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Abstract

For symmetric Markov processes, an analytic criterion for the integrability of Feynman‐
Kac functionals was obtained in Z.‐Q.Chen [6], M. Takeda [37] and M. Takeda and T. Uemura

[46]. We explain how it is used in the study of the Brownian motions on Riemannian manifolds

and the symmetric stable processes. We discuss the stability of heat kernels, the ultracon‐

tractivity of Feynman‐Kac semigroups, the expectations of the number of branches hitting
closed sets in branching Brownian motions, the differentiability of spectral functions, and the

L^{p} ‐independence of spectral bounds for Schrödinger type operators.

§1. Introduction

Let \mathrm{M}= (, X_{t}) be an m‐symmetric Markov process on a locally compact sep‐

arable metric space X . Let  $\mu$ be a smooth measure and  A_{t}^{ $\mu$} the positive continuous

additive functional (PCAF) in the Revuz correspondence to  $\mu$ . Then the measure  $\mu$ is

said to be gaugeable on an open set  D\subset X if

(1.1) \displaystyle \sup_{x\in D}\mathrm{E}_{x}(\exp(A_{$\tau$_{D}}^{ $\mu$}))<\infty,
where $\tau$_{D} is the first exit time from D . The objective of this paper is to survey the

topics connected with the gaugeability.
We treat two classes of positive Radon measures, \mathcal{K}_{\infty} and S_{\infty} ; a measure in \mathcal{K}_{\infty}

(resp. in S_{\infty} ) is said to be Green‐tight (resp. conditional Green‐tight) (see Definition 2.1

below). For a Brownian motion, Zhao [50] introduced a class of Green‐tight measures

and Chen [6] generalized the notions of Green‐tightness and conditional Green‐tightness
for more general transient Markov processes. Let \mathrm{M}^{D} be the absorbing process killed

upon leaving D\subset X and assume that \mathrm{M}^{D} is transient. We denote by S_{\infty}^{D} the class
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of conditional Green‐tight measures associated with M. Chen [6] and Takeda [37]
established an analytic condition for  $\mu$\in S_{\infty}^{D} being gaugeable on D ; define

 $\lambda$( $\mu$;D)=\displaystyle \inf\{\mathcal{E}^{D}(u, u):u\in \mathcal{D}(\mathcal{E}^{D}) , \int_{D}u^{2}(x) $\mu$(dx)=1\}
where (\mathcal{E}^{D}, \mathcal{D}(\mathcal{E}^{D})) is the Dirichlet space generated by the symmetric Markov process

\mathrm{M}^{D} (e.g. [13, Theorem 4.4.2]). Then the gaugeability of  $\mu$ on  D is equivalent to

that of  $\lambda$( $\mu$;D)>1 ,
which is also equivalent to the subcriticality of Schrödinger op‐

erators (Theorem 2.2). Employing this fact, we showed the stability of heat kernel

estimates of Schrödinger operators ([39], [40]), the L^{p}‐independence of spectral bounds

of Schrödinger semigroups ([36], [43]), and the differentiability of spectral functions

with applications to large deviations for additive functionals ([38], [42], [44], [45], [47]).
Furthermore, it was applied to branching Markov processes ([8], [27], [28], [39], [41]).
In this paper, we explain these results by using a Brownian motions on a Riemaniann

manifold or a symmetric  $\alpha$‐stable process as a typical example of diffusion processes or

of pure jump Markov processes respectively.

§2. Notations and some facts

Let  X be a locally compact separable metric space and m a positive Radon measure

on X with full support. Let \mathrm{M}=( $\Omega$, \mathcal{M}, \mathcal{M}_{t}, $\theta$_{t}, \mathbb{P}_{x}, X_{t},  $\zeta$) be an m‐symmetric Markov

process on X . Here \{\mathcal{M}_{t}\}_{t\geq 0} is the minimal (augmented) admissible filtration, $\theta$_{t},

t\geq 0 ,
are the shift operators satisfying X_{s}($\theta$_{t})=X_{s+t} identically for s, t\geq 0 . Let

X_{\infty}=X\cup\{\infty\} be the one‐point compactification of M
,

and  $\zeta$ is the lifetime of \mathrm{M},

 $\zeta$=\displaystyle \inf\{t\geq 0:X_{t}=\infty\} . Throughout this paper, we assume that the Markov process

\mathrm{M} is transient. We denote by (\mathcal{E}, \mathcal{D} the Dirichlet form generated by M.

We treat mainly the Brownian motion on a Riemaniann manifold M
,

that is,
the diffusion process generated by half the Laplace‐Beltrami operator, (1/2)\triangle ,

and

the symmetric  $\alpha$‐stable process on \mathbb{R}^{d}
,

that is, the pure jump process generated by

-(1/2)(-\triangle)^{ $\alpha$/2}, 0< $\alpha$<2 . The symmetrizing measure m is the Riemannian volume

on M for the Brownian motion and the Lebesgue measure for the symmetric stable

process. The Dirichlet form generated by the Brownian motion is written as

\displaystyle \mathcal{E}(u, v)=(-\frac{1}{2}\triangle u, v)_{m}=\frac{1}{2}\int_{M}(\nabla u, \nabla v)dm, u, v\in C_{0}^{\infty}(M) ,

where )_{m} is the inner product on L^{2}(M;m) and C_{0}^{\infty}(M) denotes the set of all smooth

functions with compact support. The domain \mathcal{D}(\mathcal{E}) is the closure of C_{0}^{\infty}(M) with

respect to the norm \sqrt{\mathcal{E}(,)+(}). The Dirichlet space (\mathcal{E}^{( $\alpha$)}, \mathcal{D}(\mathcal{E}^{( $\alpha$)})) generated by
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the symmetric  $\alpha$‐stable process is given by

\displaystyle \mathcal{E}^{( $\alpha$)}(u, v)=K\int\int_{\mathbb{R}^{d}\times \mathbb{R}^{d}\backslash \triangle}\frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{d+ $\alpha$}}dxdy,
\displaystyle \mathcal{D}(\mathcal{E}^{( $\alpha$)})=\{u\in L^{2}(\mathbb{R}^{d}):\int\int_{\mathbb{R}^{d}\times \mathbb{R}^{d}\backslash \triangle}\frac{(u(x)-u(y))^{2}}{|x-y|^{d+ $\alpha$}}dxdy<\infty\}

(K= $\alpha$ 2^{ $\alpha$-3}$\pi$^{-\frac{d+2}{2}}\displaystyle \sin(\frac{ $\alpha \pi$}{2}) $\Gamma$(\frac{d+ $\alpha$}{2}) $\Gamma$(\frac{ $\alpha$}{2})) . Every function u in \mathcal{D}(\mathcal{E}) admits a quasi‐
continuous version ũ (see [13, Theorem 2.1.3]). In the sequel we always assume that

every function u\in \mathcal{D}(\mathcal{E}) is represented by its quasi‐continuous version.

Let D\subset X be an open set and \mathrm{M}^{D}=(P_{x}, X_{t}^{D}) be the absorbing process:

X_{t}^{D}=\left\{\begin{array}{ll}
X_{t} & t<$\tau$_{D}\\
\infty & t\geq$\tau$_{D}
\end{array}\right.
($\tau$_{D}=\displaystyle \inf\{t>0 : X_{t}\not\in D\}) . Let G_{ $\beta$}^{D}(x, y)( $\beta$\geq 0) be the  $\beta$‐Green function of M. We

simply write  G^{D}(x, y) for G_{0}^{D}(x, y) . Following [6], we make

Definition 2.1.

(1) (i) A positive Radon measure  $\mu$ on  D is said to be in the Kato class (in notation,

 $\mu$\in \mathcal{K}^{D}) , if

\displaystyle \lim_{ $\beta$\rightarrow\infty}\sup_{x\in D}\int_{D}G_{ $\beta$}^{D}(x, y)d $\mu$(y)=0.
(ii) A measure  $\mu$\in \mathcal{K}^{D} is said to be Green‐tight (in notation,  $\mu$\in \mathcal{K}_{\infty}^{D} ), if for any

 $\epsilon$>0 ,
there exists a compact set K\subset D such that

\displaystyle \sup_{x\in D}\int_{K^{c}}G^{D}(x, y)d $\mu$(y)\leq $\epsilon$.
(2) A measure  $\mu$ on  D is said to be conditionally Green‐tight (in notation,  $\mu$\in S_{\infty}^{D} ), if

for any  $\epsilon$>0 ,
there exist a compact set K\subset D and  $\delta$>0 such that

\displaystyle \sup_{(x,z)\in D\times D\backslash \triangle}\int_{K^{c}}\frac{G^{D}(x,y)G^{D}(y,z)}{G^{D}(x,z)} $\mu$(dy)\leq $\epsilon$
and for all measurable sets  B\subset K with  $\mu$(B)< $\delta$,

\displaystyle \sup_{(x,z)\in D\times D\backslash \triangle}\int_{B}\frac{G_{D}(x,y)G_{D}(y,z)}{G_{D}(x,z)} $\mu$(dy)\leq $\epsilon$
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When  D=X
,

we remove D in the notations; we simply denote \mathcal{K}, \mathcal{K}_{\infty} and S_{\infty} for

\mathcal{K}^{X}, \mathcal{K}_{\infty}^{X} and S_{\infty}^{X} . It is known in the remark after [6, Definition 3.1] that

(2.1) S_{\infty}^{D}\subset \mathcal{K}_{\infty}^{D}\subset \mathcal{K}^{D}

For  $\mu$\in \mathcal{K} ,
let A_{t}^{ $\mu$} be the positive continuous additive functional of \mathrm{M} in the Revuz

correspondence to the measure  $\mu$ : for any non‐negative Borel function  f\in B+(X) and

 $\gamma$‐excessive function  h,

(2.2) \displaystyle \lim_{t\rightarrow 0}\frac{1}{t}\mathrm{E}_{hm}(\int_{0}^{t}f(X_{s})dA_{s}^{ $\mu$})=\int_{X}f(x)h(x)d $\mu$(x)
(see [13, p.188]). Then it is shown in [6] that for  $\mu$\in \mathcal{K}_{\infty}^{D}

(2.3) \displaystyle \sup_{x\in D}\mathrm{E}_{x}(A_{$\tau$_{D}}^{ $\mu$})=\sup_{x\in D}\int_{D}G_{D}(x, y) $\mu$(dy)<\infty.
For a measure  $\mu$ in \mathcal{K}^{D} ,

define

(2.4)  $\lambda$( $\mu$;D)=\displaystyle \inf\{\mathcal{E}(u, u):u\in C_{0}^{\infty}(D) , \int_{D}u^{2}(x) $\mu$(dx)=1\},
where C_{0}^{\infty}(D) is the set of smooth functions with compact support in D . On account of

Lemma 3.1 in [35], we see that  $\lambda$( $\mu$;D) is the principal eigenvalue of the time changed

process of \mathrm{M}^{D} by A_{$\tau$_{D}\wedge t}^{ $\mu$} . We abbreviate  $\lambda$( $\mu$;X) as  $\lambda$( $\mu$) .

Let p_{t}^{ $\mu$,D}(x, y) be the integral kernel of the Feynman‐Kac semigroup,

\displaystyle \mathrm{E}_{x}(\exp(A_{t}^{ $\mu$})f(X_{t});t<$\tau$_{D})=\int_{D}p_{t}^{ $\mu$,D}(x, y)f(y)dy,
and G^{ $\mu$,D}(x, y) its Green function, G^{ $\mu$,D}(x, y)=\displaystyle \int_{0}^{\infty}p_{t}^{ $\mu$,D}(x, y)dt . We then have

Theorem 2.2. ([6], [37]) Let  $\mu$\in S_{\infty}^{D} . Then the following conditions are equiv‐
alent:

(i) (gaugeability) \displaystyle \sup_{x\in D}\mathrm{E}_{x}(e^{A_{$\tau$_{D}}^{ $\mu$}})<\infty ;

(ii) (subcriticality)  G^{ $\mu$,D}(x, y)<\infty for x,  y\in D, x\neq y ;

(iii)  $\lambda$( $\mu$;D)>1.

Theorem 2.2 suggests us that  $\lambda$( $\mu$;D) accurately measures the size of the pair

(, D) . This is a key idea of the proofs of the theorems in this paper.
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§3. Stability of heat kernels

Let M be a complete, non‐compact, Riemannian manifold with dimension d . Let

d(x, y) be the geodesic distance. We suppose that the heat kernel p_{t}(x, y) associated

with (1/2)\triangle satisfies global Gaussian lower and upper bounds: for every  x, y\in M and

t>0,

(3.1) \displaystyle \frac{C_{1}\exp(-c_{1}\frac{d^{2}(x,y)}{t})}{m(B(x,\sqrt{t}))}\leq p_{t}(x, y)\leq\frac{C_{2}\exp(-c_{2}\frac{d^{2}(x,y)}{t})}{m(B(x,\sqrt{t}))},
where C_{1}, c_{1}, C_{2} ,

and c_{2} are positive constants and B(x, r) is the geodesic ball of radius

r centered at x\in M . Following [16], we say that the heat kernel p_{t}(x, y) satisfies the

Li‐Yaau estimate, if it has the estimate (3.1). For a measure  $\mu$ in  S_{\infty} ,
let p_{t}^{ $\mu$}(x, y) be

the heat kernel associated with the Schrödinger operator, (1/2)\triangle+ $\mu$ . We establish a

necessary and sufficient condition on the potential  $\mu$ for the heat kernel  p_{t}^{ $\mu$}(x, y) also to

satisfy the Li‐Yau estimate.

Theorem 3.1. ([40]) Suppose that  $\mu$\in S_{\infty} . Then p_{t}^{ $\mu$}(x, y) satisfies the Li‐Yaau

estimate if and only if  $\lambda$( $\mu$)>1.

Theorem 3.1 is an extension of [49, Theorem \mathrm{C} ] and [16, Theorem 10.5], where

they considered the case that the potential  $\mu$ is absolutely continuous with respect to

the Riemannian volume. We explain how to prove the �if� part; let  h(x)=\mathrm{E}_{x}(e^{A_{\infty}^{ $\mu$}}) . If

 $\lambda$( $\mu$)>1 ,
then

 1\displaystyle \leq h(x)\leq\sup_{x\in M}\mathrm{E}_{x}(e^{A_{\infty}^{ $\mu$}})<\infty
by Theorem 2.2, and  h satisfies

\displaystyle \frac{1}{2}\triangle h+ $\mu$ h=0.
Define a multiplicative functional L_{t}^{h} by

L_{t}^{h}=\displaystyle \frac{h(X_{t})}{h(X_{0})}\exp(A_{t}^{ $\mu$}) ,

and denote by \mathrm{M}^{h} the transformed process by L_{t}^{h} . Then \mathrm{M}^{h} is an hm‐symmetric
Markov process and its transition density p_{t}^{h}(x, y) with respect to hm is given by

p_{t}^{h}(x, y)=\displaystyle \frac{p_{t}^{ $\mu$}(x,y)}{h(x)h(y)}.
Hence we see that the Li‐Yau estimate of p_{t}^{ $\mu$}(x, y) is equivalent to that of p_{t}^{h}(x, y) . For

the proof of the Li‐Yau estimate of p_{t}^{h}(x, y) ,
it is enough to show that the Dirichlet form
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of \mathrm{M}^{h} is equivalent to the one of the Brownian motion. Indeed, the Li‐Yau estimate of

p_{t}^{h}(x, y) follows by employing a celebrated theorem proved independently by Grigor�yan

[15] and Saloff‐Coste [25]; the heat kernel satisfies the Li‐Yau estimate if and only if its

Dirichlet form satisfies the Poincaré inequality and its symmetrizing measure satisfies

the volume doubling condition.

This approach for the proof of Theorem 3.1 is exactly the same as that in [16];
however the identification of the transformed Dirichlet form becomes difficult because

of the singularity of the potential  $\mu$ . We overcome this by applying a theorem in [20]
on the uniqueness of Silverstein extensions and Theorem 2.8 in [7] on the identification

of Girsanov transformed Dirichlet forms.

Example 3.2. Let  M be a spherically symmetric Riemannian manifold with a

pole 0 . Let B_{r}=\{x\in M : d(0, x)<r\} and \partial B_{r} its boundary. Let $\sigma$_{r} be the surfa ce

measure of \partial B_{r} and S(r) the area of \partial B_{r}, S(r)=$\sigma$_{r}(\partial B_{r}) . The measure $\sigma$_{r} belongs to

S_{\infty} . It is known in [14] that M is non‐parabolic if and only if

\displaystyle \int_{1}^{\infty}\frac{dr}{S(r)}<\infty.
and in [37] that

(3.2)  $\lambda$($\sigma$_{r})>1\displaystyle \Leftrightarrow S(r)\int_{r}^{\infty}\frac{1}{S(u)}du<\frac{1}{2}.
In particular, for M=\mathbb{R}^{d}(d\geq 3)

(3.3)  $\lambda$($\sigma$_{r})>1\displaystyle \Leftrightarrow\frac{r}{d-2}<\frac{1}{2},
and thus p_{t}^{$\sigma$_{r}}(x, y) satisfies the Li‐Yaau estimate, if and only if r<(d-2)/2.

Suppose that d=3 and  $\lambda$( $\mu$)=1 . Then (1/2)\triangle+ $\mu$ is critical, that is, (1/2)\triangle+ $\mu$
does not admit the minimal positive Green function but admits a positive continuous

(1/2)\triangle+ $\mu$ ‐harmonic function. This harmonic function is called a ground state and is

uniquely determined up to constant multiplication. We proved in [45] that the ground
state  h satisfies

\displaystyle \frac{c}{|x|}\leq h(x)\leq\frac{C}{|x|}, |x|\geq 1
Hence we see fr om Example 10.15 in [16] tat

p_{t}^{ $\mu$}(x, y)\displaystyle \wedge\frac{1}{t^{3/2}}(1+\frac{\sqrt{t}}{\langle x\rangle})(1+\frac{\sqrt{t}}{\langle y\rangle})\exp(-c\frac{|x-y|^{2}}{t})
(\langle x\rangle:=1+|x|) .



Some Topics connected with Gaugeability for Feynman‐Kac Functionals 227

Theorem 3.1 can be extended to signed measures. Let  $\mu$=$\mu$^{+}-$\mu$^{-} be a signed
measure such that $\mu$^{+}\in S_{\infty} and $\mu$^{-} is Green‐bounded,

\displaystyle \sup_{x\in M}\int_{M}G(x, y)d$\mu$^{-}(y)<\infty.
Then the Li‐Yau estimate of the heat kernel p_{t}^{ $\mu$}(x, y) is equivalent to

\displaystyle \inf\{\mathcal{E}(u, u)+\int_{M}u^{2}d$\mu$^{-}:u\in \mathcal{D}(\mathcal{E}) , \int_{M}u^{2}d$\mu$^{+}=1\}>1.
For a signed measure  $\mu$ we also denote by  $\lambda$( $\mu$) the left hand side above.

For the symmetric  $\alpha$‐stable process, we have

Theorem 3.3. ([39]) Suppose that  d> $\alpha$ . Let  $\mu$\in S_{\infty} with finite energy

integral, that is, \displaystyle \iint_{\mathbb{R}^{d}\times \mathbb{R}^{d}\backslash \triangle}|x-y|^{ $\alpha$-d}d $\mu$(x)d $\mu$(y)<\infty . Then

(3.4)  $\lambda$( $\mu$)>1\displaystyle \Leftrightarrow\Vert p_{t}^{ $\mu$}\Vert_{1,\infty}\leq\frac{c}{t^{d/ $\alpha$}}, t>0.

Using the argument in [29, Theorem B.1.1], we see that if  2 $\mu$ is gaugeable on \mathbb{R}^{d},
the ultracontractivity in the right hand side of (3.4) holds. In the proof in [29], the

Schwarz inequality in the Feynman‐Kac formula and the duality argument were used,
which is the reason why the gaugeability of  2 $\mu$ is required.

Bass and Levin [3] proved that if the Lévy measure of a symmetric pure jump

process is equivalent to the one of the symmetric  $\alpha$‐stable process, then the transition

probability density is also equivalent to the one of the symmetric  $\alpha$‐stable process.

Employing this theorem in [3] instead of the theorem due to Grigor�yan and Saloff‐

Coste, we can show a stronger result than Theorem 3.3 in the same way as that in

Theorem 3.1:

Theorem 3.4. Suppose that  $\mu$\in S_{\infty} is of finite energy integral. Then the heat

kernel  of-1/2(-\triangle)^{ $\alpha$/2}+ $\mu$ satisfies

(3.5)  C_{1}(\displaystyle \frac{1}{t^{d/ $\alpha$}}\wedge\frac{t}{|x-y|})\leq p^{ $\mu$}(t, x, y)\leq C_{2}(\frac{1}{t^{d/ $\alpha$}}\wedge\frac{t}{|x-y|}) ,

if and only if  $\lambda$( $\mu$)>1.

§4. Branching symmetric Markov processes

In [21], R. Z. Khas�minskii gave a sufficient condition for the integrability of Feynman‐
Kac functionals, so called, Khas�minskii lemma. He applied it to branching diffusion
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processes and obtained a sufficient condition that the expectation of the number of

branches hitting the outside of a bounded domain is finite. We consider in [41] branch‐

ing Brownian motions on Riemannian manifolds and give a necessary and sufficient

condition for the expectation of the number of branches hitting a closed set being finite.

Let M be a complete, non‐compact Riemannian manifold and \overline{\mathrm{M}}=(\overline{B}_{t},\overline{\mathbb{P}}_{x}) be

a branching Brownian motion on M with branching rate k and branching mechanism

\{p_{n}(x)\}_{n\geq 0,n\neq 1} . The branching rate k is a positive measure on M and the branching
mechanism satisfies \displaystyle \sum_{n=0}^{\infty}p_{n}(x)=1 . We define the intensity of population growth by

 $\mu$(dx)=(Q(x)-1)k(dx) , Q(x)=\displaystyle \sum_{n=2}^{\infty}np_{n}(x) . Assume that \displaystyle \sup_{x\in M}Q(x)<\infty . For

a closed subset  K of positive capacity, we denote by N_{K} the number of branches of \overline{B}_{t}
ever hitting K . We then have

Theorem 4.1. ([41]) Assume that  $\mu$\in S_{\infty}^{D}(D=M\backslash K) . Then it holds that

\displaystyle \sup_{x\in D}\mathrm{E}_{x}(N_{K})<\infty\Leftrightarrow $\lambda$( $\mu$;D)>1.

Lalley and Sellke [22], A. Grigor�yan and M. Kelbert [17] considered branching
Brownian motions on Riemannian manifolds. In particular, in [17], they used gauge

functions to study the recurrence and transience of branching Brownian motions. The‐

orem 4.1 is motivated by [17]. A new point is that we treat branching Brownian motions

with singular branching rate and establish a necessary and sufficient condition for the

finiteness of expectations, while we restrict the branching rate to the class S_{\infty} . For the

proof of Theorem 4.1, we show that for  $\mu$\in S_{\infty}^{D} with Cap (M\backslash D)>0

(4.1) \displaystyle \sup_{x\in D}\mathrm{E}_{x}(\exp(A_{$\tau$_{D}}^{ $\mu$}))<\infty\Leftrightarrow\sup_{x\in D}\mathrm{E}_{x}(\exp(A_{$\tau$_{D}}^{ $\mu$});$\tau$_{D}<\infty)<\infty.
In [9], the gaugeability of  $\mu$ on  D is defined by the right hand side in (4.1). The equation

(4.1) tells us that for a measure in S_{\infty}^{D} ,
two definitions of the gaugeability are equivalent.

We discussed in [39] the same topic for branching symmetric stable processes.

Example 4.2. ([26]) Suppose that d=1 and 1< $\alpha$<2 . Let k=$\delta$_{a}, a\neq 0 ,
the

Dirac measure at a and p_{2}(x)=1 . Then

 $\lambda$($\delta$_{a};\displaystyle \mathbb{R}\backslash \{0\})=-\frac{ $\Gamma$( $\alpha$)\cos(\frac{ $\pi \alpha$}{2})}{2|a|^{ $\alpha$-1}}.
and thus

\displaystyle \sup_{x\in \mathbb{R}\backslash \{0\}}\mathrm{E}(N_{\{0\}})<\infty\Leftrightarrow 0<|a|<(-\frac{ $\Gamma$( $\alpha$)\cos(\frac{ $\pi \alpha$}{2})}{2})^{1/( $\alpha$-1)}
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§5. L^{p}‐independence of spectral bounds

Let \mathcal{L} be an m‐symmetric Markov generator on X and  $\mu$ a certain signed Kato

measure. We study the Schrödinger type operator \mathcal{H}^{ $\mu$}=\mathcal{L}+ $\mu$ on  L^{p}(X;m) . In

particular, we prove that the growth of the operator norm of its semigroup p_{t}^{ $\mu$} :=

\exp(\mathrm{t}) is independent of p . More precisely, we define the spectral bound of p_{t}^{ $\mu$} by

$\alpha$_{p}( $\mu$)=-\displaystyle \lim_{t\rightarrow\infty}\frac{1}{t}\log\Vert p_{t}^{ $\mu$}\Vert_{p,p}, 1\leq p\leq\infty,
where \Vert p_{t}^{ $\mu$}\Vert_{p,p} is the operator norm of p_{t}^{ $\mu$} from L^{p}(X;m) to L^{p}(X;m) . Then our aim

is to show that $\alpha$_{p}( $\mu$) is independent of p . Needless to say, it is impossible to show

the independence for all symmetric Markov processes and associated Kato measures.

In fact, let us consider the Brownian motion on a hyperbolic space \mathrm{H}^{d} and the zero

measure as  $\mu$ . Then,  $\alpha$_{\infty}() equals zero because of the conservativeness of the Brownian

motion, while $\alpha$_{2}( $\mu$) equals (d-1)^{2}/8 (§5.7 in [10]). Hence we suppose that the Markov

semigroup p_{t}:=\exp(\mathrm{t}) satisfies the four conditions:

(I) (Irreducibility) If a Borel set A is \{p_{t}\}‐invariant, i.e., p_{t}(I_{A}f)(x)=I(x)pf(x)
m‐a.e. for any f\in L^{2}(X;m)\cap \mathcal{B}_{b}(X) and t>0 ,

then A satisfies either m(A)=0
or m(X\backslash A)=0 . Here \mathcal{B}_{b}(X) is the space of bounded Borel functions on X.

(II) (Conservativeness) P_{x}( $\zeta$=\infty)=1 for all x\in X.

(III) (Feller Property) p_{t}(C_{\infty}(X))\subset C_{\infty}(X) for each t>0 and \displaystyle \lim_{t\rightarrow 0} pf(x)=f(x) ,

x\in X ,
for f\in C_{\infty}(X) ,

where C_{\infty}(X) is the space of continuous functions on X

vanishing at infinity.

(IV) (Regularity of Transition Density) There exists a continuous transition density

p_{t}(x, y)\in C((0, \infty)\times X\times X) such that

p_{t}f(x)=\displaystyle \int_{X}p_{t}(x, y)f(y)dm(y) , f\in \mathcal{B}_{b}(X) .

For example, the semigroup of the Brownian motion on the hyperbolic space satisfies

the four conditions. We also assume that the potential  $\mu$ is in \mathcal{K}_{\infty}.
For a classical Schrödinger operator (1/2)\triangle+V ,

B. Simon [30] proved the p‐

independence, and K.‐Th. Sturm [32],[33] extended it to Schrödinger operators on

Riemannian manifolds with non‐negative Ricci curvature. For the proof of the p‐

independence, they used heat kernel estimates. Our approach is completely different;
we use the arguments in Donsker‐Varadhan�s large deviation theory. Let \mathrm{M}= (, X_{t})
be the m‐symmetric Markov process generated by \mathcal{L} and assume that it satisfies the

four conditions (I)(IV). We extend \mathrm{M} to the Markov process \overline{\mathrm{M}} on the one‐point
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compactification X_{\infty} by making the adjoined point \infty a trap. Then \overline{\mathrm{M}} has the Feller

property, p(C(X_{1})) \subset C(X_{1}) ,
while it is no longer strong Feller. Here \overline{p}_{t} is the tran‐

sition semigroup of \overline{\mathrm{M}} . In the proof of the large deviation upper bound for Markov

processes with compact state space, we need only the Feller property. Thus we have

the following upper bound; let \mathcal{P}(X_{\infty}) be the set of probability measures on X_{\infty} and

define a function I_{ $\mu$} on \mathcal{P}(X_{\infty}) by

I_{ $\mu$}(v)=-\displaystyle \inf_{ $\phi$\in \mathcal{D}_{++(\mathcal{H}^{ $\mu$})}}\int_{X}\frac{\mathcal{H}^{ $\mu$} $\phi$}{ $\phi$}(x)dv(x) ,

where \mathcal{D}_{++}(\mathcal{H}^{ $\mu$}) is a suitable domain of the operator \mathcal{H}^{ $\mu$} (See [43, Section 3 Then

(5.1) \displaystyle \lim_{t\rightarrow}\sup_{\infty}\frac{1}{t}\log\sup_{x\in X}\mathrm{E}_{x}(\exp(A_{t}^{ $\mu$}))\leq-\inf_{l $\nu$\in \mathcal{P}(X_{\infty})}I_{ $\mu$}(v) .

We would like to make two remarks on the equation (5.1). First, since A_{t}^{ $\mu$} is not

generally regarded as a function of the empirical measure,

L_{t}(A)=\displaystyle \frac{1}{t}\int_{0}^{t}I_{A}(X_{s})ds, A\in \mathcal{B}(X) ,

we can not directly use the Donsker‐Varadhan large deviation theory ([12]) for the

proof of the equation (5.1); however in [34] we extended it to Markov processes with

Feynman‐Kac functionals. We here apply the upper bound established in [34]. Second,
the function I_{ $\mu$} is defined on the space of probability measures on X_{\infty} not on X . Hence,
it happens that v(\{\infty\})>0 and, in this sense, the point 1 makes a contribution to

the function I_{ $\mu$} . We learn this idea from [4] and [19]; accounting the contribution to

I‐function from \infty
,

A. Budhiraja and P. Dupuis proved large deviation principles of

empirical measures for Markov processes without stability property and H. Kaise and

S. J. Sheu studied the asymptotic of Feynman‐Kac functionals.

We prove in [43] that if $\alpha$_{2}( $\mu$)\leq 0 ,
then

(5.2) \displaystyle \inf I_{ $\mu$}(v)=$\alpha$_{2}( $\mu$) ,

l $\nu$\in \mathcal{P}(X_{\infty})

which implies that $\alpha$_{\infty}() \geq$\alpha$_{2}() because the left hand side of (5.1) is equal to -$\alpha$_{\infty}

The inequality, $\alpha$_{\infty}()\leq$\alpha$_{2}( $\mu$) ,
holds generally by the symmetry and the positivity of

p_{t}^{ $\mu$} . Hence we see that if $\alpha$_{2}( $\mu$)\leq 0 ,
then $\alpha$_{p}( $\mu$)=$\alpha$_{2}( $\mu$) ,  1\leq p\leq\infty . On the other

hand, if $\alpha$_{2}( $\mu$)>0 ,
then $\alpha$_{\infty}()=0 . Indeed, it follows from the same argument as that

in the paragraph under [35, Corollary 4.1] that if $\alpha$_{2}( $\mu$)>0 ,
then  $\lambda$( $\mu$)>1 . Combining

Theorem 2.2 with [6, Corollary 2.9], we have

\displaystyle \sup_{x\in X}\mathrm{E}_{x}(\exp(A_{t}^{ $\mu$}))\leq\sup_{x\in X}\mathrm{E}_{x}(\sup_{0\leq t<\infty}\exp(A_{t}^{ $\mu$}))<\infty.
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Moreover, since the measure $\mu$^{-} in \mathcal{K}_{\infty} is Green‐bounded, \displaystyle \sup_{x\in X}\mathrm{E}_{x}(A_{\infty}^{$\mu$^{-}}) =

\displaystyle \sup_{x\in X}G$\mu$^{-}(x)<\infty,

\displaystyle \sup_{x\in X}\mathrm{E}_{x}(\exp(A_{t}^{ $\mu$}))\geq\exp(-\sup_{x\in X}\mathrm{E}_{x}(A_{\infty}^{$\mu$^{-}}))>0,
Hence if $\alpha$_{2}( $\mu$)>0 ,

then $\alpha$_{\infty}()=0.

Theorem 5.1. ([43]) Assume (I)(IV). Let  $\mu$\in \mathcal{K}_{\infty}-\mathcal{K}_{\infty}.

(i) If$\alpha$_{2}( $\mu$)\leq 0 ,
then $\alpha$_{p}( $\mu$)=$\alpha$_{2}( $\mu$) ,  1\leq p\leq\infty ;

(ii) If $\alpha$_{2}( $\mu$)>0 ,
then $\alpha$_{\infty}( $\mu$)=0.

Example 5.2. We use the notations in Example 3.2. Let M=\mathbb{H}^{d}, d‐dimensional

hyperbolic space. We then see that

$\alpha$_{2}( $\theta \sigma$_{r})\displaystyle \leq 0\Leftrightarrow $\lambda$( $\theta \sigma$_{r})\leq 1(\Leftrightarrow $\theta$\geq\frac{1}{2S(r)\int_{r}^{\infty}\frac{dr}{S(r)}})
Put G(r)=2S(r)\displaystyle \int_{r}^{\infty}\frac{1}{S(r)} dr. Then

G(r)=\left\{\begin{array}{ll}
(e^{r}-e^{-r})\log(\frac{e^{r}+1}{e^{r}-1}) & d=2\\
\frac{e^{2r}-1}{e^{2r}} & d=3\\
2(e^{r}-e^{-r})^{d-1}\int_{r}^{\infty}\frac{1}{(e^{r}-e^{-r})^{d-1}}dr & d\geq 4.
\end{array}\right.
For d=2, G(r) is strictly increasing, \displaystyle \lim_{r\rightarrow 0}G(r)=0 ,

and \displaystyle \lim_{r\rightarrow\infty}G(r)=2 . For

d\geq 3, G(r)<1 . Theorem 5.1 tells us that if  $\theta$\geq 1/G(r) ,
then $\alpha$_{p}( $\theta \sigma$_{r})=$\alpha$_{2}( $\theta \sigma$_{r}) for

 1\leq p\leq\infty ,
and if  $\theta$\leq 1/G(r) ,

then $\alpha$_{\infty}( $\theta \sigma$_{r})=0 and $\alpha$_{2}( $\theta \sigma$_{r})>0 . This says that the

p ‐independence of $\alpha$_{p}( $\mu$) is recovered by adding a negative Green‐tight potential  $\mu$ such

that  $\alpha$_{2}() \leq 0.

Consider a spatially homogeneous symmetric Lévy process with Lévy measure J.

The Lévy measure J is said to be exponentially localized if there exists a positive constant

 $\delta$ such that

(5.3) \displaystyle \int_{|x|>1}e^{ $\delta$|x|}J(dx) <\infty.
For example, the Lévy measure of the relativistic Schrödinger process, the symmetric

Lévy process generated by \sqrt{-\triangle+m^{2}}-m, m>0 ,
satisfies (5.3) ([5]). We proved in
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[34] that if J is exponentially localized, then $\alpha$_{p}( $\mu$) is independent of p for  $\mu$\in \mathcal{K}-\mathcal{K}.
On the other hand, the symmetric  $\alpha$‐stable process does not satisfies (5.3). However,
Theorem 5.1 implies that for  $\mu$\in \mathcal{K}_{\infty}-\mathcal{K}_{\infty}, $\lambda$_{p}( $\mu$) is independent of p . Indeed, if

 $\mu$\in \mathcal{K}_{\infty} ,
then the embedding of \mathcal{D}(\mathcal{E}^{( $\alpha$)}) into L() is compact ([34]), which implies

that $\lambda$_{2}( $\mu$)\leq 0 for any  $\mu$\in \mathcal{K}_{\infty}-\mathcal{K}_{\infty} . Therefore we see the existence of the moment

generating function of A_{t}^{ $\mu$},  $\mu$\in \mathcal{K}_{\infty}-\mathcal{K}_{\infty} ;

Corollary 5.3. For any  $\mu$\in \mathcal{K}_{\infty}-\mathcal{K}_{\infty}

(5.4) \displaystyle \lim_{t\rightarrow\infty}\frac{1}{t}\log \mathrm{E}_{x}(\exp( $\theta$ A_{t}^{ $\mu$}))=-$\alpha$_{2}( $\theta \mu$) ,  $\theta$\in \mathbb{R}^{1}

§6. Differentiability of spectral functions

In this section we denote by ( \mathcal{E}^{( $\alpha$)}, \mathcal{D}(\mathcal{E}^{( $\alpha$)} 0< $\alpha$\leq 2 ,
the Dirichlet form generated

by a symmetric  $\alpha$‐stable process and  $\mu$ a positive Radon measure in the Kato class.

Denote by \mathcal{H}^{ $\theta \mu$} the Schrödinger type operator -(1/2)(-\triangle)^{ $\alpha$/2}+ $\theta \mu$,  $\theta$\in \mathbb{R}^{1} and define

its spectral function C( $\theta$) by

C( $\theta$)=-\displaystyle \inf\{ $\lambda$: $\lambda$\in $\sigma$(\mathcal{H}^{ $\theta \mu$})\}

=-\displaystyle \inf\{\mathcal{E}^{( $\alpha$)}(u, u)- $\theta$\int_{\mathbb{R}^{d}}u^{2}d $\mu$ :  u\in \mathcal{D}(\mathcal{E}^{( $\alpha$)}) , \displaystyle \int_{\mathbb{R}^{d}}u^{2}dx=1\},
where  $\sigma$(\mathcal{H}^{ $\theta \mu$}) is the spectrum of \mathcal{H}^{ $\theta \mu$} . By the spectral theorem, C( $\theta$) is identical to

-$\alpha$_{2}( $\theta \mu$) . We consider the differentiability of the function C( $\theta$) . When  $\alpha$=2 and the

potential  $\mu$ is a function in a certain Kato class, Arendt and Batty [2] proved that the

spectral function is differentiable at  $\theta$=0 and its derivative equals zero ([2, Corollary

2.10]). Using a large deviation for additive functionals of the Brownian motion, Wu [48]
obtained a necessary and sufficient condition for the spectral function being differen‐

tiable at  $\theta$=0 . In [38] and [44] we extended Wu�s result to measures in the Kato class.

Furthermore, we showed that if d\leq 4 ,
then the spectral function is differentiable on \mathbb{R}^{1}

for  $\mu$\in \mathcal{K}_{\infty}.

Theorem 6.1. ([45]) If  d\leq 2 $\alpha$ and  $\mu$\in \mathcal{K}_{\infty} , then the spectral function C( $\theta$) is

differentiable for all  $\theta$\in \mathbb{R}^{1}.

To prove the differentiability of the spectral function at  $\theta$=0 ,
one of authors used

in [38] a well‐known property of the Brownian motion; if d\leq 2 ,
the Brownian motion

is a Harris recurrent process with infinite invariant measure, the Lebesgue measure.

However, since the symmetric  $\alpha$‐stable process is transient for  $\alpha$<d ,
the arguments in
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[38] can not be used immediately for the proof of Theorem 6.1. To overcome this, we

prepared criticality theory for the Schrödinger type operator \mathcal{H}^{ $\theta \mu$} . More precisely, let

(6.1) $\theta$^{+}=\displaystyle \inf\{ $\theta$>0 : C( $\theta$)>0\}.

We proved that if  $\alpha$<d ,
then the operator \mathcal{H}^{$\theta$^{+} $\mu$} is critical, that is, \mathcal{H}^{$\theta$^{+} $\mu$} does not

admit the minimal positive Green function (i.e. non‐subcriticality) but admits a positive
continuous \mathcal{H}^{$\theta$^{+} $\mu$} ‐harmonic function (this function is called a ground state and uniquely
determined up to constant multiplication.). Moreover, we proved that \mathcal{H}^{$\theta$^{+} $\mu$} is null

critical, that is, the ground state does not belong to L^{2} if and only if  d\leq 2 $\alpha$ . In fact,

denoting by  h the ground state, we showed in [45] that there exist positive constants

c, C such that

(6.2) \displaystyle \frac{c}{|x|^{d- $\alpha$}}\leq h(x)\leq\frac{C}{|x|^{d- $\alpha$}}, |x|>1.
When \mathcal{H}^{$\theta$^{+} $\mu$} is null critical, the arguments in [38] still work for  $\alpha$<d\leq 2 $\alpha$ through
 h‐transform. This is a key idea of the proof of Theorem 6.1.

The equation (6.2) was shown by Murata [23] for Schrödinger operators on \mathbb{R}^{d} and

extended by Pinchover [24] to second order elliptic operators in a domain of \mathbb{R}^{d} . If

 $\mu$=0 ,
the criticality and the null criticality are equivalent to the recurrence and the

null recurrence respectively. The equation (6.2) says that if d>2 $\alpha$, \mathcal{H}^{$\theta$^{+} $\mu$} is positive

critical, that is, the ground state belongs to L^{2} . Hence the transformed process has a

finite invariant measure h^{2}dx and the argument in [38] does not work. In fact, using
the argument in [31], we can show that C( $\theta$) is not differentiable at  $\theta$=$\theta$^{+}.

Our motivation of Theorem 6. 1 lies in the proof of a large deviation principle for

the continuous additive functional A_{t}^{ $\mu$} . The function C( $\theta$) is regarded as a logarithmic
moment generating function of the additive functional A_{t}^{ $\mu$} by Corollary 5.3 and its dif‐

ferentiability follows from Theorem 6.1. The Gärtner‐Ellis Theorem (see [11]) yields the

large deviation principle for additive functional A_{t}^{ $\mu$} ; let I( $\lambda$) be the Legendre transform

of C( $\theta$) ,

I( $\lambda$)=\displaystyle \sup_{ $\theta$\in \mathbb{R}^{1}}\{ $\lambda \theta$-C( $\theta$)\},  $\lambda$\in \mathbb{R}^{1}
We then have:

Theorem 6.2. ([42]) Assume that  d\leq 2 $\alpha$ . Then for  $\mu$\in \mathcal{K}_{\infty}, A_{t}^{ $\mu$}/t obeys the

large deviation principle with rate function I( $\lambda$) .

(i) For any closed set K\in \mathbb{R}^{1},

\displaystyle \lim_{t\rightarrow}\sup_{\infty}\frac{1}{t}\log \mathbb{P}_{x}(\frac{A_{t}^{ $\mu$}}{t}\in K)\leq-\inf_{ $\lambda$\in K}I( $\lambda$) .
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(ii) For any open set G\subset \mathbb{R}^{1},

\displaystyle \lim_{t\rightarrow}\inf_{\infty}\frac{1}{t}\log \mathbb{P}_{x}(\frac{A_{t}^{ $\mu$}}{t}\in G)\geq-\inf_{ $\lambda$\in G}I( $\lambda$) .

Example 6.3. Let d=1 and  $\alpha$>1 . When  $\mu$=$\delta$_{0} ,
the Dirac measure at the

origin, the corresponding additive functional is identical to the local time at the origin.
For  $\theta$>0 ,

the principal eigenvalue of‐ \displaystyle \frac{1}{2}(-\triangle)^{ $\alpha$/2}- $\theta \delta$_{0} is calculated in [27]:

C( $\theta$)=\left\{\begin{array}{ll}
(\frac{2^{1/ $\alpha$}}{ $\alpha$\sin(\frac{ $\pi$}{ $\alpha$})})^{\frac{ $\alpha$}{ $\alpha$-1}} $\theta$\frac{ $\alpha$}{ $\alpha$-1} &  $\theta$>0\\
0 &  $\theta$\leq 0.
\end{array}\right.
As a result, we have

I(x)=\left\{\begin{array}{ll}
\frac{( $\alpha$-1)^{( $\alpha$-1)}}{2}(\sin\frac{ $\pi$}{ $\alpha$})^{ $\alpha$}x^{ $\alpha$} & x>0\\
0 & x\leq 0.
\end{array}\right.
The fact in this example is due to J. Hawkes [18].
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