
RIMS Kôkyûroku Bessatsu B6

(2008), 201211

Stochastic interacting particle systems and nonlinear

partial differential equations from fluid mechanics

By

Robert PhiliPOWSki *

Abstract

We study two systems of interacting particles and derive in the limit, as the number of

particles tends to infinity, laws of large numbers for the empirical measures. As limit dynamics
we obtain two important nonlinear partial differential equations from fluid mechanics: the

three‐dimensional Navier‐Stokes equation and the porous medium equation. Details of the

proofs can be found in [8] and [9].

§1. Introduction

A fluid is usually modelled as a continuous medium and described by macroscopic

quantities such as density, velocity, pressure and temparature. These quantities are then

related by partial differential equations. However, mechanics is a physical science that

pretends to describe the behaviour of matter (solids, liquids, or gases), and therefore

its mathematical formulation relies on experience and theory. In view of this the fun‐

damental concept of a continuous medium is an abstraction which is, strictly speaking,

against the universally accepted atomic theory, which describes reality at scales which

are smaller than nanometers; for example, the radius of the smallest atom is about

4. 10^{-11}\mathrm{m} . Nevertheless, the mathematical theory of fluid mechanics is based on pre‐

cisely this concept. This needs an explanation, which is as follows: the task consists in

constructing a mathematical theory that serves as a model for one part of reality. This

model must be judged from the mathematical point of view, taking into account the

beauty, extension and profoundness of the involved mathematics; and from the physical

point of view, taking into account how efficiently it reflects and explains the underlying

reality and allows to predict its future evolution.
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In this sense, although the hypothesis of a continuum is rigorously false at mi‐

croscopic levels, it turns out to be extremely efficient and adequate when one studies

phenomena which occur at macroscopic scales; to fix ideas, lenghts greater than 10^{-7}\mathrm{m}.

One therefore does exact mathematics in order to describe with very good approx‐

imation phenomena which could othwerwise be described neither quantitatively nor

qualitatively.
The approximation by the continuous medium turns out to be so efficient that one

often forgets that it is just a model. It is nevertheless important to take into account the

starting hypotheses. In this way, the consideration of the fluid as a continuous medium

is based on the assumption that it consists of an aggregate of particles in chaotic motion

and that the characteristic distance of this motion, the so called mean free path, is much

smaller than the experimenatal lengths, so that we only observe a certain average of the

individual processes between particles.

Having specified that one works on scales which are much larger than the mean free

path of the particles one can forget about the fine details of their individual motion and

consider around each point of space and at each time a representative elementary volume

 $\delta$ V of mesoscopic size, i.e. much larger than the mean free path and much smaller than

the macroscopic lengths. This elementary volume, also called fluid particle, is considered

as a continuous and homogeneous medium; in this volume one defines a mean velocity
of the motion of this element, which is then the point velocity in this point and at this

time. More precisely, one supposes that there exists a limit of the averages when  $\delta$ V

becomes very small at the intermediate scale, i.e. very small but still much above the

atomic scale. In the same way, one speaks of the other macroscopic quantities, such

as density, which is the mass per unit of volume in the sense of the limit described

above, and pressure, which is the normal force per unit of area exerced by the fluid

on an ideal surface which is immersed in it or encloses it. These three quantities are

complemented by others, such as e.g. temperature, internal energy and viscosity. The

existence of these average values for the fundamental quantities in each fluid particle is

what is called the continuum hypothesis. It is precisely this hypothesis which allows to

describe the motion of a fluid by partial differential equations. For general introductions

to fluid mechanics we refer to the classical book by Landau and Lifshitz [4] and to the

lecture notes by Vázquez [13].
As we have said, despite its usefulness and succes, the continuum hypothesis is

strictly speaking false. It is therefore desirable to find rigorous connections between

the microscale and the macroscale. More precisely: suppose we know that on the

macroscale the motion of a fluid is described by a certain partial differential equation,
then we want to find a microscopic model which allows us, when the number of particles

lnot to be confused with the continuum hypothesis of set theory
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tends to infinity, to derive that partial differential equation as limit equation. This is

a very important project in mathematics to which many people have contributed. For

general introductions (and many references) to this subject we refer to the books by

Kipnis and Landim [3] and Spohn [10].

§2. Stochastic particle approximations for the Navier‐Stokes and the

porous medium equation

In this paper we concentrate on the following two equations of fluid mechanics: the

well‐known three‐dimensional Navier‐Stokes equation

\displaystyle \frac{\partial u}{\partial t}+(u\cdot\nabla)u=-\nabla p+v\triangle u
\mathrm{d}\mathrm{i}\mathrm{v}u=0

u(t, x)\rightarrow 0 for |x|\rightarrow\infty

and the less prominent, but also very important porous medium equation

(2.1) \displaystyle \frac{\partial $\rho$}{\partial t}=\frac{1}{2}\triangle($\rho$^{2})
which describes the density of a gas flowing through a porous medium (see e.g. [12],
Chapter I.1).

We start with the porous medium equation because it is simpler from the proba‐
bilistic point of view. We study the following system of interacting particles in \mathbb{R}^{d} :

dX_{t}^{N,i, $\epsilon,\ \delta$}=-\displaystyle \frac{1}{N}\sum_{j=1}^{N}\nabla V^{ $\epsilon$}(X_{t}^{N,i, $\epsilon,\ \delta$}-X_{t}^{N,j, $\epsilon,\ \delta$})dt+ $\delta$ dB_{t}^{i}, i=1
,

. . .

,
N

(2.2) X_{0}^{N,i, $\epsilon,\ \delta$}=$\zeta$^{i}

Here V^{ $\epsilon$} is a smooth interaction kernel which is obtained from a function V by the

scaling

V^{ $\epsilon$}(x):=\displaystyle \frac{1}{$\epsilon$^{d}}V(x/ $\epsilon$) ,

(B^{i})_{i\in \mathbb{N}} is a sequence of independent standard Brownian motions, and ($\zeta$^{i})_{i\in \mathbb{N}} is a

sequence of independent and identically distributed random variables, independent of

the Brownian motions and whose distribution has a given smooth density $\rho$_{0} with respect

to Lebesgue measure.

The particle system (2.2) depends on three parameters: N\in \mathbb{N},  $\epsilon$>0 and  $\delta$>0.

N is the number of particles,  $\epsilon$ measures the range of interaction, and  $\delta$ measures the

strength of the additional diffusion caused by the Brownian motions.
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Now we let  N\rightarrow\infty,  $\epsilon$\rightarrow 0,  $\delta$\rightarrow 0 in such a way that  N\gg 1/ $\epsilon$ and  $\epsilon$\ll $\delta$ . It

suffices for instance to take  N\geq\exp($\epsilon$^{-2d-5}) and  $\epsilon$\leq K( $\delta$)^{-1} ,
where K( $\delta$) is defined

in Proposition 3.2. Then we have the following theorem:

Theorem 2.1 ((Corollary 3.1 in [8])).

1. For each t\geq 0 the empirical measure $\mu$_{t}^{N, $\epsilon,\ \delta$}:=\displaystyle \frac{1}{N}\sum_{i=1}^{N}$\delta$_{X_{t}^{N,i, $\epsilon,\ \delta$}} of the particle

system converges weakly to a deterministic measure P_{t} on \mathbb{R}^{d} as  N\rightarrow\infty . This

measure has a density  $\rho$(t, \cdot) which solves the porous medium equation (2.1) with

initial datum $\rho$_{0}.

2. The distribution of the position X_{t}^{N,i, $\epsilon,\ \delta$} of each particle also converges weakly to

P_{t}.

3. Any fixed number of particles remains approximately independent in the course of

time, in spite of the interaction.

The third statement is known as propagation of chaos. In this context the word

�chaotic� is used as a synonym for �independent and identically distributed�. By def‐

inition the situation at time t=0 is chaotic (because the initial positions $\zeta$^{i} of the

particles are independent and identically distributed), and we claim that at later times

the situation is approximately chaotic, too: the chaos propagates. For an introduction

to propagation of chaos we refer to Sznitman [11], and for an introduction to the theory
of the porous medium equation to Vázquez [12].

Remark.

1. The conditions  N\gg 1/ $\epsilon$ and  $\epsilon$\ll $\delta$ are crucial: the first one ensures that even

when  $\epsilon$ , which measures the range of interaction, is small, each particle interacts

with many other particles. The second one ensures that the stochastic effects, whose

strength is measured by  $\delta$
,

are strong enough.

2. A deterministic interacting particle system similar to the system (2.2) has been

studied by Oelschläger [7] under the restrictive assumption that the initial datum

is strictly positive.

It is more difficult to give a similar probabilistic interpretation of the Navier‐Stokes

equation, mainly because of the term \nabla p in the equation and because of the incom‐

pressibility condition \mathrm{d}\mathrm{i}\mathrm{v}u=0 . But there is a nice trick which allows us to avoid this

problem: we do not study the velocity u directly, but instead of it we study the vorticity
w:= curl u . By taking the curl of the Navier‐Stokes equation we obtain the vorticity

equation

(2.3) \displaystyle \frac{\partial w}{\partial t}+(u\cdot\nabla)w=(w\cdot\nabla)u+v\triangle w.
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In this equation the pressure term \nabla p has disappeared (because of curl \nabla=0 ). More‐

over, thanks to the decay condition u(t, x)\rightarrow 0 for |x|\rightarrow\infty ,
the velocity, which is still

present in (2.3), can be recovered from the vorticity (see e.g. [5], Proposition 2.16): Let

 K(x) :=-\displaystyle \frac{x}{4 $\pi$|x|^{3}} ,
then u(t, x)=\displaystyle \int_{\mathbb{R}^{3}}K(x-y)\times w(t, y)dy.

The initial vorticity w_{0} is supposed to satisfy divw0 =0 (in the sense of distribu‐

tions) and w_{0}\in L^{1}(, \mathbb{R}^{3})\cap L^{p}(\mathbb{R}^{3}, \mathbb{R}^{3}) for some  p\in (\displaystyle \frac{3}{2} , 3 ) . It is known (see Lemma 4.1

below) that under these assumptions there is a T^{*}>0 such that the vorticity equa‐

tion (2.3) has a unique solution w on [0, T^{*}].
We now approximate equation (2.3) by the following system

(X_{t}^{N,i, $\epsilon$,R}, a_{t}^{N,i, $\epsilon$,R})_{i=1}^{N} of interacting discrete vortices:

dX_{t}^{N,i, $\epsilon$,R}=\displaystyle \{\frac{1}{N}\sum_{j=1}^{N}K^{ $\epsilon$}(X_{s}^{N,i, $\epsilon$,R}-X_{s}^{N,j, $\epsilon$,R})\times$\chi$_{R}(a_{s}^{N,j, $\epsilon$,R})\}dt+\sqrt{2v}dW_{t}^{i}
da_{t}^{N,i, $\epsilon$,R}=\displaystyle \{\frac{1}{N}\sum_{j=1}^{N}\nabla K^{ $\epsilon$}(X_{s}^{N,i, $\epsilon$,R}-X_{s}^{N,j, $\epsilon$,R})\times$\chi$_{R}(a_{s}^{N,j, $\epsilon$,R})\}$\chi$_{R}(a_{s}^{N,i, $\epsilon$,R})dt

(2.4) X_{0}^{N,i, $\epsilon$,R}=$\xi$^{i}, a_{0}^{N,i, $\epsilon$,R}=$\alpha$^{i}

Here X_{t}^{N,i, $\epsilon$,R}\in \mathbb{R}^{3} represents the position and a_{t}^{N,i, $\epsilon$,R}\in \mathbb{R}^{3} stands for the intensity of

the i‐th vortex. N\in \mathbb{N} is the number of vortices,  $\epsilon$>0 is a smoothing parameter, and

R>0 is a cutoff parameter. K^{ $\epsilon$} is a smoothed version of the kernel K
,

defined by

K^{ $\epsilon$}:=$\varphi$^{ $\epsilon$}*K ,
where $\varphi$^{ $\epsilon$}(x):=\displaystyle \frac{1}{$\epsilon$^{3}} $\varphi$(x/ $\epsilon$)

for a function  $\varphi$\in C_{c}^{\infty}() with  $\varphi$\geq 0 and \displaystyle \int_{\mathbb{R}^{3}} $\varphi$(x)dx=1 . Moreover the cutoff function

$\chi$_{R} is defined by

$\chi$_{R}(x):=\left\{\begin{array}{l}
x \mathrm{i}\mathrm{f} |x|\leq R\\
\frac{R}{|x|}x \mathrm{i}\mathrm{f} |x|>R.
\end{array}\right.
Finally (W^{i})_{i=1}^{N} are independent standard Brownian motions.

We choose the initial positions $\xi$^{i} and the initial intensities $\alpha$^{i}(i=1, \ldots, N) of the

discrete vortices in the following way: we first decompose the initial vorticity w_{0} in the

form w_{0}(x)=p(x)h(x) ,
where p is a probability density and h is a bounded \mathbb{R}^{3} ‐valued

weight function. This is possible thanks to our assumption that w_{0}\in L^{1}(, \mathbb{R}^{3}) . For

instance one can choose p(x) :=\displaystyle \frac{|w_{0}(x)|}{||w_{0}||_{L^{1}}} and h(x) :=\displaystyle \frac{w_{0}(x)}{|w_{0}(x)|}\Vert w_{0}\Vert_{L^{1}} (with the convention

\displaystyle \frac{0}{0}:=0) . Then we choose the $\xi$^{i} to be independent of each other and of the Brownian

motions, and identically distributed with P[$\xi$^{i}\in dx]=p(x)dx ,
and we set $\alpha$^{i}:=h($\xi$^{i}) .

Now we choose R>0 large enough (but fixed!), and we let  N\rightarrow\infty and  $\epsilon$\rightarrow 0

in such a way that  $\epsilon$\gg 1/N . We will show that then the following holds: For each
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t\in[0, T^{*}] the weighted empirical measure

$\mu$_{t}^{N, $\epsilon$,R}:=\displaystyle \frac{1}{N}\sum_{i=1}^{N}a_{t}^{N,i, $\epsilon$,R}$\delta$_{X_{t}^{N,i, $\epsilon$,R}}
of the system (2.4) converges to the measure with density w(t, \cdot) as  N\rightarrow\infty . More

precisely, let

 H:=\{f\in C^{0,1}(\mathbb{R}^{3})\cap L^{p'}(\mathbb{R}^{3})|\Vert f\Vert_{L^{\infty}}\leq 1, |f|_{lip}\leq 1, \Vert f\Vert_{L^{p'}}\leq 1\},

where p' is such that 1/p+1/p'=1 . Then we have the following theorem:

Theorem 2.2 ((Theorem 1 in [9])). There exists a strictly positive time T^{*}>0

and constants R_{0}, A_{1}, A_{2},  A_{3}<\infty such that for each  N\in \mathbb{N} , each  $\epsilon$\in(0,1 ] and each

R\geq R_{0} :

\displaystyle \sup_{t\in[0,T^{*}]f}\sup_{\in H}E[|<$\mu$_{t}^{N, $\epsilon$,R}, f>-<w(t, \cdot) , f>|^{2}]\displaystyle \leq A_{1}$\epsilon$^{12}\exp(A_{2}$\epsilon$^{-10})\frac{1}{N}+A_{3} $\epsilon$.
Corollary 2.1. Let ($\epsilon$_{N})_{N\in \mathbb{N}} be a sequence converging to 0 such that

$\epsilon$_{N}^{12}\displaystyle \exp(A_{2}$\epsilon$_{N}^{-10})\frac{1}{N}\rightarrow 0 for  N\rightarrow\infty . Then for each  t\in[0, T^{*}] the weighted empiri‐
cal measure $\mu$_{t}^{N,$\epsilon$_{N},R} of the particle system converges to the measure with density w(t, \cdot) .

Remark. Fontbona [2] studied a particle system which is similar to (2.4), but

more complicated. Moreover he did not give any estimate for the speed of convergence.

In the two‐dimensional case it is much easier to prove that the Navier‐Stokes equa‐

tion can be approximated by a system of interacting discrete vortices (because then the

vortex stretching term (w \nabla)u in (2.3) vanishes), and this problem was solved more

than twenty years ago by Marchioro and Pulvirenti [6].

§3. Sketch of the proof of Theorem 2.1

As intermediate objects between the particle system (2.2) and the porous medium

equation (2.1) we introduce nonlinear processes \overline{X}^{i, $\epsilon,\ \delta$}(i\in \mathbb{N},  $\epsilon$,  $\delta$>0) and \overline{X}^{i, $\delta$}(i\in \mathbb{N},
 $\delta$>0) defined as solutions of the following nonlinear stochastic differential equations:

(3.1) d\overline{X}_{t}^{i, $\epsilon,\ \delta$}=-(\nabla V^{ $\epsilon$}*$\rho$^{ $\epsilon,\ \delta$})(t, \overline{X}_{t}^{i, $\epsilon,\ \delta$})dt+ $\delta$ dB_{t}^{i}
(3.2) \overline{X}_{0}^{i, $\epsilon,\ \delta$}=$\zeta$^{i}
(3.3) P[\overline{X}_{t}^{i, $\epsilon,\ \delta$}\in dx]=$\rho$^{ $\epsilon,\ \delta$}(t, dx)
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and

(3.4) d\overline{X}_{t}^{i, $\delta$}=-\nabla$\rho$^{ $\delta$}(t, \overline{X}_{t}^{i, $\delta$})dt+ $\delta$ dB_{t}^{i}
(3.5) \overline{X}_{0}^{i, $\delta$}=$\zeta$^{i}
(3.6) P[\overline{X}_{t}^{i, $\delta$}\in dx]=$\rho$^{ $\delta$}(t, x)dx
(3.7) $\rho$^{ $\delta$}\in C_{b}^{1,2}([0, T]\times \mathbb{R}^{d}) \forall T\geq 0.

Note that the processes \overline{X}^{i, $\epsilon,\ \delta$}(i\in \mathbb{N}) are driven by the same Brownian motion

B^{i} and have the same initial value $\zeta$^{i} as the i‐th particle of the system (2.2). They are

therefore independent copies of each other: their initial positions are independent, they
are driven by independent Brownian motions, and they do not interact with each other.

The same holds for the processes \overline{X}^{i, $\delta$}(i\in \mathbb{N}) .

A solution of (3.1)(3.3) is a couple (\overline{X}^{i, $\epsilon,\ \delta$}, $\rho$^{ $\epsilon,\ \delta$}) consisting of a stochastic process

\overline{X}^{i, $\epsilon,\ \delta$} and a probability measure $\rho$^{ $\epsilon,\ \delta$} on C(\mathbb{R}_{\geq 0}, \mathbb{R}^{d}) ,
the space of continuous functions

from \mathbb{R}_{\geq 0} to \mathbb{R}^{d}
,

such that the stochastic differential equation (3.1)(3.2) is satisfied

and the distribution of \overline{X}_{t}^{i, $\epsilon,\ \delta$} is given by $\rho$^{ $\epsilon,\ \delta$}(t, \cdot) .

A solution of (3.4)(3.7) is a couple (\overline{X}^{i, $\delta$}, $\rho$^{ $\delta$}) consisting of a stochastic process

\overline{X}^{i, $\delta$} and a function $\rho$^{ $\delta$} : \mathbb{R}_{\geq 0}\times \mathbb{R}^{d}\rightarrow \mathbb{R}_{\geq 0} with $\rho$^{ $\delta$}\in C_{b}^{1,2}([0, T]\times \mathbb{R}^{d}) for any T\geq 0 such

that the stochastic differential equation (3.4)(3.5) is satisfied and the distribution of

\overline{X}_{t}^{i, $\delta$} is given by the measure with density $\rho$^{ $\delta$}(t,

Remark.

1. Both nonlinear stochastic differential equations (3.1)(3.3) and (3.4)(3.7) have a

unique solution (see [8], Propositions 5.2 and 5.3).

2. Itô�s formula implies that $\rho$^{ $\epsilon,\ \delta$} is a solution of the integro‐differential equation

\displaystyle \frac{\partial$\rho$^{ $\epsilon,\ \delta$}}{\partial t}=\frac{$\delta$^{2}}{2}\triangle$\rho$^{ $\epsilon,\ \delta$}+\mathrm{d}\mathrm{i}\mathrm{v}((\nabla V^{ $\epsilon$}*$\rho$^{ $\epsilon,\ \delta$})$\rho$^{ $\epsilon,\ \delta$})
$\rho$^{ $\epsilon,\ \delta$}(0, \cdot)=$\rho$_{0},

while $\rho$^{ $\delta$} is a solution of the viscous porous medium equation

\displaystyle \frac{\partial$\rho$^{ $\delta$}}{\partial t}=\frac{$\delta$^{2}}{2}\triangle$\rho$^{ $\delta$}+\mathrm{d}\mathrm{i}\mathrm{v}(\nabla$\rho$^{ $\delta$}$\rho$^{ $\delta$})
=\displaystyle \frac{$\delta$^{2}}{2}\triangle$\rho$^{ $\delta$}+\frac{1}{2}\triangle(($\rho$^{ $\delta$})^{2})

$\rho$^{ $\delta$}(0, \cdot)=$\rho$_{0}.

The proof of Theorem 2.1 now consists of the following parts (for details see [8]):
we first show the convergence of X^{N,i, $\epsilon,\ \delta$} to \overline{X}^{i, $\epsilon,\ \delta$} as  N\rightarrow\infty :
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Proposition 3.1. There are constants  C_{1},  C_{2}<\infty (depending only on  V) such

that for each T\geq 0 and each i\in\{1, . . . , N\} we have:

E[\displaystyle \sup_{0\leq s\leq T}|X_{s}^{N,i, $\epsilon,\ \delta$}-\overline{X}_{s}^{i, $\epsilon,\ \delta$}|^{2}]\leq C_{1}$\epsilon$^{2}\exp(C_{2}T^{2}$\epsilon$^{-2d-4})\frac{1}{N} .

Then we show the convergence of \overline{X}^{i, $\epsilon,\ \delta$} to \overline{X}^{i, $\delta$} as  $\epsilon$\rightarrow 0 :

Proposition 3.2. For each  $\delta$>0 there is a number K( $\delta$) (which also depends
on T and V) such that

\displaystyle \sup_{0\leq s\leq T}|\overline{X}_{s}^{i, $\epsilon,\ \delta$}-\overline{X}_{s}^{i, $\delta$}|\leq K( $\delta$)$\epsilon$^{2}
Then we use the following analytical result due to Bénilan and Crandall [1]:

Proposition 3.3. For each T\geq 0 :

\displaystyle \sup_{0\leq t\leq T}\Vert$\rho$^{ $\delta$}(t, \cdot)- $\rho$(t, \cdot)\Vert_{L^{1}(\mathbb{R}^{d})}\rightarrow 0 ( $\delta$\rightarrow 0) .

Combining Propositions 3.1, 3.2 and 3.3 we obtain the following crucial result:

Proposition 3.4 ((Propagation of Chaos Let m be a fixed natural number,
and let P_{t}^{N,m, $\epsilon,\ \delta$} be the joint distribution of the random variables X_{t}^{N,i, $\epsilon,\ \delta$}, i=1

,
. . .

,
m.

When N\rightarrow\infty,  $\epsilon$\rightarrow 0 and  $\delta$\rightarrow 0 in such a way that  N\gg 1/ $\epsilon$ and  $\epsilon$\ll $\delta$ , then  P_{t}^{N,m, $\epsilon,\ \delta$}
converges weakly to P_{t}^{\otimes m}

Proposition 3.4 obviously implies the second and the third statement of Theo‐

rem 2.1. It also implies the first statement thanks to the general fact (see [11], Chap‐
ter I.2, Proposition 2.2) that propagation of chaos is equivalent to weak convergence of

the empirical measure to a deterministic measure.

Proof of Proposition 3.4. Let P_{t}^{ $\delta$} be the distribution of \overline{X}_{t}^{ $\delta$} . Thanks to the condi‐

tions  N\gg 1/ $\epsilon$ and  $\epsilon$\ll $\delta$ , Propositions 3.1 and 3.2 imply that for  N\rightarrow\infty,  $\epsilon$\rightarrow 0 and

 $\delta$\rightarrow 0 the measure P_{t}^{N,m, $\epsilon,\ \delta$}-P_{t}^{ $\delta$\otimes m} converges weakly to 0 . Proposition 3.3 implies the

weak convergence of P_{t}^{ $\delta$} to P_{t} as  $\delta$\rightarrow 0 . It follows that for N\rightarrow\infty,  $\epsilon$\rightarrow 0 and  $\delta$\rightarrow 0

the measure P_{t}^{N,m, $\epsilon,\ \delta$} converges weakly to P_{t}^{\otimes m} \square 

§4. Sketch of the proof of Theorem 2.2

We now give an overview of the proof of Theorem 2.2. For details we refer to [9].
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As intermediate objects between the system of discrete vortices (2.4) and the vor‐

ticity equation (2.3) we introduce processes (\overline{X}^{i, $\epsilon$}, \overline{a}^{i, $\epsilon$})(i=1, \ldots, N,  $\epsilon$>0) defined by
the following stochastic differential equations:

\displaystyle \overline{X}_{t}^{i, $\epsilon$}=$\xi$^{i}+\int_{0}^{t}u^{ $\epsilon$}(s, \overline{X}_{s}^{i, $\epsilon$})ds+\sqrt{2v}W_{t}^{i}
(4.1)

\displaystyle \overline{a}_{t}^{i, $\epsilon$}=$\alpha$^{i}+\int_{0}^{t}\nabla u^{ $\epsilon$}(s, \overline{X}_{s}^{i, $\epsilon$})\mathrm{a}_{s}^{i, $\epsilon$}ds.
Here u^{ $\epsilon$}(x) :=\mathcal{K}^{ $\epsilon$}(w^{ $\epsilon$})(x) :=\displaystyle \int_{\mathbb{R}^{3}}K^{ $\epsilon$}(x-y)\times w^{ $\epsilon$}(y)dy ,

where w^{ $\epsilon$} is the solution of the

smoothed vorticity equation

\displaystyle \frac{\partial w^{ $\epsilon$}}{\partial t}+(\mathcal{K}^{ $\epsilon$}(w^{ $\epsilon$})\cdot\nabla)w^{ $\epsilon$}=(w^{ $\epsilon$}\cdot\nabla)\mathcal{K}^{ $\epsilon$}(w^{ $\epsilon$})+v\triangle w^{ $\epsilon$}(4.2)
w^{ $\epsilon$}(0, \cdot)=w_{0}.

By setting K^{0}:=K we obtain (2.3) as a special case of (4.2) (namely for  $\epsilon$=0 ). We

use the following analytical result due to Fontbona ([2], Theorem 3.1 and Remark 6.3):

Lemma 4.1. There is a T^{*} >0 such that for each  $\epsilon$\geq 0 the smoothed

vorticity equation (4.2) has a unique mild solution in the class

L^{\infty}([0, T^{*}], L^{p}(\mathbb{R}^{3}, \mathbb{R}^{3})) .

Because of the Lipschitz continuity and the boundedness of u^{ $\epsilon$}=\mathcal{K}^{ $\epsilon$}(W) and \nabla u^{ $\epsilon$},
the stochastic differential equations (4.1) have a unique strong solution on [0, T^{*}] . Note

that the i‐th process (\overline{X}^{i, $\epsilon$}, \overline{a}^{i, $\epsilon$}) has the same initial value ($\xi$^{i}, $\alpha$^{i}) and is driven by the

same Brownian motion W^{i} as the i‐th discrete vortex of the system (2.4). For different i

these processes are independent copies of each other: the initial values are independent
and identically distributed, and there is no interaction.

The following two properties are crucial:

Proposition 4.1. The processes (\overline{a}_{t}^{i, $\epsilon$})_{0\leq t\leq T^{*}} are unifo rmly bounded. More pre‐

cisely, there is a constant  R_{0}=R_{0}(T^{*}, \Vert w_{0}\Vert_{L^{p}}, \Vert h\Vert_{L}\infty, v)<\infty such that

|\mathrm{a}_{t}^{i, $\epsilon$}|\leq R_{0}

for all t\in[0, T^{*}] ,
all N\in \mathbb{N} , all i\in\{1, . . . , N\} and all  $\epsilon$>0.

Proposition 4.2. The functions w^{ $\epsilon$} and u^{ $\epsilon$} can be recovered from the process

(\overline{X}^{i, $\epsilon$}, \overline{a}^{i, $\epsilon$}) in the following way:

\displaystyle \int_{\mathbb{R}^{3}}f(x)w^{ $\epsilon$}(t, x)dx=E[f(\overline{X}_{t}^{i, $\epsilon$})\mathrm{a}_{t}^{i, $\epsilon$}] for all test functions f\in H,

u^{ $\epsilon$}(t, x)=E[K^{ $\epsilon$}(x-\overline{X}_{t}^{i, $\epsilon$})\times\overline{a}_{t}^{i, $\epsilon$}]
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Combining Propositions 4.1 and 4.2 one obtains that for each R\geq R_{0} the process

(\overline{X}^{i, $\epsilon$}, \overline{a}^{i, $\epsilon$}) satisfies the following nonlinear stochastic differential equation:

\displaystyle \overline{X}_{t}^{i, $\epsilon$}=$\xi$^{i}+\int_{0}^{t}u^{ $\epsilon$}(s, \overline{X}_{s}^{i, $\epsilon$})ds+\sqrt{2v}W_{t}^{i}
\displaystyle \overline{a}_{t}^{i, $\epsilon$}=$\alpha$^{i}+\int_{0}^{t}\nabla u^{ $\epsilon$}(s, \overline{X}_{s}^{i, $\epsilon$})$\chi$_{R}(\mathrm{a}_{s}^{i, $\epsilon$})ds

u^{ $\epsilon$}(s, x)=E[K^{ $\epsilon$}(x-\overline{X}_{s}^{i, $\epsilon$})\times$\chi$_{R}(\mathrm{a}_{s}^{i, $\epsilon$})]
The proof of Theorem 2.2 now consists of the following parts: one first shows (for

N\rightarrow\infty) pathwise convergence of (X^{N,i, $\epsilon$,R}, a^{N,i, $\epsilon$,R}) to (\overline{X}^{i, $\epsilon$}, \overline{a}^{i, $\epsilon$}) :

Proposition 4.3. There are constants C_{3},  C_{4}<\infty (only depending on  $\varphi$) such

that for each  N\in \mathbb{N} , each  $\epsilon$\in(0,1 ], each R\geq R_{0} ,
each T\leq T^{*} and each i\in\{1, \ldots, N\} :

E[\displaystyle \sup_{0\leq t\leq T}|X_{t}^{N,i, $\epsilon$,R}-\overline{X}_{t}^{i, $\epsilon$}\left|2 & +\sup_{0\leq t\leq T}\right|a_{t}^{N,i, $\epsilon$,R}-\displaystyle \mathrm{a}_{t}^{i, $\epsilon$}|^{2}]
\displaystyle \leq C_{3}$\epsilon$^{12}R^{-4}T^{-2}\exp(C_{4}$\epsilon$^{-10}R^{4}T^{2})\frac{1}{N} .

Then one shows (for  $\epsilon$\rightarrow 0 ) convergence of w^{ $\epsilon$} to w :

Proposition 4.4. There is a constant  C_{5}=C_{5}(T^{*}, \Vert w_{0}\Vert_{L^{p}}, v,  $\varphi$)<\infty such that

\Vert w(t, \cdot)-w^{ $\epsilon$}(t, \cdot)\Vert_{L^{p}}\leq C_{5} $\epsilon$

for all  t\in[0, T^{*}].

Now Theorem 2.2 follows easily from Propositions 4.2, 4.3 and 4.4.
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