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Dilation‐stable‐like Processes on Fractals

By

Narn‐Rueih Shieh *

Abstract

In this note, we report some concerns on Markov processes on fractals which allow different

stability indices in different �directions�. We report the simplest case, the processes on product
fractals with independent components. The main tools are multivariate subordinations and

time‐changes. This is a preliminary report of an on‐going project.

§1. Dilation‐stable processes

At 1993 annual probability meeting at Keio University, H. Kunita gave a lecture

on stable Markov processes on manifolds(in Japanese); the views revealed in the lecture

are

1. stability index could/should be different in different �direction�

2. �independent components� assumption could/should be too strong.
He described the process to be stable w.r. t . dilations \{$\gamma$_{t}\}_{t>0} which is a semigroup of

transformations characterized by, mainly, the on‐diagonal entries t^{1/$\alpha$_{1}}, \cdots, t^{1/$\alpha$_{n}}.

In case the state space is \mathbb{R}^{n} ,
this is a class of operator‐stable Lévy processes; we

refer to Sato(1999) for an excellent book on the topic. In a much earlier paper, Pruitt‐

Taylor(1969) concerned with Lévy processes in \mathbb{R}^{n} with independent components and

each component process is with different stability index, with the viewpoint from the

collision of stable processes and the behavior of Blumenthal‐Getoor indices. There

have been studies on dimension formulae of such dilation‐stable Lévy processes(with or

without components independence): for image points we cite Hendrick(1973), Lin(1995),
Meerschaert‐Xiao(2005), and for multiple points we cite Hendricks(1974), Shieh(1998).
See Xiao(2004) for an intensive survey on these fractal properties.

The constructions of dilation‐stable Lévy processes can be proceeded by using Lévy‐
Khintchine formula of X(1) in polar coordinate, based on $\gamma$_{t} . Here we mention another
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view which was described in Shieh(2000, §4). Let B^{n}=(B_{1}, \cdots, B_{n}) be Brownian mo‐

tion in \mathbb{R}^{n} ,
and let $\xi$_{j} be (strictly) stable subordinator of index $\beta$_{j} . Assume $\xi$_{j}, 1\leq j\leq n

are independent on B
,
then consider the subordination Y(t)=(B_{1}($\xi$_{1}(t)), \cdots, B_{n}($\xi$_{n}(t)) .

It has been exploited in full strength in BardorffNielsen‐Peterson‐Sato(2001), who called

this to be a multivariate subordination. We note that Y is of independent components

if and only if the n‐variate process  $\xi$=($\xi$_{j})_{j=1}^{n} itself is of independent components.

§2. The object of the work

We would like to see how the views of Kunita could be carried out for Markov

processes on fractals, especially after significant works have been done for a stable‐like

process on a d‐set. Such a process is characterized by a unique stability index; see

Kumagai (2002, 2004). However, one immediate problem may be: what should be the

�direction� of a process on a fractal? for example, for Sierpinski Gasket(SG) in \mathbb{R}^{2} the

�natural direction� is not \mathbb{R}^{2} ‐direction. Moreover, the construction of Brownian motion

on Sierpinski Carpet(SC), see for example Bass(1997), shows it is not of independent

components, though the fractal and the process look like to follow \mathbb{R}^{2} ‐direction.

In this note we proceed the simplest model, independent product; yet it still may

have some interesting turn‐outs.

§3. Diffusions on product fractals

At least there are two papers mentioning Markov processes on product fractals.

However the resulting diffusions still have a certain incrementally isotropic property.
In the seminal paper by Barlow(1998), he mentioned(p27 and p45) the following,

let (F_{j}, $\rho$_{j}, $\mu$_{j}) , j=1 , 2, be two fractional metric spaces(FMSs) and X^{j} be a fractional

diffusion FD(d_{f}(j), d(j)) on F_{j} . Consider the product FMS F=F_{1}\times F_{2} . When

d_{w}(1)=d_{w}(2) ,
the product process X=(X^{1}, X^{2}) is a FD(d_{f}, d_{w}) on F

,
with d_{f}=

d_{f}(1)+d_{f}(2) , d_{w}=d_{w}(1)=d_{w}(2) . He also remarked that, the product process is not a

fractional diffusion( in his definition of \mathrm{F}\mathrm{D}\mathrm{s} ) if d_{w}(1)\neq d_{w}(2) .

Very recently Strichartz(2005) studies analysis on product fractals and mentions(p574)
that �In fact, the full strength of our theory only applies to products with identical fac‐

tors, and the scaling factors must be homogeneous throughout the fractal.�

§4. Multivariate subordinators

Following BardorffNielsen‐Peterson‐Sato(2001), we say a Lévy process  $\xi$=($\xi$_{1}, \cdots, $\xi$_{n})
in [0, \infty)^{n} a n‐variate subordinator when each component $\xi$_{j} is \mathrm{a} (uni‐variate) subordi‐

nator, i.e. a Lévy process with increasing paths.
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When each $\xi$_{j} is (strictly) $\beta$_{j} ‐stable, 0<$\beta$_{j}<1 ,
and  $\xi$ is stable w.r. \mathrm{t} . the dilations

$\delta$_{t}=(t^{1/$\beta$_{1}}, \cdots, t^{1/$\beta$_{n}}) ,
then we may call  $\xi$ a dilation‐stable subordinator with index

($\beta$_{1}, \cdots, $\beta$_{n}) . The characteristic function of  $\xi$(1) is given by

exp [\displaystyle \int_{0}^{\infty}\int_{S_{+}}(exp(i(z, $\delta$_{r}x))-1)\frac{ $\lambda$(dx)dr}{r^{2}}],
where  $\lambda$ is a finite Borel measure on  s_{+} ,

the unit spherical surface in \mathbb{R}^{n} with non‐

negative coordinates. Note that  $\xi$ is of independent components if and only if  $\lambda$ con‐

centrates on the coordinate axes.

We note that the above  $\xi$(t) has a continuous density function $\eta$_{t}(u) , u\in \mathbb{R}_{+}^{n} ,
which

has a certain scaling property inherited from $\delta$_{t} . When  $\xi$ has independent components

then  $\eta$_{t}(u)=\displaystyle \prod$\eta$_{j,t}(u_{j}) ,
where $\eta$_{j,t} denotes the density of $\xi$_{j}(t)

§5. Multivariate subordination based on 3,4

Suppose that we are given a product diffusion X=(X^{1}, X^{2}) on F=F_{1}\times F_{2} as in

§3, with F_{j} a d_{f}(j) ‐set in \mathbb{R}^{n_{j}} ,
and a 2‐variate dilation‐stable subordinater  $\xi$=($\xi$_{1}, $\xi$_{2})

as in §4. Assume that X,  $\xi$ are independent, then we have a subordinated process

 Y(t)=(X_{1}($\xi$_{1}(t)), X_{2}($\xi$_{2}(t)) .

Note that X_{j}($\xi$_{j} is a stable‐like process on F_{j} with stability index $\alpha$_{j}=$\beta$_{j}d_{w} ,
where

d_{w} is the common walk dimension of X_{j}.
Let p_{t}^{j}(x_{j}, y_{j}) be the heat kernel of X^{j}

,
then the heat kernel of Y is, for x=(x_{1}, x_{2})

and y=(y_{1}, y_{2}) ,

q_{t}(x, y)=\displaystyle \int\int_{R_{+}^{2}}\prod_{j=1}^{2}p_{u_{j}}^{j}(x_{j}, y_{j})$\eta$_{t}(u_{1}, u_{2})du_{1}du_{2}.
When $\xi$_{1}, $\xi$_{2} are independent, then Y is of independent components, and

q_{t}(x, y)=q_{t}^{1}(x_{1}, y_{1})q_{t}^{2}(x_{2}, y_{2}) ,

q_{t}^{j} is the heat kernel of X^{j}($\xi$_{j}) ; see Kumagai (2004, p227). Then, a a straightforward
calculation gives that q_{t}(x, y) has the following estimate:

q_{t}(x, y)\approx t^{-\sum_{j=1}^{2}\frac{d_{f}(j)}{$\alpha$_{j}}}\wedge\underline{t}
\displaystyle \prod_{j=1,2}|x_{j}-y_{j}|^{d_{f}(j)+$\alpha$_{j}}

�

We simply note that q_{t}(x, y) is not of the form q_{t}(|x-y|) .
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§6. Hausdorff dimension of Y[0 ,
1 ]

Henceforth the notation dim means Hausdorff dimension w.r. \mathrm{t} . the Euclidean met‐

ric. Firstly we recall that an  $\alpha$-\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}‐like process on a d‐set F\subset \mathbb{R}^{n}, 0<d<n, 0< $\alpha$<

2, n\geq 2 ,
is a Markov process on F which is determined by the the following Dirichlet

form:

\displaystyle \mathcal{E}^{ $\alpha$}(u, v)=\int_{F}\int_{F}\frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{d+ $\alpha$}} $\mu$(dx) $\mu$(dy) ,

where  $\mu$ is the defining  d‐measure on F.

Theorem 6.1. (Chen‐Kumagai 2003). For an  $\alpha$ ‐stable‐like process  X on a d_{f^{-}}
set F\subset \mathbb{R}^{n}, 0<d_{f}<n, 0< $\alpha$<2, n\geq 2, \displaystyle \dim X[0, 1]=\min\{d_{f},  $\alpha$\}.

The theorem may say to deviate from the classical  $\alpha$‐stable Lévy process in the

Euclidean \mathbb{R}^{n} ,
where \dim X[0 ,

1 ] is always to be  $\alpha$<n.

We may have, for the subordinated Y(t)=(X_{1}($\xi$_{1}(t)), X_{2}($\xi$_{2}(t)) ,
where X_{i} is a

fractional diffusion on a d_{f}(j) ‐set F_{j}\subset \mathbb{R}^{n_{j}} ,
and ($\xi$_{1}, $\xi$_{2}) is a 2‐variate dilation‐stable

subordinator with index ($\beta$_{1}, $\beta$_{2}) . We expect that the following dimension formula could

be proved:

Theorem 6.2. (proposed). Let $\beta$_{2}<$\beta$_{1} ,
so that $\alpha$_{2}=$\beta$_{2}d_{w}<$\alpha$_{1}=$\beta$_{1}d_{w}.

\dim Y[0, 1]=$\alpha$_{1} , if $\alpha$_{1}\leq d_{f}(1) ,

\displaystyle \dim Y[0, 1]=d_{f}(1)+\frac{$\alpha$_{2}}{$\alpha$_{1}}($\alpha$_{1}-d_{f}(1)) , if $\alpha$_{1}>d_{f}(1) .

Theorem 6.2 includes the Lévy process in \mathbb{R}^{n_{1}}\otimes \mathbb{R}^{n_{2}} as that appeared in Pruitt‐

Taylor(1969), in which the second formula appears only for n_{1}=1 . Theorem 6.2 applies
well to dilation‐stable‐like processes on SGSG and on SCSC, regarding as subsets

of \mathbb{R}^{2}\otimes \mathbb{R}^{2} . We also remark that the present formula illustrates well how the second

stability index $\alpha$_{2} gets involved in the dimension formula.

Barlow(1998, Lemma 3.4(\mathrm{c}) ) tells that for his fractional diffusions it is necessary

that d_{f}(j)\geq 1 ,
thus the term

\displaystyle \frac{$\alpha$_{2}}{$\alpha$_{1}}($\alpha$_{1}-d_{f}(1))<1\leq d_{f}(2) .

Thus, when we consider the the 3‐variate subordination of the triple product of

Barlow�s fractional diffusions, in addition to the double product, the third stability in‐

dex seems should not be involved in the dimension formula, and this is perhaps a �good

interpretation� for what happens for Pruitt‐Taylor processes. However, if we consider

�Brownian motions� on Cantor‐like sets, see §7 below, it is possible to obtain similar

detailed heat kernel estimate(Barlow�s fractional diffusions exclude such processes on
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disconnected sets), and then the third stability index then could be involved. I am in‐

debted to a question by Kumagai at the Symposium, which leads to the above thinking.
The proof of Theorem 6.2 could be proceeded as a blending of those techniques in

Chen‐Kumagai and Pruitt‐Taylor.

§7. Restriction of BM to product fractals

Let B(t) be the Brownian motion in \mathbb{R}^{n} ,
and let \mathbb{R}^{n}=\mathbb{R}^{n_{1}}\otimes \mathbb{R}^{n_{2}} . Let F_{j}\subset \mathbb{R}^{n_{j}} be

d_{j} ‐set, 0<n_{j}-d_{j}<2 . We may restrict B^{n} to F_{1}\times F_{2} by the time‐change w.r. \mathrm{t} . product

positive continuous additive functional (PCAF) (A^{1}, A^{2}) in a marginal way as follows.

We break B^{n} into (B^{n_{1}}, B^{n_{2}}) and proceed the restriction of B^{n_{j}} to F_{j} by time‐change
w.r. \mathrm{t} . the associated A^{j} . We remark that the PCAF A^{j} is a natural version of the

local time of B^{n_{j}} on F_{j} ; see Kumagai(2002) and Hanson‐Zähle(2006). The resulting

processes is of independent components, and the heat kernel estimate is also obtained

by direct applications of Chen‐Kumagai(2003) and Kumagai(2002, Proposition 3.1). As

it is mentioned in Kumagai(2002) and Hanson‐Zähle(2006), we may use an isotropic  $\alpha$-

stable motion in \mathbb{R}^{n} instead of B^{n} ; however the resulting process is not of independent

components. The above construction can be proceeded for the triple product, and we

then have the following concern.

We consider processes on a Cantor �dust� C\subset \mathbb{R}^{3}=\mathbb{R}\otimes \mathbb{R}\otimes \mathbb{R} . Let C:=

C_{1}\times C_{2}\times C_{3} ,
and each C_{j} is a Cantor subset of \mathbb{R} with Hausdorff dimension s_{j}, 0<s_{j}<1

so that C is a s‐set in \mathbb{R}^{3} with s=s_{1}+s_{2}+s_{3} . We may have two processes on C . One

Y_{1} is constructed by restricting B^{3} to C as that is done in Kumagai(2002, §2.3), w.r. \mathrm{t}. \mathrm{a}

single PCAF, whenever s>1 . Another Y_{2} is constructed as above, by time‐change w.r. \mathrm{t}.

to the triple product PCAF (A^{1}, A^{2}, A^{3}) . Are these two processes Y_{1}, Y_{2} different in

view of the dimension formulae? We may expect from Theorem 6.1 and Kumagai(2002,
Proposition 3.1) that \dim Y_{1}[0, 1]=s-1 . On the other hand in view of the proposed
Theorem 6.2 we may conjecture that \dim Y_{2}[0, 1]=s . Thus these two Y_{1}, Y_{2} should be

different, even when s_{1}=s_{2}=S3. However both the above formulae need to justify,
since the full kernel estimate is not easy to estimate(we may only establish, for example,
a certain Nash inequality).

§8. Product Dirichlet forms

The Dirichlet form of the product fractal is proposed by Strichartz (2005) as, for

u, v\in L^{2}(F_{1}\times F_{2}, $\mu$_{1}\times$\mu$_{2}) ,

\mathcal{E}(u, v)=

\displaystyle \int_{F_{2}}\mathcal{E}_{1}(u(\cdot, x_{2}), v x_{2}))d$\mu$_{2}(dx_{2})+\int_{F_{1}}\mathcal{E}_{2}(u(x_{1}, \cdot), v(x_{1}, \cdot))d$\mu$_{1}(x_{1}) ,
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where \mathcal{E}_{j} means the Dirichlet form on F_{j}.
In view of this and Kumagai(2002, Proposition 3.1), the subordinated process Y

on F=F_{1}\times F_{2} in §5, in case it is of independent components, is comparable to the

following Dirichlet form: for x=(x_{1}, x_{2}) , y=(y_{1}, y_{2}) ,  $\mu$=$\mu$_{1}\times$\mu$_{2},

\displaystyle \mathcal{E}^{$\alpha$_{1},$\alpha$_{2}}(u, v)=\int_{F}\int_{F}\frac{(u(x)-u(y))(v(x)-v(y))}{\prod_{j=1,2}|x_{j}-y_{j}|^{d_{f}(j)+$\alpha$_{j}}} $\mu$(dx) $\mu$(dy) .

§9. Possible perspective

The following discussion with Kumagai shows that we may still have far distance

to what we want to follow the viewpoints of Hunita, mentioned in §1, for processes

on fractals. In Hambly‐Kumagai(2004), they construct a type of diffusion on SG such

that the walk dimensions along the diagonal and along the horizontal are different.
We subordinate such a diffusion by a single subordinator, and ask, say, the Hausdorff

dimension of the resulting stable‐like processes. With respect to the resistance metric,
the dimension formula should be the same form as Theorem 6.1. However, usually we

prefer, at least in view of dimension, the Euclidean metric, and in Hambly‐Kumagai
construction the resistance and the Euclidean metrics are not comparable explicitly.
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