{\partial p_{j}})+\sum_{j\in J}\frac{$\tau$_{j}}{$\lambda$_{j}^{2}}\frac{1}{q_{1}-$\lambda$_{j}^{-1}}(q_{j}\frac{\partial}{\partial q_{j}}-p_{j}\frac{\partial}{\partial p_{j}}) .
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For k=2
,

. . .

,
n we will construct the first integrals in the form q_{k}w_{k} (q1). We see that

w_{k} satisfies

(4.2) \left\{\begin{array}{ll}
(q_{1}^{2}\frac{\partial}{\partial q_{1}}+\frac{$\tau$_{k}}{$\lambda$_{k}}+\frac{$\tau$_{k}}{$\lambda$_{k}^{2}}\frac{1}{q_{1}-$\lambda$_{k}^{-1}})w_{k}=0 & \mathrm{i}\mathrm{f} k\in J\\
(q_{1}^{2}\frac{\partial}{\partial q_{1}}+\frac{$\tau$_{k}}{$\lambda$_{k}})w_{k}=0 & \mathrm{i}\mathrm{f} k\not\in J.
\end{array}\right.
Hence we have

(4.3) w_{k}(q_{1})=\left\{\begin{array}{l}
(\frac{q_{1}}{q_{1}-$\lambda$_{k}^{-1}})^{ $\tau$}k \mathrm{i}\mathrm{f} k\in J\\
\exp(\frac{$\tau$_{k}}{$\lambda$_{k}q_{1}}) \mathrm{i}\mathrm{f} k\not\in J.
\end{array}\right.
Next we consider the first integrals w:=p_{k}u_{k}(q_{1}) . By (4.1) the equation $\chi$_{H}w=0

can be written in the form

(4.4) (q_{1}^{2}\displaystyle \frac{d}{dq_{1}}-\frac{$\tau$_{k}}{$\lambda$_{k}}-\sum_{j\in J}\frac{$\tau$_{j}}{$\lambda$_{j}^{2}}\frac{$\delta$_{k,j}}{q_{1}-$\lambda$_{j}^{-1}})u_{k}(q_{1})=0,
where $\delta$_{k,j} is the Kronecker�s delta, namely $\delta$_{k,j}=1 if k=j and =0 if otherwise. By

solving the equation we have u_{k}(q_{1})=(\displaystyle \frac{q_{1}}{q_{1}-$\lambda$_{k}^{-1}})^{- $\tau$}k if k\in J ,
and =\displaystyle \exp(-\frac{$\tau$_{k}}{$\lambda$_{k}q_{1}}) if

k\not\in J . Hence we have

(4.5) u_{k}(q_{1})=w_{k}(q_{1})^{-1}, k=2
,

. . .

,
n.

By (4.3) and (4.5) we have the first integrals $\psi$_{j}(j=1,2, \ldots, 2n-2)

(4.6) $\psi$_{j}=\left\{\begin{array}{l}
q_{j+1}w_{j+1}(q_{1})\\
p_{j-n+2}w_{j-n+2}(q_{1})^{-1}
\end{array}\right.
Summing up the above we have

(j=1,2, \ldots, n-1)
(j=n, n+1, \ldots, 2n-2) .

Theorem 4.1. Assume $\lambda$_{j}\neq 0f^{0or} all j and that $\lambda$_{j} �s are mutually different.
Then the Hamitonian vector field (4\cdot 1) has 2n-1 functionally independent first integrals
H and $\psi$_{j}

)

s(j=1, 2, . . . , 2n-2) given by (4 \cdot 6).

We will determine monodromy using first integral. We take the convergent non

constant semi‐formal solution  q(q_{1}, c) , p(q_{1}, c) and p_{1}(q_{1}, c) defined by (2.7). The mon‐

odromy function v(c) around z_{0} is defined by (2.4). In view of the argument in section

2, we will study the monodromy around the origin z_{0}=0 or around z_{0}=$\lambda$_{k}^{-1} for some

k\in J . Note that $\lambda$_{k}^{-1} is a regular singular point of the our equation which remains

unchanged under the confluence procedure.
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First we consider the case z_{0}=0 . In order to determine the monodromy function

v(c) ,
we first note H(q_{1}e^{2 $\pi$ i},p_{1}, q,p)=H(q_{1},p_{1}, q,p) . On the other hand, for  1\leq j\leq

 n-1 we have

(4.7) $\psi$_{j}(q_{1}e^{2 $\pi$ i}, q,p)=q_{j+1}w_{j+1}(q_{1}e^{2 $\pi$ i})=

=\left\{\begin{array}{ll}
e^{2 $\pi$ i$\tau$_{j+1}}q_{j+1}w_{j+1}(q_{1})=c_{j}e^{2 $\pi$ i$\tau$_{j+1}} & \mathrm{i}\mathrm{f} j+1\in J\\
q_{j+1}w_{j+1}(q_{1})=c_{j} & \mathrm{i}\mathrm{f} j+1\not\in J.
\end{array}\right.
If n\leq j\leq 2n-2 ,

then we have

(4.8) $\psi$_{j}(q_{1}e^{2 $\pi$ i}, q,p)=q_{j-n+2}w_{j-n+2}(q_{1}e^{2 $\pi$ i})^{-1}=

=\left\{\begin{array}{ll}
e^{-2 $\pi$ i$\tau$_{j-n+2}}p_{j-n+2}w_{j-n+2}(q_{1})^{-1}=c_{j}e^{-2 $\pi$ i$\tau$_{j-n+2}} & \mathrm{i}\mathrm{f} j-n+2\in J\\
p_{j-n+2}w_{j-n+2}(q_{1})^{-1}=c_{j} & \mathrm{i}\mathrm{f} j-n+2\not\in J.
\end{array}\right.
We define v(c)=(v_{j}(c))_{j} by

(4.9) v_{j}(c)=\left\{\begin{array}{ll}
c_{j}e^{2 $\pi$ i$\tau$_{j+1}} & \mathrm{i}\mathrm{f} 1\leq j\leq n-1, j+1\in J\\
c_{j} & \mathrm{i}\mathrm{f} 1\leq j\leq n-1, j+1\not\in J\\
c_{j}e^{-2 $\pi$ i$\tau$_{j-n+2}} & \mathrm{i}\mathrm{f} n\leq j\leq 2n-2, j-n+2\in J\\
c_{j} & 
\end{array}\right.if n\leq j\leq 2n-2, j-n+2\not\in J.

Similarly we define \tilde{v}(c)=(\tilde{v}_{j}(c))_{j} by the right‐hand side of (4.9) with $\tau$_{j+1} and $\tau$_{j-n+2}

in (4.9) replaced by -$\tau$_{j+1}$\delta$_{k,j+1} and -$\tau$_{j-n+2}$\delta$_{k,j-n+2} , respectively. Here $\delta$_{k,j+1} and

$\delta$_{k,j-n+2} are Kronecker�s delta.

Let q and p satisfy (2.7) with $\psi$_{j} �s given by (4.6). Then we easily see that

(4.10) H(q_{1}e^{2 $\pi$ i},p_{1}, q,p)=0, $\psi$_{j}(q_{1}e^{2 $\pi$ i}, q,p)=v_{j}(c) , 1\leq j\leq 2n-2.

By the uniqueness of semi‐formal solution we obtain q(q_{1}e^{2 $\pi$ i}, v(c))=q(q_{1}, c) and

p(q_{1}e^{2 $\pi$ i}, v(c))=p(q_{1}, c) . This implies that v(c) is the monodromy function as de‐

sired. In the case of other regular singular points we may argue in the same way as in

the case of the origin. Thus we have proved

Theorem 4.2. Assume $\lambda$_{j}\neq 0f^{0or} all j and that $\lambda$_{j} �s are mutually different.
Then the monodromy functions v(c) around the origin and $\lambda$_{k}^{-1}(k\in J) correspond‐

ing to the semi‐formal solution of (2.1) defined by (2. 7) are given by (4 \cdot 9) and \tilde{v}(c) ,

respectively.
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