RIMS Kékytiroku Bess_atsu
B8 (2008), 55-62

A HOOK FORMULA FOR THE STANDARD TABLEAUX OF A
GENERALIZED SHAPE

KENTO NAKADA
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY,
OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN.

1. INTRODUCTION

Let A be a partition of d, ¥, the Young (or Ferrers) diagram of shape A, and h, the
hooklength at a cell v of Y. Then the number #STab(Y,) of standard tableaux of shape 14
is given by the hook formula:

d!
veyY, hv

due to J. S. Frame, G. de B. Robinson, and R. M. Thrall [2]. The purpose of this paper is
to prove a hook formula: '

(1.1) #8Tab(Y,) =

b

| d!
Igenn ht(8) °
for a generalized shape D(1)Y in the sense of D. Peterson [1] and R. Proctor [9]. See
Section 3 and 4 for unexplained notion and furthur details. In fact, the formula (1.2) is
equivalent to a corollary to the main result in [6]. So, the main task of the present paper is
to define the notion of standard tableaux of a generalized shape and to show the equivalence
of the formula (1.2) with the one given in [6].

(1.2) : #STab(D(D)") =

2. PRELIMINARIES

Let A = (a;)ijes be a (not necessarily symmetrizable) Cartan matrix of a Kac-Moody
Lie algebra [3][5]. We denote the set of real numbers by R. Let § be an R -vector space and
b* the dual space of h and (,) : b* x h — R the cannonical bilinear form, We suppose the
existence of linearly independent subsets IT := {afi | iel } ch*andITY := {cz," | iel } ch
such that {@;, @)) = 4; ;. An element A € §* is said to be an integral weight if

' AayeZ, iel
For each i € I, we define the simple reflection s; € GL(h*) by:
sii A A—(4, ada;, A€l
The group W generated by { S | iel } is called the Weyl group, which acts on § by:
W), w(h)) ={A,h), weW,Aeb* , heh.

We define the root system (tesp. coroot system) by ® := WII (resp. @V := WIIY). We
denote by @, and @.. the sets of positive and negative roots of ®, respecively.
The dual B¥ € ®' of aroot S € @ is defined so that

w(B) =w@), weW.
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Similarly, the dual h" € ® of a coroot / € ® is defined so that
_ w(h)=wh)’, weW.
We note that (8¥)¥ =g forB € ®.
For each B € @, we define sz € W by:
55(A) = A =44, B8, Aeb,
or, equivalently, by
Sﬁ(h) =h- <ﬂ’ h)ﬂV9 he I)~

We note that s, = 5_¢, = 5.
For each w € W, we define a set @ (w) by:

o(w) =B e, |wi(®<0}.
For B,y € @, we have:
BrYr=0e(,p")=0,
and
B 7r)>0e(y,f)>0.

3. Cororep Hook FormuLa For Path(1)
In this section, we review main results of [6].
Definition 1. An integral weight A is pre-dominant if
(LB8)yz2-1, Bed..
The set of pre-dominant integral weights is denoted by P-_;.
Definition 2. For A € P5_,, the set D(1) defined by
D() = {Be @, (18" = -1}

is called the diagram of A. An element of D(J) is called a A-move. An element of D(2) NTT
is called a simple A-move. A pre-dominant integral weight A is said to be finite if D(1) is
finite.

We note that D(1) = @ if and only if D(4) N T = @. The terminology “move” is
suggested by the game theoretic study of Kawanaka [4].
Lemma 3.1. Let A € Ps.; and 8 € D(A). Then we have:
(1) 55() € Pooy.
(2) D(s5() = s5(D(A) \ B(sp))-

Definition 3. Let A € P,_;. Let I be a nonnegative integer. A sequence of positive roots
B = (B1,B2, - ,By) is said to be a A-path if ’

By € D(sp,., - 55(), p=1,---,1L
We call / the length of the A-path B and denote it by £(B). Note that £(8) may be 0. The
set of 2-paths is denoted by Path(2).
Lemma 3.2. Let A € P»_; and B,y € D(A). Then we have:

M) IfB,y') =2, then{y, "y =1 or 2
() If Ais finite and (B, v*) =y, B¥) =2, thenp =y



A HOOK FORMULA FOR THE STANDARD TABLEAUX OF A GENERALIZED SHAPE

Theorem 3.3 (Colored Hook Formula). Let A € Ps.; be finite. Then we have:

1 1 1 1
G.1) 1 = (1 + —) .
w,,...%pmw BiBi+p P+t f ﬁel;(L) B

where both hand sides ave considered as rational functions in ( ; | iel } ch.

We call a; (i € I) color variables, when, as in Theorem 3.3, we consider them as inde-
pendent variables. We note that the Weyl group W naturally acts on the rational function
field Q(a;| i € I) in color variables.

Let A € P,_; be finite. We denote the set of A-paths of maximal length by MPath(4).
By Lemma 3.1, a A-path B in MPath(2) is a sequence of simple roots of length #D(1).
Coroliary 3.4. Let A € Ps_| be finite. Put d := #D(Q). Then we have:

1 1 1 1
(3‘2) Z P + a; o P R N T} = ry
(@ @ eMpa(y T T P i % pepiy P
Corollary 3.5. Let A € P»_, be finite. Put d := #D(Q). Then we have:
d!
[gepy 1t (B

4. MaiN THEOREM AND REMARKS

(3.3) #MPath(2) =

Let d be a non-negative integer. We denote the totally oredered set{ 1,2,--- ,d} by [d].

Definition 4. Let P = (P;<) be a finite partially ordered set. Put d := #P. A bijection
T : [d] — P is said to be a standard tableau of shape P if the following condition holds:
(STab) If T(j) < T'(k), then we have j > k.

The set of standard tableaux of shape P is denoted by STab(P).

Definition 5. Let A € P>_;. We define a set D(1)" by:
D(1)" = {8 |BeDW} = (8" € ©Y |4 p*) = ~1}.
We call D(1)Y a shape of 1. We note that D(2) is a (possibly infinite) partially ordered set
with the order < over @Y.
We now state the main result of this paper.

Theorem 4.1. Let A € P_; be finite. Put d := #D(1)".
d

#STab(D(/l)V) = m .

Through Section 5 and 6, we give a proof of Theorem 4.1. Theorem 4.1 is proved as

Theorem 6.5 (2).

Remark 1. Let 1= (1; = --- 2 4, > 0) be a partition of d, and
n:{(i,,‘)lls:'sn,l sjs/i;}

be the corresponding Young diagram; we consider ¥, as a partially ordered set by:
GH<E,)eizi and j2 J.

Then, for a sufficiently large r, there exists some A, € P of a Lie algebra of type 4, such
that Y, is order-isomorphic to D(1,)". An explicit description is as follows:
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Let A =(A; > -+ = A, > 0) be a partition of d. Putr, :=n+ A; — 1.
Fork=1,.--,n,putfy := sk +k— 1. Fori=1,--- ,r,, define b; as:

poo =1 A€ B

- 0 otherwise

Fork=1,---,n~1,puty; = Agsi-k + k. Fori=1,--- ,r,, define ¢; as:

Ci = 1 ifie{‘}'l,"',%z—l}

e 0  otherwise

Let 4 = (a; ,j){"j:l be a Cartan matrix of type 4,,, and w; be the i-th fundamental weight.
Then, an integral weight defined by:

To
Ao = Z(b; + ¢)w;
i=1
is a finite pre-dominant integral weight. And, the shape D(1,)" is order-isomorphic to the
Young diagram Y. We note that the integer 7, defined above is the minimum value of ’s
such that the given Young diagram Y is realizable in the coroot system of type 4,.

Remark 2. If a Cartan matrix 4 is simply-laced, then the partially ordered set (D(4); <) is
order-isomorphic to (D(1)"; <). In particular, we have:

#STab(D()) = ﬁ;ﬁ?@ )

Remark 3. Let A € Ps-y. Let B € D(2). Put H, (8) := D(2) N ® (s5) (See [6]). We call the
set H, (B) the hook at B, and the integer #H, (B) the hooklength at 5. Then we have:

ht(B) =#H,(B).
Hence, we get: "
#STab(D(D)Y) = =————— .
OO = My L B

5. Proor oF THEOREM 4.1 (FIRST PART)

Proposition 5.1. Let 1 € P,_;, B € D(A), andy e D(A) N @ (Sﬂ). Then we have (B, y¥) =
1, or 2. . ,
Proof We have sg(y¥) = y¥ ~ (B, ¥")BY < y' =B’ < 0. Since 1 € P,_j, we have
—1 < (4 ~sp(r")) = (4 =y’ + By BY) = (L Y + B YV HABYY = 1= (B, 7).
Hence, we have: .
(5.1) B2
If (8, 7¥) < 0, then we have sp(y") = ¥V — (B, ¥)B” 2 v¥ > 0. This contradicts our
assumption. Hence, we have:
(5.2) @,y 1L
By (5.1) and (5.2), we have:

B, yHr=1, or 2.

Proposition 5.2. Let A € P»_, befinite. Let B, y € D(A). Then we have:

1) @B,y =20.
() ifB, Yy 2 1andp’ # 7", then (B, y') =1, 0r{y, ") = L
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Proof. (1) Since sg(1) € P».1, we have —1 < (sg(41), ") = -1 + (8, ¥¥). Hence, we
have (3, y') = 0.

(2) If{B, ¥") = 1, then there is nothing to prove.

If (8, ¥¥) = 2, then, by Lemma 3.2 (1) and (2), we have {y, g) = 1.

Suppose (B, ¥") 2 3. If 5,(8") > 0, then, since (s,(d), 5,(8")) = (1, ') = ~1, we have
(7, sy(B)) € Path(4). Hence sg,5)5/(2) € P»_;. Since .

-1< (Ss,(ﬁ)sy(/l)’ ﬁv> =(A+7+ 548, :Bv)
=A+p+1-B v M. BY)
=1+ (1 - (31 yv))<70 ﬁv)’
we have:
«ﬂv ')'V> - 1)(7: ﬂv> <2
Hence, we have (8, ¥') = 3 and (y, 8Y) = 1. If, on the other hand, 5,(8) < 0, then
B € H,(y). By Proposition 5.1, we have (y, 8¥) = 1, or 2. If {y, BY) = 2, then, by
Lemma 3.2 (1) and (2), we have (8, v") = 1. '
Thus, we always have (8, y¥) = 1, or (3, 8} = 1. u|
Proposition 5.3, Let 8, ¥ € ®. Suppose (y, 8¥) =1, or (B, v") = 1. Then:
(1) g -y' e
(2) We have either B¥ <", or ¥ > 9.
Proof. (1) If(y,B")=1,thenp’ —y" =p" ~(y, B")y" = 5,(8") € ®". If, on the other

hand, <ﬂ’ ,yV> = 1, then Bv - ‘}’v = _,yV - <ﬂ, (_Y)V)ﬁv = Sﬂ(-"yv) € q)v.
(2) SinceB'—y" € @Y, we have either 8¥—y¥ > 0, or 8¥~y¥ < 0. Hence, we have either

BY >y, 0r8Y <9y, o
LetgY, y¥ € ®V. We denote ¥ <y if
rBY21,
and
B <y,

Lemma 5.4. Let A € P, be finite. Let ; € D(A) NTL Let B,y € D) \ {au}. Ify¥ < pY,
then we have si(y"), s{(8") € D(se,(1))", and si(y") < 5:(8").

Proof. By Lemma 3.1(2), we have si(y"), 5:(8") € D(s54,(4))".

Since y¥ <« BY, we have (8, ') = 1. By Proposition 5.2(2), we have {y, ') = 1, or
B,7") = 1. By Proposition 5.3(1), we have g’ — y¥ € ®Y. Hence, we have either
5i(8" —vY) < 0, 0r 5;(8" — ") > 0. Suppose s;(8" — ") < 0. Then we have 8" —y" = a.
Hence, we have ¥ = y¥ + . Since (1, 8¥) = (4, ¥¥ + &) = (1) + (1) = =2, this
contradicts A € P»_;. Hence, we have s5;(8Y—v") > 0. Since (s(y), s:(8")) = (v, BY) = 1,
we have s;(v¥) < s:(8Y). o

Lemma 5.5. Let 2 € P, befinite. Let 8 € D(Q). If B is not a simple root, then there exists
¥ € D(A) N ® (s) such that y* < p".

Proof. Leta; € ® (s,;) NIIL. Since 0 > sg(a@;) = a; — (ai, BY)B, we have (a;, B¥) > 1. Since
5:(8Y) = BY ~ (@i, B')a} , we have:

ﬂv = si(ﬁv) + (aiy ﬁv>a;/’
- 0<5(8Y)<pY, and 0 < <B.
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Since A € Ps_; and —1 = (4, B) = (4, s{(B))+{@i, B XA, ), we have either (4, o))y = -1,
or {4, si{(8")) = -1.
If {4, o)) = -1, then ; € D(A). Hence we get:

@ €D() N ®(s5), and o} <p".

If (A, 5{(8")) = ~1, then (4, a}) = 0. We have (8, si(8")) = 2 - (B, @) Xai, B¥). Since
B, si(B) € D(A), by Proposition 5.2 (1), we have (8, &} Xa;, ) < 2. Since (3, aly 21
and {(a;, B¥) 2 1, we have either:
B, a)/)=2 and {a;, gYy=1,
B, a/)=1 and (a; By =2,
or
. B, a)y=1 and {a@;, B¥) = L.
If B, @) = 2 and (a;, ') = 1, then we have 0 < 28¥ - @} = syp(e)) € @Y. Since
(4, sug@))) = 24, BYY - (A, ') = -2, This contradicts that 1 € Po-. ,
If 3, @) = 1 and {a;, B') = 2, then we have 0 < B -a] = syp(e)) € ®V. Since
558" ~a)) = —p¥ — (@) —-B") = —a; < 0and (4, ¥ —a}) = ~1 -0 = -1, we get:
B’ -ef)Y eDW)N®(sg), and B’ —af <p.
If 8, ) = 1 and {a;, ') = 1, then we have 0 < B’ -a) = si(B') € ®". Since
sg(BY —a)) =" —(af —B") = —a; < 0and (4, B -a))=~1-0=-1,weget:
(B’ - )Y e DN ®(sp), and " ~a) <B".
Thus, there always exists y € D() N ® (s,g) such that y¥ < 8. o

Definition 6. Let A € P»_; be finite. Put d := #D(1)". A sequence L = (y{,"*" ,vy) of
elements of D(1)" of length d is said to be a standard labelling of shape A if the following
condition holds:

(SLab) If ’y}’ <y, then we have j < k.
The set of standard labellings of shape A is denoted by SLab(1).

Theorem 5.6. Let A € Ps_,be finite. Put d := #D(2)".
(1) For a maximal A-path B = (a;,,- - , @;,), we put
LB = (‘y\l/s M) ')'Z),
wherey) = si, -+ Si, (@), 1sk<d. Then, Lg is a standard labelling of shape A.
(2) For a standard labelling L = (yY,-+- ,v;) of shape A, we put
BL = (ﬁl’ tte 5ﬁd)’

where B = sy, ++* Sy, (yi), 1 Sk < d. Then, B is a maximal A-path.
(3) The correspondence B — Lg from MPath(d) fo SLab(d) is the inverse of the
correspondence L + By, from SLab(A) to MPath(2)

Proof. (1) Let8 = (e, - ,a;,) € MPath(2). Puty} := s;, +-83,(ay), foreach 1 <
k<d Letl<k<d ByLemma 3.1 (2), we have D(s;,_, -+ 5,(2) C 84, - Siy (D).
Since @), € D(si,., *** S, (1)), we have y} = sj, -+ 5, (@;)" € D(A)'. Hence, Lg is a
sequence of elements of D(1)" of length d.

Let 1 < j, k < d. Suppose ¥} <. Suppose j > k. We have:

(53) sy S (a'};), siy -+ Siq (@) € D(A), and sy, ---s,j_!(a}j_) asy Sy ()
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Applying Lemma 5.4 to (5.3) repeatedly, we get:
G4 sioosi(a) sy sic (@) € Disi, oo 54,(2), and sy -y, (0f) < @y

This contradicts that-e; is a simple coroot. Hence, we have k < j. Since it is trivial that
k # j, we have k < j. Hence, we have Lg € SLab(1).

(2) LetL=(y,-,vy) € SLab(2). Put By := s, -5, (%), foreach | <k <d. Let
1 <k <d. Since

5+ St (B) = Wi,

we have (sg,_, -+~ $,(), BY) = {4, 5, - S5, (BN = (4, ¥{) =~1.
Since sy, « -+ 8y, = 8g,_, * * - Sg,, we have:

ﬂ;c, =Sy s}'k—l('}';c/) =SBy sﬂl(‘YI\c/)'
Let1 < p <k~ 1. Suppose
SBp-1 * " Sy ('}'Z) € D(Sﬂp-l Y (’l))v
and
By € D(sp,., -+ 55, (D))" NTI",
Then, by Lemma 3.1, we have:
58,(58,1 55,7} )) € D(sg,(55,., -+ 55, (D))"

By Lemma 5.5, we have sg,(sg,, - - 55,(¥{)) € D(sp,(s3,., * - - 55, (1)))" N1V, By induction
on p, we have 8 € D(sg,, - - - 55,(1))Y N I1". Hence, we get (81, - - - , B7) € MPath(4).
(3) This follows from the definitions of B + Lg and L — B;. u]

By Corollary 3.5 and Theorem 5.6, we get:

|
(5.5) #SLab(d) = mﬁm,

where ht (B) is the height of 8.

6. PRrOOF OF THEOREM 4.1 (SECOND PART)
Let P = (P; <) be a (possibly infinite) partially ordered set. We define a set min(P) by:
min(P) := { x € P| x is a minimal element of P}.
Corollary 6.1. Let A € P>_;. Then we have:
min(D(2)") = D(A)" nTT".

Proof. 1t is trivial that min(D(1)¥) 2 D(1)¥ N TIV. Now, we prove the converse. Let
BY € min(D(1)"). Suppose ¥ ¢ D(A)V NTIV. Then, by Lemma 5.5, there exists y¥ €
DAY N d)(s;;)v C D(A)Y such thaty¥ < BY. This contradicts that ¥ € min(D(2)").
Hence, we have 8¥ € D(1)” NTI". This proves the statement. |
Lemma 6.2. Let P = (P; <) be a finite partially ordered set. Put d := #P. Let x € min(P).
Put§ = {T € STab(P) i Td) = x}‘ We define a map ¢ . STab(P\ (x}) — S by:
' @T)k)=T(k), fork=1,---,d-1,

Then the map ¢ is a bijection from STab(P\ {x})t0 S.

Proof. This is straightforward to see. a
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Corollary 6.3. Let P = (P; <) be a finite partially ordered set. Then we have:

#STab(P) = Z #STab(P \ {x})).
xemin(P)
Proof. This follows from Lemma 6.2. o

Lemma 6.4. Let A € P>, be finite. Then we have:

#MPath() = ). #MPath(se,(1).
nqu(/l)nl'l

Proof. This follows from the definition of A-paths. u]

Theorem 6.5. Let A € P»_,be finite. Put d = #D(2)".
(1) For a standard tableau T of shape D(2)", we put

Ly :=(T(d), -+, T(1)).
Then, Lt is a standard labelling of shape A.
(2) We have:

dl

#STab(D(W)") = ——.

O’ T genia 1t(B)

(3) The correspondence T +— Lr from STab(D(A)Y) to SLab(A) is a bijection.

Proof. (1) Since whenever 8 <y we have 8¥ < y", it is obvious that Ly € SLab(1).
(2) By Corollary 6.3 and Lemma 6.4, #STab(+) and #MPath(+) satisfy the same recursive
relation. Hence, by induction on #D(2), we have #STab(D(2)") = #MPath(2).

(3) Since the injectivity of the correspondence T+ Lr is trivial, this follows from part
(1), part (2), and (5.5). u]
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