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Abstract

We consider a construction of instanton‐type solutions for some class of systems of non‐

linear differential equations by multiple‐scale analysis. We also investigate some problems
associated with the construction of instanton‐type solutions of (P_{\mathrm{I}})_{\mathrm{m}m}.

§1. Introduction

T. Kawai and Y. Takei ([8], [9]) established structure theorem for instanton‐type
solutions of Painlevé hierarchies (P_{\mathrm{J}})_{m} ( \mathrm{J}= I, 34, II‐2 or IV) with a large parameter

 $\eta$ . They explained the Stokes phenomenon for instanton‐type solutions of (P_{\mathrm{J}})_{m} by
the changes of parameters (See [11] for more details). Instanton‐type solutions are

formal solutions with sufficiently many free parameters. For example, the instanton‐

type solution (u, v)= ( u\mathrm{l}, . . .

, u_{m} , vl, . . .

, v_{m} ) of (P_{\mathrm{I}})_{m} has the following form (See
[12] and [3]).

u_{j}=u_{j}, 0(t)+\displaystyle \sum_{|k|\geq 1}$\eta$^{k $\alpha$}(\sum_{p\in \mathbb{Z}^{m},|p|\in\{k,k-2,k-4}, \}^{u_{j,k,p}(t)e^{p\cdot $\tau$})} �

v_{j}=v_{j}, 0(t)+\displaystyle \sum_{|k|\geq 1}$\eta$^{k $\alpha$}(\sum_{p\in \mathbb{Z}^{7r\mathrm{m}},|p|\in\{k,k-2,k-4}, \}^{v_{j,k,p}(t)e^{p\cdot $\tau$})} �
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where u_{j}, 0(t) , v_{j}, 0(t) denote the leading term of a 0‐parameter solution of (P_{\mathrm{I}})_{m} and

 $\alpha$=-1/2 and  $\tau$=($\tau$_{1}, \ldots, $\tau$_{m}) (We refer the reader to §2 for the details on $\tau$_{j}' \mathrm{s} ),
and u_{j}, k,p(t) , v_{j}, k, p(t) are multi‐valued holomorphic functions with a finite number of

branching points and poles. When  $\alpha$=-1/2 ,
the solution (u, v) contains 2m free

parameters ($\beta$_{1}^{+}, \ldots, $\beta$_{m}^{+}, $\beta$_{1}^{-}, \ldots, $\beta$_{\overline{m}}) of the form

$\beta$_{j}^{+}=$\eta$^{ $\alpha$}\displaystyle \sum$\beta$_{j,k}^{+}$\eta$^{2k $\alpha$}\infty, $\beta$_{j}-=$\eta$^{ $\alpha$}\sum$\beta$_{j,k}^{-}$\eta$^{2k $\alpha$}\infty
 k=0 k=0

Here $\beta$_{j,k}^{\pm} are free complex constants.

We have two methods for the construction of instanton‐type solutions. Y. Takei

([10], [12]) established an effective method for a system of non‐linear ordinary differential

equations which can be written in the form of a Hamiltonian system. The other method

is based on multiple‐scale analysis. Multiple‐scale analysis is also an effective method

in obtaining the concrete forms of instanton‐type solutions. We refer the reader to [1],
[2], [4], [5] and [7]. The latest results about the construction of instanton‐type solutions

of (P_{\mathrm{J}})_{m}(\mathrm{J}=\mathrm{I},\mathrm{I}\mathrm{I},\mathrm{I}\mathrm{V},34) by multiple‐scale analysis are given in [3] and [13]. As a next

problem, we want to analyze locations of singularities of coefficients of instanton‐type
solutions constructed in [3] and [13]. The following conjecture is given in [3].

Conjecture: The singularities of the coefficients of instanton‐type solutions of

(P_{\mathrm{I}})_{m} constructed by multiple‐scale analysis are located only in the set of turning points.

By computing some terms of instanton‐type solutions for (P_{\mathrm{I}})_{2} in the case of  $\alpha$=-1/2,
the conjecture is given. The author wants to confirm whether the conjecture is expected
to be valid as we change the value of  $\alpha$ . Further we have another question: What kind of

classes of differential equations is multiple‐scale analysis effective for? Specifically, in the

procedure of the construction of instanton‐type solutions by multiple‐scale analysis, we

need to see the solvability of non‐secularity conditions and the coefficients of instanton‐

type solutions are determined by the non‐secularity conditions. We want to specify
classes of differential equations with solvable non‐secularity conditions.

Motivated by these problems, in this paper we investigate the following. When we

change the value of  $\alpha$
,
what kind of influence do we have in the construction of solutions

by multiple‐scale analysis? The content of this paper is as follows. In §2, we generally

explain multiple‐scale analysis for some class of systems of non‐linear differential equa‐

tions. By Lemma 2.3 in §2, we see that the value of  $\alpha$ is specified by the form  $\alpha$=-\displaystyle \frac{1}{p}
(2\leq\ell\in \mathbb{N}) . In §3, following the method given in §2, we consider our problems in the

case of (P_{\mathrm{I}})_{m} . When \ell=2
, [3] proved that a solvable system of non‐linear differential

equations with 2m unknown functions appears as the first member of the non‐secularity
conditions associated with (P_{\mathrm{I}})_{m} and instanton‐type solutions with 2m free parameters

are constructed. Here we particularly consider the following questions:
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(i) In response to the change of \ell
,

how do the non‐secularity conditions change?

(ii) If the value of \ell is changed, is the construction of instanton‐type solutions with  2m

free parameters possible?
At the end of §3, we report some interesting results and a certain conjecture concerned

on (i) and (ii).

Acknowledgments. The author wishes to express her sincere gratitude to Professors

Naofumi Honda and Takashi Aoki for suggesting the problem and for many helpful
advice. Especially, §2 was inspired by discussions with Professors Naofumi Honda and

Takashi Aoki. The author wishes to thank Professor Yoshitsugu Takei for giving the

opportunity to her to take part in the conference.

§2. Instanton‐type solutions and multiple‐scale analysis

We first give the definition of an instanton‐type solution for some class of systems
of non‐linear equations, and then, we give an outline of multiple‐scale analysis by which

we construct a formal solution of instanton type with sufficiently many free parameters.

Let us consider the system of non‐linear differential equations with a large param‐

eter  $\eta$ for unknown functions  u(t) :=(u_{1}(t), u_{2}(t), \ldots, u_{2m}(t)) of the form

-1du
(2.1)  $\eta$ \overline{dt}=F(u, t) ,

where F(u, t) is a vector valued function (F_{1}(u, t), \ldots, F_{2m}(u, t)) and each F_{i}(u, t) is

a polynomial of u_{1} ,
. . .

, u_{2m} with coefficients in holomorphic functions of t.

We assume the existence of a solution u_{0}(t) of the equation F(u_{0}, t)=0 and in

what follows we use the solution u_{0}(t) . Let  $\Lambda$( $\lambda$, t) denote the characteristic polynomial
of  $\lambda$ for the Fréchet derivative of (2.1) at (u_{0}(t), t) , i.e.,

(2.2)  $\Lambda$( $\lambda$, t)=\det( $\lambda$ E_{2m}-\partial_{u}F(u_{0}(t), t)) .

Here E_{2m} is the identity matrix of size 2m
,

and \partial_{u}F is the Jacobian matrix of F(u, t)
with respect to the variables u_{1} ,

. . .

, u_{2m}.

We only consider the system whose  $\Lambda$( $\lambda$, t) is an even polynomial of  $\lambda$ with co‐

efficients in functions of  t . Then the equation  $\Lambda$( $\lambda$, t)=0 has m‐pairs ($\nu$_{i}^{+}(t), $\nu$_{i}^{-}(t))
of roots with $\nu$_{i}^{+}(t)=-$\nu$_{i}^{-}(t)(i=1, \ldots, m) . For convenience, we set $\nu$_{i}:=$\nu$_{i}^{+} and

$\nu$_{-i}:=$\nu$_{i}^{-}(i=1, \ldots, m) .

Let  $\Omega$ be an open subset in \mathbb{C}_{t} . In what follows, the following two conditions are

always assumed.

(A1) The roots $\nu$_{i}(t)' \mathrm{s}(1\leq|i|\leq m) are mutually distinct for each t\in $\Omega$.
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(A2) The function p_{1}$\nu$_{1}(t)+\cdots+p_{m}$\nu$_{m}(t) does not vanish identically on  $\Omega$ for any

(p_{1}, \ldots, p_{m})\in \mathbb{Z}^{m}\backslash \{0\}.

Recall that t_{0}\in \mathbb{C}_{t} is said to be a turning point if the discriminant of the char‐

acteristic polynomial  $\Lambda$( $\lambda$, t) vanishes at t_{0} . As  $\Lambda$( $\lambda$, t) is an even polynomial of  $\lambda$
,

we

have two kinds of turning points (cf. [12]).

Definition 2.1.

(i) A point  t_{0} is said to be a turning point of the first kind if two roots $\nu$_{i} and $\nu$_{-i}

merge at t_{0} for an index i.

(ii) If there exist mutually distinct indices i and j for which $\nu$_{i}=$\nu$_{j} or $\nu$_{i}=$\nu$_{-j} holds

at t_{0} ,
then t_{0} is said to be a turning point of the second kind.

By the definition, the assumption (A1) implies that each point in  $\Omega$ is neither a

turning point of the first kind nor a turning point of the second kind. Note that, as  t_{0} is

a turning point of the first kind if and only if \det\partial_{u}F(u_{0}(t), t)=0 at t=t_{0} ,
it follows

from (A1) that \det\partial_{u}F(u_{0}(t), t)\neq 0 holds at any point t in  $\Omega$.

Let  $\alpha$ be a negative real number and let  $\tau$:= ($\tau$_{1}, \ldots, $\tau$_{7m}) be m‐independent variables.

Then we define the rings

\mathcal{A}_{ $\alpha$}( $\Omega$) :=\mathcal{M}( $\Omega$)[[$\eta$^{ $\alpha$}e^{$\tau$_{1}} ,
. . .

, $\eta$^{ $\alpha$}e^{$\tau$_{7r\mathrm{m}}}, $\eta$^{ $\alpha$}e^{-$\tau$_{1}} ,
. . .

, $\eta$^{ $\alpha$}e^{-$\tau$_{m}}]],
(2.3)

\mathcal{A}_{ $\alpha$}^{\mathrm{O}}() :=\mathcal{O}( $\Omega$)[[$\eta$^{ $\alpha$}e^{$\tau$_{1}} ,
. . .

, $\eta$^{ $\alpha$}e^{$\tau$_{m}}, $\eta$^{ $\alpha$}e^{-$\tau$_{1}} ,
. . .

, $\eta$^{ $\alpha$}e^{-$\tau$_{m}}]],
where \mathcal{M}( $\Omega$) (resp. \mathcal{O}( $\Omega$) ) denotes the set of multi‐valued holomorphic functions with

a finite number of branching points and poles (resp. holomorphic functions) on  $\Omega$ . An

element in \mathcal{A}_{ $\alpha$}( $\Omega$) can be written in the form

(2.4) \displaystyle \sum_{p,k}f_{p,k}(t)$\eta$^{(|p|+2k) $\alpha$}e^{p\cdot $\tau$},
where (p, k)=(p\mathrm{l}, . . . , p_{m}, k) runs through \mathbb{Z}^{m}\times \mathbb{Z}_{\geq 0} ,

the f_{p,k}(t) belongs to \mathcal{M}( $\Omega$) ,

and |p|:=|p_{1}|+\cdots+|p_{m}| . Note that, as $\eta$^{ $\alpha$}e^{$\tau$_{i}}\times$\eta$^{ $\alpha$}e^{-$\tau$_{i}}=$\eta$^{2 $\alpha$} and  $\alpha$ is strictly negative,
the multiplication of formal power series in \mathcal{A}_{ $\alpha$}( $\Omega$) or \mathcal{A}_{ $\alpha$}^{\mathrm{O}}() is well‐defined.

Let  $\varphi$ be a formal Puiseux series of  $\eta$ in the form

 $\varphi$=$\varphi$_{$\beta$_{0}}( $\tau$, t)$\eta$^{$\beta$_{0}}+$\varphi$_{$\beta$_{1}}( $\tau$, t)$\eta$^{$\beta$_{1}}+$\varphi$_{$\beta$_{2}}( $\tau$, t)$\eta$^{$\beta$_{2}}+\cdots

Here $\varphi$_{$\beta$_{0}}\neq 0,  0\geq$\beta$_{0}>$\beta$_{1}>$\beta$_{2}>\ldots and each $\varphi$_{$\beta$_{i}} does not contain a large parameter

 $\eta$ . We say that the order of  $\varphi$ with respect to  $\eta$ is  $\beta$_{0} ,
and denote it by \mathrm{o}\mathrm{r}\mathrm{d}( $\varphi$)=$\beta$_{0}.
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Note that we set ord(0) :=-\infty as usual. We also denote by $\sigma$_{ $\beta$}( $\varphi$) the coefficient of $\eta$^{ $\beta$}
in  $\varphi$ ,

for example,  $\sigma$_{$\beta$_{0}}( $\varphi$)=$\varphi$_{$\beta$_{0}}( $\tau$, t) . When  $\psi$=$\sigma$_{ $\beta$}( $\psi$)$\eta$^{ $\beta$} holds for some  $\beta$ ,
we say

that  $\psi$ is a homogeneous element of order  $\beta$ with respect to  $\eta$.

For  $\beta$\leq 0 ,
we define the following subset in \mathcal{A}_{ $\alpha$}( $\Omega$) :

(2.5) \mathcal{A}_{ $\alpha$}( $\Omega$)( $\beta$):=\{ $\psi$\in \mathcal{A}_{ $\alpha$}( $\Omega$);\mathrm{o}\mathrm{r}\mathrm{d}( $\psi$)\leq $\beta$\}.

In a similar manner, we define \mathcal{A}_{ $\alpha$}^{\mathrm{O}}( $\Omega$)( $\beta$) . For simplicity, we set \hat{\mathcal{A}}_{ $\alpha$}( $\Omega$) :=\mathcal{A}_{ $\alpha$}( $\Omega$)( $\alpha$)
(resp. \hat{\mathcal{A}}_{ $\alpha$}^{\mathrm{O}} () :=\mathcal{A}_{ $\alpha$}^{\mathrm{O}}( $\Omega$)( $\alpha$) ), i.e., the subset of formal power series of $\eta$^{ $\alpha$} in \mathcal{A}_{ $\alpha$}( $\Omega$)
(resp. \mathcal{A}_{ $\alpha$}^{\mathrm{O}} containing no constant terms.

Recall that u_{0}(t) is a solution of the equation F(u_{0}, t)=0 . We take the following

change of vectors of unknown functions u and U=(U_{1}, \ldots, U_{2m}) in (2.1):

(2.6) u=u_{0}+U.

Then we obtain the system of non‐linear differential equations for U of the form

(2.7) (\hat{D}_{t}-\partial_{u}F(u_{0}, t))U-(F(u_{0}+U, t)-\partial_{u}F(u_{0}, t)U)=-\hat{D}_{t}u_{0}
-1dwith \hat{D}_{t}:= $\eta$ \overline{dt}

. Let  $\varphi$( $\tau$, t) be an element in \hat{\mathcal{A}}_{ $\alpha$}^{2m}( $\Omega$) :=(\hat{\mathcal{A}}_{ $\alpha$}( $\Omega$))^{2m} . We define the

system of partial differential equations associated with (2.7) by

(2.8) ($\chi$_{ $\tau$}-\displaystyle \partial_{u}F(u_{0}, t)) $\varphi$-(F(u_{0}+ $\varphi$, t)-\partial_{u}F(u_{0}, t) $\varphi$)+$\eta$^{-1}\frac{\partial}{\partial t} $\varphi$=-$\eta$^{-1}\frac{\partial u_{0}}{\partial t},
where $\chi$_{ $\tau$} is the first‐order differential operator with respect to the variables  $\tau$ given by

(2.9)  $\nu$_{1}(t)\displaystyle \frac{\partial}{\partial$\tau$_{1}}+$\nu$_{2}(t)\frac{\partial}{\partial$\tau$_{2}}+\cdots+$\nu$_{m}(t)\frac{\partial}{\partial$\tau$_{m}}.
For  $\psi$($\tau$_{1}, \ldots, $\tau$_{m}, t)\in\hat{\mathcal{A}}_{ $\alpha$}^{2m}( $\Omega$) ,

we define the morphism  $\iota$ by

(2.10)  $\iota$( $\psi$)(t)= $\psi$( $\eta$\displaystyle \int^{t}$\nu$_{1}(s)ds,  $\eta$\displaystyle \int^{t}$\nu$_{2}(s)ds ,
. . .

,  $\eta$\displaystyle \int^{t}$\nu$_{m}(s)ds, t)
Then, clearly, we have

\displaystyle \hat{D}_{t} $\iota$( $\psi$)= $\iota$($\chi$_{ $\tau$} $\psi$+$\eta$^{-1}\frac{\partial}{\partial t} $\psi$)
Hence, for a solution  $\varphi$( $\tau$, t)\in\hat{\mathcal{A}}_{ $\alpha$}^{2m}( $\Omega$) of the system (2.8), the U:= $\iota$( $\varphi$)(t) becomes a

formal solution of the system (2.7).

Definition 2.2. We say that a formal solution u on  $\Omega$ of the system (2.1) is

of instanton type if  u has the form u_{0}(t)+ $\iota$( $\varphi$)(t) for which u_{0}(t) is a solution of

F(u_{0}, t)=0 and  $\varphi$( $\tau$, t)\in\hat{\mathcal{A}}_{ $\alpha$}^{2m}( $\Omega$) is a solution of the system (2.8).
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For existence of a solution of instanton type, the possible values of  $\alpha$ are specified

by the following lemma.

Lemma 2.3. Suppose that the  u_{0}(t) is not a constant function and that the

system_{1}(2.8) has a solution  $\varphi$\in\hat{\mathcal{A}}_{ $\alpha$}^{2m}( $\Omega$) . Then there exists an integer k\geq 2 with

 $\alpha$=-\overline{k}.

Proof. The first term in the left‐hand side of (2.8) is an element in \hat{\mathcal{A}}_{ $\alpha$}^{2m}( $\Omega$) . The

second term in the left‐hand side of (2.8) also belongs to \mathcal{A}_{ $\alpha$}^{2m}( $\Omega$)(2 $\alpha$) . Hence the term

-1\partial u_{0}
 $\eta$ \overline{\partial t}

in the right‐hand side of (2.8) is in \hat{\mathcal{A}}_{ $\alpha$}^{2m}( $\Omega$) ,
from which we have k $\alpha$=-1 for

some  k\in N. Now assume  $\alpha$=-1 . Then the second and third terms in the left‐hand

side of (2.8) are of order less than -1
,

and it follows from (2.4) that a coefficient of $\eta$^{-1}
in an element of \mathcal{A}_{-1}( $\Omega$) is a linear combination of e^{$\tau$_{i}\prime}\mathrm{s} over \mathcal{M}( $\Omega$) . This contradicts

the fact that the right‐hand side of (2.8) is non‐zero and independent of the variables

 $\tau$ . Hence we have  $\alpha$\neq-1. \square 

By taking the lemma into account, we assume  $\alpha$=-\displaystyle \frac{1}{2} from now on. We set

\mathcal{A}( $\Omega$) :=\mathcal{A}_{ $\alpha$}( $\Omega$) and \mathcal{A}^{\mathrm{O}}() :=\mathcal{A}_{ $\alpha$}^{\mathrm{O}}() for simplicity. Note that \mathcal{A}( $\Omega$) (resp. \mathcal{A}^{\mathrm{O}}

contains the ring \mathcal{M}( $\Omega$)[[$\eta$^{-1}]] (resp. \mathcal{O}( $\Omega$)[[$\eta$^{-1}]] ), and that an element in \mathcal{A}( $\Omega$) can be

written uniquely in the form

(2.11) \displaystyle \sum_{p\in \mathbb{Z}^{m}}f_{p}(t; $\eta$)$\eta$^{|p| $\alpha$}e^{p\cdot $\tau$}
with f_{p}(t; $\eta$)\in \mathcal{M}( $\Omega$)[[$\eta$^{-1}]].

Let A($\nu$_{i})\in \mathcal{O}^{2m}( $\Omega$)(1\leq|i|\leq m) be an eigenvector of the matrix \partial_{u}F(u_{0}(t), t)
corresponding to the eigenvalue $\nu$_{i}(t) . Let \mathcal{H}( $\Omega$) be the subspace in \mathcal{A}^{2m}( $\Omega$) generated

by the vectors $\eta$^{ $\alpha$}e^{$\tau$_{i}}A($\nu$_{i})(1\leq|i|\leq m) over \mathcal{M}( $\Omega$)[[$\eta$^{-1}]] , i.e.,

(2.12) \mathcal{H}( $\Omega$)= \oplus \mathcal{M}( $\Omega$)[[$\eta$^{-1}]]($\eta$^{ $\alpha$}e^{$\tau$_{i}}A($\nu$_{i}))\subset \mathcal{A}^{2m}() .

1\leq|i|\leq m

Here we set $\tau$_{-i}=-$\tau$_{i}(i=1,2, \ldots, m) for convenience. As every element in \mathcal{A}^{2m}() is

uniquely expressed by

(2.13)  $\psi$=\displaystyle \sum_{1\leq|i|\leq m,p\in \mathbb{Z}^{m}}f_{i,p}(t; $\eta$)$\eta$^{|p| $\alpha$}e^{p\cdot $\tau$}A($\nu$_{i})
with f_{i,p}\in \mathcal{M}( $\Omega$)[[$\eta$^{-1}]] ,

we can define the projection $\pi$_{\mathcal{H}} : \mathcal{A}^{2m}( $\Omega$)\rightarrow \mathcal{H}( $\Omega$) by

(2.14) $\pi$_{\mathcal{H}}( $\psi$)=\displaystyle \sum_{1\leq|i|\underline{<}m}f_{i,e_{i}}(t; $\eta$)$\eta$^{ $\alpha$}e^{$\tau$_{i}}A($\nu$_{i}) ,

where e_{i}\in \mathbb{Z}^{m} is the vector with |e_{i}|=1 and its |i| ‐th component being \displaystyle \frac{i}{|i|}.
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Lemma 2.4. Let T : \mathcal{A}^{2m}( $\Omega$)\rightarrow \mathcal{A}^{2m}( $\Omega$) denote the linear operator $\chi$_{ $\tau$}-

\partial_{u}F(u_{0}(t), t) . Then we have

1. \mathrm{K}\mathrm{e}\mathrm{r}T=\mathcal{H}( $\Omega$) .

2. T is bijective from $\pi$_{\mathcal{H}}^{-1}(0) onto itself. In particular, we have {\rm Im} T=$\pi$_{\mathcal{H}}^{-1}(0) .

Proof. Let  $\psi$ be an element in \mathcal{A}^{2m}() given by (2.13). Then, as \partial_{u}F(u_{0}(t), t)A($\nu$_{i})
=$\nu$_{i}A($\nu$_{i}) holds, we have

T( $\psi$)=\displaystyle \sum_{1\leq|i|\leq m,p\in \mathbb{Z}^{m}}(p_{1}$\nu$_{1}+\cdots+p_{m}$\nu$_{m}-$\nu$_{i})f_{i,p}(t; $\eta$)$\eta$^{|p| $\alpha$}e^{p\cdot $\tau$}A($\nu$_{i})
.

The claims of the lemma easily follow from this. \square 

Remark. If  $\psi$ is a homogeneous element of order  $\beta$ with respect to  $\eta$ in  $\pi$_{\mathcal{H}}^{-1}(0) ,

then we can find a homogeneous element \tilde{ $\psi$} of order  $\beta$ in  $\pi$_{\mathcal{H}}^{-1}(0) with T\tilde{ $\psi$}= $\psi$.

Now we describe a recipe to obtain a solution  $\varphi$\in\hat{\mathcal{A}}^{2m}( $\Omega$) :=\mathcal{A}_{ $\alpha$}^{2m}( $\Omega$)( $\alpha$) to (2.8)
which has sufficiently many free parameters. Set

(2.15)  $\varphi$=\displaystyle \sum_{k\geq 1}$\varphi$_{k}( $\tau$, t; $\eta$)\in\hat{\mathcal{A}}^{2m}( $\Omega$) ,

where each term $\varphi$_{k}( $\tau$, t; $\eta$) is a homogeneous element of order  k $\alpha$ in \hat{\mathcal{A}}^{2m}( $\Omega$) ,
that is,

$\varphi$_{k} has the form

(2.16) $\eta$^{k $\alpha$}(\displaystyle \sum_{p\in \mathbb{Z}^{7r\mathrm{m}},|p|\in\{k,k-2,k-4}, \}^{$\varphi$_{k,p}(t)e^{p\cdot $\tau$})}
with $\varphi$_{k,p}\in \mathcal{M}^{2m}( $\Omega$) . Note that, if k is even, we have $\varphi$_{k}\in$\pi$_{\mathcal{H}}^{-1}(0) as terms containing

e^{$\tau$_{i}\prime}\mathrm{s}(1\leq|i|\leq m) never appear in $\varphi$_{k} . Generally, by the same reasoning as above, \mathrm{a}

homogeneous element in \hat{\mathcal{A}}^{2m}( $\Omega$) of order  k $\alpha$ for an even  k belongs to $\pi$_{\mathcal{H}}^{-1}(0) .

We put (2.15) into the system (2.8). Then both sides of (2.8) belong to \hat{\mathcal{A}}^{2m}( $\Omega$)
because \mathcal{A}( $\Omega$) is a ring and an \mathcal{M}( $\Omega$)[[$\eta$^{-1}]] module.

By looking at homogeneous terms of order  $\alpha$ in both sides of (2.8), as the second

and third terms of the left‐hand side of (2.8) are in \mathcal{A}^{2m}( $\Omega$)(2 $\alpha$) ,
we have T($\varphi$_{1})=0.

Hence, by Lemma 2.4, we obtain

(2.17) $\varphi$_{1}=$\eta$^{ $\alpha$}\displaystyle \sum_{1\leq|i|\underline{<}m}$\omega$_{i}^{(1)}(t)e^{$\tau$_{i}}A($\nu$_{i})
with $\omega$^{(1)}=($\omega$_{-m}^{(1)}(t), \ldots, $\omega$_{m}^{(1)}(t)) being arbitrary functions in \mathcal{M}^{2m}( $\Omega$) . Then by com‐

paring homogeneous terms of order 2 $\alpha$(=-1) in both sides of (2.8), we have

(2.18) T($\varphi$_{2})=F^{(2)}( $\tau$, t, $\omega$^{(1)}; $\eta$)
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for some vector function F^{(2)} which is a polynomial of $\omega$^{(1)} with coefficients in homo‐

geneous elements of order  2 $\alpha$ in \mathcal{A}^{2m}( $\Omega$) . Since F^{(2)}( $\tau$, t, $\omega$^{(1)}; $\eta$) belongs to $\pi$_{\mathcal{H}}^{-1}(0) as

noted above, it follows from Lemma 2.4 that we have the unique homogeneous element

$\varphi$_{2} of order  2 $\alpha$ in \mathcal{A}^{2m}( $\Omega$) .

Now, by comparing homogeneous terms of order 3 $\alpha$(=-\displaystyle \frac{3}{2}) in both sides of (2.8),
we get

(2.19) T($\varphi$_{3})=F^{(3)}( $\tau$, t, $\omega$^{(1)}; $\eta$)

for some vector function F^{(3)} which is a polynomial of $\omega$^{(1)} with coefficients in homoge‐
neous elements of order  3 $\alpha$ in \mathcal{A}^{2m}( $\Omega$) . It follows from Lemma 2.4 that (2.19) has a solu‐

tion if and only if the right‐hand side of (2.19) satisfies the condition $\pi$_{\mathcal{H}}(F^{(3)}( $\tau$, t, $\omega$^{(1)}; $\eta$))
=0 . And this condition is reduced to a system of non‐linear differential equations for

$\omega$^{(1)} . As a matter of fact, by taking the term  $\eta$^{-1}\displaystyle \frac{\partial}{\partial t} $\varphi$ in (2.8) into account, we have the

system

\displaystyle \frac{d$\omega$^{(1)}}{dt}=H^{(1)}(t, $\omega$^{(1)}) , (\mathcal{E}_{1})
where H^{(1)} is a polynomial of $\omega$^{(1)} with coefficients in \mathcal{M}^{2m}( $\Omega$) . The system (\mathcal{E}_{1}) has a

solution defined locally with 2m free parameters (a_{-m}, \ldots, a_{m})\in \mathbb{C}^{2m} . However, as it

is a non‐linear system, existence of a solution on the whole  $\Omega$ is uncertain. Further its

solution may have movable singularities depending on the  2m free parameters like the

non‐linear equation \displaystyle \frac{df}{dt}+f^{2}=0 with f(0)=a ,
whose solution is give by f(t)=\displaystyle \frac{1}{t+a^{-1}}.

In [3], we showed the fact that the system (\mathcal{E}_{1}) associated with (P_{I})_{m}(m=1,2, \ldots)
has a solution on the whole  $\Omega$ without movable singularities.

Now we assume that the system (\mathcal{E}_{1}) has a solution on  $\Omega$ without movable singu‐
larities. Then  $\varphi$_{3} is given by

\displaystyle \tilde{ $\varphi$}_{3}( $\tau$, t, $\omega$^{(1)}; $\eta$)+$\eta$^{3 $\alpha$}\sum_{1\leq|i|\underline{<}m}$\omega$_{i}^{(3)}(t)e^{$\tau$_{i}}A($\nu$_{i})
where \tilde{ $\varphi$}_{3} is a homogeneous solution of order  3 $\alpha$ in  $\pi$_{\mathcal{H}}^{-1}(0) to (2.19) and $\omega$^{(3)}=

($\omega$_{-m}^{(3)}(t), \ldots, $\omega$_{m}^{(3)}(t)) are arbitrary functions in \mathcal{M}^{2m}( $\Omega$) . Then we repeat the same

arguments as above, and we obtain the system (\mathcal{E}_{3}) of differential equations for $\omega$^{(3)} by

comparing homogeneous terms of order  5 $\alpha$ in (2.8).

\displaystyle \frac{d$\omega$^{(3)}}{dt}=H^{(3)}(t, $\omega$^{(1)}, $\omega$^{(3)}) . (\mathcal{E}_{3})

Here H^{(3)} is a polynomial of $\omega$^{(1)} and $\omega$^{(3)} with coefficients in \mathcal{M}^{2m}( $\Omega$) . However, on

the contrary to H^{(1)} in (\mathcal{E}_{1}) ,
the H^{(3)} is a first‐order polynomial with respect to $\omega$^{(3)}
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because a higher‐order monomial of $\omega$^{(3)} appears in a term of order less than or equal
to 2\times 3 $\alpha$=6 $\alpha$(=-3) . Therefore (\mathcal{E}_{3}) is a system of linear differential equations for

$\omega$^{(3)}
,

that always has \mathrm{a} (possibly multi‐valued) solution on  $\Omega$ with  2m free parameters

in \mathbb{C}^{2m}.

For an odd k greater than 3, comparing terms of order  k $\alpha$ in (2.8) and using
the same argument as that for (\mathcal{E}_{3}) ,

we successively obtain the system (\mathcal{E}_{k}) of linear

differential equations for $\omega$^{(k)}.

\displaystyle \frac{d$\omega$^{(k)}}{dt}=H^{(k)} (t, $\omega$^{(1)}, $\omega$^{(3)}, . . . , $\omega$^{(k)}) , (\mathcal{E}_{k})
where H^{(k)} is a polynomial of $\omega$^{(1)}

,
. . .

,
$\omega$^{(k)} with coefficients in \mathcal{M}^{2m}( $\Omega$) and, in

particular, a first‐order polynomial with respect to $\omega$^{(k)}.

Definition 2.5. A family \{(\mathcal{E}_{k})\}_{k=1,3},\ldots is called the non‐secularity condition

for the system (2.1).

Summing up, if the first member (\mathcal{E}_{1}) of the non‐secularity condition has a solution

with 2m free parameters in \mathbb{C}^{2m} on the whole  $\Omega$ without movable singularities, then we

obtain a solution  $\varphi$\in\hat{\mathcal{A}}^{2m}( $\Omega$) for (2.8) with 2m free parameters in \mathbb{C}^{2m}[[$\eta$^{-1}]].

§3. On the construction of instanton‐type solutions for (P_{\mathrm{I}})_{m}
in case of  $\alpha$=-\displaystyle \frac{1}{p}(\ell\geq 3)

In case of  $\alpha$=-\displaystyle \frac{1}{2} ,
the paper [3] showed that the first member (\mathcal{E}_{1}) of non‐secularity

conditions associated with (P_{\mathrm{I}})_{m} is a system of non‐linear differential equations with

2m unknown functions ($\omega$_{-m}, \ldots, $\omega$_{m}) (see Theorem 4.9 in [3]):

(3.1) \displaystyle \frac{d$\omega$_{k}}{dt}=(\frac{1}{$\nu$_{k}}\sum_{j=1}^{m} $\varphi$(k, j)$\omega$_{j}$\omega$_{-j}-h_{k})$\omega$_{k} (1\leq k\leq m) .

(3.2) \displaystyle \frac{d$\omega$_{-k}}{dt}=(-\frac{1}{$\nu$_{k}}\sum_{j=1}^{m} $\varphi$(-k, j)$\omega$_{j}$\omega$_{-j}-h_{-k})$\omega$_{-k} (1\leq k\leq m) .

Here \displaystyle \frac{1}{l$\nu$_{k}} $\varphi$(k, j) and h_{k} will be given by (3.18) and (3.28) later. By solving the system (\mathcal{E}_{1})
globally, we proved the existence of instanton‐type solutions with 2m free parameters.

From now on, in case of  $\alpha$=-\displaystyle \frac{1}{p}(\ell\geq 3) ,
we study the existence of instanton‐type

solutions for (P_{\mathrm{I}})_{m}.
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§3.1. Preparations

Let us first recall results in [3] which are needed in subsequent discussions. Through‐
out the paper,  $\theta$ denotes an independent variable and the notation  A\equiv B means that

A-B is zero modulo $\theta$^{m+2} . For any formal power series x of  $\theta$
,

we define  $\sigma$_{i}^{ $\theta$}(x) by
the coefficient of $\theta$^{i} in x . According to [3], we can represent (P_{\mathrm{I}})_{m} (discussed in [8]) in

terms of generating functions:

(3.3) $\eta$^{-1}\displaystyle \frac{d}{dt}\left(\begin{array}{l}
U $\theta$\\
 V $\theta$
\end{array}\right)\equiv\left(\begin{array}{lll}
 & 2V $\theta$ & \\
-(1+2u_{1} $\theta$)(1- & U)+ & \frac{1+2C- $\theta$ V^{2}}{1-U}
\end{array}\right)
Here U, V and C are generating functions of unknown functions u_{k}, v_{k} and constants

c_{k} as follows.

(3.4) U( $\theta$):=\displaystyle \sum u_{k}$\theta$^{k}\infty, V( $\theta$):=\sum v_{k}$\theta$^{k}\infty, C( $\theta$):=\sum(c_{k}\infty+$\delta$_{km}t)$\theta$^{k+1}
k=1 k=1 k=1

with the conditions $\sigma$_{m+1}^{ $\theta$}(U)=$\sigma$_{m+1}^{ $\theta$}(V)=0 and c_{m+1}=0 . Note that the solution

space for (3.3) is defined in the same way as that of \mathcal{A}_{ $\alpha$}( $\Omega$) where \mathcal{M}( $\Omega$) is replaced by

\mathcal{M}( $\Omega$)[[ $\theta$]] (Here \mathcal{A}_{ $\alpha$}( $\Omega$) was defined by (2.3)).
To obtain the equation corresponding to (2.8) in §2, we prepare several notations.

Let  $\Theta$ denote the set of formal power series of  $\theta$ without constant terms and let  Q :

( $\Theta \theta$)^{2}\rightarrow$\Theta$^{2} be the map defined by

(3.5) Q\left(\begin{array}{ll}
x &  $\theta$\\
 y &  $\theta$
\end{array}\right):=2\left(\begin{array}{l}
y $\theta$\\
(1+2\hat{u}_{1,0} $\theta$)x-$\sigma$_{1}^{ $\theta$}(x) $\theta$
\end{array}\right)
for any x=\displaystyle \sum_{i=1}^{\infty}x_{i}$\theta$^{i} and y=\displaystyle \sum_{i=1}^{\infty}y_{i}$\theta$^{i} in  $\Theta$ . We define  $\nu$_{k} and A($\nu$_{k}) by the eigenvalue

and the corresponding eigenvector of Q in the sense of  Q(A($\nu$_{k}) $\theta$)=$\nu$_{k}A($\nu$_{k}) $\theta$ . Let û0
and \hat{v}_{0} denote the generating functions of the leading term ûi, 0, \hat{v}_{i}, 0 of a 0‐parameter

solution to (P_{\mathrm{I}})_{m} in the form (see (11), (12) in [3] for more explicit forms of û0 and \hat{v}_{0} )

(3.6) û0 (  $\theta$ ) :=\displaystyle \sum_{i=1}^{\infty} û i , 0$\theta$^{i}, \displaystyle \hat{v}_{0}( $\theta$):=\sum_{i=1}^{\infty}\hat{v}_{i}, 0$\theta$^{i}

By taking the change of unknown functions

U=\^{u} 0 + ( 1 —û0) u
, V=\hat{v}_{0}+ ( 1 —û0) v (u, v)\in\hat{\mathcal{A}}_{ $\alpha$}^{2}() ,
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we have the partial differential equations associated with (3.3) of the form

(3.7)

 P\displaystyle \left(\begin{array}{l}
u $\theta$\\
 v $\theta$
\end{array}\right)\equiv(\left(\begin{array}{l}
$\eta$^{-1} $\rho \theta$\\
 v)S(u
\end{array}\right)+uP\left(\begin{array}{l}
u $\theta$\\
 v $\theta$
\end{array}\right))-(u\left(\begin{array}{l}
$\eta$^{-1} $\rho$\\
 2$\sigma$_{1}^{ $\theta$}(u)u
\end{array}\right)+$\eta$^{-1}( $\rho$+\frac{\partial}{\partial t})\left(\begin{array}{l}
u\\
v
\end{array}\right)) $\theta$
+$\eta$^{-1}u( $\rho$+\displaystyle \frac{\partial}{\partial t})\left(\begin{array}{l}
u\\
v
\end{array}\right) $\theta$.

Here the operator P is given by P:=$\chi$_{ $\tau$}-Q and S(u, v) and  $\rho$ are defined by

(3.8)  S(u, v) :=\displaystyle \frac{1}{2}(-v, u)Q\left(\begin{array}{l}
u $\theta$\\
 v $\theta$
\end{array}\right)+3$\sigma$_{1}^{ $\theta$}(u)u $\theta$ and  $\rho$:=\displaystyle \frac{d}{dt}(\log(1-\^{u}_{0}
Recall that the solution (u, v) to (3.7) takes a form

(3.9) \displaystyle \left(\begin{array}{l}
u\\
v
\end{array}\right)=\sum_{j=1}^{\infty}(\sum_{1\leq|k|\underline{<}m}f_{k,j $\alpha$}( $\tau$, t)A($\nu$_{k}))$\eta$^{j $\alpha$}
Here f_{k,j $\alpha$} �s are independent of  $\theta$ . As is shown in Lemma 2.3,  $\alpha$ must be  $\alpha$=-\displaystyle \frac{1}{p}(\ell\geq 2)
so that we have a solution (u, v)\in\hat{\mathcal{A}}_{ $\alpha$}^{2}() of (3.9) for (3.7).

In the next subsection, when  $\alpha$=-\displaystyle \frac{1}{p}(\ell\geq 3) ,
we give the explicit forms of f_{k,j $\alpha$}

(j=1,2,3) by the method described in §2.

§3.2. The case of  $\alpha$=-\displaystyle \frac{1}{p}(\ell\geq 3)
We define $\sigma$_{j $\alpha$}^{ $\eta$}(u) (resp. $\sigma$_{j $\alpha$}^{ $\eta$}(v) ) by the coefficient of $\eta$^{j $\alpha$} in u (resp. v) and we set

u_{j $\alpha$} :=$\sigma$_{j $\alpha$}^{ $\eta$}(u) , v_{j $\alpha$}:=$\sigma$_{j $\alpha$}^{ $\eta$}(v)(j\geq 1) . In what follows, we use the Kronecker�s delta

$\delta$_{3 $\alpha$}, -1 . Putting (3.9) into (3.7), we have

(3.10) P\left(\begin{array}{ll}
u_{ $\alpha$} &  $\theta$\\
 v_{ $\alpha$} &  $\theta$
\end{array}\right)=\left(\begin{array}{l}
0\\
0
\end{array}\right),
(3.11) P\left(\begin{array}{ll}
u_{2 $\alpha$} &  $\theta$\\
 v_{2 $\alpha$} &  $\theta$
\end{array}\right)\equiv(_{\frac{1}{2}(-v_{ $\alpha$}}^{0}, u_{ $\alpha$})Q\left(\begin{array}{ll}
u_{ $\alpha$} &  $\theta$\\
 v_{ $\alpha$} &  $\theta$
\end{array}\right)+3$\sigma$_{1}^{ $\theta$}(u_{ $\alpha$})u_{ $\alpha$} $\theta$) ,

(3.12)

P\displaystyle \left(\begin{array}{l}
u_{3 $\alpha$} $\theta$\\
 v_{3 $\alpha$} $\theta$
\end{array}\right)\equiv(_{(-v_{ $\alpha$},u_{ $\alpha$})Q}^{$\delta$_{3 $\alpha$,-1}\times $\rho \theta$}\left(\begin{array}{ll}
u_{2 $\alpha$} &  $\theta$\\
 v_{2 $\alpha$} &  $\theta$
\end{array}\right)+\displaystyle \frac{u_{ $\alpha$}}{2}(-v_{ $\alpha$}, u_{ $\alpha$})Q\left(\begin{array}{ll}
u_{ $\alpha$} &  $\theta$\\
 v_{ $\alpha$} &  $\theta$
\end{array}\right)+(u_{ $\alpha$})^{2}$\sigma$_{1}^{ $\theta$}(u_{ $\alpha$}) $\theta$)
+\left(\begin{array}{ll}
0 & \\
2$\sigma$_{1}^{ $\theta$}(u_{ $\alpha$})u_{2 $\alpha$} & +4$\sigma$_{1}^{ $\theta$}(u_{2 $\alpha$})u_{ $\alpha$}
\end{array}\right) $\theta$.

By (3.10) and Lemma 2.4, we obtain the lemma below.
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Lemma 3.1. For any k(1\leq|k|\leq m) ,
we have

(3.13) f_{k},  $\alpha$=$\omega$_{k}e .

(1)  $\tau$ k

(1))Here $\omega$_{k} s are arbitrary functions of t.

From now on, we abbreviate $\omega$_{k}^{(1)} to $\omega$_{k} . An easy computation shows:

Lemma 3.2. For any k(1\leq|k|\leq m) ,
the f_{k},  2 $\alpha$ is given by

(3.14)

 f_{k},

2 $\alpha$(t,  $\tau$)=1\displaystyle \leq|j|\leq m\sum_{j\neq-k}, \displaystyle \frac{2}{($\nu$_{k}+$\nu$_{j})$\nu$_{k}$\nu$_{j}}((2$\nu$_{k}+$\nu$_{j})$\omega$_{k}$\omega$_{j}e^{$\tau$_{k}+$\tau$_{j}}-$\nu$_{j}$\omega$_{-k}$\omega$_{-j}e^{-$\tau$_{k}-$\tau$_{j}})

-\displaystyle \frac{1}{$\nu$_{k}}(\sum_{j=1}^{m}\frac{$\nu$_{j}^{2}}{$\nu$_{k}}h_{j,k}$\omega$_{j}$\omega$_{-j}+\frac{6}{$\nu$_{k}}$\omega$_{k}$\omega$_{-k})
Here h_{j}, |k| are defined by

4\displaystyle \prod_{1<l\leq m}, ($\nu$_{j}^{2}-$\nu$_{l}^{2})
(3.15)

h_{j}, |k| :=\displaystyle \frac{l\overline{\neq}j,|k|}{1\leq l\leq m\prod_{l\neq|k|},($\nu$_{k}^{2}-$\nu$_{l}^{2})}
and h_{j}, k:=h_{|j|}, |k|.

(j\neq|k|) , h_{j}, j:=l-1\displaystyle \sum_{l\overline{\neq}j}^{m}, \displaystyle \frac{4}{$\nu$_{j}^{2}-$\nu$_{l}^{2}}

It follows from Lemmas 3.1 and 3.2 that we have the following.

Lemma 3.3. The equation (3.12) is written in the form

(3.16)  P\displaystyle \left(\begin{array}{l}
u_{3 $\alpha$} $\theta$\\
 v_{3 $\alpha$} $\theta$
\end{array}\right)=$\delta$_{3 $\alpha$}, -1\times\frac{1}{2}\sum_{1\leq|k|\underline{<}m}$\gamma$_{k}A($\nu$_{k}) $\theta$+\sum_{1\leq|k|\underline{<}m}\frac{1}{$\nu$_{k}}$\varphi$_{k}A($\nu$_{k}) $\theta$
with

 $\varphi$_{k}:=\displaystyle \sum_{1\leq|i|\leq m}, \sum_{1\leq|j|<m}, \frac{4(2$\nu$_{k}+$\nu$_{i}+$\nu$_{j})($\nu$_{k}+$\nu$_{i}+$\nu$_{j})}{$\nu$_{i}$\nu$_{j}($\nu$_{k}+$\nu$_{i})($\nu$_{k}+$\nu$_{j})}
i\neq-k j\neq--k,

j\neq-i

(3.17) \times($\omega$_{k}$\omega$_{j}$\omega$_{i}e^{ $\tau$+$\tau$_{j}+$\tau$_{i}}k+$\omega$_{-k}$\omega$_{-j}$\omega$_{-i}e^{-\mathcal{T}}k-$\tau$_{j}-$\tau$_{i})

+\displaystyle \sum_{j=1}^{m} $\varphi$(k, j)$\omega$_{j}$\omega$_{-j}($\omega$_{k}e^{$\tau$_{k}}+$\omega$_{-k}e^{-$\tau$_{k}})+\sum_{1\leq|j|\leq m ,j\neq\pm k}, \tilde{ $\varphi$}(k, j)$\omega$_{j}e^{$\tau$_{j}},
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where  $\varphi$(k, j) and \tilde{ $\varphi$}(k, j) are given by

 $\varphi$(k, j):=-(\displaystyle \frac{16}{$\nu$_{k}^{2}-$\nu$_{j}^{2}}+\frac{48}{$\nu$_{j}^{2}}+\frac{12$\nu$_{j}^{2}}{$\nu$_{k}^{2}}h_{j,k}+\sum_{1\leq r<m}, \frac{8$\nu$_{j}^{2}}{$\nu$_{r}^{2}}h_{j,r}) (j\neq|k|) ,

r\neq\overline{|}k|

(3.18)  $\varphi$(k, k):=-(\displaystyle \frac{60}{$\nu$_{k}^{2}}+12h_{kk}+\sum_{1\leq r<m}, \frac{8$\nu$_{k}^{2}}{$\nu$_{r}^{2}}h_{kr}) ,  $\varphi$(-k, k):= $\varphi$(k, k) ,

r\neq\overline{|}k|

\displaystyle \tilde{ $\varphi$}(k, j):=-(\frac{16}{$\nu$_{k}^{2}-$\nu$_{j}^{2}}+\frac{24}{$\nu$_{k}^{2}}+4h_{k,k})$\omega$_{k}$\omega$_{-k}-4\sum_{i=1}^{m} \frac{$\nu$_{i}^{2}}{$\nu$_{k}^{2}}h_{i}, ki-i,
i\neq|k|

and $\gamma$_{k} �s are functions of t which are determined by

(3.19)  $\rho$\displaystyle \equiv\sum_{k=1}^{m}$\gamma$_{k}(t)\frac{ $\theta$}{1- $\theta$ g($\nu$_{k})} with g($\nu$_{k}):=\displaystyle \frac{$\nu$_{k}^{2}-8\hat{u}_{1,0}}{4}.
See Eq.(45) in [3] for the complete f^{0} rms of $\gamma$_{k}' s.

Proof. By using (3.13) and (3.14), we have

(3.20) (-v_{ $\alpha$}, u_{ $\alpha$})Q\displaystyle \left(\begin{array}{ll}
u_{2 $\alpha$} &  $\theta$\\
 v_{2 $\alpha$} &  $\theta$
\end{array}\right)+\frac{u_{ $\alpha$}}{2}(-v_{ $\alpha$}, u_{ $\alpha$})Q\left(\begin{array}{ll}
u_{ $\alpha$} &  $\theta$\\
 v_{ $\alpha$} &  $\theta$
\end{array}\right)+(u_{ $\alpha$})^{2}$\sigma$_{1}^{ $\theta$}(u_{ $\alpha$}) $\theta$\displaystyle \equiv 0.
Hence (3. 12) is equivalent to

(3.21) P\left(\begin{array}{l}
u_{3 $\alpha$} $\theta$\\
 v_{3 $\alpha$} $\theta$
\end{array}\right)\equiv\left(\begin{array}{lll}
$\delta$_{3 $\alpha$} & -1\times $\rho$ & \\
2$\sigma$_{1}^{ $\theta$}(u_{ $\alpha$})u_{2 $\alpha$} &  & +4$\sigma$_{1}^{ $\theta$}(u_{2 $\alpha$})u_{ $\alpha$}
\end{array}\right) $\theta$.
Noticing that $\sigma$_{ $\alpha$}^{ $\eta$}(u) (resp. $\sigma$_{2 $\alpha$}^{ $\eta$}(u) ) ( $\alpha$=-\displaystyle \frac{1}{p}, \ell\geq 3) is the same as $\sigma$_{ $\alpha$}^{ $\eta$}(u) (resp. $\sigma$_{2 $\alpha$}^{ $\eta$}(u) )
in the case of  $\alpha$=-1/2 ,

we have the assertion of Lemma 3.3 by (D2) in Appendix \mathrm{D}

[3]. \square 

In order to solve (3.16), by Lemma 2.4 we need the non‐secularity condition below.

(3.22) \displaystyle \frac{1}{$\nu$_{k}}\sum_{j=1}^{m} $\varphi$(k, j)$\omega$_{j}$\omega$_{-j}$\omega$_{k}=0 (1\leq|k|\leq m) .

As we consider our problem outside turning points of the first kind, we have

Lemma 3.4. Under the non‐secularity condition

(3.23) \displaystyle \sum_{j=1}^{m} $\varphi$(k, j)$\omega$_{j}$\omega$_{-j}$\omega$_{k}=0 (1\leq|k|\leq m) ,
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we have

(3.24)

f_{k}, 3 $\alpha$(t,  $\tau$)=\displaystyle \sum_{1\leq|i|<m}, \displaystyle \sum_{1\leq|j|<m}, \displaystyle \frac{4($\nu$_{k}+$\nu$_{i}+$\nu$_{j})}{$\nu$_{k}$\nu$_{i}$\nu$_{j}($\nu$_{k}+$\nu$_{i})($\nu$_{k}+$\nu$_{j})($\nu$_{i}+$\nu$_{j})}
i+k\overline{\neq}0 j+k\overline{\neq}0,

j+i\neq 0

\times((2$\nu$_{k}+$\nu$_{i}+$\nu$_{j})$\omega$_{k}$\omega$_{i}$\omega$_{j}e^{ $\tau$+$\tau$_{i}+$\tau$_{jk}}k-($\nu$_{i}+$\nu$_{j})$\omega$_{-k}$\omega$_{-i}$\omega$_{-j}e^{- $\tau-\tau$_{i}-$\tau$_{j}})

-\displaystyle \frac{1}{2$\nu$_{k}^{2}}\sum_{j=1}^{m} $\varphi$(k, j)$\omega$_{j}$\omega$_{-j}$\omega$_{-k}e^{-$\tau$_{k}}+1\leq|j|\leq m\sum_{j\neq\pm k}, \frac{1}{($\nu$_{j}-$\nu$_{k})$\nu$_{k}}\tilde{ $\varphi$}(k, j)$\omega$_{j}e^{$\tau$_{j}}
-$\delta$_{3 $\alpha$}, -1\displaystyle \times\frac{1}{2$\nu$_{k}}$\gamma$_{k}+$\omega$_{k}^{(3)}(t)e^{$\tau$_{k}}

for any k(1\leq|k|\leq m) . Here $\omega$_{k}^{(3)}(t) is defined by the subsequent members of the

non‐secularity conditions and $\gamma$_{k} �s are defined in Lemma 3.3.

By looking at terms of $\eta$^{ $\alpha$-1} in the right‐hand side of (3.7), the first member (\mathcal{E}_{1}) of

the non‐secularity conditions is determined. The difference between cases of  $\alpha$=-\displaystyle \frac{1}{2} and

 $\alpha$=-\displaystyle \frac{1}{p}(\ell\geq 3) is that $\omega$_{k} �s must satisfy not only (\mathcal{E}_{1}) determined by the terms of $\eta$^{ $\alpha$-1}
but also (3.23) when \ell\geq 3 . Furthermore, the form of (\mathcal{E}_{1}) differs according to the parity
of \ell . In fact, when \ell=2 and \ell=4, (\mathcal{E}_{1}) is a system of non‐linear differential equations.
On the other hand, when \ell=3, (\mathcal{E}_{1}) is a system of linear differential equations (see
§3.3).

§3.3. A concrete calculation in case of  $\alpha$=-\displaystyle \frac{1}{3}
In case of  $\alpha$=-\displaystyle \frac{1}{3} ,

let us write down (\mathcal{E}_{1}) obtained by looking at terms of $\eta$^{ $\alpha$-1} in

the right‐hand side of (3.7). By the straightforward computations, we have

(3.25) P\displaystyle \left(\begin{array}{l}
u_{4 $\alpha$} $\theta$\\
 v_{4 $\alpha$} $\theta$
\end{array}\right)\equiv\left(\begin{array}{ll}
0 & \\
H(u & v)
\end{array}\right)-( $\rho$+\displaystyle \frac{\partial}{\partial t})\left(\begin{array}{l}
u_{ $\alpha$}\\
v_{ $\alpha$}
\end{array}\right) $\theta$,
where H(u, v) is defined by

H(u, v):=(-v_{ $\alpha$}, u_{ $\alpha$})Q\displaystyle \left(\begin{array}{l}
u_{3 $\alpha$} $\theta$\\
 v_{3 $\alpha$} $\theta$
\end{array}\right)+\frac{1}{2}(-v_{2 $\alpha$}, u_{2 $\alpha$})Q\left(\begin{array}{l}
u_{2 $\alpha$} $\theta$\\
 v_{2 $\alpha$} $\theta$
\end{array}\right)
(3.26)

+\displaystyle \frac{u_{2 $\alpha$}}{2}(-v_{ $\alpha$}, u_{ $\alpha$})Q\left(\begin{array}{l}
u_{ $\alpha$} $\theta$\\
 v_{ $\alpha$} $\theta$
\end{array}\right)+($\sigma$_{1}^{ $\theta$}(u_{ $\alpha$})u_{ $\alpha$}u_{2 $\alpha$}+2$\sigma$_{1}^{ $\theta$}(u_{2 $\alpha$})u_{ $\alpha$}^{2}) $\theta$
+(4$\sigma$_{1}^{ $\theta$}(u_{3 $\alpha$})u_{ $\alpha$}+3$\sigma$_{1}^{ $\theta$}(u_{2 $\alpha$})u_{2 $\alpha$}+2$\sigma$_{1}^{ $\theta$}(u_{ $\alpha$})u_{3 $\alpha$}) $\theta$.

By existence of the terms containing e^{$\tau$_{k}}A($\nu$_{k})(1\leq|k|\leq m) in the right‐hand side of

(3.25), we see that (\mathcal{E}_{1}) is expressed as

(3.27) -h_{k}$\omega$_{k}-\displaystyle \frac{d$\omega$_{k}}{dt}=0 (1\leq|k|\leq m)
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with

(3.28) h_{k}:=\displaystyle \frac{$\nu$_{\acute{k}}}{2$\nu$_{k}}+g($\nu$_{k})'h_{k}, k+\sum_{1\leq r<m}, \frac{2($\gamma$_{r}+$\gamma$_{k})}{$\nu$_{k}^{2}-$\nu$_{r}^{2}}.
r\neq\overline{|}k|

Here h_{k} is the same as the one defined by Eq.(77) in [3]. The following proposition
follows from (3.23) and (3.27).

Proposition 3.5. When  $\alpha$=-\displaystyle \frac{1}{3} ,
we have the explicit forms of $\omega$_{k} �s in (3.13):

(3.29) $\omega$_{k}=$\beta$_{k}\displaystyle \exp(-\int h_{k}dt) , $\omega$_{-k}=$\beta$_{-k}\exp(-\int h_{k}dt) (1\leq k\leq m)
with free parameters ($\beta$_{-m}, \ldots, $\beta$_{m})\in E and E is defined by

E:=\{ ($\beta$_{-m}, . . . , $\beta$_{-1}, $\beta$_{1}, . . . , $\beta$_{m})\displaystyle \in \mathbb{C}^{2m}|\sum_{j=1}^{m} $\varphi$(k, j)$\beta$_{j}$\beta$_{-j}$\beta$_{k}=0(1\leq|k|\leq m)\}
Remark that there exist indices k and j for which  $\varphi$(k, j)\neq 0 holds, and hence we

have \dim E\leq 2m-1 . Therefore we have the following.

Theorem 3.6. When  $\alpha$=-\displaystyle \frac{1}{3} ,
there is no instanton‐type solution with 2m free

parameters in \mathcal{A}_{-\frac{1}{3}}^{2} () for(3.3).

Remark. Let M be the m\times m matrix defined by M:=( $\varphi$(k, j))_{1\leq k,j\leq m} . Then

there is a possibility that an arbitrary minor determinant of M does not vanish and

\det M\neq 0 . Hence we might not be able to add parameters more than m+1.

We give some comments on instanton‐type solutions with m free parameters. Tak‐

ing parameters which satisfy (*) below, we see that the leading term of (3.9) (with
respect to  $\eta$ ) contains  m free parameters.

(*) $\beta$_{j}$\beta$_{-j}=0 for any 1\leq j\leq m.

Next, let us consider the second member (\mathcal{E}_{3}) of the non‐secularity conditions which
(3),determines $\omega$_{k} \mathrm{s} in (3.24). By the right‐hand side of the equation for (u_{6 $\alpha$}, v_{6 $\alpha$}) ,

we

confirm that (\mathcal{E}_{3}) is a system of first‐order linear inhomogeneous differential equations
for $\omega$_{k}^{(3)} . Since there exist the terms containing $\omega$_{j}^{(3)} and A($\nu$_{k})e^{$\tau$_{k}} simultaneously (for

(3) (3)
example, $\omega$_{k}$\omega$_{j}$\omega$_{-j}A($\nu$_{k})e^{ $\tau$}k, $\omega$_{j}$\omega$_{k}$\omega$_{-j}A($\nu$_{k})e^{ $\tau$}k ) in the right‐hand side of the equation

for (u_{5 $\alpha$}, v_{5 $\alpha$}) ,
the $\omega$_{k}^{(3)\prime}\mathrm{s} must satisfy similar non‐secularity conditions as those in (3.23).

A similar argument holds for higher‐order terms. Summing up, taking parameters

suitably, we expect that there exists an instanton‐type solution with m free parameters

in \mathcal{A}_{-\frac{1}{3}}^{2} () for (3.3).
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§3.4. A certain conjecture in case of  $\alpha$=-\displaystyle \frac{1}{p}(\ell\geq 4)
In the case of  $\alpha$=-\displaystyle \frac{1}{4} ,

we note that (\mathcal{E}_{1}) is a system of fifth‐order non‐linear

differential equations for $\omega$_{k} �s and $\omega$_{k} �s must satisfy (3.23). By the same reasoning as

 $\alpha$=-\displaystyle \frac{1}{3} ,
we can�t expect the existence of instanton‐type solutions with 2m free param‐

eters in \mathcal{A}_{-\frac{1}{4}}^{2} () . Hence instanton‐type solutions in \mathcal{A}_{ $\alpha$}^{2}() for (3.3) seem to have 2m

free parameters only when  $\alpha$=-\displaystyle \frac{1}{2} and, by (3.23), the following conjecture is expected
in general cases:

Conjecture: When  $\alpha$=-\displaystyle \frac{1}{p}(\ell\geq 3) ,
there is no instanton‐type solutions with 2m free

parameters in \mathcal{A}_{ $\alpha$}^{2}() for (3.3).

Finally, we remark that the conjecture given in page 523, [3] is also valid for the

second and the third terms (except for $\omega$_{k}^{(3)\prime}\mathrm{s} ) of (u, v) in the case of  $\alpha$=-\displaystyle \frac{1}{p}(\ell\geq 3) .
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