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Heat kernel estimates on the incipient infinite cluster

for critical branching processes

By

Ichiro Fujii * and Takashi Kumagai *

Abstract

We obtain heat kernel estimates for the simple random walk on the family tree of the

critical branching process with finite variance, conditioned on non‐extinction. We show that

the spectral dimension of the random walk is 4/3.

§1. Introduction

There has been a lot of work by mathematical physicists on the behaviour of random

walk on percolation clusters (see [6] and the references therein). Through numerical

computations, it was observed that random walk on a supercritical percolation cluster

on \mathbb{Z}^{d} behaves in a diffusive fashion whereas at the criticality, it behaves anomalously.
On the other hand, mathematically rigorous results appear quite recently, even

in the supercritical case, for the quenched estimates (i.e. almost sure estimates with

respect to the randomness of the media). In [3], Barlow obtained both sides Gaussian‐

type quenched heat kernel estimates. Using these estimates, the quenched invariance

principle was established ([7, 11, 12]).
Critical percolation clusters are believed to be finite in all dimensions, and it is rig‐

orously proved when d=2 or d\geq 19 . To avoid finite‐size issues associated with random

walk on a finite cluster, it is convenient to consider random walk on the incipient infinite

cluster (IC), which can be understood as a critical percolation cluster conditioned to

be infinite. Note that the existence of the \mathrm{I}\mathrm{I}\mathrm{C} is in general a highly non‐trivial problem;
so far it has been constructed only when d=2

,
and d>6 in the spread‐out case. (For

trees, it is not difficult to construct the \mathrm{I}\mathrm{I}\mathrm{C} , as mentioned below.)
On the IICS for \mathbb{Z}^{2} and trees, Kesten [9, 10] proved that the random walk is sub‐

diffusive, i.e., spread more slowly than the random walk on the Euclidean lattice. In
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[4], heat kernel estimates for the random walk are given on the spread‐out oriented

percolation on \mathbb{Z}^{d}\times \mathbb{Z}_{+} for d>6 . As a consequence, it is proved that the random walk

is subdiffusive. In [5], detailed sub‐Gaussian heat kernel estimates are established for

the simple random walk on the IICS of family trees of critical branching processes whose

offspring distributions are binomial.

In this note, we estimate the heat kernel of the simple random walk on the IICS

for more general family trees. We only assume that the offspring distribution has finite

variance, so it does not need to be bounded.

In the following of this section, we give some notation, explain the framework we

work on, and state our main results.

Let  $\Gamma$=(G, E) be an infinite graph, with the vertex set G and the edge set E . We

assume that  $\Gamma$ is connected. We write  x\sim y if \{x, y\}\in E ,
and assume that (G, E) is

locally finite, i.e. $\mu$_{y}<\infty for each  y\in G ,
where $\mu$_{y} is the number of bonds that contain

y . For A\subset G ,
set  $\mu$(A)=\displaystyle \sum_{x\in A}$\mu$_{x} . Let d(x, y) be the length of the shortest path

connecting x and y ,
and denote

B(x, r):=\{y\in G:d(x, y)\leq r\}, V(x, r):= $\mu$(B(x, r)) .

Let X=(X_{n}, n\in \mathbb{Z}_{+}, P^{x}, x\in G) be the discrete‐time simple random walk on  $\Gamma$.

Then X has transition probabilities

P^{x}(X_{1}=y)=\displaystyle \frac{1}{$\mu$_{x}}, y\sim x.
We define the discrete‐time heat kernel (or the transition density) of X by

p_{n}(x, y)=P^{x}(X_{n}=y)\displaystyle \frac{1}{$\mu$_{y}} ;

we have p_{n}(x, y)=p_{n}(y, x) . Let 0\in G be fixed. For each R\geq 0 ,
let

$\tau$_{R}= minn \geq 0 : d(0, X_{n})\geq R}.

The spectral dimension of G ,
denoted d_{s}(G) ,

is defined by

(1.1) d_{s}(G)=-2\displaystyle \lim_{n\rightarrow\infty}\frac{\log p_{2n}(x,x)}{\log n},
if the limit exists. Here x\in G ; it is easy to see that the limit is independent of the

choice of x . Note that d_{s}(\mathbb{Z}^{d})=d.
Next, let \{\mathcal{G}( $\omega$) :  $\omega$\in $\Omega$\} be the realization of the \mathrm{I}\mathrm{I}\mathrm{C} , where  $\omega$ expresses the

randomness of the media. For each  $\omega$\in $\Omega$ we can define the simple random walk

 X=(X_{n}, n\in \mathbb{Z}_{+}, P_{ $\omega$}^{x}, x\in \mathcal{G}( $\omega$)) . Let p_{n}^{ $\omega$}(x, y) be the discrete‐time heat kernel of X.
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Alexander‐Orbach [1] conjectured that, if \mathcal{G}( $\omega$) is the \mathrm{I}\mathrm{I}\mathrm{C} for the critical percolation
on \mathbb{Z}^{d}, d\geq 2 ,

then d_{s}(\mathcal{G}( $\omega$))=4/3 . It is now thought that this is unlikely to be true

for small d . This conjecture is true for the simple random walk on the \mathrm{I}\mathrm{I}\mathrm{C} of the critical

branching process with binomial offspring distributions ([5]), and for the random walk

on the \mathrm{I}\mathrm{I}\mathrm{C} of the spread‐out oriented percolation on \mathbb{Z}^{d}\times \mathbb{Z}_{+} for d>6 ([4]). We will

show that the conjecture is true for the \mathrm{I}\mathrm{I}\mathrm{C} for the critical branching process whose

offspring distribution has finite variance.

We now introduce the random family tree and give the assertion completely. This

graph is a family tree with randomness of a number of children for each vertex. We

assume that \{p_{j}\}_{j\geq 0} is a non‐negative sequence with \displaystyle \sum_{j=0}^{\infty}p_{j}=1.
First, put a vertex which we call a root. This is said to be in the zeroth generation.

We denote it by 0 . The root gives birth to j_{0} vertices (children) with probability p_{j_{0}}.

We denote them by (0, l_{1}) , 1\leq l_{1}\leq j_{0} . They are said to be in the first generation.

Second, each vertex (0, l_{1}) in the first generation gives birth to j_{(0,l_{1})} vertices (children)
with probability p_{j_{(0,l_{1})}} ,

which we denote by (0, l_{1}, l_{2}) , 1\leq l_{2}\leq j_{(0,l_{1})} . They are said

to be in the second generation. In general, each vertex (0, l_{1}, l2, . . . , l_{n}) in the n‐th

generation gives birth to j_{(0,l_{1},l_{2},\ldots,l_{n})} vertices (children) with probability p_{j_{(0,l_{1},l_{2},\ldots,l_{n})}}
independently, which we denote by (0, l_{1}, l2, . . . , l_{n}, l_{n+1}) , 1\leq l_{n+1}\leq j_{(0,l_{1},\ldots,l_{n})} . These

children are said to be in the (n+1) ‐th generation. The number of children for each

parent in each generation obeys the law \{p_{j}\} and is independent of each other. Finally,
we connect the parent and their children with edges. We denote this random graph by
\mathcal{G}' and the law by P.

Let \{Z_{n}\}_{n\geq 0} be random variables representing a number of vertices in the n‐th

generation. \{Z_{n}\}_{n\geq 0} is called a Bienaymé‐Galton‐Watson branching process, and the

law \{p_{j}\} is called an offspring distribution. In particular, P[Z_{1}=j]=p_{j} . When

E[Z_{1}]<1 ,
the number of vertices of \mathcal{G}' is finite. When E[Z_{1}]>1, \mathcal{G}' is an infinite

graph with positive probability. The case where E[Z_{1}]=1 is critical. Here we treat the

critical case, i.e., we assume E[Z_{1}]=\displaystyle \sum_{j=0}^{\infty}jp_{j}=1.
In this case \mathcal{G}' is a finite graph P‐a.s. So we modify \mathcal{G}' to have infinite vertices.

Let A be a family tree. We denote the subgraph of A restricted to (resp. up to)
the n‐th generation by A_{n} (resp. A_{\leq n} ). We have

Lemma 1.1. ([10, Lemma1.14]) Let A be a tree up to the k‐th generation. Then

\displaystyle \lim_{n\rightarrow\infty}P[\mathcal{G}_{\leq k}'=A|Z_{n}\neq 0]=|A_{k}|P[\mathcal{G}_{\leq k}'=A]
and writing \mathbb{P}_{0}[A]=|A_{k}|P[\mathcal{G}_{\leq k}'=A], \mathbb{P}_{0} has a unique extension to a probability measure

\mathbb{P} on the set of infinite family trees.

Let \mathcal{G} be a family tree chosen with the distribution \mathbb{P} : we call this the incipient
infinite cluster (IC).
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We assume

$\sigma$^{2}:=Var[Z_{1}]=E[(Z_{1}-1)^{2}]=\displaystyle \sum_{j=0}^{\infty}(j-1)^{2}p_{j}<\infty.
In order to obtain the assertions, the following estimates for the volume growth

and the effective resistance are essential.

Proposition 1.1. (1) There exist q_{0}, c_{1}>0 such that for each R>1,

(1.2) \displaystyle \mathbb{P}[R_{\mathrm{e}\mathrm{f}\mathrm{f}}(0, B(0, R)^{c})\geq$\lambda$^{-1}R]\geq 1-\frac{c_{1}}{$\lambda$^{q_{0}}}.
(2) \mathrm{E}[V(0, R)]\leq c_{2}R^{2}.
(3) \mathrm{E}[1/V(0, R)]\leq c_{3}R^{-2}.

The definition of R_{\mathrm{e}\mathrm{f}\mathrm{f}}(A, B) in (1.2) will be given in (3.3).
We prove this proposition in the following sections.

Once this proposition is proved, then using Proposition 1.6 and Theorem 1.7 in [4],
we can obtain the following results.

Theorem 1.1. (1) There exist $\alpha$_{1}, $\alpha$_{2}<\infty ,
and a subset $\Omega$_{0} with \mathbb{P}($\Omega$_{0})=1

such that the following statements hold.

(a) For each  $\omega$\in$\Omega$_{0} and x\in \mathcal{G}( $\omega$) there exists  N_{x}( $\omega$)<\infty such that

(\log n)^{-$\alpha$_{1}}n^{-2/3}\leq p_{2n}^{ $\omega$}(x, x)\leq(\log n)^{$\alpha$_{1}}n^{-2/3}, n\geq N_{x}( $\omega$) .

In particular, d_{s}()=\displaystyle \frac{4}{3}, \mathbb{P}-a.s.
,

and the random walk is recurrent.

(b) For each  $\omega$\in$\Omega$_{0} and x\in \mathcal{G}( $\omega$) there exists  R_{x}( $\omega$)<\infty such that

(\log R)^{-$\alpha$_{2}}R^{3}\leq E_{ $\omega$}^{x}$\tau$_{R}\leq(\log R)^{$\alpha$_{2}}R^{3}, R\geq R_{x}( $\omega$) .

Hence

\displaystyle \lim_{R\rightarrow\infty}\frac{\log E_{ $\omega$}^{x}$\tau$_{R}}{\log R}=3.
(2) The following estimates hold:

c_{1}R^{3}\leq \mathrm{E}(E_{ $\omega$}^{0}$\tau$_{R})\leq c_{2}R^{3} for all R\geq 1,

c_{3}n^{-2/3}\leq \mathrm{E}(p_{2n}^{ $\omega$}(0,0))\leq c_{4}n^{-2/3} for all n\geq 1,

C5 n^{1/3}\leq \mathrm{E}(E_{ $\omega$}^{0}d(0, X_{n})) for all n\geq 1.

(1) gives quenched estimates, i.e., estimates for a.e.  $\omega$\in $\Omega$ ,
whereas (2) is the

annealed estimates (i.e., taking the average over the randomness of the media, which is

denoted by E).
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Remark. 1) We can not take  $\alpha$_{1} to be 0 in general (see [5, Lemma5.1]).
2) We can deduce more estimates for the heat kernel etc. from Proposition 1.1. See

Proposition 1.5 and Theorem 1.7, 1.8 in [4] (or Proposition 1.2.3 and Theorem 1.2.4 in

[8]).
3) In [5], further off‐diagonal heat kernel estimates are obtained, whereas we only obtain

on‐diagonal estimates. This is because we do not know how to maintain good uniform

control of the laws \mathbb{P}_{x} in our setting, where \mathbb{P}_{x} is the law of the \mathrm{I}\mathrm{I}\mathrm{C} conditioned that the

vertex x is in the \mathrm{I}\mathrm{I}\mathrm{C}.

Example 1. We have the Poisson distribution with parameter 1

p_{j}=\displaystyle \frac{1}{j!}e^{-1}, j\in \mathbb{Z}_{+}
as an example of the offspring distribution. In this case, the expectation and the variance

are 1, so it has finite variance. But it is not bounded, therefore is not treated in [5].

In Section 2, we will give some estimates for the branching process and in Section

3, we will prove Proposition 1.1.

This note is based on the Master Thesis by the first named author ([8]).

§2. Bienaymé‐Galton‐Watson branching process

As we mentioned above, we assume

$\sigma$^{2}:=Var[Z_{1}]=E[(Z_{1}-1)^{2}]<\infty.

We will use this assumption for the proof essentially.
In the following of this section, we estimate the volume of \mathcal{G}_{\leq n}'.
Let f be the generating function of the offspring distribution, so that

f(s)=E[s^{Z_{1}}]=\displaystyle \sum_{k=0}^{\infty}p_{k}s^{k}
From [2, p.19 (2)] we have

(2.1) P[Z_{n}>0]\displaystyle \sim\frac{2}{n$\sigma$^{2}}.
Let

Y_{n}=\displaystyle \sum_{k=0}^{n}Z_{k}, g_{n}(s)=E[s^{Y_{n}}], f_{n}(s)=E[s^{Z_{n}}].
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Then conditioning on Z_{1} we obtain that f_{n+1}(s)=f(f_{n}(s)) , g_{n+1}(s)=sf(g_{n}(s)) .

And

(2.2) f_{n}(1-)=1, f_{n}'(1-)=E[Z_{n}]=1, f_{n}''(1-)=E[Z_{n}(Z_{n}-1)]<\infty,

(2.3) g_{n}(1-)=1, g_{n}'(1-)=E[Y_{n}]=n+1.

Lemma 2.1. There exists c>0 such that for any n>0

E[Y_{n}^{2}]\leq cn^{3}

Proof. Let Z_{i}^{(l)}, l=1
, 2, \cdots be independent copies of  Z_{i} . Then,

Var [Z_{n+1}]=E[(Z_{n+1}-1)^{2}]=\displaystyle \sum_{y=0}^{\infty}E[(Z_{n+1}-1)^{2}|Z_{n}=y]P[Z_{n}=y]
=\displaystyle \sum_{y=0}^{\infty}E[(\sum_{l=1}^{y}Z_{1}^{(l)}-1)^{2}]P[Z_{n}=y]
=\displaystyle \sum_{y=0}^{\infty}E[\{\sum_{l=1}^{y}(Z_{1}^{(l)}-1)\}^{2}+(y-1)^{2}]P[Z_{n}=y]
=\displaystyle \sum_{y=0}^{\infty}\{y$\sigma$^{2}+(y-1)^{2}\}P[Z_{n}=y]=$\sigma$^{2}E[Z_{n}]+E[(Z_{n}-1)]
=$\sigma$^{2}+Var[Z_{n}]=(n+1)$\sigma$^{2}

Let i<j ,
then

E[Z_{i}Z_{j}]=E[E[Z_{i}Z_{j}|Z_{i}]]=\displaystyle \sum_{y=0}^{\infty}E[\sum_{l=0}^{y}yZ_{j-i}^{(l)}]P[Z_{i}=y]=E[Z_{i}^{2}],
since E[\displaystyle \sum_{l=0}^{y}yZ_{j-i}^{(l)}]=y^{2} . Using the two equalities above, we have

E[Y_{n}^{2}]=E[(\displaystyle \sum_{i=0}^{n}Z_{i})^{2}]=\sum_{i=0}^{n}E[Z_{i}^{2}]+2\sum_{i<j}E[Z_{i}Z_{j}]=\sum_{i=0}^{n}E[Z_{i}^{2}]+2\sum_{i<j}E[Z_{i}^{2}]
=\displaystyle \sum_{i=0}^{n}(i$\sigma$^{2}+1)+2\sum_{i=0}^{n}(n-i)(i$\sigma$^{2}+1)\leq cn^{3}

\square 

The next lemma is Lemma 2.3(a) in [5]. Since the proof is the same, we omit it.

Lemma 2.2. There exist c_{0}>0, p_{0}>0 such that

P[Y_{n}>c_{0}n^{2}]\displaystyle \geq\frac{p_{0}}{n}.
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We will need to consider the following modified branching process. Let \tilde{Z}=

(\tilde{Z}_{n}, n\geq 0) be a branching process with \tilde{Z}_{0}=1 and the same offspring distribution as

Z
, except that at the first generation we have

P[\tilde{Z}_{1}=j]=(j+1)p_{j+1}.

For the generating function of \tilde{Z}_{1} ,
we have

E[s^{\tilde{Z}_{1}}]=\displaystyle \sum_{k=0}^{\infty}(k+1)p_{k+1}s^{k}=f'(s) ,

and \displaystyle \sum_{k=0}^{\infty}(k+1)p_{k+1}=f'(1-)=1 by (2.2). So \{(j+1)p_{j+1}\} is a probability.
The generating function of \tilde{Z}_{n} is expressed by f as

E[s^{\tilde{Z}_{n}}]=E[E[s^{\tilde{Z}_{n}}|\displaystyle \tilde{Z}_{1}]]=\sum_{y=0}^{\infty}E[s^{$\Sigma$_{l=1}^{y}Z_{n-1}^{(l)}}]P[\tilde{Z}_{1}=y]
=E[E[s^{Z_{n-1}}]^{\tilde{Z}_{1}}]=E[f_{n-1}(s)^{\tilde{Z}_{1}}]=f'(f_{n-1}(s)) ,

where \{Z_{n-1}^{(l)}\}_{l} are independent copies of Z_{n-1} . The expectation of \tilde{Z}_{n} is finite since we

assume the offspring distribution has finite variance:

(2.4) E[\displaystyle \tilde{Z}_{n}]=\frac{d}{ds}f'(f_{n-1}(s))|_{s=1-}=f''(f_{n-1}(1-))f_{n-1}'(1-)=f''(1-)<\infty.
Let  $\zeta$ be a random variable. We write  $\zeta$[n] for a random variable with the dis‐

(d)
tribution of \displaystyle \sum_{i=1}^{n}$\zeta$_{i} ,

where $\zeta$_{i} are i.i. \mathrm{d} . with  $\zeta$_{i}= $\zeta$ . Using (2.4) and the Chebyshev

inequality, we can easily obtain the following lemma.

Lemma 2.3. There exists  c>0 such that for any n,  $\lambda$>0

P[\displaystyle \tilde{Z}_{n}[n]\geq $\lambda$ n]\leq\frac{c}{ $\lambda$}.
Let \displaystyle \ovalbox{\tt\small REJECT} n=\sum_{k=0}^{n}\tilde{Z}_{k} . We then have the following, which corresponds to Lemma

2.3(b), 2.5(b) in [5]. Again, we omit the proof since it is the same as that of [5], given
the estimates above.

Lemma 2.4. There exists c_{1}>0 such that for any  $\lambda$, n with 0< $\lambda$<\displaystyle \frac{c_{0}}{4}, n>

\sqrt{\frac{c_{0}}{4 $\lambda$}},
P[Ỹn [n]< $\lambda$ n^{2}]\leq \mathrm{e}^{-\frac{c_{1}}{\sqrt{ $\lambda$}}},

where c_{0} is the constant in Lemma 2.2.
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§3. Proof of Proposition 1.1

In this section, we estimate the graph \mathcal{G}( $\omega$) and give the proof of Proposition 1.1.

We remark that \mathbb{P}-\mathrm{a}.\mathrm{s}. \mathcal{G} has exactly one infinite descending path from 0 ,
which we

call the backbone, and denote by B . We denote the vertex on the backbone in the n‐th

generation by b_{n}.

By [10, Corollary 2.13], we see that a parent on the backbone has l children, ex‐

cluding the one on the backbone, with probability P[\tilde{Z}_{1}=l]=(l+1)p_{l+1} . On the other

hand, we can easily see that a parent off the backbone has l children with probability

P[Z_{1}=l]=p_{l}.
For each x, y\in \mathcal{G} ,

let  $\gamma$(x, y) be the unique geodesic path connecting x and y . We

write D(x) for the set of descendants of x . Note that x\in D(x) . We set

D(x;z) :=\{y\in D(x) :  $\gamma$(x, y)\cap $\gamma$(x, z)=\{x\}\}.

We also set

D_{r}(x;z):=\displaystyle \{y\in D(x;z):d(x, y)=r\}, D_{\leq r}(x;z):=\bigcup_{i=0}^{r}D_{i}(x;z) .

We estimate the volume of balls with a center at the origin.
If the root has no bond, we define $\mu$_{0}=1 for convenience. Note that as \mathcal{G} is a tree,

we have

(3.1) |B(x, r)|\leq V(x, r)\leq 2jx, r+1)|.

Lemma 3.1. There exists c>0 such that for any  $\lambda$>0,

\mathrm{E}[V(0, n)]\leq cn^{2}

Proof. By (3.1), it is enough to bound |B(0, n)| . Recall that b_{n} is the vertex on

the backbone in the n‐th generation.

h(s):=\mathrm{E}[s^{|B(0,n)|}]=\mathrm{E}[s^{1\bigcup_{k=0^{D}\leq k(b_{n-k};b_{n-k-1})|}^{n}}]=E[s^{$\Sigma$_{k=0}^{n}\tilde{Y}_{k}^{(k)}}]=$\Pi$_{k=0}^{n}E[s^{\tilde{Y}_{k}}]

=s$\Pi$_{k=1}^{n}E[E[s^{\tilde{Y}_{k}}|\displaystyle \tilde{Z}_{1}]]=s$\Pi$_{k=1}^{n}\sum_{y=1}^{\infty}E[s^{1+$\Sigma$_{l=1}^{y}Y_{k-1}^{(l)}}]P[\tilde{Z}_{1}=y]
=s$\Pi$_{k=1}^{n}\displaystyle \sum_{y=1}^{\infty}sE[s^{Y_{k-1}}]^{y}P[\tilde{Z}_{1}=y]=s$\Pi$_{k=1}^{n}(sE[g_{k-1}(s)^{\tilde{Z}_{1}}])
=s^{n+1}$\Pi$_{k=1}^{n}f'(g_{k-1}(s))=s^{n+1}$\Pi$_{k=0}^{n-1}f'(g_{k}(s)) ,

where \{Y^{(k)}\}_{k} are independent copies of Y. \cdot Using this, we have

 h'(s)=(n+1)s^{n}$\Pi$_{k=0}^{n-1}f'(g_{k}(s))+s^{n+1}\displaystyle \sum_{l=0}^{n-1}f''(g_{l}(s))g_{l}'(s)$\Pi$_{m=0,m\neq l}^{n-1}f'(g_{m}(s)) .
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So using (2.2), (2.3),

(3.2) \displaystyle \mathrm{E}[|B(0, n)|]=h'(1-)=n+1+\sum_{l=0}^{n-1}f''(1-)(l+1)\leq cn^{2}
\square 

Using Lemma 2.4, we can prove the following in the same way as Proposition 2.7

of [5].

Proposition 3.1. There exists c_{1}>0 such that for any  $\lambda$, n with 0< $\lambda$<

\displaystyle \frac{c_{0}}{4}, n>3\sqrt{\frac{c_{0}}{4 $\lambda$}},
\mathbb{P}[V(0, r)< $\lambda$ r^{2}]\leq \mathrm{e}^{-\frac{c_{1}}{\sqrt{ $\lambda$}}},

where c_{0} is the constant in Lemma 2.2.

Proposition 3.2. There exists c>0 such that for any r>0,

\displaystyle \mathrm{E}[\frac{1}{V(0,r)}]\leq\frac{c}{r^{2}}.
Proof. First, note that V(0, r)\geq 1 . From Proposition 3.1, we have

\displaystyle \mathbb{P}[\frac{1}{V(0,r)}>\frac{ $\lambda$}{r^{2}}]\leq \mathrm{e}^{-c_{1}\sqrt{ $\lambda$}}
for 4/c_{0}\leq $\lambda$\leq 4n^{2}/9c_{0} . So

\displaystyle \mathrm{E}[\frac{1}{V(0,n)}]
\displaystyle \leq\frac{4\cdot 3^{2}}{9c_{0}n^{2}}\mathbb{P}[\frac{1}{V(0,n)}\leq\frac{4\cdot 3^{2}}{9c_{0}n^{2}}]

+\displaystyle \sum_{k=3}^{n-1}\frac{4\cdot(k+1)^{2}}{9c_{0}n^{2}}\mathbb{P}[\frac{4\cdot k^{2}}{9c_{0}n^{2}}<\frac{1}{V(0,n)}\leq\frac{4\cdot(k+1)^{2}}{9c_{0}n^{2}}]+1\cdot \mathbb{P}[\frac{4\cdot n^{2}}{9c_{0}n^{2}}<\frac{1}{V(0,n)}]
\displaystyle \leq\frac{4\cdot 3^{2}}{9c_{0}n^{2}}+\sum_{k=3}^{n-1}\frac{4\cdot(k+1)^{2}}{9c_{0}n^{2}}\mathbb{P}[\frac{4\cdot k^{2}}{9c_{0}n^{2}}<\frac{1}{V(0,n)}]+\mathbb{P}[\frac{4\cdot n^{2}}{9c_{0}n^{2}}<\frac{1}{V(0,n)}]
\displaystyle \leq\frac{4\cdot 3^{2}}{9c_{0}n^{2}}+\sum_{k=3}^{n-1}\frac{4\cdot(k+1)^{2}}{9c_{0}n^{2}}\mathrm{e}^{-ck}+\mathrm{e}^{-cn}\leq\frac{c}{n^{2}}.

\square 

In the following of this section, we estimate the effective resistance for \mathcal{G} . For the

purpose, we first estimate the connectivity in the ball.
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Definition 3.1. Let x\in \mathcal{G}, r\geq 1 . Let M(x, r) be the smallest number m such

that there exists A=\{z_{1}, . . . , z_{m}\}\subset \mathcal{G} with d(x, z_{i})\in[r/4, 3r/4] for each i
,

such that

any path  $\gamma$ from  x to B(x, r)^{c} must pass through the set A.

Since \mathcal{G} is a tree, the best choice of such a set A will in fact be the points at a

distance \lceil r/4\rceil from  x.

Using the previous estimates such as (2.1) and Lemma 2.3, we can prove the fol‐

lowing similarly (in fact, more easily) to the proof of [5, Proposition 2.10].

Proposition 3.3. There exists c>0 such that for each m\geq 2, r\geq 4,

\displaystyle \mathbb{P}[M(0, r)\geq m]\leq\frac{c}{m}.
Finally, we estimate the effective resistance. To define the effective resistance, we

define a quadratic form \mathcal{E} by

\displaystyle \mathcal{E}(f, f)=\frac{1}{2}\sum_{x,y\in \mathcal{G},x\sim y}(f(x)-f(y))^{2}
Let A, B be disjoint subsets of \mathcal{G} . The effective resistance between A and B is defined

by

(3.3) R_{\mathrm{e}\mathrm{f}\mathrm{f}}(A, B)^{-1}:=\displaystyle \inf\{\mathcal{E}(f, f) : f|_{A}=1, f|_{B}=0\}.

Proposition 3.4. There exists c>0 such that for any r\geq 4,  $\lambda$\leq 1/4,

\mathbb{P}[R_{\mathrm{e}\mathrm{f}\mathrm{f}}(0, B(0, r)^{c})< $\lambda$ r]\leq c $\lambda$.

Proof. Let

A=\displaystyle \bigcup_{z\in $\gamma$(0,b_{\lceil r/4\rceil})\backslash \{b_{\lceil r/4\rceil}\}}D_{\lceil r/4\rceil}(z, b_{\lceil r/4\rceil}) , A^{*}=\{z\in A:D_{\lceil r/4\rceil}(z)\neq 
Then any path from 0 to B(0, r)^{c} must pass through A^{*}\cup\{b_{\lceil r/4\rceil}\} ,

so M(0, r)\leq|A^{*}|+1.
Let A^{**} be the set of ancestors at level \lceil r/4\rceil of  A^{*}\cup\{b_{\lceil r/4\rceil}\} ,

and we define a function

f on \mathcal{G} as follows: if z\in $\gamma$(0, x) for some x\in A^{**},  f(z)=|z|/\lceil r/4\rceil ,
otherwise  f(z)=

f(a(z, 1 where |z| is the level of the vertex and a(z, 1) is the parent of z . Since \mathcal{G} is

a tree, we see that M(0, r)=|A^{**}| . Then

\displaystyle \frac{1}{R_{\mathrm{e}\mathrm{f}\mathrm{f}}(0,B(0,r)^{c})}\leq \mathcal{E}(f, f)\leq\frac{1}{2}(\frac{1}{\lceil r/4\rceil})^{2} \lceil r/4\rceil\cdot M(0, r)=\frac{2M(0,r)}{r},
so R_{\mathrm{e}\mathrm{f}\mathrm{f}}(0, B(0, r)^{c})\displaystyle \geq\frac{r}{2M(0,r)} . Using Proposition 3.3, we deduce that

\displaystyle \mathbb{P}[R_{\mathrm{e}\mathrm{f}\mathrm{f}}(0, B(0, r)^{c})< $\lambda$ r]\leq \mathbb{P}[\frac{r}{2M(0,r)}< $\lambda$ r]\leq \mathbb{P}[M(0, r)>\frac{1}{2 $\lambda$}]\leq c $\lambda$.
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\square 

By Lemma 3.1, Proposition 3.2 and Proposition 3.4, the proof of Proposition 1.1

is completed.
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