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Prüfer angle methods in spectral analysis of

KreinFelleroperators

By

Uta Renata Freiberg *

Abstract

Generalized second order differential operators of the form \displaystyle \frac{d}{d $\mu$}\frac{d}{d $\nu$} are considered. They act

on the space L_{2}(K,  $\mu$) ,
where K is the (compact) support of  $\nu$ and  $\mu$ is an atomless measure

which is in general singular with respect to the Lebesgue measure. In the particular case

that  $\mu$ is self‐similar, one obtains Weyl asymptotics of the eigenvalues which can be refined

by applying renewal theory. In some special cases, the method of Prüfer angles leads to exact

renormalization formulas for the Neumann eigenvalues, allowing a better study of the spectral
asymptotics in the lattice case.

§1. Introduction

In [3], a measure geometric Laplacian \displaystyle \triangle^{ $\mu,\ \nu$}l=\frac{d}{d $\mu$}\frac{d}{d_{l} $\nu$} is introduced as the second

derivative with respect to two atomless finite Borel measures v and  $\mu$ with compact

supports supp  $\mu$\subseteq supp v \subseteq \mathbb{R} . These operators allow interpretations from two dif‐

ferent points of view: On the one hand side, \triangle^{$\mu$_{l} $\nu$} is a generalization of the second

order differential operator \displaystyle \frac{d}{d $\mu$}\frac{d}{d $\mu$} given by the second (weak) derivative with respect to

a measure  $\mu$ as considered in [7]. This operator has an interpretation as Laplacian
on certain compact (maybe fractal) subsets of the real line. So this model is one of

the possibilities to complete the theory of analysis on fractals which was developed for

higher dimensions by several approaches (we refer the interested reader to Kigami�s

monograph [12] and the references therein). On the other hand, \triangle^{$\mu$_{l} $\nu$} generalizes the

notion of wellknown SturmLiouville‐(or, KreinFeller) operator of the form \displaystyle \frac{d}{d $\mu$}\frac{d}{dx}
introduced for example in [10]. In the case that  $\mu$ is a Cantor type measure, spectral

asymptotics of \displaystyle \frac{d}{d $\mu$}\frac{d}{dx} are presented in [8], which is a special case of the results obtained
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in [4] dealing with \displaystyle \triangle^{ $\mu,\ \nu$}l=\frac{d}{d $\mu$}\frac{d}{d_{l} $\nu$} . This operator is the infinitesimal generator of a so

called quasi‐(or, gap) diffusion. The theory of Dirichlet forms shows that also the

more general operator \triangle^{ $\mu,\ \nu$}l is the infinitesimal generator of a strong Markov process

with almost sure continuous paths on supp  $\mu$ (see [5]). Note that eigenvalues of the

operator \displaystyle \frac{d}{d $\mu$}\frac{d}{dx} have an interpretation as eigenfrequencies of a vibrating string with (sin‐
gular) mass distribution  $\mu$ (see [11]).

In the selfsimilar case
,
the eigenvalue counting function  N_{D/^{l}N}^{ $\mu,\ \nu$}(x)- under Dirichlet,

or Neumann boundary conditions— behaves asymptotically like x^{ $\gamma$} where the spectral

exponent  $\gamma$ is expressed in terms of  $\mu$ and  v (see [4]). In [6], using renewal theory, \mathrm{a}

sufficient condition for the convergence of the term N_{D/^{l}N}^{ $\mu,\ \nu$}(x)\cdot x^{- $\gamma$} ,
as  x\rightarrow\infty

,
is given

(see Theorem 2.1). If the selfsimilar measures  $\mu$ and  v have a �large number of sym‐

metries in common� (the socalled�lattice case�) one can expect asymptotic oscillation

of the term N_{D/^{l}N}^{ $\mu,\ \nu$}(x)\cdot x^{- $\gamma$} . Very roughly, this phenomenon can be explained by a huge
number of localized eigenfunction to the same eigenvalue (due to the interplay of self‐

similarity and symmetry) creating high jumps in the eigenvalue counting function. For

the convenience of the reader, we will recall these results in Section 2.

Unfortunately, Theorem 2.1 provides only a necessary— but not sufficient —con‐

dition for such oscillations. This fact is illustrated at the beginning of Section 3 with

the help of an example where we have convergence of N_{D/^{l}N}^{ $\mu,\ \nu$}(x)\cdot x^{- $\gamma$} in the lattice case

as  x\rightarrow\infty . In Section 3, we will provide an instrument which allows—in some special
cases—to decide if convergence of the term  N_{D/^{l}N}^{ $\mu,\ \nu$}(x)\cdot x^{- $\gamma$} in the lattice case occurs or

not. This criterion will be provided in terms of an exact renormalization property of the

Neumann eigenvalues (see Theorem 3.1). The proof of Theorem 3.1 uses the method

of Prüfer angles (see Subsection 3.2), introduced for Atkinson eigenvalue problems (see
[1] as a standard reference). Moreover, we will use a trick introduced by Volkmer in

[14] which allows us to transform the eigenvalue problem associated with -\triangle^{ $\mu,\ \nu$}l into an

Atkinson eigenvalue problem (see Subsection 3.3). Note that the main result Theorem

3.1 (stated in Subsection 3.4) has been already obtained in [14] for the special case of

the middle third Cantor set. Our results hold for a much wider class of fractal sets and

fractals measures, but the idea of the proof remains the same. In Subsection 3.5, we

finally discuss same examples and open problems.
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§2. Preliminaries

§2.1. Definition and analytic properties of the operator

In this section, we firstly recall the definition and the main analytic properties of

the operator \displaystyle \frac{d}{d $\mu$}\frac{d}{d_{l} $\nu$} . For details and proofs we refer to [3].

We are given two Borel probability measures  $\mu$ and  v with compact supports L:=

supp  $\mu$ and  K:= supp v with L\subseteq K\subseteq[a, b]\subset \mathbb{R} . Without loss of generality we

may assume that a, b\in L . The measure geometric Laplacian \triangle^{ $\mu,\ \nu$}l is introduced as the

second (week) derivative \displaystyle \frac{d}{d $\mu$}\frac{d}{d_{l} $\nu$} with respect to the measures v and  $\mu$ as follows.

We introduce the linear space

\displaystyle \mathcal{D}_{1}^{l $\nu$}:=\{f:K\rightarrow \mathbb{R} : \exists f'\in L_{2}(K, v) : f(x)=f(a)+\int_{a}^{x}f'(y)dv(y), x\in K\}.
As the above function f' is unique in L_{2}(K, v) ,

the (first) v ‐derivative of f

\displaystyle \nabla^{l $\nu$}f=\frac{df}{dv}:=f', f\in \mathcal{D}_{1}^{l $\nu$},
is welldefined. Iterating this procedure, the  $\mu$-v ‐Laplacian is introduced on the

subspace

\displaystyle \mathcal{D}_{2}^{$\mu$_{l} $\nu$}:=\{f\in \mathcal{D}_{1}^{l $\nu$}:\exists f''\in L_{2}(L,  $\mu$) :\nabla^{l $\nu$}f(x)=\nabla^{l $\nu$}f(a)+\int_{a}^{x}f''(y)d $\mu$(y), x\in K\}
as the composition of the derivatives \displaystyle \frac{d}{d_{l} $\nu$} and \displaystyle \frac{d}{d $\mu$} ,

i.e.

\displaystyle \triangle^{$\mu$_{l} $\nu$}f=\nabla^{ $\mu$}(\nabla^{l $\nu$}f)=\frac{d}{d $\mu$}(\frac{df}{dv}):=\left\{\begin{array}{ll}
f'' & \mathrm{o}\mathrm{n} L\\
0 & \mathrm{o}\mathrm{n} K\backslash L
\end{array}\right.
So \triangle^{ $\mu,\ \nu$}l is a linear operator on the space L_{2}(K,  $\mu$) . Note that in general it holds that

supp  $\mu$\subseteq K . A standard example for this case is K=[a, b]=[0 ,
1 ], v is the Lebesgue

measure on [0 ,
1 ] ,

and  $\mu$ is the ddimensional Hausdorff measure \mathcal{H}^{d} supported on the

middle third Cantor set, where d=\displaystyle \frac{\log 2}{\log 3} is the Hausdorff dimension of the Cantor set.

But one also can regard cases where  $\mu$, v and the Lebesgue measure are pairwise mu‐

tually singular.
Denote \triangle_{D^{l}}^{ $\mu,\ \nu$} and \triangle_{N^{l}}^{ $\mu,\ \nu$} the restrictions of \triangle^{ $\mu,\ \nu$}l to those \mathcal{D}_{2}^{ $\mu,\ \nu$}l ‐functions f which sat‐

isfy Dirichlet (i.e. f(a)=f(b)=0) —or, Neumann (i.e. \nabla^{l $\nu$}f(a)=\nabla^{l $\nu$}f(b)=0 )
resp.‐ boundary conditions. These operators are nonpositive and selfadjoint, and

the sequences of their eigenvalues have no accumulation point except -\infty (hence, in

particular, the eigenvalues have finite multiplicities). Therefore the eigenvalue counting
functions of -\triangle_{D/N}^{ $\mu,\ \nu$}l given by

N_{D/^{l}N}^{ $\mu,\ \nu$}(x) :=\#\{$\kappa$_{k}\leq x:$\kappa$_{k} is eigenvalue of -\triangle_{D/N}^{ $\mu,\ \nu$}l\}
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‐ counting according to multiplicities— are well‐defined.

§2.2. Spectral asymptotics in the selfsimilar case

For the special case of selfsimilar measures‐Hausdorff measures, or, more general,

anisotropic selfsimilar measures supported on generalized Cantor sets, one can describe

the asymptotic behaviour of N_{D/N}^{$\mu$_{l} $\nu$}(x) as x tends to infinity. This was done in [4] via

proving some renormalization properties of the traces of the corresponding resolvents

reflecting the selfsimilarity of the measures and applying Tauberian theory. In order

to introduce the basic notations, we recall the main result here.

Let [a, b]\subset \mathbb{R} be a closed interval and S=\{S_{1}, . . . , S_{M}\}, M\geq 2 ,
a finite family of

affine contractions, i.e.

S_{i}(x)=r_{i}x+b_{i}, 0<r_{i}<1, b_{i}\in \mathbb{R}, i=1
,

. . .

, M,

such that every S_{i} maps [a, b] into [a, b] . Moreover, we are given a Mdimensional vector

of weights \%= (\%, . . . , $\rho$_{M}) ,
i.e. $\rho$_{1} ,

. . .

, $\rho$_{M} are real numbers from the interval (0,1)
and \displaystyle \sum_{i=1}^{M}$\rho$_{i}=1 . Then classical results of Hutchinson (see [9]) imply the existence of

a unique nonempty compact set L=L(S)\subseteq[a, b] which is self similar w.r. \mathrm{t}. S ,
i.e.

L=\displaystyle \bigcup_{i=1}^{M}S_{i}L . Moreover, there is a unique Borel probability measure  $\mu$= $\mu$(S,  $\rho$) which

is self similar w.r. \mathrm{t}. S and  $\rho$ , i.e.  $\mu$(A)=\displaystyle \sum_{i=1}^{M}$\rho$_{i} $\mu$(S_{i}^{-1}(A)) for any Borel set A in [a, b].
Furthermore, it holds that supp  $\mu$=L.
We denote d the unique positive solution of \displaystyle \sum_{i=1}^{M}r_{i}^{d}=1 ,

which is the socalled similarity
dimension of S . Furthermore, we assume that for any i, j\in\{1\ldots M\}, i\neq j the set

S_{i}([a, b])\cap S_{j}([a, b]) consists of at most one point (i.e. different images of [a, b] are disjoint
or justtouching). Note that this assumption is equivalent to the wellknown open set

condition. Then it holds that d=\dim_{H}L and  0<\mathcal{H}^{d}(L)<\infty ,
where \dim_{H} and \mathcal{H}^{d}

denote Hausdorff dimension and ddimensional Hausdorff measure. Moreover, we have

\mathcal{H}^{d}(S_{i}(L)\cap S_{j}(L))=0 for any i\neq j . If we set $\rho$_{i}=r_{i}^{d} (which is the �natural choice�

of the weights) then it holds that  $\mu$(A)=(\mathcal{H}^{d}(L))^{-1}\mathcal{H}^{d}(A\cap L) for any Borel set A in

[a, b] ,
i.e. the unique self similar measure  $\mu$ is given by the normalized ddimensional

Hausdorff measure, restricted to  L.

These are our requirements to the measure  $\mu$ . For the measure  v
,

we assume that

is satisfies a property which we call �Shomogeneity�, i.e. we assume that there exist

real numbers $\sigma$_{i}>0, i=1
,

. . .

,
M

,
such that

(2.1) v(A\displaystyle \cap(\bigcup_{i=1}^{M}S_{i}K))=\sum_{i=1}^{M}$\sigma$_{i}v(S_{i}^{-1}(A))
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for any Borel set A\subset[a, b] . By the other assumptions it follows immediately that

\displaystyle \sum_{i=1}^{M}$\sigma$_{i}\leq 1.
Note that in the particular case that v is the Lebesgue measure on K=[0 ,

1 ] and  $\mu$

is an arbitrary selfsimilar measure with respect to a family of contractions  S and a

vector of weights  $\rho$ , assumption (2.1) is always satisfied with  $\sigma$_{i}=r_{i}, i=1
,

. . .

,
M.

Under these assumptions it holds that (see [4], Theorem 4.1)

N_{D/^{l}N}^{ $\mu,\ \nu$}(x)=x^{ $\gamma$} as x\rightarrow\infty,

i.e. there exist positive constants C_{1}, C_{2} and x_{0} ,
such that

(2.2) C_{1}x^{ $\gamma$}\leq N_{D/N}^{ $\mu,\ \nu$}l(x)\leq C_{2}x^{ $\gamma$} for x\geq x_{0},

where  $\gamma$\in(0,1) is given as the unique solution of \displaystyle \sum_{i=1}^{M}($\rho$_{i}$\sigma$_{i})^{ $\gamma$}=1.

Remark 1. For the particular case that v is the Lebesgue measure on K=[0 ,
1 ],

and  $\mu$ is the normalized ddimensional Hausdorff measure on a selfsimilar subset  L\subseteq

[0 ,
1 ] satisfying the open set condition, the result (2.2) was obtained by Fujita (see [8]).

In this case, it holds that  $\gamma$=\displaystyle \frac{d}{d+1}.

Remark 2. The particular case that  $\mu$=v ,
and hence K=L

,
has been treated in

[7]. In this case, we have  $\gamma$=\displaystyle \frac{1}{2} ,
i.e. we observe the same spectral asymptotic behaviour

as in the Euclidean case (cf. also (2.5) below). Roughly spoken, the reason for this

phenomenon is that the operator \displaystyle \frac{d}{d $\mu$}\frac{d}{d $\mu$} is just the usual onedimensional Laplacian

composed with a spatial fractal transformation.

§2.3. Refinement of the spectral asymptotics

In view of formula (2.2) it is natural to ask whether the limit

(2.3) \displaystyle \lim_{x\rightarrow\infty}(x^{- $\gamma$}\cdot N_{D/^{l}N}^{ $\mu,\ \nu$}(x))
exists or not. The following theorem provides a sufficient condition for the existence of

the limit (2.3) which will be expressed in terms of the weights ($\rho$_{i})_{i=1}^{M} of the selfsimilar

measure  $\mu$ and the �

homogeneity numbers� ($\sigma$_{i})_{i=1}^{M} of the measure v . For the proof and

a detailed discussion we refer to the author�s paper [6].

Theorem 2.1. Under the assumptions made in Subsection 2.2 one can distin‐

guish two cases for the asymptotical behaviour of the term N_{D/^{l}N}^{ $\mu,\ \nu$}(x) x^{- $\gamma$}, x\rightarrow\infty,

namely:

\underline{Non}‐lattice case: If the additive group \displaystyle \sum_{i=1}^{M}\mathbb{Z}\log($\rho$_{i}$\sigma$_{i}) is a dense subset of \mathbb{R}
,

then it
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follows that the term N_{D/^{l}N}^{ $\mu,\ \nu$}(x)\cdot x^{- $\gamma$} converges as  x\rightarrow\infty
,

and the limit is given by

\displaystyle \lim_{x\rightarrow\infty}N_{D/^{l}N}^{ $\mu,\ \nu$}(x)\cdot x^{- $\gamma$}=(-\sum_{i=1}^{M}( %  $\sigma$)  $\gamma$ \displaystyle \log($\rho$_{i}$\sigma$_{i}))^{-1}\int_{-\infty}^{\infty}e^{- $\gamma$ t}R(e^{t})dt,
where R is a nonnegative, bounded, right continuous function defined by

(2.4) R(x):=N_{D}^{ $\mu,\ \nu$}l(x)-\displaystyle \sum_{i=1}^{M}N_{D}^{ $\mu,\ \nu$}l($\rho$_{i}$\sigma$_{i}x) , x\geq 0.
Lattice case: If \displaystyle \sum_{i=1}^{M} \mathbb{Z} log ( %  $\sigma$) lies in a discrete subgroup of\mathbb{R} , i.e. \displaystyle \sum_{i=1}^{M} \mathbb{Z} log ( %  $\sigma$)=

T\mathbb{Z} for some T>0 ,
then it holds that

N_{D/^{l}N}^{ $\mu,\ \nu$}(x)=(G(\ln x)+o(1))\cdot x^{ $\gamma$},

where o(1) denotes a term which vanishes as  x\rightarrow\infty
,

and  G is a positive, T ‐periodic

function given by

G(t):=T\displaystyle \cdot(-\sum_{i=1}^{M}($\rho$_{i}$\sigma$_{i})^{ $\gamma$}\log($\rho$_{i}$\sigma$_{i}))^{-1}\sum_{j=-\infty}^{\infty}e^{- $\gamma$(t+jT)}R(e^{(t+jT)}) ,

where the function R is defined in (2.4). Moreover, G is rightcontinuous, and there

exist constants  0<l<L<\infty such that  l\leq G(t)\leq L, t\in \mathbb{R}.

Remark 3. For M=2 the lattice case occurs if and only if it holds that

\displaystyle \frac{\log($\rho$_{1}$\sigma$_{1})}{\log($\rho$_{2}$\sigma$_{2})}\in \mathbb{Q},
i.e. if and only if there exist non zero integers p and q such that ($\rho$_{1}$\sigma$_{1})^{q}=($\rho$_{2}$\sigma$_{2})^{p} . For

M>2 one can give similar criteria.

Let us compare our results with the classical result for the Euclidean space \mathbb{R}^{n} . We

consider the Dirichlet eigenvalue problem on a bounded domain  $\Omega$\subset \mathbb{R}^{n} with smooth

boundary \partial $\Omega$

\left\{\begin{array}{l}
-\triangle_{n}u= $\lambda$ u \mathrm{o}\mathrm{n}  $\Omega$\\
 u_{|\partial $\Omega$}\equiv 0,
\end{array}\right.
where \displaystyle \triangle_{n}=\sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}} is the Laplacian in \mathbb{R}^{n} . Define the eigenvalue counting function

N_{n}(x):=\#\{$\lambda$_{k}\leq x : -\triangle_{n}u=$\lambda$_{k}u\}
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(counting according to multiplicities), then for all n\in \mathbb{N} it holds that

(2.5) N_{n}(x)=(2 $\pi$)^{-n}c_{n}| $\Omega$|_{n}x^{n/2}+o(x^{n/2}) ,
as x\rightarrow\infty,

where | $\Omega$|_{n} denotes the ndimensional Lebesgue measure of  $\Omega$ and  c_{n} is the nvolume

of the unit ball in \mathbb{R}^{n} (see Weyl [15]). Hence, in the Euclidean case we always have

convergence of the term N_{n}(x)\cdot x^{-\frac{n}{2}} as x\rightarrow\infty.

§3. The lattice case‐ Exact renormalization of the Neumanneigenvalues

§3.1. Statement of the problem‐An example: The interval as a fractal

Now we want to illustrate an interesting problem related with the lattice case. To

this end, we regard the following example.

We fix a number r\in(0,1) ,
and we introduce the family S=\{S_{1}, S_{2}\} of contractions

acting on the interval [0 ,
1 ] given by S_{1}(x)=rx and S_{2}(x)=(1-r)x+r . Obviously,

the unique selfsimilar set L with respect to the family S is the interval [0 ,
1 ] ,

hence we

interpret the unit interval as a selfsimilar set, as a �degenerated� fractal of Hausdorff

dimension one. If we choose the corresponding vector of weights to be % = (r, 1-r) ,
the

corresponding measure  $\mu$ is just the Lebesgue measure restricted to the unit interval.

Now we investigate the particular case  v= $\mu$ (hence  K=L ), i.e. the operator \triangle^{ $\mu,\ \nu$}l is

given by the usual second derivative, hence by the onedimensional Laplacian on [0 ,
1 ].

On the one hand side, we know from (2.5) that the limit N_{D}(x)\cdot x^{-1/2} exists for any

choice of r\in(0,1) . On the other hand side, Remark 3 tells us that we are in the

nonlattice case if and only if

\displaystyle \frac{\log r}{\log(\mathrm{l}-r)}\in \mathbb{R}\backslash \mathbb{Q}.
Thus, convergence of the term N_{D/N}(x)\cdot x^{- $\gamma$} as  x\rightarrow\infty may also emerge in the lattice

case. The mathematical reason behind this fact is that the periodic function occurring
in the renewal theorem might be a constant.

By contrast, Sabot constructed in [13] an example, where we have an oscillating
function  G . He regarded the interval as a selfsimilar set with respect to the same

family S=\{S_{1}, S_{2}\} as above but equipped with the measure which is selfsimilar with

respect to the family S and the vector of weights \tilde{ $\rho$}=(1-r, r) . Obviously, this leads

to the lattice case in Theorem 2.1 for any r\in(0,1) ,
because of $\rho$_{1}$\sigma$_{1}=$\rho$_{2}$\sigma$_{2}=r(1-r)

(see Remark 3 again). If r=\displaystyle \frac{1}{2} ,
we obtain the Euclidean case and the arising periodic

function is a constant. However, for r\displaystyle \neq\frac{1}{2} ,
the corresponding periodic function G in
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Theorem 2.1 is not a constant. Note that Sabots�s example satisfies the assumptions of

Theorem 3.1 below.

In the rest of this section, we will provide an instrument which allows —in some

special cases—to decide if the periodic function in the lattice case is a constant or not.

To this end, we will use the method of Prüfer angles (see Subsection 3.2) as well as a

trick introduced by Volkmer in [14] which allows us to transform the eigenvalue problem
associated with -\triangle^{ $\mu,\ \nu$}l into an Atkinson eigenvalue problem (see Subsection 3.3).

§3.2. The method of Prüfer angles

For the convenience of the reader, we briefly recall the definition of an Atkinson

eigenvalue problem and the method of Prüfer angles. For details we refer to [1].

Let [c, d]\subseteq \mathbb{R} be an interval and B\subseteq[c, d] a Borel set. We assume that the

Lebesgue measure of B is less than d-c
,

and that the sets B\cap[c , e) and B\cap(e, d] have

positive Lebesgue measure for any e\in(c, d) .

Consider the Atkinson eigenvalue problem

u'=(1-1(x))
(3.1) for \mathrm{a}.\mathrm{e}. x\in[c, d],

v'=- $\lambda$ 1_{B}(x)u

( 1_{B} denotes the indicator function of the set B ) with boundary conditions

\cos $\alpha$ u(c)=\sin $\alpha$ v(c)
(3.2)

\cos $\beta$ u(d)=\sin $\beta$ v(d) ,

where  $\alpha$\in[0,  $\pi$ ) and  $\beta$\in(0,  $\pi$ ]. Obviously, we obtain Dirichlet boundary conditions for

 $\alpha$=0,  $\beta$= $\pi$ and Neumann boundary conditions for  $\alpha$= $\beta$=\displaystyle \frac{ $\pi$}{2} . It is wellknown (see
[1], [2] and [14]), that the eigenvalues form an increasing sequence of real numbers

$\lambda$_{0}<$\lambda$_{1}<$\lambda$_{2}<. . .

which are all positive in the Dirichlet case, while the eigenvalues in the Neumann prob‐
lem satisfy 0=$\lambda$_{0}<$\lambda$_{n}, n\geq 1 . Note that the number of eigenvalues is finite if and

only if there is a finite union A of intervals such that A\triangle B is a Lebesgue zero set (see
Theorem 4.3 in [2]). If there are infinitely many eigenvalues, it holds that $\lambda$_{n}\rightarrow\infty as

 n\rightarrow\infty.

Now we introduce the concept of Prüfer angles. For  $\lambda$\in \mathbb{R} , let the pair (u(x,  $\lambda$), v(x,  $\lambda$))
denote the solution of (3.1) with initial values

u(c,  $\lambda$)=\sin $\alpha$, v(c,  $\lambda$)=\cos $\alpha$.
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Define the Prüfer angle  $\theta$(x)= $\theta$(x,  $\lambda$) by

 $\theta$(x) :=\arg(v(x,  $\lambda$)+iu(x,  $\lambda  \theta$(c)= $\alpha$.

It easily proves that the Prüfer angle satisfies the (ordinary) differential equation

(3.3) $\theta$'=(1-1_{B}(x))\cos^{2} $\theta$+ $\lambda$ 1_{B}(x)\sin^{2} $\theta$.

Obviously,  $\lambda$ is an eigenvalue of the problem (3.1, 3.2) if and only if the boundary
conditions are also satisfied in the endpoint  d . The function  $\theta$(d,  $\lambda$) is increasing, and

in [1] is shown the following:

Proposition 3.1. The eigenvalues $\lambda$_{n} of the problem (3.1, 3.2) are the solutions

of

 $\theta$(d, $\lambda$_{n})= $\beta$+n $\pi$, n=0 , 1, 2, . . .

§3.3. Transformation into an Atkinsonproblem

For the rest of the paper, we assume that the measure v is the Lebesgue measure,

and that [a, b]=[0 ,
1 ] . The measure  $\mu$ is assumed to be a atomless probability measure

on [0 ,
1 ] with support L satisfying

 $\mu$([0, x))>0 and  $\mu$((x, 1]) >0 for any x\in(0,1) .

Note that any selfsimilar measure introduced in Section 2.1 obeys this property. Now

the eigenvalue problem for -\displaystyle \triangle^{ $\mu$,x}=-\frac{d}{d $\mu$}\frac{d}{dx} can be written as

U(t)-U(0)=\displaystyle \int_{0}^{t}V(z)dz(3.4) t\in[0, 1].
V(t)-V(0)=- $\lambda$\displaystyle \int_{0}^{t}U(z)d $\mu$(z)

We consider this problem subject to the (mixed) boundary conditions

\cos $\alpha$ U(0)=\sin $\alpha$ V(0)
(3.5)

\cos $\beta$ U(1)=\sin $\beta$ V(1) ,

where  $\alpha$\in[0,  $\pi$ ) and  $\beta$\in(0,  $\pi$ ]. This is Krein�s eigenvalue problem for a vibrating string
with mass distribution  $\mu$ (see [11]). A number  $\lambda$ is an eigenvalue of (3.4, 3.5), if there

exists a nontrivial continuous solution (U, V) of bounded variation satisfying (3.4, 3.5).
Then the function U is the eigenfunction to the eigenvalue  $\lambda$

,
while the function  V is its

first (week) derivative. In [14] is described, how this problem can be transformed into

an eigenvalue problem of the form (3.1). We sketch the construction here.

Define h : [0, 1]\rightarrow[0 ,
2 ] to be the distribution function of the measure which is the

sum of the Lebesgue measure and the measure  $\mu$ ,
i.e.

 h(t):=t+ $\mu$([0, t)) , t\in[0, 1].
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Then h is continuous, strictly increasing and surjective. Setting B:=h(L) it is easy

to see that B\cap[0 , e) and B\cap(e , 1] have positive Lebesgue measure for any e\in(0,1) .

Consider the solution (u(x,  $\lambda$), v(x,  $\lambda$)) of the system (3.1, 3.2) with c=0, d=2 . It is

easy to check that

U(t,  $\lambda$):=u(h(t),  $\lambda$) , V(t,  $\lambda$):=v(h(t),  $\lambda$) , t\in[0, 1],

solve the system (3.4) with the initial values

U(0,  $\lambda$)=\sin $\alpha$, V(0,  $\lambda$)=\cos $\alpha$.

Hence, the problems (3.1) and (3.4) have the same eigenvalues (subject to the boundary
conditions (3.2) and (3.5) with the same angles  $\alpha$ and  $\beta$ ), and  $\theta$(h(t),  $\lambda$) is the Prüfer

angle for the problem (3.4), i.e.

 $\theta$(h(t),  $\lambda$)=\arg(V(t,  $\lambda$)+iU(t,  $\lambda$)) .

Remark 4. Note that the (fractal) set B\subseteq[0 ,
2 ] is in general no longer self‐

similar.

§3.4. Main result

Now we are going to apply this transformation to a special class of selfsimilar

measures  $\mu$ leading to the lattice case in the setting of Theorem 2.1.

We are given  M\geq 2 linear contractions S_{i} : [0, 1]\rightarrow[0 ,
1 ] with ratios r_{i}, i=1

,
. . .

, M,
such that the sets S_{i}([0,1]) are pairwise disjoint or justtouching. Moreover, we assume

 $\mu$ to be the unique probability measure which is selfsimilar with respect to the family
 S and a vector  $\rho$= (\%, . . . , $\rho$_{M})\in \mathbb{R}^{M}.
In addition, we require that the products $\rho$_{i}r_{i} do not depend on the index i

,
i.e. we

assume that there exists a number R^{-1}\in(0,1) such that

(3.6) $\rho$_{i}r_{i}\equiv:R^{-1}, i=1
,

. . .

,
M.

Note that—in the language of stochastics— this assumption means that the associated

quasidiffusion spends in average the same amount of time in any of the sets S_{i}(L) ,

i=1
,

. . .

,
M . From the statements of Subsection 2.2 (see (2.2)) it follows that the

eigenvalue counting function of the operator − \displaystyle \frac{d}{d $\mu$}\frac{d}{dx} behaves asymptotically like x^{ $\gamma$}

where the spectral exponent  $\gamma$ is given by  $\gamma$=\displaystyle \frac{\log M}{\log R} . Obviously, this model fits into the

lattice case of Theorem 2.1, because \displaystyle \sum_{i=1}^{M}\mathbb{Z}\log($\rho$_{i}r_{i})=(\log R)\mathbb{Z} is a discrete subgroup
of R. In order to find out if the term N_{D/N}(x)\cdot x^{- $\gamma$} converges as  x\rightarrow\infty or not, we prove

the following exact renormalization property of the Neumann eigenvalues. The proof

deeply relies on Proposition 3.1, the differential equation (3.3) for the Prüfer angle, and

the following lemma.
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Lemma 3.1. Denote  U(t,  $\lambda$) and V(t,  $\lambda$) the functions introduced in Subsection

3.3. Then for every i=1
,

. . .

,
M it holds that

U(t, R $\lambda$)=U(S_{i}^{-1}(t),  $\lambda$)

and

(3.7) V(t, R $\lambda$)=r_{i}^{-1}V(S_{i}^{-1}(t),  $\lambda$)

for S_{i}(0)\leq t\leq S_{i}(1) .

Proof. Fixing i and substituting t=S(s) in (3.4), the prove is an easy exercise.

For a detailed proof we refer the reader to [6]. \square 

Now we are going to state our main result which generalizes a recent result of

Volkmer (see [14]), who obtained Theorem 3.1 for the special case of the (classical)
middle third Cantor set.

Theorem 3.1. Under the above assumptions denote  0=$\lambda$_{0}<$\lambda$_{1}<$\lambda$_{2}<\ldots
the eigenvalues of the operator -\displaystyle \triangle_{N}^{ $\mu$,x}=-\frac{d}{d $\mu$}\frac{d}{dx} . Then it holds that

$\lambda$_{Mn}=R$\lambda$_{n}, n=0 , 1, 2, . . .

Proof. Without loss of generality we may assume that the images

S_{1}([0,1]) ,
. . .

, S_{M}([0,1]) are sorted from the left to the right, i.e.

S_{1}(0)=0, S_{M}(1)=1 and S_{i}(1)\leq S_{i+1}(0) ,
i=1

,
. . .

,
M-1.

As we regard the eigenvalue problem subject to Neumann boundary conditions, it holds

that

V(0, $\lambda$_{n})=V(1, $\lambda$_{n})=0,

and the Prüfer angle satisfies

 $\theta$(h(S_{1}(1)), R$\lambda$_{n})= $\theta$(2, $\lambda$_{n})=\displaystyle \frac{ $\pi$}{2}+n $\pi$.
Next we claim that

(3.8)  $\theta$(x, R$\lambda$_{n})= $\theta$(2, $\lambda$_{n})=\displaystyle \frac{ $\pi$}{2}+n $\pi$ for  h(S_{1}(1))\leq x\leq h(S_{2}(0)) .

If S_{1}(1)=S_{2}(0) , (3.8) holds trivially. If S_{1}(1)<S_{2}(0) , (3.8) follows from (3.3), taking
into account that 1 (x)=0 on [h(S_{1}(1)), h(S_{2}(0))] . As

1_{B}(x+h(S_{2}(0)))=1(x) for h(S_{1}(0))\leq x\leq h(S_{1}(1)) ,
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we obtain

 $\theta$(x+h(S_{2}(0)), R$\lambda$_{n})=n $\pi$+ $\theta$(x, R$\lambda$_{n}) for h(S_{1}(0))\leq x\leq h(S_{1}(1)) ,

which yields

 $\theta$(x+h(S_{2}(1)), R$\lambda$_{n})=n $\pi$+ $\theta$(h(S_{1}(1)), R$\lambda$_{n})=\displaystyle \frac{ $\pi$}{2}+2n $\pi$= $\theta$(2, $\lambda$_{2n}) .

Iterating this procedure leads to

 $\theta$(2, R$\lambda$_{n})= $\theta$(h(S_{M}(1)), R$\lambda$_{n})=\displaystyle \frac{ $\pi$}{2}+Mn $\pi$= $\theta$(2, $\lambda$_{Mn}) ,

which proves the assertion of the theorem. \square 

Corollary 3.1. Denote as above  0=$\lambda$_{0}<$\lambda$_{1}<$\lambda$_{2}<\ldots the eigenvalues of the

operator -\displaystyle \triangle_{N}^{ $\mu$,x}=-\frac{d}{d $\mu$}\frac{d}{dx} . Then for any k=1
, 2, 3, . . .

,
the subsequence

(\displaystyle \frac{($\lambda$_{kM^{n}})^{ $\gamma$}}{kM^{n}})_{n\geq 0}
is a constant.

Proof. Fixing k\in \mathbb{N} and taking into account that  $\gamma$=\displaystyle \frac{\log M}{\log R} ,
it follows immediately

from the latter theorem that

\displaystyle \frac{($\lambda$_{kM^{n}})^{ $\gamma$}}{kM^{n}}=\frac{(R^{n}$\lambda$_{k})^{ $\gamma$}}{kM^{n}}=\frac{$\lambda$_{k}^{ $\gamma$}}{k} for any n\geq 0,

which yields the assertion. \square 

Hence, it is sufficient, to calculate the first two eigenvalues $\lambda$_{1} and $\lambda$_{2}($\lambda$_{1} and $\lambda$_{3} ,
in

case that M=2 ) in order to decide whether \displaystyle \lim_{n\rightarrow\infty}\frac{$\lambda$_{n}^{ $\gamma$}}{n} exists or not. It readily verifies

that \displaystyle \lim_{n\rightarrow\infty}\frac{$\lambda$_{n}^{ $\gamma$}}{n} exists if and only if \displaystyle \lim_{x\rightarrow\infty}(x^{- $\gamma$}\cdot N_{N}^{ $\mu,\ \nu$}l(x)) exists. The proof is an easy

exercise, in particular because the eigenvalues are simple. Computing small eigenvalues
can be done by approximating the fractal by finite unions of intervals. Volkmer (see
[14]) found $\lambda$_{1}\approx 7.09 and $\lambda$_{3}\approx 61.26 in the case of the middle third Cantor set, hence

he proved �real periodicity�, i.e. oscillation of the term (x^{- $\gamma$}\cdot N_{N}^{ $\mu,\ \nu$}l(x)) as  x\rightarrow\infty . We

guess that the same holds for any fractal treated in Theorem 3.1 which is not the entire

interval [0 ,
1 ] equipped with the classical onedimensional Laplacian.

Remark 5. The reader might wonder about a corresponding result for the Dirich‐

let eigenvalue counting function N_{D} . Note that the factor r_{i}^{-1} on the right hand side

in (3.7) causes some difficulties if one would try to prove a analogue result by using the

same techniques. However, as we have (see Proposition 5 in [5])

N_{D'}^{$\mu$_{l} $\nu$}(x)\leq N_{N'}^{$\mu$_{l} $\nu$}(x)\leq N_{D'}^{$\mu$_{l} $\nu$}(x)+2, x\geq 0,
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the convergence result holds in the same way. An exact renormalization property for

the Dirichlet eigenvalues can be obtained by the method of socalled �modified Prüfer

angles� (see [14]).

§3.5. Examples, open problems, and a conjecture

Now we apply our result to some special selfsimilar sets and measures. Assume

that the contractions S_{i} : [0, 1]\rightarrow[0 ,
1 ], i=1

,
. . .

,
M

,
all with the same ratio r:=

\displaystyle \frac{1}{2M-1} , map the interval in an �equidistant� way, i.e.

S_{i}(x):=rx+\displaystyle \frac{2(i-1)}{2M-1}, i=1
,

. . .

,
M.

Denote  L\subseteq [0 ,
1 ] the unique nonempty compact selfsimilar set w.r. \mathrm{t}. S and  $\mu$

the unique probability measure which is selfsimilar w.r. \mathrm{t}. S and the vector % =

(\displaystyle \frac{1}{M}, \ldots, \frac{1}{M}) . Hence, the Hausdorff dimension of L equals d_{M} :=\displaystyle \frac{\log M}{\log(2M-1)} and  $\mu$

is just the normalized  d_{M}‐dimensional Hausdorff measure restricted to L . Obviously,
for M=2 we obtain the middle third Cantor set.

From Subsection 2.2 it follows that the spectral exponent is given by

 $\gamma$=\displaystyle \frac{\log M}{\log(M(2M-1))}=\frac{\log M}{\log M-\log r},
and the renormalization property of the Neumann eigenvalues reads

$\lambda$_{Mn}=\displaystyle \frac{M}{r}$\lambda$_{n}=M(2M-1)$\lambda$_{n}, n=0 , 1, 2, . . .

One can also construct�more anisotropic� examples. It even holds that for any numbers

 $\alpha$,  $\beta$\in(0,1) with  $\alpha$+ $\beta$<1 there are associated selfsimilar sets and measures satisfying
the assumptions of Theorem 3.1 such that the Hausdorff dimension of L is given by the

unique number d\in(0,1) satisfying $\alpha$^{d}+$\beta$^{d}=1 . Just choose L and  $\mu$ to be generated

by the family \{S_{1}(x)= $\alpha$ x, S_{2}(x)= $\beta$ x+(1- $\beta$)\} and the vector \%= (\displaystyle \frac{ $\beta$}{ $\alpha$+ $\beta$}, \frac{ $\alpha$}{ $\alpha$+ $\beta$}) .

Obviously, similar constructions easily can be developed for more than two similitudes.

Finally, we want to mention, that our result holds for a much wider class than

treated by Theorem 3.1. The proof of Theorem 3.1 is somehow done by�gluing together�
localized eigenfunctions on the sets S_{1}(L) ,

. . .

, S_{M}(L) (i.e. on copies of L of �depth�

one) to the same eigenvalue‐ which corresponds to an accumulation of the corresponding
Prüfer angles. One could think about matching eigenfunctions on copies of the set L of

different depth. In doing so, it would be sufficient that the products $\rho$_{i}r_{i} are rationally
linked (instead of taking the same value as required in (3.6)). But those cases would
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lead in general to the nonlattice case, because the numbers \log($\rho$_{i}r_{i}) would not be

rationally linked at the same time. We are convinced that at this point, a further study
of the subject requires a deep knowledge in number theory and zetafunctions.

Let us conclude the paper posing two open problems:

1. Find a selfsimilar set L and a selfsimilar measure  $\mu$ supported on  L such that in

Theorem 2.1 the lattice case occurs, the periodic function G is a constant, L is not

the interval, and  $\mu$ is not the Lebesgue measure. We conjecture that such a set and

such a measure do not exist.

2. Determine the Hausdorff dimension of the set  B (cf. Remark 4). As it is no longer

selfsimilar, the concept of similarity dimension (see [9]) does not apply. However,
B still carries a highly recursive structure, which it should make possible to give at

least some thresholds for its Hausdorff dimension.
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