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Variance of the linear statistics of the Ginibre
random point field
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Abstract

We investigate the variance of linear statistics of the Ginibre random point field. We
generalize the result obtained by the second author to higher order moments and also to
functions with rotational and radial perturbations. Our result is motivated by the construction
of a solution of the infinite dimensional stochastic differential equation related to the Ginibre
random point field.

§1. Introduction

The Ginibre random point field (GRPF) pgi, is a probability measure on the
configuration space over the complex plane C. The GRPF pugi, is specified by the
correlation functions {p" }en with respect to the standard complex Gaussian measure
g(dz) = L exp{—|z|*}dz given by

(111) p”(zl, e ,Zn) = det[K(zi, Zj)]i’jzl’m )
where K :CxC—C is the exponential kernel defined by
(1.1.2) K (21, 29) = exp{z122}.

The GRPF pugiy, is one of the typical examples of Fermion (determinantal) random point
field ([7], [5]). It is well known that ugi, is rotation and translation invariant although
the kernel K is not translation invariant. Moreover, g, is the thermodynamic limit of
the distribution ugin of the spectrum of the random matrices called Ginibre ensemble
([5], [1])- The finite volume measure pl,  is given by

(1.1.3) pd. (d¢) = const.e™ XL =il H |z — 2z;|?dz1 - - dzy.

3,7=1,... ,N,i<j
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Here ¢ = Zf\il 0., and we naturally regard the right hand side as a probability measure
on the configuration space.

In view of (1.1.3) the GRPF is the stationary distribution of particles interacting
via the two dimensional Coulomb potential. Because of the strong and long range nature
of the interaction the static property of the GRPF is quite different from that of Gibbs
measures. Indeed, the following small fluctuation result of the variance of the linear
statistics of the GRPF is known (cf. [6]):

(1.1.4) Var(((,1p,)) ~ % as r — 0o,

where Var is the variation with respect to pugin, ¢ = ZZ ., denotes an element of the
set of the configurations, and {z;} is a sequence in C with no accumulation points in
C and D, = {z € C; |z| < r}. Here and after we set (¢,9) = [-9d¢ = >, g(2i). So
(¢, 1p,) denotes the cardinality of the particles in the disk D, by definition.

Note that, if we replace pgin, by the Poisson random point field whose intensity
is the Lebesgue measure, then the exponent of 7 on the right hand side of (1.1.4) is 2
instead of 1.

The purpose of the paper is to generalize the above result to a wider class of
functions. As for higher order moments and rotations we obtain the following.

Theorem 1.1.  Let I, (z) = > -, m(%)mﬁ'y be the modified Bessel func-
tion of the first kind, where v > 0. Let m be a nonnegative integer. Then

p2(m+1) o —2r? m

Var({((,1p,z™)) = I|k|(27°2)

m+ 1 k=—m—1

T2m+1

Nz

Here f ~ g as r — oo means lim,_, f(r)/g(r) = 1.

Y

as r — OQ.

Theorem 1.2.  Let m be a nonnegative integer and q € Z. Then

7a2m—l—1

asr — Q.

Var(((, 1Dsze‘/__1qargZ)) ~ NG
T

Theorem 1.3.  Let f:C—C be a measurable function such that

(1.1.5) sup | f(2)] < o0,
z€C

(1.1.6) sup |f(z) =B =0(r"%) asr — oo,
|z|=r

where a > 0 and B € C are constants. Let m be a nonnegative integer and q € 7, as
before. Then we have

(1.1.7) Var((¢, 1p, 2meV 10882 f(5))) = Q(pmax{Zmtl.2mi2=2a}y gy, o0
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Here f(r) = O(g(r)) as r — oo means limsup,_, . |f(r)|/]|g(r)] < oo.

The first author solved the following infinitely dimensional stochastic differential
equation (SDE):

ZJ
% % 7 it 2 .
(1.1.8) dZ} = dB! — Z!dt + Z |Z1 ZJ|2dt (i € 7).
JEZ

The solution (Zf )iez € CZ is closely related to pain. Indeed, the associated unlabeled
dynamics Zy = 3,0z is a pgin-reversible diffusion. One of the difficulty to solve
the SDE (1.1.8) is the control of the interaction term >, , (Z; — Z1) )|z} — ZI|2dt.
Since Z; = ZiEZ ) Zi is pgin-reversible and pqgiy, is translation invariant, the summation
>ien(Zi — P — 7)) /| Z} — Z]|? does not converge absolutely; one can expect only a condi-
tional convergence. To prove the conditional convergence and other properties to solve
the SDE (1.1.8) we need an estimate of the form

(1.1.9) Var((¢, 1p, ZHZH)) = O(r*¢) for some ¢ > 0,
|22

where [t] denote the maximal integer smaller than ¢. The estimate (1.1.9) with ¢ =1 is
immediate from Theorem 1.3 by taking m =0, ¢ =08 =1, a =1 and f(2) = [|2|]/|z|.

§2. Variance of higher order moments

In this section we prove Theorem 1.1. We first recall the following.

Lemma 2.1. Let g be a bounded measurable function with compact support.
Then
(22.1) Var((G.a)) = [ oKz 2e(d2)

- [ BT . 2) Pe(dw)e(a).

Proof. This lemma is well known. So we omit a proof. O

Remark. It may be interesting to note that the variance Var((¢, g)) can be written
as follows.

Var((C.0)) = 5 [ lo(w) = o) IR (w. ) Pe(du)e( )

This follows from Lemma 2.1 and the formula K(z,z) = [ |K(z,w)[*g(dw). Also, it
follows from this formula that

(2.2.2) Var((¢, g)) < 2 /@ 9(2)PK (2 2)g(dz).



196 HiroruMIi OSADA, TOMOYUKI SHIRAI

Lemma 2.2. Form =0,1,2,..., we have

1,.2(m—|—1)

(2.2.3) /D 122K (2, 2)g(dz) = eI

Proof. A direct calculation shows

d 2(m—+1)
(2.2.4) / 122K (2, 2)g(dz) = / B .
D, D, m m+ 1
O
Lemma 2.3.  LetY,2 be the Poisson random variable with mean r?. Let Sy, (n) =

n!/(n —m)!, where m,n € Z such that 0 < m <n. Then

o0

(2.2.5) / wmzE™ | K (w, 2)|*g(dw)g Z S (B)P(Yy2 > k4 1)%
D2

— k=k
Proof. Since K(w,z) =¢e“* =3 72, o, we have

(2.2.6) w™E™ | K (w, 2)g(dw)g(dz) = wh T dw)
D k'l'
k,1=0

o U )

i+ m) (7 shmes \
k! (/0 (k—i—m)!ds)

Sk +m)P(Yye > k+m+1)%

Me T

ko
I
=

o

ko
I
=

Hence Lemma 2.3 follows from (2.2.6) with the change of variable k +m — k in the

summation immediately. O
Lemma 2.4. Letp,:=P(Y,2 =k) = e_TQ%. Then we have
(2.2.7) > Sm(k)P(Yy2 > k+1)% = — > Ding - Pliviyrmi1

k=m i,j=0
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Proof. Since P(Y,2 > k+1)? = Z;),oj:k-i—l pip;j, we have by using Fubini’s theorem

iANj—1

(2.2.8) Z S (k)P(Yy2 >k +1)2 Z > Sm(k)pip

t,j=m+1 k=m

1 1 -
—— Z Smi1(iAJ)pipy = ——= > Swm1(i AJ)piripiv
m1 t,j=m+1 m+1 i,j=m+1
2(m—|—1) o0
= m+ 1 Z Ping)—(m+1) * Pivj
i,j=m+1

7a2(m—|—1)
= mtl 2 Ping - P(ivi)+m+1-
4,7=0

Here we used S,, (k) = mLH(SmH(k + 1) — Sins1(k)) for the second line, where we set
Sm+1(m) = 0. Moreover, we used Sy,+1(k)pr = rz(m“)pk_(mH) for the third line. O

Proof of Theorem 1.1. First we note that

00 O p2n+2(ntk) o2 o2 5

(229) ;pnpn—i-k = — me =€ Ik(27° )

for £ > 0, and

(2.2.10) Zfl/\] (iV37) ZZf g(n + |k
1,j=0 n=0kcZ

for any functions f,g : N — C. Then, by using (2.2.9) and (2.2.10) together with the

lemmas in this section, we get

2(m—|—1) e
(2211) Va,r((C, 1DTZm>) mrl Z PiniPivi — Z pZA]p(ZV])+m+1}
1,7=0 1,7=0
2(m—|—1)
= Zan Pt k| — Pt |kl+m+1)
n=0k€EZ
2(m+1)
= Z Z DnPr+k|
m+1 n=0k=—m—1
p20m+1) g—2r® M
- > Iy2r?)
k=—m-—1
7,2m—|—1

N
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The last asymptotics immediately follows from

(2.2.12) I(z) = \/% {1 - 4”8; Ly O(ﬂ)} (2 — o)
for fixed v (cf. [2], p.123). O

§3. Proof of Theorems 1.2 and 1.3.

In this section we prove Theorems 1.2 and 1.3. We begin with a calculation related
to the kernel K (w, z).

Lemma 3.1.  Let ¢ € Z and Fy, 4(z) = z™eV 1482 Then

(3.3.1) /D Py 0 P (0, 0)g (o) = /D Fo ()2 K (w, w)g(dw)
(3.3.2) /D P (0) g )| (0, 2) P d)e(2)

r

_ / (58 Iy (258 e d(s2)d(£2).
0,112

Proof.  Since |Fy, q(w)| = |Fmo(w)], (3.3.1) is clear. Let |w| = s, |2| =t, p = arg 2
and ¥ = argw. By a direct calculation we have

/D2 Fin,q (W) P g (2) | K (w, 2) g (duw)g (d2)

ks

-y / (st)m eV Tomta)(p—)
ft=0 7 10,7]2x[0,27)?
sktheV=Th(o—v)  olple—V=Tle—)  gpp—s"—1*

k! 12 w2
glm—+al+2k tlm+al+2k

- st)™ : e () d(#2),
,;,/[o,r]z( ) k! (k + |m +q)! (s)d(t”)

which implies (3.3.2). O

dsdtdpd)

Lemma 3.2.
(3.3.3) Var(((,1p, Fim.q)) — Var((¢, 1p, Fm.0))

- /[0 ]Z(St)m{Im(QSt) — Ljq) (21)} - = 7 d(s?)d(1?).
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Proof. Lemma 3.2 is immediate from Lemma 2.1 and Lemma 3.1. O

Lemma 3.3. It holds that
(3.3.4) / (58)"{ I (28t) — L q (25t) Yo~ —" d(s)d(?)
[0,7]

= O((/ ™= Lae) et s — oo,
1

Proof. By (2.2.12) we see there exists a constant C' = C,,, , > 0 such that
(3.3.5) 1L (t) = Ly g (t)]e ™" < C(L+1)7%2  for any ¢ > 0.

Therefore,
/ (56)™ [ L (28t) — L q(25t)] e~ d(s?)d(£?)
[0,7]

:O(/ (st)™ (1 + Qst)_3/26_(s_t)2d8dt)
[0,r]2

1/2 1/2
=0( ( / (st)?™+2(1 + 23t)_3dsdt> ) - O( ( / e‘2<3_t>2dsdt> )
0,712 0,112

:O(/ t?m=tar) . O(r/?),
1
which implies (3.3.4) O

Proof of Theorem 1.2. Theorem 1.2 follows from Theorem 1.1, Lemma 3.2 and
Lemma 3.3 immediately. O

Proof of Theorem 1.3. Let F,, ; be as in Lemma 3.1. Then it is easy to see

(3.3.6) Var((¢, 1Dsze‘/__1q AEZ f(2)))
= Var((¢, 1p, {6Fm,q + (f(2) — ﬁ)Fm,q}»
< 26*Var((¢, 1p, Fin.q)) + 2Var((¢, 1p, (f(2) = 8) Finq))

< 26*Var((C, 1p, Fng)) +4 / (£(2) = B) P g 2K (2, 2)g(d2)

D,

= 20Var((G, 1, Frna) +4 [ 1((2) = 0) PP

D,

Here we used Lemma 2.1 and (2.2.2) for the fourth line. Combining (3.3.6) with Theo-
rem 1.2 and (1.1.6) completes the proof of Theorem 1.3. O
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