Characterization of certain spaces of C^{∞} -vectors of irreducible representations of solvable Lie groups

Junko Inoue
University Education Center, Tottori University
Jean Ludwig
Department of Mathematics, University of Metz

Abstract

Let π be an irreducible unitary representation of an exponential solvable Lie group G. Realizing π on $L^2(G/H,\chi_l)$ as an induced representation from a unitary character χ_l of a subgroup H of G, we are concerned with certain subspaces of C^{∞} -vectors. We describe the subspace \mathcal{SE} of vectors with a certain property of rapidly decreasing at infinity as the space of C^{∞} -vectors of an irreducible unitary representation of an exponential solvable Lie group F containing G. Furthermore, the space \mathcal{ASE} introduced by Ludwig in [8] is expressed by our space \mathcal{SE} . Here we shall announce some results in [5], and we shall give brief discussions on fundamental examples.

1 Introduction

Let G be an exponential solvable Lie group with Lie algebra \mathfrak{g} , and π be an irreducible unitary representation of G. By the orbit method, which associates π with a coadjoint orbit, we realize π as an induced representation from a unitary character of a subgroup as follows: There exists a linear form $l \in \mathfrak{g}^*$ and a real polarization \mathfrak{h} at l such that $\pi \simeq \operatorname{ind}_{H}^{G}\chi_{l}$, where $H = \exp \mathfrak{h}$ is the connected and simply connected subgroup corresponding to \mathfrak{h} , and χ_{l} is the unitary character of H defined by $\chi_{l}(X) = e^{il(X)}$ $(X \in \mathfrak{h})$.

We give the standard construction of the induced representation $\pi = \pi_{l,H} = \operatorname{ind}_{H}^{G} \chi_{l}$: Let $\mathcal{K}(G/H)$ be the space of continuous functions f on G with compact support modulo H such that $f(gh) = \Delta_{H,G}(h)f(g)$ for all $g \in G$, $h \in H$, where Δ_{G} and Δ_{H} are the

²⁰⁰⁰ Mathematics Subject Classifications: Primary 22E27; Secondary 22E25, 43A85. Key Words and Phrases: Exponential solvable Lie group, unitary representation, C^{∞} -vector. This paper is in final form and no version of it will be published elsewhere. Received November 17, 2006.

modular functions of G and H, respectively, and $\Delta_{H,G}(h) = \frac{\Delta_H(h)}{\Delta_G(h)}$. Then there exists a positive left invariant linear functional

(1.1)
$$f \mapsto \mu(f) = \oint_{G/H} f(g) d\mu_{G/H}(g)$$

uniquely up to a constant factor (see [3]). Let $C(G/H, \chi_l)$ be the space of continuous functions ϕ on G with compact support modulo H such that

$$\phi(gh) = \chi_l(h)^{-1} \Delta_{H,G}(h)^{1/2} \phi(g), \quad \forall g \in G, h \in H,$$

and let $\mathcal{H}_{\pi} = L^2(G/H, \chi_l)$ be the completion of the space $C(G/H, \chi_l)$ with respect to the norm

$$\|\phi\|_{\pi} := \left(\oint_{G/H} |\phi(g)|^2 d\mu_{G/H}(g)\right)^{1/2}.$$

Then we define the action of $g \in G$ in \mathcal{H}_{π} by

$$\pi_{l,H}(g)\phi(x) = \phi(g^{-1}x), \quad \phi \in L^2(G/H, \chi_l), \quad g, x \in G.$$

Let us briefly recall some well-known facts of the case of nilpotent Lie groups. Suppose G is nilpotent, and taking a supplementary Malcev basis for $\mathfrak h$ in $\mathfrak g$, identify G/H with $\mathbb R^k$, where $k=\dim(G/H)$, and realize π on $L^2(\mathbb R^k)$. Then by results of Kirillov [6] and Corwin-Greenleaf-Penney [4], the actions of the enveloping algebra $\mathfrak u(\mathfrak g)$ form the algebra of differential operators on $\mathbb R^k$ with polynomial coefficients. Thus the space of C^∞ vectors $\mathcal H^\infty_\pi$ coincides with the space of Schwartz functions $\mathcal S(\mathbb R^k)$ on $\mathbb R^k$ as a Fréchet space.

We next observe an example of exponential groups which are not nilpotent, where the specific descriptions of C^{∞} vectors are different from those of nilpotent groups.

Example 1.1. (ax + b group) Let \mathfrak{g} be a two-dimensional Lie algebra with basis $\{X, Y\}$ whose bracket relation is [X, Y] = Y, and let $G = \exp \mathfrak{g}$. Then with the dual basis $\{X^*, Y^*\}$ in \mathfrak{g}^* , the coadjoint orbits of G are described as follows:

$$\mathcal{O}_{+} := \{ l \in \mathfrak{g}^{*}; \ l(Y) > 0 \}, \qquad \mathcal{O}_{-} := \{ l \in \mathfrak{g}^{*}; \ l(Y) < 0 \},$$
 $\{ \xi X^{*} \}, \quad \xi \in \mathbb{R}.$

Let $l_{\varepsilon} := \varepsilon Y^*$ ($\varepsilon = \pm 1$) and $\mathfrak{h} := \mathbb{R}Y$, $H := \exp \mathfrak{h}$. Then \mathfrak{h} is a polarization at l_{ε} and $\pi_{\varepsilon} := \operatorname{ind}_{H}^{G} \chi_{l_{\varepsilon}}$ is an irreducible representation of G. We realize π_{ε} on $L^{2}(\mathbb{R})$ identifying \mathbb{R} with G/H by $\mathbb{R} \ni x \mapsto \exp(xX)H$, as follows:

$$\pi(\exp aX)\phi(x) = \phi(x-a)$$

$$\pi(\exp bY)\phi(x) = e^{i\epsilon be^{-x}}\phi(x), \quad \phi \in L^2(\mathbb{R}), \quad a, b \in \mathbb{R}.$$

Then the actions of g are described by

$$d\pi(X)\phi(x) = -\frac{d\phi}{dx}$$

$$d\pi(Y)\phi(x) = i\varepsilon e^{-x}\phi(x).$$

It shows that if ϕ is a C^{∞} vector, then ϕ decreases rapidly at $x \to -\infty$, but it does not necessarily decrease so rapidly at $x \to +\infty$ as at $x \to -\infty$.

Here we shall announce some results in [5], giving brief discussions on fundamental examples. For an exponential solvable group G and an irreducible unitary representation π of G, we construct π in $L^2(G/H,\chi_l)$ by taking $l \in \mathfrak{g}^*$ and a suitable polarization \mathfrak{h} . Then we shall define a subspace $\mathcal{SE}(G,\mathfrak{n},l,\mathfrak{h})$ of vectors with some property of rapidly decreasing at infinity and show that it can be identified with the space of C^{∞} vectors of an irreducible representation of an exponential solvable group F containing G. Next, using our \mathcal{SE} space, we shall describe the space \mathcal{ASE} introduced by Ludwig in [8].

2 The space $SE(G, \mathfrak{n}, l, \mathfrak{h})$

In the sequel, let G be an exponential solvable Lie group with Lie algebra \mathfrak{g} . Let \mathfrak{n} be a nilpotent ideal of \mathfrak{g} such that $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{n}$. For example, we can take the nilradical of \mathfrak{g} as \mathfrak{n} , or we can also take $\mathfrak{n} = [\mathfrak{g},\mathfrak{g}]$. Let $l \in \mathfrak{g}^*$ as above, and let

$$\mathfrak{n}^l := \{ X \in \mathfrak{g}; \ l([X, \mathfrak{n}]) = \{0\} \}.$$

Definition 2.1. (See [9].) We say that a polarization \mathfrak{h} at l is adapted to \mathfrak{n} if it satisfies (1) and (2).

- (1) The subalgebra $\mathfrak{h} \cap \mathfrak{n}$ is a polarization at $l|_{\mathfrak{n}}$ in \mathfrak{n} .
- (2) $[\mathfrak{n}^l, \mathfrak{h} \cap \mathfrak{n}] \subset \mathfrak{h} \cap \mathfrak{n}$.

Remark 2.2. (1) Suppose that a polarization \mathfrak{h} at l is adapted to \mathfrak{n} . Then there exists a polarization $\mathfrak{h}_0 \subset \mathfrak{n}^l$ at $l|_{\mathfrak{n}^l}$ such that $\mathfrak{h} = \mathfrak{h}_0 + (\mathfrak{h} \cap \mathfrak{n})$ and $\mathfrak{h}_0 = \mathfrak{h} \cap \mathfrak{n}^l$.

Furthermore, it satisfies the Pukanszky condition

$$Ad^*(H)l = \mathfrak{h}^{\perp} + l,$$

where $\mathfrak{h}^{\perp} := \{ f \in \mathfrak{g}^*; \ f(\mathfrak{h}) = \{0\} \}$, and thus we obtain a realization of the irreducible representation corresponding to the orbit $\mathrm{Ad}^*(G)l$ by $\mathrm{ind}_{H}^{G}\chi_{l}$.

(2) For any l and n, there exists a polarization \mathfrak{h} at l adapted to n. For example, a Vergne polarization associated with a refinement of the sequence of ideals $\{0\} \subset n \subset \mathfrak{g}$ satisfies the condition (1) and (2) of Definition 2.1 above.

Starting from \mathfrak{n} , l and a polarization \mathfrak{h} at l adapted to \mathfrak{n} , we realize the irreducible representation $\pi = \pi_{l,H} = \operatorname{ind}_{H}^{G} \chi_{l}$ in $L^{2}(\mathbb{R}^{n})$ $(n = \dim(G/H))$ as follows.

Let $\{T_1, \dots, T_m, R_1, \dots, R_v\}$ be a coexponential basis for $\mathfrak h$ in $\mathfrak g$ such that

$$G = \exp \mathbb{R}T_1 \cdots \exp \mathbb{R}T_m \cdot NH,$$

$$NH = \exp \mathbb{R}R_1 \cdots \exp \mathbb{R}R_n \cdot H,$$

and identify

$$\mathbb{R}^m \times \mathbb{R}^v \simeq (G/NH) \times (NH/H) \simeq G/H$$

by

$$\mathbb{R}^m \times \mathbb{R}^v \ni (t,r) = (t_1, \cdots, t_m, r_1, \cdots, r_v)$$

$$\mapsto E(t,r) := \exp t_1 T_1 \cdots \exp t_m T_m \exp r_1 R_1 \cdots \exp r_v R_v \text{ (modulo } H\text{)}.$$

Then the left invariant functional (1.1) is described by

$$\mu(f) = \int_{\mathbb{R}^{m+v}} f(E(t,r))dtdr, \quad f \in \mathcal{K}(G/H)$$

(see [7]), and we have $L^2(G/H,\chi_l) \simeq L^2(\mathbb{R}^{m+v})$.

Denoting by $\mathfrak{D}_{t,r}$ the algebra of differential operators on $\mathbb{R}^{m+\nu}$ with polynomial coefficients, we define the space $\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h})$ as follows:

Definition 2.3. Let $\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h})$ be the space of vectors $\phi \in \mathcal{H}_{\pi_{l,H}} = L^2(G/H, \chi_l)$ such that

(1) ϕ is a C^{∞} function.

(2)
$$\|\phi\|_{a,D}^2 := \int_{\mathbb{R}^{m+v}} e^{a||t||} |D(\phi \circ E)(t,r)|^2 dt dr < \infty, \quad \forall a \in \mathbb{R}_+, \forall D \in \mathfrak{D}_{t,r},$$

where ||t|| denotes a norm on \mathbb{R}^m .

Let us remark that the space $\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h})$ is independent of the choice of coexponential basis.

In [5], we obtained the following result. There exists an exponential solvable Lie group F containing G, and an irreducible representation π_0 of F such that $\pi_0|_G \simeq \pi$ and the space $\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h})$ is naturally identified with the space of C^{∞} vectors of π_0 . More specifically, we can construct an exponential solvable Lie algebra \mathfrak{f} which has the properties (i), (ii) and (iii):

(i) f is described as $f = g \ltimes a$, where a is an abelian ideal of f satisfying

$$[\mathfrak{a},\mathfrak{n}+\mathfrak{h}]=\{0\}.$$

(ii) dim $\mathfrak{a}=2$ dim($\mathfrak{g}/(\mathfrak{n}+\mathfrak{h})$) = 2m, and there exist a coexponential basis $\{X_1,\cdots,X_m\}$ for $\mathfrak{n}+\mathfrak{h}$ in \mathfrak{g} and a basis $\{A_1,\cdots,A_m,B_1,\cdots,B_m\}$ of \mathfrak{a} such that

$$[X_j, A_k] = \delta_{jk}A_k, \quad [X_j, B_k] = -\delta_{jk}B_k, \quad 1 \leq j, k \leq m.$$

(iii) For all extension $l_1 \in \mathfrak{f}^*$ of $l \in \mathfrak{g}^*$, we have that

$$\dim(\mathfrak{f}(l_1)) = \dim(\mathfrak{g}(l)) + \dim(\mathfrak{a}),$$

where $\mathfrak{f}(l_1) := \{X \in \mathfrak{f}; \ l_1([X,\mathfrak{f}]) = \{0\}\}, \ \mathfrak{g}(l) := \{X \in \mathfrak{g}; \ l([X,\mathfrak{g}]) = \{0\}\}.$ Thus the subalgebra $\mathfrak{p} := \mathfrak{h} + \mathfrak{a}$ is a polarization at l_1 adapted to the nilpotent ideal $\mathfrak{n} + \mathfrak{a}$ of \mathfrak{f} .

Let $F = \exp \mathfrak{f}$, $P = \exp \mathfrak{p}$, and χ_{l_1} be the unitary character of F defined by $\chi_{l_1}(\exp X) = e^{il_1(X)}$ for $X \in \mathfrak{p}$. Then by (iii) above, the induced representation $\pi_{l_1,P} := \operatorname{ind}_P^G \chi_{l_1}$ is irreducible and $\pi_{l_1,P}|_G \simeq \pi$. In fact, the intertwining operator

$$\mathcal{R}_{l_1}: \mathcal{H}_{\pi_{l_1,P}} = L^2(F/P,\chi_{l_1}) \to \mathcal{H}_{\pi_{l,H}} = L^2(G/H,\chi_l)$$

is defined by

$$\mathcal{R}_{l_1}\psi=\psi|_G, \qquad \psi\in L^2(F/P,\chi_{l_1}),$$

and the inverse $S_{l_1} := \mathcal{R}_{l_1}^{-1}$ is

$$\mathcal{S}_{l_1}\phi(g\exp Y):=e^{-il_1(Y)}\phi(g),\quad \phi\in L^2(G/H,\chi_l),\quad g\in G,\ Y\in\mathfrak{a}.$$

It can be seen easily that

$$S_{l_1}(SE(G, \mathfrak{n}, l, \mathfrak{h})) \subset \mathcal{H}^{\infty}_{\pi_{l_1, P}}.$$

Now we define another family of seminorms $\{\|\cdot\|_{l_1,U}\}$ on $\mathcal{SE}(G,\mathfrak{n},l,\mathfrak{h})$:

$$\|\phi\|_{l_1,U} := \|d\pi_{l_1,P}(U)\mathcal{S}_{l_1}\phi\|_{\pi_{l_1,P}}, \quad U \in \mathfrak{u}(\mathfrak{f}).$$

Theorem 2.4. ([5]) Let G, n, l, h be as above. Then there exists an exponential solvable Lie algebra f having the property (i), (ii), (iii) above and satisfying the following:

(iv) There exists an extension $l_0 \in \mathfrak{f}^*$ of l such that the family of seminorms $\{\|\cdot\|_{l_0,U}, U \in \mathfrak{u}(\mathfrak{f})\}$ is equivalent to the family of seminorms $\{\|\cdot\|_{a,D}, a \in \mathbb{R}_+, D \in \mathfrak{D}_{t,r}\}$; and thus we have

$$\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h}) = \mathcal{R}_{l_0}(\mathcal{H}^{\infty}_{\pi_{l_0, P}}).$$

Example 2.5. (ax + b group) Let $\mathfrak{g} = \mathbb{R}X + \mathbb{R}Y$ and $\mathfrak{h} = \mathbb{R}Y$ be as in Example 1.1, and let $l := Y^*$ and $\mathfrak{n} = \mathbb{R}Y$, which is the nilradical of \mathfrak{g} . Then the polarization \mathfrak{h} is obviously adapted to \mathfrak{n} . We construct π_l in $L^2(\mathbb{R})$ as in Example 1.1. Then a square integrable smooth function ϕ belongs to $\mathcal{SE}(G,\mathfrak{n},l,\mathfrak{h})$ if and only if

$$\int_{\mathbb{R}} e^{a|x|} |D\phi(x)|^2 dx < \infty, \quad \forall a \in \mathbb{R}_+, \quad \forall D \in \mathfrak{D}_x,$$

where \mathfrak{D}_x is the algebra of differential operators on \mathbb{R} with polynomial coefficients. Applying Theorem 2.4 above, we have

$$\mathfrak{f} = \mathfrak{g} \ltimes \mathfrak{a}, \quad \mathfrak{a} = \mathbb{R}A + \mathbb{R}B$$

$$[X, A] = A, \quad [X, B] = -B, \quad [Y, A] = [Y, B] = 0.$$

Let $l_0 \in \mathfrak{f}^*$ be an extension of l such that $l_0(B) \neq 0$. Then we have

(2.2)
$$\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h}) = \mathcal{R}_{l_0}(\mathcal{H}^{\infty}_{\pi_{l_0, P}}).$$

In fact, realizing $\pi_{l_0,P} = \operatorname{ind}_P^F \chi_{l_0}$ in $L^2(F/P,\chi_{l_0}) = \mathcal{S}_{l_0}(L^2(G/P,\chi_l)) \simeq L^2(\mathbb{R})$, we have that \mathfrak{f} acts by

(2.3)
$$d\pi_{l_0,P}(X)\phi(x) = -\frac{d\phi}{dx},$$

(2.4)
$$d\pi_{l_0,P}(Y)\phi(x) = ie^{-x}\phi(x),$$

(2.5)
$$d\pi_{l_0,P}(A)\phi(x) = il_0(A)e^{-x}\phi(x),$$

(2.6)
$$d\pi_{l_0,P}(B)\phi(x) = il_0(B)e^x\phi(x).$$

Thus we can directly verify the equality (2.2).

Remark 2.6. In Example 2.5, replacing F with a subgroup F' of F, we can also identify the space $\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h})$ with the space of C^{∞} vectors of an extension of π_l . Let $\mathfrak{a}' := \mathbb{R}B$, $\mathfrak{f}' := \mathfrak{g} \ltimes \mathfrak{a}', \mathfrak{p}' := \mathfrak{h} + \mathfrak{a}', F' := \exp \mathfrak{f}'$ and $P' := \exp \mathfrak{p}'$. Then \mathfrak{p}' is a polarization at any extension $l'_1 \in \mathfrak{f}'^*$ of l and $\pi_{l'_1,P'}|_G \simeq \pi_l$, where $\pi_{l'_1,P'} = \operatorname{ind}_{P'}^{F'}\chi_{l'_1}$. We denote the intertwining operator by $\mathcal{R}_{l'_0} : L^2(F'/P', \chi_{l'_0}) \to L^2(G/H, \chi_l)$ as above. Suppose that an extension $l'_0 \in \mathfrak{f}'^*$ of l satisfies $l'_0(B) \neq 0$. Then we also obtain that

(2.7)
$$\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h}) = \mathcal{R}_{l_0^{\prime}}(\mathcal{H}_{\pi_{l^{\prime}}, P^{\prime}}^{\infty}).$$

In fact, letting $l_0 \in \mathfrak{f}^*$ be any extension of l'_0 , we have $\pi_{l_0,P}|_{F'} \simeq \pi_{l'_0,P'}$, and using the descriptions (2.3), (2.4) and (2.6), we obtain the equality (2.7).

Example 2.7. (Heisenberg group) Taking $\mathfrak{n} = [\mathfrak{g},\mathfrak{g}]$ instead of the nilradical, we observe an example of nilpotent groups. Let $\mathfrak{g} = \mathbb{R}$ -span $\{X,Y,Z\}$ be the 3-dimensional Lie algebra whose non-trivial bracket relation is [X,Y] = Z. Let $\mathfrak{n} = [\mathfrak{g},\mathfrak{g}] = \mathbb{R}Z$, $l = Z^*$ and $\mathfrak{h} = \mathbb{R}Y + \mathbb{R}Z$. Then \mathfrak{h} is a polarization adapted to \mathfrak{n} . We realize the representation $\pi_{l,H}$ in $L^2(\mathbb{R})$ by the coexponential basis $\{X\}$ for \mathfrak{h} in \mathfrak{g} . Then we have

(2.8)
$$d\pi_{l,H}(X)\phi(x) = -\frac{d\phi}{dx}, \quad d\pi_{l,H}(Y)\phi(x) = -ix\phi(x), \quad d\pi_{l,H}(Z) = i.$$

We have that a smooth function $\phi(x) \in L^2(\mathbb{R})$ belongs to $\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h})$ if and only if

$$\int_{\mathbb{R}} e^{a|x|} |D\phi(x)|^2 dx < \infty, \quad \forall a \in \mathbb{R}_+, \quad \forall D \in \mathfrak{D}_x,$$

Applying Theorem 2.4, we have

$$\mathfrak{f}=\mathfrak{g}\ltimes\mathfrak{a},\quad \mathfrak{a}=\mathbb{R}A+\mathbb{R}B,$$

$$[X,A]=A,\quad [X,B]=-B,\quad [Y,A]=[Y,B]=[Z,A]=[Z,B]=0.$$

Let $l_0 \in \mathfrak{f}^*$ be an extension of l such that $l_0(A) \neq 0$ and $l_0(B) \neq 0$. Then we have

$$\mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h}) = \mathcal{R}_{l_0}(\mathcal{H}_{\pi_{l,P}}^{\infty}).$$

In fact, we have

(2.9)
$$d\pi_{l_0,P}(A)\phi(x) = il_0(A)e^{-x}\phi(x),$$

(2.10)
$$d\pi_{l_0,P}(B)\phi(x) = il_0(B)e^x\phi(x).$$

By the actions (2.8), (2.9) and (2.10), we can obtain the conclusion.

3 The space ASE and the space SE^{∞}

Let $G, \mathfrak{n}, l, \mathfrak{h}$ be as above. As we mentioned in Remark 2.2, we have that $\mathfrak{h} = (\mathfrak{h} \cap \mathfrak{n}^l) + (\mathfrak{h} \cap \mathfrak{n})$, so we have $\mathfrak{h} \subset \mathfrak{n} + \mathfrak{n}^l$. We choose a coexponential basis $\{T_1, \dots, T_{\nu}, S_1, \dots, S_u\}$ for $\mathfrak{h} + \mathfrak{n}$ in \mathfrak{g} along with the sequence $\mathfrak{g} \supset \mathfrak{n} + \mathfrak{n}^l \supset \mathfrak{n} + \mathfrak{h}$, where $\nu + u = m$, so that

$$G = \exp \mathbb{R}T_1 \cdots \exp \mathbb{R}T_{\nu} \cdot N^l N$$
$$N^l N = \exp \mathbb{R}S_1 \cdots \exp \mathbb{R}S_u \cdot N H.$$

(Here we write $N^l := \exp n^l$.) In the sequel, we identify

$$\mathbb{R}^{\nu} \times \mathbb{R}^{u} \times \mathbb{R}^{v} \simeq (G/N^{l}N) \times (N^{l}N/NH) \times (NH/H) \simeq G/H$$

by

$$\mathbb{R}^{\nu} \times \mathbb{R}^{u} \times \mathbb{R}^{v} \ni (t, s, r) = (t_{1}, \dots, t_{\nu}, s_{1}, \dots, s_{u}, r_{1}, \dots, r_{v})$$
$$\mapsto E(t, s, r) = E(t)E(s)E(r) \text{ (modulo } H),$$

where

$$E(t) = \exp t_1 T_1 \cdots \exp t_{\nu} T_{\nu}, \quad E(s) = \exp s_1 S_1 \cdots \exp s_u S_u,$$

$$E(r) = \exp r_1 R_1 \cdots \exp r_v R_v, \quad (t, s, r) \in \mathbb{R}^{\nu} \times \mathbb{R}^{u} \times \mathbb{R}^{v}.$$

For $\phi \in \mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h})$, let $\hat{\phi}_s(t, s, r)$ be the partial Fourier transform of ϕ in s:

$$\hat{\phi}_s(t,s,r) := \int_{\mathbb{R}^u} \phi(E(t,x,r)) e^{i\langle x,s \rangle} dx,$$

where $\langle x, s \rangle$ is the standard inner product of \mathbb{R}^u . Denoting by $\mathfrak{D}_{t,s,r}$ the algebra of differential operators on $\mathbb{R}^{\nu} \times \mathbb{R}^u \times \mathbb{R}^v$ with polynomial coefficients, we define the space $\mathcal{ASE}(G, \mathfrak{n}, l, \mathfrak{h})$ introduced in [8], where this space has been denoted by \mathcal{ES} .

Definition 3.1. (See [8].) Let $\mathcal{ASE}(G, \mathfrak{n}, l, \mathfrak{h})$ be the space of functions $\phi \in L^2(G/H, \chi_l)$ such that

(1)
$$\phi \in \mathcal{SE}(G, \mathfrak{n}, l, \mathfrak{h}),$$

(2)

$$\begin{split} \|\hat{\phi}_s(t,s,r)\|_{a,b,D}^2 := \int_{\mathbb{R}^{\nu+u+v}} e^{a||t||} e^{b||s||} |D\hat{\phi}_s(t,s,r)|^2 dt ds dr < \infty, \\ \forall (a,b) \in \mathbb{R}_+^2, \quad \forall D \in \mathfrak{D}_{t,s,r}. \end{split}$$

Remark 3.2. The space ASE is independent of the choice of coexponential bases. We write the letter \mathcal{A} in front to indicate that the functions $\phi \in \mathcal{ASE}(G, \mathfrak{n}, l, \mathfrak{h})$ are analytic in the direction s. It has been shown in [8] and [1] that for ϕ and ψ in $\mathcal{ASE}(G, \mathfrak{n}, l, \mathfrak{h})$ there exists a function $f \in L^1(G)$, more precisely in the subalgebra $\mathcal{ES}(G)$ (see [8]) such that

$$\pi_{l,H}f(\xi) = \langle \xi, \psi \rangle \phi, \quad \xi \in \mathcal{H}_{\pi_{l,H}}.$$

Let $\mathcal{P}(\mathfrak{h})$ be the set of polarizations $\tilde{\mathfrak{h}}$ at l adapted to \mathfrak{n} and satisfying $\tilde{\mathfrak{h}} \cap \mathfrak{n} = \mathfrak{h} \cap \mathfrak{n}$. For $\tilde{\mathfrak{h}} \in \mathcal{P}(\mathfrak{h})$, we have $\operatorname{ind}_{\tilde{H}}^{G}\chi_{l} \simeq \operatorname{ind}_{H}^{G}\chi_{l}$, where $\tilde{H} = \exp \tilde{\mathfrak{h}}$. We denote the intertwining operator by $I_{\mathfrak{h},\tilde{\mathfrak{h}}}:L^2(G/\tilde{H},\chi_l)\to L^2(G/H,\chi_l)$ (see [2].)

Definition 3.3. We define

$$\mathcal{SE}^{\infty}(G, \mathfrak{n}, l, \mathfrak{h}) := \cap_{\tilde{\mathfrak{h}} \in \mathcal{P}(\mathfrak{h})} I_{\mathfrak{h}, \tilde{\mathfrak{h}}}(\mathcal{SE}(G, \mathfrak{n}, l, \tilde{\mathfrak{h}})).$$

Then we have the following result:

Theorem 3.4. ([5])

$$\mathcal{SE}^{\infty}(G, \mathfrak{n}, l, \mathfrak{h}) = \mathcal{ASE}(G, \mathfrak{n}, l, \mathfrak{h}).$$

Example 3.5. Let $\mathfrak{g} = \mathbb{R}$ -span $\{X, Y, Z\}$, \mathfrak{n} , \mathfrak{l} , \mathfrak{h} be as in Example 2.7. Concerning Theorem 3.4, we have $\mathfrak{n}^l = \mathfrak{g}$ and a smooth function $\phi \in L^2(\mathbb{R})$ belongs to $\mathcal{ASE}(G, \mathfrak{n}, l, \mathfrak{h})$ if and only if

$$(3.11) \qquad \int_{\mathbb{R}} e^{a|x|} |D\phi(x)|^2 dx < \infty, \quad \forall a \in \mathbb{R}_+, \quad D \in \mathfrak{D}_x,$$

$$(3.12) \qquad \int_{\mathbb{R}} e^{a|x|} |D\hat{\phi}(x)|^2 dx < \infty, \quad \forall a \in \mathbb{R}_+, \quad D \in \mathfrak{D}_x,$$

(3.12)
$$\int_{\mathbb{R}} e^{a|x|} |D\hat{\phi}(x)|^2 dx < \infty, \quad \forall a \in \mathbb{R}_+, \quad D \in \mathfrak{D}_x.$$

where

$$\hat{\phi}(x) = \int_{\mathbb{R}} e^{ixs} \phi(s) ds.$$

Since $\mathfrak{n} = \mathbb{R}Z$ is the center of \mathfrak{g} , any polarization $\tilde{\mathfrak{h}}$ at l belongs to $\mathcal{P}(\mathfrak{h})$. Thus by Theorem 3.4, we have that the intersection of $I_{\mathfrak{h},\tilde{\mathfrak{h}}}(\mathcal{SE}(G,\mathfrak{n},l,\tilde{\mathfrak{h}}))$ for all polarizations $\tilde{\mathfrak{h}}$ at l consists of analytic functions ϕ satisfying (3.11) and (3.12).

References

- [1] J. Andele, Noyaux d'opérateurs sur les groupes de Lie exponentiels, Thèse, Université de Metz, 1997.
- [2] D. Arnal, H. Fujiwara and J. Ludwig, Opérateurs d'entrelacement pour les groupes de Lie exponentiels, Amer. J. Math. 118 (1996), no. 4, 839-878.
- [3] P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Rais, P. Renouard and M. Vergne, Représentations des groupes de Lie résolubles, Monographies de la Société Mathématique de France, No. 4. Dunod, Paris, 1972.
- [4] L. Corwin, F. P. Greenleaf and R. Penney, A general character formula for irreducible projections on L^2 of a nilmanifold, Math. Ann. **225** (1977), no. 1, 21-32.
- [5] J. Inoue and J. Ludwig, C^{∞} -vectors of irreducible representations of exponential solvable Lie groups, preprint (2006).
- [6] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russ. Math. Surv. 17 (1962), no.4, 53-104; Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57-110.
- [7] H. Leptin and J. Ludwig, Unitary representation theory of exponential Lie groups, de Gruyter, Berlin, 1994.
- [8] J. Ludwig, Irreducible representations of exponential solvable Lie groups and operators with smooth kernels, J. Reine Angew. Math. 339 (1983), 1-26.
- [9] L. Pukanszky, On a property of the quantization map for the coadjoint orbits of connected Lie groups, The orbit method in representation theory (Copenhagen, 1988), 187-211, Progr. Math., 82, Birkhäuser Boston, Boston, MA, 1990.