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A short note on Lyons‐Zheng decomposition
in the non‐sectorial case

By

Gerald Trutnau *

Abstract

Let E be a Hausdorff space such that its Borel  $\sigma$‐algebra is generated by the set of all

continuous functions on  E . Given a conservative generalized Dirichlet form \mathcal{E} with associated

diffusion (X_{t}, P_{x}) ,
reference measure m

,
and domain \mathcal{F} , on L^{2}(E;m) . Suppose that the co‐form

with domain \hat{\mathcal{F}} is also conservative and associated to a diffusion. Then

(1) \displaystyle \mathrm{U}(X_{t})-\mathrm{U}(X_{t})=\frac{1}{2}M_{t}^{[u]}-\frac{1}{2}\{\hat{M}_{T}^{[u]}(r_{T})-\hat{M}_{T-t}^{[u]}(r_{T})\}
+\displaystyle \frac{1}{2}\{N_{t}^{[u]}-\hat{N}_{t}^{[u]}\} ; 0\leq t\leq T , P ‐ a . e .

Here  r $\tau$ is the time reversal operator,  M_{t}^{[u]} (resp. \hat{M}_{t}^{[u]} ) is the MAF of finite energy, and N_{t}^{[u]}
(resp. \hat{N}_{t}^{[u]} ) is the CAF of zero energy appearing in the Fukushima decomposition corresponding
to the generalized Dirichlet form (resp. co‐form) and u is in some extended range \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext}.
In the symmetric case of course M^{[u]}=\hat{M}^{[u]}

,
and N^{[u]}=\hat{N}^{[u]}

,
and furthermore \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext}

contains the domain of the form, so that we obtain the forward and backward martingale
decomposition of T.J. Lyons and W. Zheng (cf. [3]). In the non‐symmetric, but still sectorial

case, the structure of decomposition (1) was first pointed out by M. Takeda through a typical
example (cf. [9, Theorem 6.3.]).

§1. Notice

The following is an extension to a result in [9]. Decomposition (1) is obtained in

[9, Theorem 6.3.] for a special, but typical example of finite‐dimensional non‐symmetric
sectorial process, and we will make use of the main ideas presented there. However, since
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we are in the non‐sectorial case we are confronted with structural problems. Especially,
the range of functions \overline{u} for which (1) is valid, isn�t clear at all in the non‐sectorial case.

More precisely, in the sectorial case the domain of the form and the co‐form coincides,
so that the intersection is again the whole domain, but in the non‐sectorial case we do

not even know in general whether the intersection is non‐empty. In this short note we

will provide a suitable range \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext} of functions for the validity of decomposition

(1) (see section 4). For notations and introduced objects see [10], [11], [12].

§2. Framework

Let E be a Hausdorff space such that its Borel  $\sigma$‐algebra  B(E) is generated by
the set of all continuous functions on E . We assume that we are given a conservative

diffusion \mathrm{M}= (, (X_{t})_{t\geq 0}, (P_{z})_{z\in E}) which is associated to a generalized Dirich‐

let form \mathcal{E} on L^{2}(E;m) . Then \mathcal{E} is quasi‐regular by [7, IV.Theorem 3.1]. The class of

generalized Dirichlet forms (see [7]) is quite large and contains as special subclasses

symmetric, sectorial, and time dependent Dirichlet forms (see e.g. [2], [4], [1], [5], [6]).
Note that in contrast to the classical theory it isn�t known whether regularity or quasi‐

regularity alone implies the existence of an associated process. An additional structural

assumption on \mathcal{F} is made in [7, \mathrm{I}\mathrm{V}.2,\mathrm{D}3] in order to construct explicitly an associated

process. Since we do not make use of this technical assumption and since it may be

subject to some further progress, we instead prefer to assume merely the existence of

M. Since our \mathrm{M} is a conservative diffusion we may assume that the path space  $\Omega$ is

given as the space of all contionuous paths  C([0, \infty)\rightarrow E) ,
so that X_{t}(w)=w(t) .

Next we suppose that the co‐form \hat{\mathcal{E}} is also associated with a conservative diffusion

\mathrm{M}= (, (X_{t})_{t\geq 0}, (\hat{P}_{z})_{z\in E}) ,
and is hence also quasi‐regular.

We will use the same notations as in [10], [11], [12]. In particular, notations with a su‐

perposed hat, such as e.g. \hat{E}_{m}, \hat{P}_{m}, \hat{P}_{x}, \hat{G}_{ $\alpha$} , correspond to the co‐process, or equivalently
to the co‐form. Since the capacities correponding to the form and co‐form are the same

we need not to precise whether quasi‐continuous (q.c.), quasi‐everywhere (q.e.), etc., is

meant w.r. \mathrm{t} . to \mathcal{E} or \hat{\mathcal{E}} . In particular \overline{u} (if it exists) always denotes a q.c. m‐version of

a given function u:E\rightarrow \mathbb{R} . By [10, Theorem 4.5(\mathrm{i}) ] we know that for u\in \mathcal{F}

(2) A_{t}^{[u]}:=\mathrm{U}(X_{t})-\mathrm{U}(X_{0})=M_{t}^{[u]}+N_{t}^{[u]} , p‐a.s. q.e. x,

where M_{t}^{[u]} is a martingale additive functional (of M) of finite energy, and N_{t}^{[u]} is a

continuous additive functional (of M) of zero energy. Here the energy of an additive

functional A_{t} (of M) is defined as

e(A)=\displaystyle \frac{1}{2}\lim_{ $\alpha$\rightarrow\infty}$\alpha$^{2}E_{m}[\int_{0}^{\infty}e^{- $\alpha$}{}^{t}A_{t}^{2}dt]
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whenever the limit exists. We write e(A) if the \displaystyle \lim in the above expression is replaced

by \varlimsup . Since \mathcal{E} satisfies the same assumptions than the co‐form \hat{\mathcal{E}} we also have a

decomposition relative to the co‐process and u\in\hat{\mathcal{F}}

(3) \mathrm{U}(X_{t})-\mathrm{U}(X_{0})=\hat{M}_{t}^{[u]}+\hat{N}_{t}^{[u]}, \hat{P}_{x} ‐a.s. q.e. x.

The main problem will be to specify a suitable range \mathcal{F}^{ext} (resp. \hat{\mathcal{F}}^{ext} ) of quasi‐
continuous functions \overline{u} in L^{2}(E;m) for which (2) (resp. for (3)) holds. Suitable means

that the class of functions \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext} for which (1) will then hold covers all previous
cases and is large enough for new applications.
We continue to proceed as in [9]. The corresponding result to the next lemma is only
stated in [9]. We therefore present a proof. The proof doesn�t depend on the sector

condition, only on the conservativity of both forms. So we do not present anything new.

Finally, before stating the next lemma, let us just define the time reversal operator:

We fix an arbitrary T>0 and let $\Omega$_{T} be the space of all continuous functions from

[0, T] to E . On $\Omega$_{T} we consider the  $\sigma$‐algebra \mathcal{F}_{t}^{0}= $\sigma$\{X_{s}, 0\leq s\leq t\}, 0\leq t\leq T.

By natural restriction from  $\Omega$ to  $\Omega$_{T} we may regard any probability measure P_{ $\mu$},
 $\mu$\in \mathcal{P}(E) ,

on ( $\Omega$, \mathcal{F}_{\infty}^{0}) as a probability measure on ($\Omega$_{T}, \mathcal{F}_{T}^{0}) . Let us denote by \mathcal{F}_{T}^{ $\mu$}
(resp. \mathcal{F}_{t}^{ $\mu$}, 0\leq t\leq T ) the completion of \mathcal{F}_{T}^{0} (resp. completion of \mathcal{F}_{t}^{0} in \mathcal{F}_{T}^{ $\mu$} ) w.r.t. P_{ $\mu$}
and let \displaystyle \mathcal{F}_{t}=\bigcap_{ $\mu$\in \mathcal{P}(E)}\mathcal{F}_{t}^{ $\mu$} . (2) resp. (3) remain valid on ($\Omega$_{T}, (\mathcal{F}_{t})_{0\leq t\leq T}, (X_{t})_{0\leq t\leq T}, P_{x})
resp. ($\Omega$_{T}, (\mathcal{F}_{t})_{0\leq t\leq T}, (X_{t})_{0\leq t\leq T},\hat{P}_{x}) . The time reversal operator r_{T} on $\Omega$_{T} is now de‐

fined by

r_{T}( $\omega$)(t)= $\omega$(T-t) ; 0\leq t\leq T.

Lemma 2.1. (i) If 0<t_{1}< <t_{n-1}<t_{n} ,
and f_{0}, f_{n}\in \mathcal{B}(E)^{+} ,

then

E_{m}[f_{0}(X_{0}) . f_{n}(X_{t_{n}})]=\hat{E}_{m}[f_{n}(X_{0})f_{n-1}(X_{t_{n}-t_{n-1}}) . f_{1}(X_{t_{n}-t_{1}})f_{0}(X_{t_{n}})].

(ii) For any \mathcal{F}_{T} ‐measurable set A on $\Omega$_{T} we have

P_{m}[r_{T}\in A]=\hat{P}_{m}[A].

In other words, the time reversed process and the co‐process are identical in law.

Proof. (i) (cf. also [2, Lemma 4.1.2.]) Since by conservativity of both forms m=

P_{m}\mathrm{o}X_{t}^{-1}=\hat{P}_{m}\mathrm{o}X_{t}^{-1} for any t
,
the statement is clear for n=0 . Suppose the statement

is true for given n . Then, using the simple Markov property we obtain

E_{m}[f_{0}(X_{0}) . f(X)]

=\hat{E}_{m}[f_{0}(X_{0}) . f_{n-1}(X_{t_{n-1}})(f_{n}\cdot p_{t_{n+1}-t_{n}}f_{n+1})(X_{t_{n}})].

By assumption the r.h. \mathrm{s} . equals

\hat{E}_{m}[(f_{n}\cdot p_{t_{n+1}-t_{n}}f_{n+1})(X_{0})f_{n-1}(X_{t_{n}-t_{n-1}}) . f_{1}(X_{t_{n}-t_{1}})f_{0}(X_{n})].
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Using normality and duality, and then again the simple Markov property but for the

co‐process, the last is equal to

\displaystyle \int_{E}f_{n+1}(x)p_{t_{n+1}-t_{n}} Ê. [(f_{n}(X_{0})f_{n-1}(X_{t_{n}-t_{n-1}}) . f_{1}(X_{t_{n}-t_{1}})f_{0}(X_{n})](x)m(dx)

=\hat{E}_{m}[f_{n+1}(X_{0})f_{n}(X_{t_{n+1}-t_{n}}) . f_{1}(X_{t_{n+1}-t_{1}})f_{0}(X_{t_{n+1}})].

(ii) By (i), (ii) follows similarly to [2, Lemma 5.7.1.]. \square 

§3. Extension

In this section we will present a practicable domain for the validity of (1). Again
we emphasize that this is in principle our sole really new contribution.

We start this section with a general remark about the energy of the continuous additive

functional A^{[u]} where u is in L^{2}(E;m) and admits a q.c. m‐version \overline{u} . Let (G_{ $\alpha$})_{ $\alpha$>0} be

the L^{2}(E;m) ‐resolvent associated to \mathcal{E} , and (\hat{G}_{ $\alpha$})_{ $\alpha$>0} the L^{2}(E;m) ‐resolvent associated

to \hat{\mathcal{E}} . If ) denotes the inner product in L^{2}(E;m) then (due to conservativity)

e(A^{[u]})=\displaystyle \lim_{ $\alpha$\rightarrow\infty} $\alpha$(u- $\alpha$ G_{ $\alpha$}u, u)=\lim_{ $\alpha$\rightarrow\infty} $\alpha$(u- $\alpha$\hat{G}_{ $\alpha$}u, u)=\hat{e}(A^{[u]}) ,

whenever one of the limits exists. The same equalities hold true if we replace \displaystyle \lim by
\varlimsup

,
and accordingly  e by \overline{e}

,
and ê by ê in the above equation. Hence, we could restrict

our attention to e
,

and \overline{e}
,

when looking at the energy of A^{[u]} . In particular, if u admits

decomposition (2) and decomposition (3), then

e(M^{[u]})=e(A^{[u]})=\mathrm{e}(A^{[u]})=\^{e}(A^{[u]})=\^{e}(A^{[u]})=\^{e}(\hat{M}^{[u]}) .

Now, let us briefly recall a procedure how to check whether (3) can be extended to a

given u\in L^{2}(E;m) with q.c. version \overline{u} . Let u_{n}\in\hat{\mathcal{F}}, n\in \mathbb{N} . Let (S_{n})_{n\in \mathbb{N}}\subset \mathbb{R} such

that \displaystyle \lim_{n\rightarrow\infty}S_{n}=0 . Suppose that there exists for each  $\mu$\in S_{00} ,
and \overline{T}>0 ,

a constant

C^{\overline{T}, $\mu$} ,
such that

(A) \displaystyle \hat{P}_{ $\mu$}(\sup_{0\leq t\leq\overline{T}}|\mathrm{U}(X_{t})-\mathrm{U}_{n}(X_{t})|> $\epsilon$)\leq\frac{C^{\overline{T}, $\mu$}}{ $\epsilon$}S_{n} for any  $\epsilon$>0,

(B) \overline{\hat{e}}(A^{[u_{n}-u]})\rightarrow 0 as n\rightarrow\infty.

Then the decomposition (3) extends to A^{[u]} by Theorem 4.5(ii) in [11], and remains

of course valid if the time is restricted to [0, T] . Condition (A) ensures that some sub‐

sequence A_{t}^{[u_{n_{k}}]} converges (in the sense of additive functionals) locally uniformly in

t against A_{t}^{[u]} . Condition (B) ensures that \hat{M}_{t}^{[u_{n_{k}}]} converges locally uniformly against

\hat{M}_{t}^{[u]} . The same is then also true for \hat{N}_{t}^{[u]} . Furthermore, condition (B) ensures that \hat{N}_{t}^{[u]}
is of zero energy.
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We denote by \hat{\mathcal{F}}^{ext} the linear space of all u which can be obtained by the given proce‐

dure. By Theorem 4.5(i) in [11] \hat{\mathcal{F}}\subset\hat{\mathcal{F}}^{ext} . Accordingly, let \mathcal{F}^{ext}\supset \mathcal{F} denote the linear

space obtained w.r. \mathrm{t} . the corresponding co‐notions.

The basic idea for the proof of the following lemma can also be found in [9].

Lemma 3.1. Let u\in\hat{\mathcal{F}}^{ext} . Then

\hat{N}_{t}^{[u]}(r_{T})=\hat{N}_{T}^{[u]}-\hat{N}_{T-t}^{[u]} ; 0\leq t\leq T , p ‐ a . e .

Proof. Let first u\in\hat{\mathcal{F}} , and u_{n}=\hat{G}_{1}g_{n}, g_{n}\in L^{2}(E;m) ,
such that \displaystyle \lim_{n\rightarrow\infty}u_{n}=u

in \hat{\mathcal{F}} . Then

\hat{P}_{x}[$\Gamma$_{T}]=1 for q.e. x,

where

$\Gamma$_{T}= {  $\omega$\in $\Omega$|\hat{N}_{t}^{[u_{n_{k}}]}( $\omega$) converges uniformly in t to \hat{N}_{t}^{[u]}( $\omega$) on [0, T] }.

Since

\displaystyle \hat{N}_{t}^{[u_{n_{k}}]}(r_{T})=\int_{0}^{t}(\hat{G}_{1}g_{n_{k}}-g_{n_{k}})(X_{T-s})ds
=\displaystyle \int_{T-t}^{T}(\hat{G}_{1}g_{n_{k}}-g_{n_{k}})(X_{s})ds=\hat{N}_{T}^{[u_{n_{k}}]}-\hat{N}_{T-t}^{[u_{n_{k}}]}

the set $\Gamma$_{T} is r_{T}‐invariant, i.e. \{r_{T}\in$\Gamma$_{T}\}=$\Gamma$_{T} ,
and so is \hat{ $\Gamma$}_{T}^{c}= $\Omega$\backslash \hat{ $\Gamma$}_{T} . It follows

P_{m}[$\Gamma$_{T}^{c}]=\hat{P}_{m}[r_{T}\in$\Gamma$_{T}^{c}]=\hat{P}_{m}[$\Gamma$_{T}^{c}]=0,

and the assertion follows for u\in\hat{\mathcal{F}} . If u\in\hat{\mathcal{F}}^{ext} ,
we can find u_{n_{k}}\in\hat{\mathcal{F}} such that $\Gamma$_{T} is

again r_{T}‐invariant, and such that again P_{m}[\hat{ $\Gamma$}_{T}^{c}]=0 . Therefore the assertion follows. \square 

We are ready to state our main result (cf. [9, Theorem 6.3]).

Theorem 3.1. Let u\in \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext} . Then

\displaystyle \mathrm{U}(X_{t})-\mathrm{U}(X_{0})=\frac{1}{2}M_{t}^{[u]}-\frac{1}{2}\{\hat{M}_{T}^{[u]}(r_{T})-\hat{M}_{T-t}^{[u]}(r_{T})\}
+\displaystyle \frac{1}{2}\{N_{t}^{[u]}-\hat{N}_{t}^{[u]}\} ; 0\leq t\leq T , P ‐ a . e .

Proof. Applying Lemma 3.1 with t replaced by T-t
, resp. t replaced by T

,
we

obtain \hat{N}_{T-t}^{[u]}(r_{T})=\hat{N}_{T}^{[u]}-\hat{N}_{t}^{[u]} , resp. \hat{N}_{T}^{[u]}(r_{T})=\hat{N}_{T}^{[u]}-\hat{N}_{0}^{[u]}=\hat{N}_{T}^{[u]};0\leq t\leq T , P‐a.e.
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Therefore

-\displaystyle \frac{1}{2}\{\hat{M}_{T}^{[u]}(r_{T})-\hat{M}_{T-t}^{[u]}(r_{T})\}
=-\displaystyle \frac{1}{2}\{A_{T}^{[u]}(r_{T})-A_{T-t}^{[u]}(r_{T})-(\hat{N}_{T}^{[u]}(r_{T})-\hat{N}_{T-t}^{[u]}(r_{T}))\}
=\displaystyle \frac{1}{2}\{A_{t}^{[u]}+\hat{N}_{t}^{[u]}\} ; 0\leq t\leq T , p ‐a . e .

Applying additionally (2) for u\in \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext} ,
the result now follows immediately. \square 

§4. Examples

In this section we present typical classes of examples for the decomposition of

Theorem 3.1. We always, if not explicitely mentioned, assume that the given generalized
Dirichlet form satisfies the assumtions needed for the theorem (see summary), and

illustrate how large at least \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext} is.

(i) Sectorial forms

(a) Dirichlet forms:

If (\mathcal{E}, \mathcal{F}) is a Dirichlet form on L^{2}(E;m) ,
then \mathcal{F}=\hat{\mathcal{F}} , and therefore \mathcal{F}\subset \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext} . If \mathcal{E}

is symmetric, i.e. \mathcal{E}=\hat{\mathcal{E}} ,
then M^{[u]}=\hat{M}^{[u]}

,
and N^{[u]}=\hat{N}^{[u]}

,
so that the decomposition

of Theorem 3.1 coincides with the one presented in [3].

(ii) Non‐sectorial forms

(a) Time‐dependent Dirichlet forms:

Let E be a locally compact separable metric space and m a positive Radon measure on E

with full support. Consider a time dependent Dirichlet form with domain \mathcal{W}(=\mathcal{F}=\hat{\mathcal{F}}
in our notation) in the sense of [6] on L^{2}(E;m) (N.B.: in contrary to our notation in [6]
the domain of the coercive part of a time dependent Dirichlet form is denoted by \mathcal{F}).
By [6, Theorem 7.2.] or (2) we have \mathcal{W}\subset \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext}.

(b) Divergence free vector fields with boundary conditions in finite dimensions:

Consider \mathbb{R}^{d} equipped with the usual Euclidean norm | = \rangle^{1/2} . Let G\subset \mathbb{R}^{d} be

a bounded Lipschitz domain with euclidean closure \overline{G} . Let  $\rho$\in H^{1,1}(G, dx) ,  $\rho$>0 dx‐

a.e, m:= $\rho$ dx . Let A=(a_{ij})_{1\leq i,j\leq d} be measurable, symmetric, and uniformly globally
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strictly elliptic on G . Then

\displaystyle \mathcal{E}^{r}(u, v):=\frac{1}{2}\int_{G}\langle A\nabla u, \nabla v\rangle dm ; u, v\in C^{\infty}(\overline{G}) ,

is closable in L^{2}(G, m) (see [12, Lemma 1.1.]). Since m(\overline{G}\backslash G)=0 we may regard \mathcal{E}^{r} on

L^{2}(\overline{G}, m) by obvious identifications. The closure (\mathcal{E}^{r}, D(\mathcal{E}^{r})) is regular on \overline{G} . In general
it is not regular on G . We denote by (L^{r}, D(L)) the generator associated to (\mathcal{E}^{r}, D(\mathcal{E}^{r}))
and consider a measurable vector field B:G\rightarrow \mathbb{R}^{d} ,

which is m‐square integrable on

G ,
i.e. \displaystyle \int_{G}|B|^{2}dm<\infty ,

and such that

\displaystyle \int_{G}\langle B, \nabla u\rangle dm=0 for all u\in C^{\infty}(\overline{G}) .

From [12, Proposition 1.4.] we know that the operator L^{r}u+\langle B, \nabla u\rangle, u\in D(L^{r})_{b} ,
is

dissipative, hence in particular closable in L^{1}(G, m) . Moreover, the closure (\overline{L}, D(L))
generates a sub‐Markovian C_{0}‐semigroup of contractions (\overline{T}_{t})_{t\geq 0} . The part (L, D(L))
of (\overline{L}, D(L)) on L^{2}(G, m) ,

i.e. D(L)=\{u\in D(\overline{L})\cap L^{2}(G, m)|\overline{L}u\in L^{2}(G, m and

Lu :=\overline{L}u, u\in D(L) ,
is by [7, Examples 4.9.(ii)] associated to a generalized Dirichlet

form. The adjoint operator (\hat{L}, D(\hat{L})) in L^{2}(G, m) is associated to the co‐form, so that

\mathcal{F}=D(L) , \hat{\mathcal{F}}=D(\hat{L}) . Both forms are associated to conservative diffusions (see [12]).
In particular by [12, Theorem 4.1.] we have D(\mathcal{E}^{r})_{b}\subset \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext}.

(c) Divergence free vector fields in infinite dimensions:

Let E be a separable real Banach space and (H, \rangle_{H}) a separable real Hilbert space

such that H\subset E densely and continuously. Identifying H with its topological dual H'

we obtain that E'\subset H\subset E densely and continuously. Define the linear space of finitely
based smooth functions on E by

\mathcal{F}C_{b}^{\infty}:=\{f(l_{1}, l_{m})|m\geq 1, f\in C_{b}^{\infty}(\mathbb{R}^{m}) , l_{1}, l_{m}\in E

Here C_{b}^{\infty}(\mathbb{R}^{m}) denotes the set of all infinitely differentiable (real‐valued) functions on

\mathbb{R}^{m} with all partial derivatives bounded. For u\in \mathcal{F}C_{b}^{\infty}, k\in E let

\displaystyle \frac{\partial u}{\partial k}(z):=\frac{d}{ds}u(z+sk)|_{s=0}, z\in E,
be the Gâteaux derivative of u in direction k . Since k\displaystyle \mapsto\frac{\partial u}{\partial k}(z) is continuous on H one

can define \nabla u(z)\in H by

\displaystyle \langle\nabla u(z) , k\rangle_{H}=\frac{\partial u}{\partial k}(z) .

Let m be a finite positive measure on (E, \mathcal{B}(E)) with full support. An element k in E

is called well‐m‐admissible if there exist $\beta$_{k}^{m}\in L^{2}(E;m) such that for all u, v in \mathcal{F}C_{b}^{\infty}

\displaystyle \int\frac{\partial u}{\partial k}dm=-\int u$\beta$_{k}^{m}dm.
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Let us assume:

() There exists a dense linear subspace K of E' consisting of well‐m‐admissible ele‐

ments.

It is well known that under the assumption ()

\displaystyle \mathcal{E}^{0}(u, v) :=\frac{1}{2}\int\langle\nabla u, \nabla v\rangle_{H}dm u, v\in \mathcal{F}C_{b}^{\infty}
is closable on L^{2}(E;m) and that the closure (\mathcal{E}^{0}, D(\mathcal{E}^{0})) is a symmetric quasi‐regular
Dirichlet form. Let (L^{0}, D(L)) be the associated generator. Let \overline{ $\beta$} : E\rightarrow E be measur‐

able, \overline{ $\beta$}(E)\subset H ,
and \Vert\overline{ $\beta$}\Vert_{H}\in L^{2}(E;m) ) such that

\displaystyle \int\langle\overline{ $\beta$}, \nabla u\rangle_{H}dm=0 for all u\in \mathcal{F}C_{b}^{\infty}

It follows from [8, Proposition 4.1.] that

Lu:=L^{0}u+\langle\overline{ $\beta$}, \nabla u\rangle_{H}, u\in D(L^{0})_{b}.

is closable on L^{1}(E; $\mu$) and that the closure (\overline{L}, D(\overline{L})) generates a Markovian C_{0^{-}}

semigroup of contractions. Similarly to (ii)(b) the part (L, D(L)) of (\overline{L}, D(\overline{L})) on L^{2}(E;m)
is associated to a generalized Dirichlet form, and the adjoint (\hat{L}, D(\hat{L})) of (L, D(L)) in

L^{2}(E;m) is associated to the co‐form, so that \mathcal{F}=D(L) , \hat{\mathcal{F}}=D(\hat{L}) . Both forms are

associated to conservative diffusions (see [10]). In particular exactly as in the case of

(ii)(b) one can show that D(\mathcal{E}^{0})_{b}\subset \mathcal{F}^{ext}\cap\hat{\mathcal{F}}^{ext}.
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