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Abstract

In this paper, we give a summary of recent results on symmetric diffusion semigroups
associated with classical Dirichlet forms on an infinite volume path space C(\mathrm{R}, \mathrm{R}^{d}) with Gibbs

measures. First, we discuss essential self‐adjointness of diffusion operators (Dirichlet operators)
associated with the Dirichlet forms. We also show the connection between the corresponding
diffusion semigroup and the solution of a parabolic stochastic partial differential equation

(=SPDE, in abbreviation) on R. Next, we present some functional inequalities for the diffusion

semigroup. As applications of these inequalities, we have the existence of a gap at the lower

end of spectrum of the Dirichlet operator and the boundedness of the Riesz transforms.

§1. Introduction

In recent years, there has been a growing interest in infinite dimensional stochastic

dynamics in several areas of Euclidean quantum field theory and statistical mechanics.

Equilibrium states of such dynamics are described by Gibbs measures. The stochastic

dynamics corresponding to these states is given by a diffusion semigroup. On some

minimal domain of smooth functions, the infinitesimal generator of the semigroup coin‐

cides with the Dirichlet operator defined through a classical Dirichlet form of gradient

type with a Gibbs measure. From an analytic point of view, it is very important to

ask whether the extension of the Dirichlet operator restricted to the minimal domain

is unique. As is well known, in the case of L^{2} ‐dynamics, the uniqueness is equivalent
to essential self‐adjointness on the minimal domain of the Dirichlet operators with the
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Gibbs measure considered. This kind of uniqueness problem on infinite dimensional

state spaces has been studied by many researchers up to now. We refer to Eberle [4]
and the references therein for a detailed review.

In this paper, we deal with diffusion semigroups of P( $\phi$)_{1} ‐quantum fields in infinite

volume in the content of quantum field theory. The diffusion semigroups are defined

through Dirichlet forms on an infinite volume path space C(\mathrm{R}, \mathrm{R}^{d}) with a Gibbs mea‐

sure  $\mu$ . The Gibbs measure  $\mu$ is associated with the (formal) Hamiltonian

\displaystyle \mathcal{H}(w):=\frac{1}{2}\int_{\mathrm{R}}|w'(x)|^{2}dx+\int_{\mathrm{R}}U(w(x))dx,
where U : \mathrm{R}^{d}\rightarrow \mathrm{R} is an interaction potential function. The main purpose of this paper

is to introduce the results of Kawabi‐Röckner [11] on the above uniqueness problem and

to We also discuss the connection between the diffusion semigroup and the solution of a

parabolic SPDE called the time dependent Ginzburg‐Landau type SPDE. Besides, we

present some functional inequalities which will play important roles to develop harmonic

analysis and potential theory on the path space C(\mathrm{R}, \mathrm{R}^{d}) with the Gibbs measure  $\mu$.

The organization of this paper is as follows: In Section 2, we give our framework

and show essential self‐adjointness on smooth cylinder functions of the Dirichlet opera‐

tors. Our method in [11] is inspired by quite recent works by Da Prato‐Tubaro [3] and

Da Prato‐Röckner [2] where an L^{p}‐analysis of Kolmogorov operators in infinitely many

variables is developed. They employ the theory of SPDE in an essential way and give
a new approach to tackle such uniqueness problems. For our problem, we adopt their

approach, however, with substantial necessary modifications. Hence we give an outline

of the proof. We also show the logarithmic Sobolev inequality under the additional con‐

dition of convexity of U . As a consequence of this inequality, there is a gap at the lower

end of the spectrum of the Dirichlet operator and L^{2}() ‐ergodicity of the corresponding

semigroup holds. In Section 3, we study the Littlewood‐Paley‐Stein inequality and the

Riesz transforms which play the fundamental roles in the Sobolev space theory.

§2. Essential self‐adjointness of Dirichlet operators

Let us introduce some notations and objects we will be working with. First we

define a weight function $\rho$_{r}\in C^{\infty}(\mathrm{R}, \mathrm{R}) , r\in \mathrm{R} , by $\rho$_{r}(x) :=e^{r $\chi$(x)}, x\in \mathrm{R} ,
where

 $\chi$\in C^{\infty}(\mathrm{R}, \mathrm{R}) is a positive symmetric convex function satisfying  $\chi$(x)=|x| for |x|\geq 1.
We fix a constant r>0 large enough and set E=L_{r}^{2}(\mathrm{R}, \mathrm{R}^{d}) :=L^{2}(\mathrm{R}, \mathrm{R}^{d} : $\rho$_{-2r}(x)dx) .

This space is a Hilbert space with the inner product defined by

(X, Y)_{E}:=\displaystyle \int_{\mathrm{R}}(X(x), Y(x))_{\mathrm{R}^{d}}$\rho$_{-2r}(x)dx, X, Y\in E.
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Moreover, we set H :=L^{2}(\mathrm{R}, \mathrm{R}^{d}) and denote by \Vert \Vert_{E} and \Vert \Vert_{H} the corresponding
norms of E and H

, respectively.
We also introduce a suitable subspace of C(\mathrm{R}, \mathrm{R}^{d}) . For functions in C(\mathrm{R}, \mathrm{R}^{d}) ,

we

set

\displaystyle \Vert w\Vert_{r,\infty}:=\sup_{x\in \mathrm{R}}|w(x)|$\rho$_{-r}(x) for r\in \mathrm{R},

and consider

C:=\displaystyle \bigcap_{r>0}\{w\in C(\mathrm{R}, \mathrm{R}^{d})|\Vert w\Vert_{r,\infty}<\infty\}.
Then it becomes a Fréchet space with the system of norms \Vert \Vert_{r,\infty} . We easily see

that the inclusion C\subset E\cap C(\mathrm{R}, \mathrm{R}^{d}) is dense with respect to the topology of E . We

endow C(\mathrm{R}, \mathrm{R}^{d}) with the  $\sigma$‐field  B generated by the point evaluation and denote by

\mathcal{P}(C(\mathrm{R}, \mathrm{R})) the class of all probability measures on the space (C(\mathrm{R}, \mathrm{R}^{d}), \mathcal{B}) . For

T>0 ,
we also denote by \mathcal{B}_{T} and \mathcal{B}_{T,c} the  $\sigma$‐fields of  C(\mathrm{R}, \mathrm{R}^{d}) generated by \{w(x);-T\leq

 x\leq T\} and \{w(x);x\leq-T, x\geq T\} , respectively.
In this paper, we always assume the following three conditions on the potential

function U :

(U1): U\in C^{1}(\mathrm{R}^{d}, \mathrm{R}) and there exists a constant K_{1}\in \mathrm{R} such that

(\nabla U(z_{1})-\nabla U(z2), z_{1}-z_{2})_{\mathrm{R}^{d}}\geq-K_{1}|z_{1}-z_{2}|^{2}, z_{1}, z_{2}\in \mathrm{R}^{d}

(U2): There exist K_{2}>0 and p>0 such that

|\nabla U(z)|\leq K_{2}(1+|z|^{p}) , z\in \mathrm{R}^{d}

(U3): \displaystyle \lim_{|z|\rightarrow\infty}U(z)=\infty.

(In [11], we impose slightly weaker conditions than the above conditions.) As examples
of U ,

we can include the case

U(z)=\displaystyle \sum_{j=0}^{2m}a_{j}|z|^{j}, a_{1}=0, a_{2m}>0,  m\in N.

Especially, we are interested in a square potential and a double‐well potential. Those

are,  U(z)=a|z|^{2} and U(z)=a(|z|^{4}-|z|^{2}) , a>0 , respectively.

Now, we introduce a Gibbs measure. Consider the Schrödinger operator H_{U}:=

-\displaystyle \frac{1}{2}\triangle+U on L^{2}(\mathrm{R}^{d}, \mathrm{R}) ,
where \displaystyle \triangle:=\sum_{i=1}^{d}\partial^{2}/\partial z_{i}^{2} is the d‐dimensional Laplacian.

Then condition (U3) assures that H_{U} has purely discrete spectrum and a complete set

of eigenfunctions. We denote by $\lambda$_{0}(>\displaystyle \min U) the minimal eigenvalue and by  $\Omega$ the
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corresponding normalized eigenfunction in  L^{2}(\mathrm{R}^{d}, \mathrm{R}) . It is called ground state and it

decays exponentially.
Let \mathcal{W}_{-T,z_{1};T,z_{2}}, T>0, z_{1}, z_{2}\in \mathrm{R}^{d} ,

be the path measure of Brownian bridge
such that w(-T)=z_{1}, w(T)=z_{2} . We sometimes regard this measure as a probability
measure on the space (C(\mathrm{R}, \mathrm{R}^{d}), \mathcal{B}) by considering w(x)=z_{1} for x\leq-T and w(x)=z_{2}
for x\geq T . We define  $\mu$(A) for A\in \mathcal{B}_{T}, T>0 , by

 $\mu$(A):=e^{2T$\lambda$_{0}}\displaystyle \int_{\mathrm{R}^{d}}\int_{\mathrm{R}^{d}} $\Omega$(z_{1}) $\Omega$(z_{2})p(2T, z_{1}, z_{2})
(2.1) \displaystyle \times \mathrm{E}^{\mathcal{W}_{-T,z_{1};T,z_{2}}}[\exp(-\int_{-T}^{T}U(w(x))dx);A]dz_{1}dz_{2},
where p(t, z_{1}, z_{2}) is the transition probability density of standard Brownian motion on

R. Then by the Feynman‐Kac formula and the Markov property of Brownian motion,
we can see that  $\mu$ is well‐defined as an element of \mathcal{P}(C(\mathrm{R}, \mathrm{R})) and it satisfies the

following DLR‐equation for every T>0 and  $\mu$-\mathrm{a}.\mathrm{e}.  $\xi$\in C(\mathrm{R}, \mathrm{R}^{d}) :

 $\mu$(dw|\mathcal{B}_{T,c})( $\xi$)

(2.2) =Z_{T, $\xi$}^{-1}\displaystyle \exp(-\int_{-T}^{T}U(w(x))dx)\mathcal{W}_{-T, $\xi$(-T);T, $\xi$(T)} (dw),

where Z_{T, $\xi$} is a normalizing constant. See Proposition 2.7 in Iwata [5] for details.

Although generally there exist other  $\mu$ �s in \mathcal{P}(C(\mathrm{R}, \mathrm{R})) satisfying the DLR‐equation

(2.2), in this paper we only consider the Gibbs measure  $\mu$ which has been constructed

in (2.1).
Here we note that the Gibbs measure  $\mu$ is supported on  C by using the standard

moment estimates of Brownian motion. Then by the continuity of the inclusion map of

C into E
,

we can regard  $\mu$\in \mathcal{P}(E) by identifying it with its image measure under the

inclusion map.

By virtue of the DLR‐equation (2.2), the Gibbs measure  $\mu$ is  C_{0}^{\infty}(\mathrm{R}, \mathrm{R}^{d}) ‐quasi‐

invariant, i.e.,  $\mu$(\cdot+k) and  $\mu$ are mutually equivalent and

 $\mu$(k+dw)= $\Lambda$(k, w)(dw)

holds for every k\in C_{0}^{\infty}(\mathrm{R}, \mathrm{R}^{d}) . The Radon‐Nikodym density  $\Lambda$(k, w) is represented by

 $\Lambda$(k, w)=\displaystyle \exp\{\int_{\mathrm{R}}(U(w(x))-U(w(x)+k(x))
‐ \displaystyle \frac{1}{2}|k'(x)|^{2}+(w(x), \triangle_{x}k(x))_{\mathrm{R}^{d}})dx\},

where \triangle_{x}:=d^{2}/dx^{2} . Moreover, we have  $\mu$ is translation invariant, and then by com‐

bining this with the fact that  $\Omega$ decays exponentially, it holds that

\displaystyle \int_{E}(\int_{\mathrm{R}}|w(x)|^{2m}$\rho$_{-2r}(x)dx) $\mu$(dw)
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(2.3) \displaystyle \leq\frac{1}{r}\int_{\mathrm{R}^{d}}|z|^{2m} $\Omega$(z)^{2}dz<\infty, m\in \mathrm{N}, r>0.
Now we define the space of smooth cylinder functions. We say a function F :  E\rightarrow

\mathrm{R} is in a class \mathcal{F}C_{b}^{\infty} if there exist n\in \mathrm{N}, \{$\varphi$_{1}, \cdots, $\varphi$_{n}\}\subset C_{0}^{\infty}(\mathrm{R}, \mathrm{R}^{d}) and a function

f\equiv f($\alpha$_{1}, \cdots, $\alpha$_{n})\in C_{b}^{\infty}(\mathrm{R}) such that

F(w)\equiv f(\langle w, $\varphi$_{1}\rangle, \cdots, \langle w, $\varphi$_{n}\rangle) , w\in E.

Here we use the notation \langle w,  $\varphi$\displaystyle \rangle:=\int_{\mathrm{R}}(w(x),  $\varphi$(x))_{\mathrm{R}^{d}}dx if the integral is absolutely

converging. Note that \mathcal{F}C_{b}^{\infty} is dense in L^{2}( $\mu$) . For F\in \mathcal{F}C_{b}^{\infty} ,
we also define the

H‐Fréchet derivative D_{H}F:E\rightarrow H by

D_{H}F(w):=\displaystyle \sum_{j=1}^{n}\frac{\partial f}{\partial$\alpha$_{j}}(\langle w, $\varphi$_{1}\rangle, \cdots, \langle w, $\varphi$_{n}\rangle)$\varphi$_{j}.
We consider a pre‐Dirichlet form (, \mathcal{F}C_{b}^{\infty}) which is given by

\displaystyle \mathcal{E}(F, G)=\int_{E}(D_{H}F(w), D_{H}G(w))_{H} $\mu$(dw) , F, G\in \mathcal{F}C_{b}^{\infty}
Then by virtue of the C_{0}^{\infty}(\mathrm{R}, \mathrm{R}^{d}) ‐quasi‐invariance, we have

(2.4) \mathcal{E}(F, G)=(-\mathcal{L}_{0}F, G)_{L^{2}( $\mu$)}, F, G\in \mathcal{F}C_{b}^{\infty},
where \mathcal{L}_{0} is given by

\displaystyle \mathcal{L}_{0}F(w)=\sum_{i,j=1}^{n}\frac{\partial^{2}f}{\partial$\alpha$_{i}\partial$\alpha$_{j}}(\langle w, $\varphi$_{1}\rangle, \cdots, \langle w, $\varphi$_{n}\rangle)\langle$\varphi$_{i}, $\varphi$_{j}\rangle

+\displaystyle \sum_{i=1}^{n}\frac{\partial f}{\partial$\alpha$_{i}}(\langle w, $\varphi$_{1}\rangle, \cdots, \langle w, $\varphi$_{n}\rangle) \{\langle w, \triangle_{x}$\varphi$_{i}\rangle-\langle\nabla U(w(\cdot)), $\varphi$_{i}\rangle\}.
This means the operator \mathcal{L}_{0} is the pre‐Dirichlet operator which is associated with the

pre‐Dirichlet form (, \mathcal{F}C_{b}^{\infty}) . In particular, (, \mathcal{F}C_{b}^{\infty}) is closable on L^{2}( $\mu$) . So we can

define by \mathcal{D}(\mathcal{E}) the completion of \mathcal{F}C_{b}^{\infty} with respect to \mathcal{E}_{1}^{1/2} ‐norm. We see that (\mathcal{E}, \mathcal{D}

is a Dirichlet form and the operator \mathcal{L}_{0} is symmetric in L^{2}() .

In many applications, it is an important problem whether one has essential self‐

adjointness for \mathcal{L}_{0} , i.e., self‐adjointness of the closure (\overline{\mathcal{L}}_{0}, \mathrm{D}\mathrm{o}\mathrm{m}(\overline{\mathcal{L}}_{0})) of (\mathcal{L}_{0}, \mathcal{F}C_{b}^{\infty}) in

L^{2}( $\mu$) . The reason is that in general there are many lower bounded self‐adjoint exten‐

sions \mathcal{L}_{2} of \mathcal{L}_{0} in L^{2}() which therefore define symmetric strongly continuous semigroups

\{e^{t\overline{\mathcal{L}}_{2}}\}_{t\geq 0} generated by them. In fact, there always exists one such extension called the

Friedrich extension which is the operator corresponding to the Dirichlet form (\mathcal{E}, \mathcal{D}(\mathcal{E})) .

If \mathcal{L}_{0} is essentially self‐adjoint, there is hence only one such semigroup. Consequently,

only one such dynamics associated with the Gibbs measure  $\mu$ exists.
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The following theorem is taken from Theorem 5.1 in [11]. We show that the semi‐

group is not only unique but also represented in terms of the solution of a parabolic
SPDE (2.5) on R.

Theorem 2.1. The pre‐Dirichlet operator (\mathcal{L}_{0}, \mathcal{F}C_{b}^{\infty}) is essentially self‐ adjoint
in L^{2}( $\mu$) . Furthermore, the semigroup \{T_{t}\}_{t\geq 0} generated by \overline{\mathcal{L}}_{0} is represented by

T_{t}F(w)=\mathrm{E}[F(X_{t}^{w})],  $\mu$-a.s. w, t\geq 0.

Here X^{w}=\{X_{t}^{w}(\cdot)\}_{t\geq 0} is the solution of the SPDE

(2.5) dX_{t}(x)=\{\triangle_{x}X_{t}(x)-\nabla U(X_{t}(x))\}dt+\sqrt{2}dB_{t}(x) , x\in \mathrm{R}, t>0,

with initial datum X_{0}=w\in C ,
where \{B_{t}\}_{t\geq 0} is an H ‐cylindrical Brownian motion

over a probability space ( $\Theta$, \mathcal{F}, \mathrm{P}) .

Remark 1. We refer to Iwata [6] for the precise meaning of the (mild) solution

to the SPDE (2.5). Here we collect some results on the SPDE (2.5).

(i) Under conditions (U1) and (U2), (2.5) has a unique (mild) solution living in

C([0, \infty), C) for initial datum w\in C . (See Theorems 5.1 and 5.2 in [6].)
(ii) By a usual coupling method for (2.5),

(2.6) \Vert X_{t}^{w}-X_{t}^{w'}\Vert_{E}\leq e^{(K_{1}+2$\lambda$^{2})t}\Vert w-w'\Vert_{E}, w, w'\in C,
holds \mathrm{P}‐almost surely. (See Lemma 2.1 in Kawabi [7].)

(iii) In addition, we impose condition (U3). Then the Gibbs measure  $\mu$ is a reversible

measure of the solution of (2.5), that is,

\displaystyle \int_{E}\mathrm{E}[F(X_{t}^{w})]G(w) $\mu$(dw)=\int_{E}F(w)\mathrm{E}[G(X_{t}^{w})] $\mu$(dw) , F, G\in \mathcal{F}C_{b}^{\infty}
(See Lemma 2.9 in [5].) Hence the transition semigroup of the solution of (2.5) can

be extended to a strongly continuous semigroup on L^{p}( $\mu$) , p\geq 1 . We denote by

(, Dom its infinitesimal generator. Then it holds that

(2.7) (\mathcal{L}_{0}, \mathcal{F}C_{b}^{\infty})\subset ( \overline{\mathcal{L}}_{0} , Dom( \overline{\mathcal{L}}_{0} )) \subset (, \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{L}_{2})) .

(See Proposition 3.1 and Remark 4.9 in [11].)

Proof. We only give a sketch of the proof in the following (see [11] for details).
Since (2.7) and \mathcal{F}C_{b}^{\infty} is dense in L^{2}( $\mu$) ,

it is sufficient to show

(2.8) \mathcal{F}C_{b}^{\infty}\subset Range (  $\lambda$-\overline{\mathcal{L}}_{0})
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for some  $\lambda$>0 . Note that showing (2.8) is equivalent to solving the elliptic problem

(2.9)  $\lambda \Phi$-\overline{\mathcal{L}}_{0} $\Phi$=F, F\in \mathcal{F}C_{b}^{\infty}

Then by the Lumer‐Phillips theorem (see Theorems 1.1 and 1.2 in [4]), we can see

that (2.8) implies self‐adjointness of (\overline{\mathcal{L}}_{0}, \mathrm{D}\mathrm{o}\mathrm{m}(\overline{\mathcal{L}}_{0})) in L^{2} However it is not easy

to consider \overline{\mathcal{L}}_{0} directly. Hence we aim to insert a tractable space between \mathcal{F}C_{b}^{\infty} and

\mathrm{D}\mathrm{o}\mathrm{m}(\overline{\mathcal{L}}_{0}) which can be regarded as a domain of the Ornstein‐Uhlenbeck operator.

Now we introduce the Ornstein‐Uhlenbeck operator. We fix a constant  $\kappa$>2r^{2} and

define the Ornstein‐Uhlenbeck process Y^{w}=\{Y_{t}^{w}(\cdot)\}_{t\geq 0} by the solution of the SPDE

dY_{t}(x)=(\triangle_{x}- $\kappa$)Y_{t}(x)dt+\sqrt{2}dB_{t}(x) , x\in \mathrm{R}, t>0,

with initial datum Y_{0}=w\in E . Next we introduce some function spaces on which the

Ornstein‐Uhlenbeck semigroup will act. We denote by UC(E) the Banach space of all

functions F:E\rightarrow \mathrm{R} such that \displaystyle \frac{F(.\cdot)}{1+\Vert||_{E}^{2}} is uniformly continuous and bounded. Endowed

with the norm

\displaystyle \Vert F\Vert_{b,2}:=\sup\underline{|F(w)|}
w\in E1+\Vert w\Vert_{E}^{2}

�

UC(E) is a Banach space. Moreover, C_{b,2}^{1}(E) denotes the subspace of UC(E) of

those functions F which are continuously differentiable with

\displaystyle \Vert DF\Vert_{b,2}:=\sup\underline{\Vert DF(w)\Vert_{E}}<\infty,
w\in E1+\Vert w\Vert_{E}^{2}

where DF : E\rightarrow E means the E‐Fréchet derivative of F . Note the relation D_{H}F=

$\rho$_{-r}(\cdot)DF . We define the Ornstein‐Uhlenbeck semigroup \{R_{t}\}_{t\geq 0} by

R_{t}F(w):=\mathrm{E}[F(Y_{t}^{w})], w\in E, F\in UC_{b,2}(E) .

R_{t} maps UC(E) and C_{b,2}^{1}(E) into themselves for all t\geq 0 , respectively. Note that

R_{t} is not strongly continuous in UC_{b,2}(E) . However, it is a  $\pi$‐semigroup in the sense of

Da Prato and Priola (see [14, 15] for definition). Thus one can define its infinitesimal

generator  L through the resolvent

( $\lambda$-L)^{-1}F=$\Psi$_{ $\lambda$}F:=\displaystyle \int_{0}^{\infty}e^{- $\lambda$ t}R_{t}Fdt, F\in UC_{b,2}(E) ,  $\lambda$>0.
We call L the Ornstein‐Uhlenbeck operator. Since the image of the resolvent is inde‐

pendent of  $\lambda$>0 ,
we can set

\mathcal{D}(L, UC_{b,2}(E)) :=R( $\lambda$, L)(UC_{b,2}(E)) , \mathcal{D}(L, C_{b,2}^{1}(E)) :=R( $\lambda$, L)(C_{b,2}^{1}(E)) .

The following key proposition is taken from Propositions 4.5 and 4.6 in [11].
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Proposition 2.1. (i) \mathcal{F}C_{b}^{\infty}\subset \mathcal{D}(L, C_{b,2}^{1}(E)) and we have

 LF(w)=\displaystyle \sum_{i,j=1}^{n}\frac{\partial^{2}f}{\partial$\alpha$_{i}\partial$\alpha$_{j}}(\langle w, $\varphi$_{1}\rangle, \cdots, \langle w, $\varphi$_{n}\rangle)\langle$\varphi$_{i}, $\varphi$_{j}\rangle
+\displaystyle \sum_{i=1}^{n}\frac{\partial f}{\partial$\alpha$_{i}}(\langle w, $\varphi$_{1}\rangle, \cdots, \langle w, $\varphi$_{n}\rangle) \langle w, (\triangle_{x}- $\kappa$)$\varphi$_{i}\rangle, F\in \mathcal{F}C_{b}^{\infty}

(ii) \mathcal{D}(L, C_{b,2}^{1}(E))\subset \mathrm{D}\mathrm{o}\mathrm{m}(\overline{\mathcal{L}}_{0}) and the following identity holds:

\overline{\mathcal{L}}_{0}F=LF+(b, DF)_{E}, F\in \mathcal{D}(L, C_{b,2}^{1}(E)) ,

where b:\mathrm{D}\mathrm{o}\mathrm{m}(b)\subset E\rightarrow E is a measurable mapping with \mathrm{D}\mathrm{o}\mathrm{m}(b)=C is defined by

b(w) := $\kappa$ w -\nabla U(w(\cdot)) , w\in C.

By the item (ii) of Proposition 2.1, we can rewrite the elliptic problem (2.9) as

(2.10)  $\lambda \Phi$-L $\Phi$-(b(\cdot), D $\Phi$)_{E}=F.

Finally, we are in a position to solve (2.9). It is sufficient to show that for  $\lambda$>

K_{1}+2r^{2} , (2.10) has a unique solution  $\Phi$\in \mathcal{D}(L, C_{b,2}^{1}(E)) which is given by

 $\Phi$(w):=\displaystyle \int_{0}^{\infty}e^{- $\lambda$ t}\mathrm{E}[F(X_{t}^{w})]dt.
See Proposition 5.3 in [11] for the detailed proof. However we note that condition (U2),
(2.3) and (2.6) work efficiently in the proof. This completes the proof of Theorem

2.1. \square 

As a corollary of Theorem 2.1, the Markov uniqueness also holds. See Eberle [4]
for details. Here we say that a Dirichlet form (, Dom in L^{2}() is an extension of

(\mathcal{L}_{0}, \mathcal{F}C_{b}^{\infty}) if \mathcal{F}C_{b}^{\infty}\subset \mathrm{D}\mathrm{o}\mathrm{m}() and

\mathcal{E}(F, G)=(-\mathcal{L}_{0}F, G)_{L^{2}( $\mu$)} for any F\in \mathcal{F}C_{b}^{\infty}, G\in \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{E}) .

Corollary 2.1. (\mathcal{E}, \mathcal{D} is the unique extension of (\mathcal{L}_{0}, \mathcal{F}C_{b}^{\infty}) .

Remark 2. Let (\mathcal{E}, \mathrm{D}\mathrm{o}\mathrm{m}(\mathrm{E})) be an extension of (\mathcal{L}_{0}, \mathcal{F}C_{b}^{\infty}) and we denote by

(, Dom the generator associated with (, \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{E})) . Since

Dom ()=\{F\in \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{E})| there exists a function $\Psi$_{F}\in L^{2}() such that

\mathcal{E}(F, G)=(-$\Psi$_{F}, G)_{L^{2}( $\mu$)} for any G\in \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{E}) },

we can easily see \mathcal{F}C_{b}^{\infty}\subset \mathrm{D}\mathrm{o}\mathrm{m}(\mathcal{L}) .
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Before closing this section, we present some properties of the Dirichlet operator.

Here we give the following gradient estimate formula for the diffusion semigroup \{T_{t}\}_{t\geq 0}
for our later use. It is obtained by the estimate (2.6). We refer to Proposition 2.4 in [7]
for details.

Proposition 2.2. Let F\in \mathcal{D}(\mathcal{E}) . Then the following gradient estimate holds for

any t\in[0, \infty) and  $\mu$-a.e. w\in E :

(2.11) \Vert D_{H}(T_{t}F)(w)\Vert_{H}\leq e^{K_{1}}{}^{t}T_{t}(\Vert D_{H}F\Vert_{H})(w) .

This proposition leads us to the following logarithmic Sobolev inequality. See The‐

orem 1.2 in Kawabi [8] for the proof.

Theorem 2.2. Assume K_{1}<0 ,
that is, U is convex. Then for F\in \mathcal{D}(\mathcal{E}) ,

the

following logarithmic Sobolev inequality holds:

(2.12) \displaystyle \int_{E}F(w)^{2}\log(\frac{F(w)^{2}}{\Vert F||_{L^{2}( $\mu$)}^{2}}) $\mu$(dw)\leq-\frac{2}{K_{1}}\int_{E}\Vert D_{H}F(w)\Vert_{H}^{2} $\mu$(dw) .

By the Rothaus‐Simon mass gap theorem, the logarithmic Sobolev inequality (2.12)
implies that there is a spectral gap at the lower end of the spectrum of the Dirichlet

operator, that is,

\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(-\mathcal{L}_{2})\subset\{0\}\cup[-K_{1}, \infty) .

As is well known, an application of the spectral theory gives the following L^{2}( $\mu$)-
ergodicity of \{T_{t}\}_{t\geq 0} :

\Vert T_{t}F- $\mu$(F)\Vert_{L^{2}( $\mu$)}\leq e^{K_{1}t}\Vert F- $\mu$(F)\Vert_{L^{2}( $\mu$)}, t\geq 0, F\in L^{2}( $\mu$) ,

where  $\mu$(F) :=\displaystyle \int_{E}F(w) $\mu$(dw) .

§3. Littlewood‐Paley‐Stein inequality and Riesz transforms

In this section, we discuss the Littlewood‐Paley‐Stein inequality and the Riesz

transforms on C(\mathrm{R}, \mathrm{R}^{d}) . The Littlewood‐Paley‐Stein inequality yields a characteriza‐

tion of L^{p}‐norms in terms of the Poisson kernel. By E.M. Stein�s pioneering work [19],
the utility of this characterization can be seen in the theory of Hardy spaces as well

as in that of Sobolev spaces. P.A. Meyer [13] proved this inequality for the Ornstein‐

Uhlenbeck semigroup on the Wiener space. It calls special attention that this inequality

plays the fundamental role in the theory of the Malliavin calculus. After his work, many

researchers studied this inequality by probabilistic approaches. Here we mention that

Shigekawa‐Yoshida [18] showed it for symmetric diffusion processes on general state
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spaces. In [18], they assumed the existence of a suitable core \mathcal{A} which is not only a ring
but also stable under the operation of the semigroup and the infinitesimal generator to

employ Bakry‐Emery�s $\Gamma$_{2} ‐method in the proof, and established the Littlewood‐Paley‐
Stein inequality under the condition that $\Gamma$_{2} is bounded from below. We note that this

condition is regarded as the lower boundedness of the Ricci curvature when we work on

a usual complete Riemannian manifold. Moreover the gradient estimate formula (2.11)
for the diffusion semigroup \{T_{t}\}_{t\geq 0} and this condition are equivalent as long as there

exists a good core \mathcal{A} . The readers are referred to Bakry [1] for details. However, it is

not easy to check the existence of such a good core \mathcal{A} when we consider problems of in‐

finite dimensional diffusion processes, and if we work on the Heisenberg group, since the

Ricci curvature is everywhere -\infty
,

we cannot apply this method. On the other hand,

H.‐Q. Li [12] recently established (2.11) for the heat semigroup on the Heisenberg group

by using an explicit formula for the heat kernel. Hence we can see that the gradient
estimate formula (2.11) is weaker than the lower boundedness of $\Gamma$_{2}.

First, we review the result of Kawabi‐Miyokawa [10] which is an extension of [18].
In [10], the Littlewood‐Paley‐Stein inequality is proved under the gradient estimate

formula (2.11) for the diffusion semigroup \{T_{t}\}_{t\geq 0}.
For  $\alpha$>0 ,

we denote by \{Q_{t}^{( $\alpha$)}\}_{t\geq 0} the  $\alpha$‐order subordination of \{P_{t}\} on L^{p}( $\mu$) .

Let -\sqrt{ $\alpha$-L_{p}} be the infinitesimal generator of \{Q_{t}^{( $\alpha$)}\} on L^{p}( $\mu$) . For F\in L^{2}\cap L^{p}( $\mu$) ,

we define

g_{F}^{\rightarrow}(w, t):=|\displaystyle \frac{\partial}{\partial t}(Q_{t}^{( $\alpha$)}F)(w)|, g_{F}^{\uparrow}(w, t):=\Vert D_{H}Q_{t}^{( $\alpha$)}F(w)\Vert_{H},
g_{F}(w, t):=\sqrt{(g_{F}^{\rightarrow}(w,t))^{2}+(g_{F}^{\uparrow}(w,t))^{2}} .

Then the Littlewood‐Paley G‐functions are defined by

G_{F}^{\rightarrow}(w):=(\displaystyle \int_{0}^{\infty}tg_{F}^{\rightarrow}(w, t)^{2}dt)^{1/2},
G_{F}^{\uparrow}(w):=(\displaystyle \int_{0}^{\infty}tg_{F}^{\uparrow}(w, t)^{2}dt)^{1/2},
G_{F}(w):=(\displaystyle \int_{0}^{\infty}tg_{F}(w, t)^{2}dt)^{1/2}

Now we are in a position to present the Littlewood‐Paley‐Stein inequality. See

Theorem 1.2 in [10] for details.

Theorem 3.1. For any  1<p<\infty and  $\alpha$>K_{1}\vee 0 ,
there exists a constant

C_{p}>0 depending only on p such that the following inequalities hold for F\in L^{2}\cap L^{p}( $\mu$) :

\Vert G_{F}\Vert_{L^{p}( $\mu$)}\leq C_{p}\Vert F\Vert_{L^{p}( $\mu$)},

\Vert F\Vert_{L^{p}( $\mu$)}\leq C_{p}\Vert G_{F}^{\rightarrow}\Vert_{L^{p}( $\mu$)}.
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Next, we discuss the boundedness of the Riesz transforms as an application of the

Littlewood‐Paley‐Stein inequality. For  $\alpha$>0 ,
we define the Riesz transform R() by

R_{ $\alpha$}(\mathcal{L})F :=D_{H}( $\alpha$-\mathcal{L})^{-1/2}F, F\in \mathcal{F}C_{b}^{\infty}

(In the sequel of this section, we usually denote the generator \mathcal{L}_{p} in L() by \mathcal{L} for sim‐

plicity.) It is a fundamental and important problem in harmonic analysis and potential

theory to establish the boundedness of R_{ $\alpha$}() on L^{p}() for all p>1 and for some  $\alpha$>0,
and we note that the boundedness of R_{ $\alpha$}() yields the Meyer equivalence of first order

Sobolev norms.

To show the boundedness of R_{ $\alpha$}() ,
it is necessary to have the intertwining prop‐

erty of the diffusion semigroup \{T_{t}\}_{t\geq 0} and a semigroup \{F_{t}\}_{t\geq 0} acting on H‐valued

functions (see Shigekawa [17] for details). Here we replace the conditions (U1) and

(U2) by the following two conditions:

(U1)
'
: U\in C^{2}(\mathrm{R}^{d}, \mathrm{R}) and there exists a constant K_{1}\in \mathrm{R} such that

\nabla^{2}U(z)\geq-K_{1}, z\in \mathrm{R}^{d}

(U2)
'
: There exist K_{2}>0 and p>0 such that

|\nabla U(z)|+|\nabla^{2}U(z)|_{\mathrm{R}^{d}\otimes \mathrm{R}^{d}}\leq K_{2}(1+|z|^{p}) , z\in \mathrm{R}^{d}

Now we explain how to establish this property. We denote by \mathcal{F}C_{b}^{\infty}(H) the set of

H‐valued smooth cylinder functions on E represented by \displaystyle \sum_{k=1}^{m} Fe, m\geq 0 ,
where  F_{k}\in

\mathcal{F}C_{b}^{\infty}, e_{k}\in C_{0}^{\infty}(\mathrm{R}, \mathrm{R}^{d}) . For  $\theta$=\displaystyle \sum_{k=1}^{m}F_{k}e_{k}\in \mathcal{F}C_{b}^{\infty}(H) with F (w)=f_{k}(\langle w, $\varphi$_{1}\rangle, \ldots, \langle w, $\varphi$_{n}\rangle) ,

we define a second order differential operator \mathrm{Z} acting on \mathcal{F}C_{b}^{\infty}(H) by

z $\theta$(w)(x):=\displaystyle \sum_{i,j=1}^{n}\sum_{k=1}^{m}\frac{\partial^{2}f_{k}}{\partial$\alpha$_{i}\partial$\alpha$_{j}}(\langle w, $\varphi$_{1}\rangle, \cdots, \langle w, $\varphi$_{n}\rangle)\langle$\varphi$_{i}, $\varphi$_{j}\rangle e(x)

+\displaystyle \sum_{i=1}^{n}\sum_{k=1}^{m}\frac{\partial f_{k}}{\partial$\alpha$_{i}}(\langle w, $\varphi$_{1}\rangle, \cdots, \langle w, $\varphi$_{n}\rangle)\{\langle w, \triangle_{x}$\varphi$_{i}\rangle-\langle\nabla U(w(\cdot)), $\varphi$_{i}\rangle\}e_{k}(x)
+\displaystyle \sum_{k=1}^{m}f_{k}(\langle w, $\varphi$_{1}\rangle, \cdots, \langle w, $\varphi$_{n}\rangle) (\triangle_{x}e_{k}(x)-\nabla^{2}U(w(\cdot))[e_{k}(x)]_{\mathrm{R}^{d}}) , x\in \mathrm{R}.

Note that condition (U2) leads us to \mathrm{Z} $\theta$\in L^{2}(; H) . Next we define a bi‐linear form

z by

z_{( $\theta,\ \eta$):=}(-z_{ $\theta,\ \eta$})_{L^{2}( $\mu$;H)},  $\theta$,  $\eta$\in \mathcal{F}C_{b}^{\infty}(H) .

Then by condition (U1) ,
we have

z_{( $\theta,\ \theta$)}\geq-K_{1}\Vert $\theta$\Vert_{L^{2}( $\mu$;H)}^{2},  $\theta$\in \mathcal{F}C_{b}^{\infty}(H) ,
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and thus there exists the Friedrichs extension of (z, \mathcal{F}C_{b}^{\infty}(H)) in L^{2}(; H) . We denote

it by (\mathrm{Z}, \mathrm{D}\mathrm{o}\mathrm{m}(z)) . We define by (\mathrm{P}, \mathcal{D}(\mathrm{P})) the minimal extension of (z, \mathcal{F}C_{b}^{\infty}(H))
and by \{F_{t}\}_{t>0} the symmetric strongly continuous semigroup on L^{2}(; H) generated

by (\mathrm{Z}, \mathrm{D}\mathrm{o}\mathrm{m}(\overline{z})) .

Now we are in a position to present the following intertwining property.

Lemma 3.1. For F\in \mathcal{D}(\mathcal{E}) ,
it holds that

(3.1) D_{H}T_{t}F=F_{t}D_{H}F, t\geq 0.

Proof. We easily see that the generator version of the intertwining property D_{H}\mathcal{L}F=

ZD_{H}F holds for F\in \mathcal{F}C_{b}^{\infty} . Since we have already obtained essential self‐adjointness
of our Dirichlet operator (\mathcal{L}_{0}, \mathcal{F}C_{b}^{\infty}) in Theorem 2.1, we can apply Theorems 2.1 and

3.2 in Shigekawa [17]. Then we have our desired equality (3.1). \square 

Finally, by using Theorem 3.1 and Lemma 3.1, we have the following theorem. For

the detailed proof, see the forthcoming paper Kawabi [9].

Theorem 3.2. Under conditions (U1) , (U2) and (U3), the Riesz transfO rm

R_{ $\alpha$}(\mathcal{L}) is bounded on L^{p}( $\mu$) for all p>1 and  $\alpha$>K_{1}\vee 0 . That is, there exists a positive
constant C_{p} depending only on p such that

\Vert R_{ $\alpha$}(\mathcal{L})F\Vert_{L^{p}( $\mu$)}\leq C_{p}\Vert F\Vert_{L^{p}( $\mu$)}, F\in \mathcal{F}C_{b}^{\infty}

Consequently, the Sobolev norm \Vert F\Vert_{L^{p}( $\mu$)}+\Vert D_{H}F\Vert_{L^{p}( $\mu$;H)} is equivalent to the Sobolev

norm \Vert(1-\mathcal{L})^{1/2}F\Vert_{L( $\mu$)}p.
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