A HOOK FORMULA FOR THE STANDARD TABLEAUX OF A GENERALIZED SHAPE

KENTO NAKADA GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN.

1. Introduction

Let λ be a partition of d, Y_{λ} the Young (or Ferrers) diagram of shape λ , and h_{ν} the hooklength at a cell ν of Y_{λ} . Then the number $\#STab(Y_{\lambda})$ of standard tableaux of shape λ is given by the hook formula:

(1.1)
$$\#STab(Y_{\lambda}) = \frac{d!}{\prod_{v \in Y_{\lambda}} h_{v}},$$

due to J. S. Frame, G. de B. Robinson, and R. M. Thrall [2]. The purpose of this paper is to prove a hook formula:

(1.2)
$$\#STab(D(\lambda)^{\vee}) = \frac{d!}{\prod_{\beta \in D(\lambda)} ht(\beta)},$$

for a generalized shape $D(\lambda)^{\vee}$ in the sense of D. Peterson [1] and R. Proctor [9]. See Section 3 and 4 for unexplained notion and furthur details. In fact, the formula (1.2) is equivalent to a corollary to the main result in [6]. So, the main task of the present paper is to define the notion of standard tableaux of a generalized shape and to show the equivalence of the formula (1.2) with the one given in [6].

2. Preliminaries

Let $A=(a_{i,j})_{i,j\in I}$ be a (not necessarily symmetrizable) Cartan matrix of a Kac-Moody Lie algebra [3][5]. We denote the set of real numbers by \mathbb{R} . Let \mathfrak{h} be an \mathbb{R} -vector space and \mathfrak{h}^* the dual space of \mathfrak{h} and $\langle,\rangle:\mathfrak{h}^*\times\mathfrak{h}\to\mathbb{R}$ the cannonical bilinear form. We suppose the existence of linearly independent subsets $\Pi:=\left\{\alpha_i\ \middle|\ i\in I\right\}\subset\mathfrak{h}^*$ and $\Pi^\vee:=\left\{\alpha_i^\vee\ \middle|\ i\in I\right\}\subset\mathfrak{h}$ such that $\langle\alpha_j,\alpha_i^\vee\rangle=a_{i,j}$. An element $\lambda\in\mathfrak{h}^*$ is said to be an *integral weight* if

$$\langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}, \quad i \in I.$$

For each $i \in I$, we define the simple reflection $s_i \in GL(\mathfrak{h}^*)$ by:

$$s_i: \lambda \mapsto \lambda - \langle \lambda, \alpha_i^{\vee} \rangle \alpha_i, \quad \lambda \in \mathfrak{h}^*.$$

The group W generated by $\{s_i \mid i \in I\}$ is called the Weyl group, which acts on \mathfrak{h} by:

$$\langle w(\lambda), w(h) \rangle = \langle \lambda, h \rangle, \quad w \in W, \lambda \in \mathfrak{h}^*, h \in \mathfrak{h}.$$

We define the root system (resp. coroot system) by $\Phi := W\Pi$ (resp. $\Phi^{\vee} := W\Pi^{\vee}$). We denote by Φ_+ and Φ_- the sets of positive and negative roots of Φ , respectively. The dual $\beta^{\vee} \in \Phi^{\vee}$ of a root $\beta \in \Phi$ is defined so that

$$w(\beta^{\vee}) = w(\beta)^{\vee}, \quad w \in W.$$

© 2008 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Similarly, the dual $h^{\vee} \in \Phi$ of a coroot $h \in \Phi^{\vee}$ is defined so that

$$w(h^{\vee}) = w(h)^{\vee}, \quad w \in W.$$

We note that $(\beta^{\vee})^{\vee} = \beta$ for $\beta \in \Phi$.

For each $\beta \in \Phi$, we define $s_{\beta} \in W$ by:

$$s_{\beta}(\lambda) = \lambda - \langle \lambda, \beta^{\vee} \rangle \beta, \quad \lambda \in \mathfrak{h}^*,$$

or, equivalently, by

$$s_{\beta}(h) = h - \langle \beta, h \rangle \beta^{\vee}, \quad h \in \mathfrak{h}.$$

We note that $s_{\alpha_i} = s_{-\alpha_i} = s_i$.

For each $w \in W$, we define a set $\Phi(w)$ by:

$$\Phi\left(w\right):=\left\{\beta\in\Phi_{+}\mid w^{-1}(\beta)<0\right\}.$$

For $\beta, \gamma \in \Phi$, we have:

$$\langle \beta, \gamma^{\vee} \rangle = 0 \Leftrightarrow \langle \gamma, \beta^{\vee} \rangle = 0,$$

and

$$\langle \beta, \gamma^{\vee} \rangle > 0 \Leftrightarrow \langle \gamma, \beta^{\vee} \rangle > 0.$$

3. Colored Hook Formula for Path(λ)

In this section, we review main results of [6].

Definition 1. An integral weight λ is pre-dominant if

$$\langle \lambda, \beta^{\vee} \rangle \ge -1$$
, $\beta \in \Phi_+$.

The set of pre-dominant integral weights is denoted by $P_{\geq -1}$.

Definition 2. For $\lambda \in P_{\geq -1}$, the set $D(\lambda)$ defined by

$$D(\lambda) := \left\{ \beta \in \Phi_+ \, \middle| \, \langle \lambda, \beta^{\vee} \rangle = -1 \, \right\}$$

is called the diagram of λ . An element of $D(\lambda)$ is called a λ -move. An element of $D(\lambda) \cap \Pi$ is called a simple λ -move. A pre-dominant integral weight λ is said to be finite if $D(\lambda)$ is finite.

We note that $D(\lambda) = \emptyset$ if and only if $D(\lambda) \cap \Pi = \emptyset$. The terminology "move" is suggested by the game theoretic study of Kawanaka [4].

Lemma 3.1. Let $\lambda \in P_{\geq -1}$ and $\beta \in D(\lambda)$. Then we have:

- (1) $s_{\mathcal{B}}(\lambda) \in P_{\geq -1}$.
- (2) $D(s_{\beta}(\lambda)) = s_{\beta}(D(\lambda) \setminus \Phi(s_{\beta})).$

Definition 3. Let $\lambda \in P_{\geq -1}$. Let l be a nonnegative integer. A sequence of positive roots $\mathcal{B} = (\beta_1, \beta_2, \dots, \beta_l)$ is said to be a λ -path if

$$\beta_p \in D(s_{\beta_{p-1}} \cdots s_{\beta_1}(\lambda)), \quad p = 1, \cdots, l.$$

We call l the length of the λ -path \mathcal{B} and denote it by $\ell(\mathcal{B})$. Note that $\ell(\mathcal{B})$ may be 0. The set of λ -paths is denoted by Path(λ).

Lemma 3.2. Let $\lambda \in P_{\geq -1}$ and $\beta, \gamma \in D(\lambda)$. Then we have:

- (1) If $\langle \beta, \gamma^{\vee} \rangle = 2$, then $\langle \gamma, \beta^{\vee} \rangle = 1$ or 2
- (2) If λ is finite and $\langle \beta, \gamma^{\vee} \rangle = \langle \gamma, \beta^{\vee} \rangle = 2$, then $\beta = \gamma$

Theorem 3.3 (Colored Hook Formula). Let $\lambda \in P_{>-1}$ be finite. Then we have:

(3.1)
$$\sum_{\substack{(\beta_1, \cdots, \beta_l) \in \text{Path}(\lambda) \\ l > 0}} \frac{1}{\beta_1} \frac{1}{\beta_1 + \beta_2} \cdots \frac{1}{\beta_1 + \cdots + \beta_l} = \prod_{\beta \in D(\lambda)} \left(1 + \frac{1}{\beta} \right).$$

where both hand sides are considered as rational functions in $\{\alpha_i \mid i \in I\} \subseteq \mathfrak{h}^*$.

We call α_i ($i \in I$) color variables, when, as in Theorem 3.3, we consider them as independent variables. We note that the Weyl group W naturally acts on the rational function field $\mathbb{Q}(\alpha_i|i \in I)$ in color variables.

Let $\lambda \in P_{\geq -1}$ be finite. We denote the set of λ -paths of maximal length by MPath(λ). By Lemma 3.1, a λ -path \mathcal{B} in MPath(λ) is a sequence of simple roots of length $\#D(\lambda)$.

Corollary 3.4. Let $\lambda \in P_{\geq -1}$ be finite. Put $d := \#D(\lambda)$. Then we have:

(3.2)
$$\sum_{(\alpha_{i_1}, \dots, \alpha_{i_d}) \in \mathsf{MPath}(\lambda)} \frac{1}{\alpha_{i_1}} \frac{1}{\alpha_{i_1} + \alpha_{i_2}} \cdots \frac{1}{\alpha_{i_1} + \dots + \alpha_{i_d}} = \prod_{\beta \in \mathsf{D}(\lambda)} \frac{1}{\beta}.$$

Corollary 3.5. Let $\lambda \in P_{\geq -1}$ be finite. Put $d := \#D(\lambda)$. Then we have:

(3.3)
$$\#MPath(\lambda) = \frac{d!}{\prod_{\beta \in D(\lambda)} ht(\beta)}.$$

4. Main Theorem and Remarks

Let d be a non-negative integer. We denote the totally oredered set $\{1, 2, \dots, d\}$ by [d].

Definition 4. Let $P = (P, \leq)$ be a finite partially ordered set. Put d := #P. A bijection $T : [d] \longrightarrow P$ is said to be a *standard tableau of shape* P if the following condition holds: (STab) If T(j) < T(k), then we have j > k.

The set of standard tableaux of shape P is denoted by STab(P).

Definition 5. Let $\lambda \in P_{>-1}$. We define a set $D(\lambda)^{\vee}$ by:

$$\mathrm{D}(\lambda)^\vee := \left\{ \beta^\vee \, \left| \, \beta \in \mathrm{D}(\lambda) \right. \right\} = \left\{ \beta^\vee \in \Phi_+^\vee \, \middle| \, \langle \lambda, \beta^\vee \rangle = -1 \right. \right\}.$$

We call $D(\lambda)^{\vee}$ a shape of λ . We note that $D(\lambda)^{\vee}$ is a (possibly infinite) partially ordered set with the order \leq over Φ^{\vee}_{\perp} .

We now state the main result of this paper.

Theorem 4.1. Let $\lambda \in P_{\geq -1}$ be finite. Put $d := \#D(\lambda)^{\vee}$.

$$#STab(D(\lambda)^{\vee}) = \frac{d!}{\prod_{\beta \in D(\lambda)} ht(\beta)}.$$

Through Section 5 and 6, we give a proof of Theorem 4.1. Theorem 4.1 is proved as Theorem 6.5 (2).

Remark 1. Let $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n > 0)$ be a partition of d, and

$$Y_{\lambda} = \left\{ (i, j) \mid 1 \le i \le n, 1 \le j \le \lambda_t \right\}$$

be the corresponding Young diagram; we consider Y_{λ} as a partially ordered set by:

$$(i, j) \le (i', j') \Leftrightarrow i \ge i' \text{ and } j \ge j'.$$

Then, for a sufficiently large r, there exists some $\lambda_o \in P_{\geq -1}$ of a Lie algebra of type A_r such that Y_{λ} is order-isomorphic to $D(\lambda_o)^{\vee}$. An explicit description is as follows:

Let $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n > 0)$ be a partition of d. Put $r_0 := n + \lambda_1 - 1$. For $k = 1, \dots, n$, put $\beta_k := \lambda_{n+1-k} + k - 1$. For $i = 1, \dots, r_0$, define b_i as:

$$b_i := \begin{cases} -1 & \text{if } i \in \{\beta_1, \dots, \beta_n\} \\ 0 & \text{otherwise} \end{cases}$$

For $k = 1, \dots, n-1$, put $\gamma_k := \lambda_{n+1-k} + k$. For $i = 1, \dots, r_o$, define c_i as:

$$c_i := \begin{cases} 1 & \text{if } i \in \{\gamma_1, \dots, \gamma_{n-1}\} \\ 0 & \text{otherwise} \end{cases}$$

Let $A = (a_{i,j})_{i,j=1}^{r_o}$ be a Cartan matrix of type A_{r_o} , and ω_i be the *i*-th fundamental weight. Then, an integral weight defined by:

$$\lambda_o := \sum_{i=1}^{r_o} (b_i + c_i) \omega_i$$

is a finite pre-dominant integral weight. And, the shape $D(\lambda_o)^{\vee}$ is order-isomorphic to the Young diagram Y_{λ} . We note that the integer r_o defined above is the minimum value of r's such that the given Young diagram Y_{λ} is realizable in the coroot system of type A_r .

Remark 2. If a Cartan matrix A is simply-laced, then the partially ordered set $(D(\lambda); \leq)$ is order-isomorphic to $(D(\lambda)^{\vee}; \leq)$. In particular, we have:

$$\#\mathrm{STab}(\mathrm{D}(\lambda)) = \frac{d!}{\prod_{\beta \in \mathrm{D}(\lambda)} \mathrm{ht}(\beta)}\,.$$

Remark 3. Let $\lambda \in P_{\geq -1}$. Let $\beta \in D(\lambda)$. Put $H_{\lambda}(\beta) := D(\lambda) \cap \Phi(s_{\beta})$ (See [6]). We call the set $H_{\lambda}(\beta)$ the hook at β , and the integer $\#H_{\lambda}(\beta)$ the hooklength at β . Then we have:

$$ht(\beta) = #H_{\lambda}(\beta)$$
.

Hence, we get:

$$\#\mathrm{STab}(\mathrm{D}(\lambda)^{\vee}) = \frac{d!}{\prod_{\beta \in \mathrm{D}(\lambda)} \#\mathrm{H}_{\lambda}(\beta)}.$$

5. Proof of Theorem 4.1 (First Part)

Proposition 5.1. Let $\lambda \in P_{\geq -1}$, $\beta \in D(\lambda)$, and $\gamma \in D(\lambda) \cap \Phi(s_{\beta})$. Then we have $\langle \beta, \gamma^{\vee} \rangle = 1$, or 2.

Proof. We have $s_{\beta}(\gamma^{\vee}) = \gamma^{\vee} - \langle \beta, \gamma^{\vee} \rangle \beta^{\vee} \leq \gamma^{\vee} - \beta^{\vee} < 0$. Since $\lambda \in P_{\geq -1}$, we have $-1 \leq \langle \lambda, -s_{\beta}(\gamma^{\vee}) \rangle = \langle \lambda, -\gamma^{\vee} + \langle \beta, \gamma^{\vee} \rangle \beta^{\vee} \rangle = -\langle \lambda, \gamma^{\vee} \rangle + \langle \beta, \gamma^{\vee} \rangle \langle \lambda, \beta^{\vee} \rangle = 1 - \langle \beta, \gamma^{\vee} \rangle$. Hence, we have:

$$(5.1) \langle \beta, \gamma^{\vee} \rangle \leq 2.$$

If $\langle \beta, \gamma^{\vee} \rangle \leq 0$, then we have $s_{\beta}(\gamma^{\vee}) = \gamma^{\vee} - \langle \beta, \gamma^{\vee} \rangle \beta^{\vee} \geq \gamma^{\vee} > 0$. This contradicts our assumption. Hence, we have:

$$(5.2) \langle \beta, \gamma^{\vee} \rangle \ge 1.$$

By (5.1) and (5.2), we have:

$$\langle \beta, \gamma^{\vee} \rangle = 1$$
, or 2.

Proposition 5.2. Let $\lambda \in P_{\geq -1}$ be finite. Let β , $\gamma \in D(\lambda)$. Then we have:

(1)
$$\langle \beta, \gamma^{\vee} \rangle \geq 0$$
.

(2) if
$$\langle \beta, \gamma^{\vee} \rangle \ge 1$$
 and $\beta^{\vee} \ne \gamma^{\vee}$, then $\langle \beta, \gamma^{\vee} \rangle = 1$, or $\langle \gamma, \beta^{\vee} \rangle = 1$.

Proof. (1) Since $s_{\beta}(\lambda) \in P_{\geq -1}$, we have $-1 \leq \langle s_{\beta}(\lambda), \gamma^{\vee} \rangle = -1 + \langle \beta, \gamma^{\vee} \rangle$. Hence, we have $\langle \beta, \gamma^{\vee} \rangle \geq 0$.

(2) If $\langle \beta, \gamma^{\vee} \rangle = 1$, then there is nothing to prove.

If $\langle \beta, \gamma^{\vee} \rangle = 2$, then, by Lemma 3.2 (1) and (2), we have $\langle \gamma, \beta^{\vee} \rangle = 1$.

Suppose $\langle \beta, \gamma^{\vee} \rangle \geq 3$. If $s_{\gamma}(\beta^{\vee}) > 0$, then, since $\langle s_{\gamma}(\lambda), s_{\gamma}(\beta^{\vee}) \rangle = \langle \lambda, \beta^{\vee} \rangle = -1$, we have $(\gamma, s_{\gamma}(\beta)) \in \text{Path}(\lambda)$. Hence $s_{s_{\gamma}(\beta)}s_{\gamma}(\lambda) \in P_{\geq -1}$. Since

$$\begin{split} -1 &\leq \langle s_{s_{\gamma}(\beta)} s_{\gamma}(\lambda), \, \beta^{\vee} \rangle = \langle \lambda + \gamma + s_{\gamma}(\beta), \, \beta^{\vee} \rangle \\ &= \langle \lambda + \beta + (1 - \langle \beta, \, \gamma^{\vee} \rangle) \gamma, \, \beta^{\vee} \rangle \\ &= 1 + (1 - \langle \beta, \, \gamma^{\vee} \rangle) \langle \gamma, \, \beta^{\vee} \rangle, \end{split}$$

we have:

$$(\langle \beta, \gamma^{\vee} \rangle - 1)\langle \gamma, \beta^{\vee} \rangle \leq 2.$$

Hence, we have $\langle \beta, \gamma^{\vee} \rangle = 3$ and $\langle \gamma, \beta^{\vee} \rangle = 1$. If, on the other hand, $s_{\gamma}(\beta) < 0$, then $\beta \in H_{\lambda}(\gamma)$. By Proposition 5.1, we have $\langle \gamma, \beta^{\vee} \rangle = 1$, or 2. If $\langle \gamma, \beta^{\vee} \rangle = 2$, then, by Lemma 3.2 (1) and (2), we have $\langle \beta, \gamma^{\vee} \rangle = 1$.

Thus, we always have $\langle \beta, \gamma^{\vee} \rangle = 1$, or $\langle \gamma, \beta^{\vee} \rangle = 1$.

Proposition 5.3. Let β , $\gamma \in \Phi$. Suppose $\langle \gamma, \beta^{\vee} \rangle = 1$, or $\langle \beta, \gamma^{\vee} \rangle = 1$. Then:

- (1) $\beta^{\vee} \gamma^{\vee} \in \Phi^{\vee}$.
- (2) We have either $\beta^{\vee} < \gamma^{\vee}$, or $\beta^{\vee} > \gamma^{\vee}$.

Proof. (1) If $\langle \gamma, \beta^{\vee} \rangle = 1$, then $\beta^{\vee} - \gamma^{\vee} = \beta^{\vee} - \langle \gamma, \beta^{\vee} \rangle \gamma^{\vee} = s_{\gamma}(\beta^{\vee}) \in \Phi^{\vee}$. If, on the other hand, $\langle \beta, \gamma^{\vee} \rangle = 1$, then $\beta^{\vee} - \gamma^{\vee} = -\gamma^{\vee} - \langle \beta, (-\gamma)^{\vee} \rangle \beta^{\vee} = s_{\beta}(-\gamma^{\vee}) \in \Phi^{\vee}$.

(2) Since $\beta^{\vee} - \gamma^{\vee} \in \Phi^{\vee}$, we have either $\beta^{\vee} - \gamma^{\vee} > 0$, or $\beta^{\vee} - \gamma^{\vee} < 0$. Hence, we have either $\beta^{\vee} > \gamma^{\vee}$, or $\beta^{\vee} < \gamma^{\vee}$.

Let β^{\vee} , $\gamma^{\vee} \in \Phi^{\vee}$. We denote $\beta^{\vee} \triangleleft \gamma^{\vee}$ if

$$\langle \gamma, \beta^{\vee} \rangle \geq 1$$
,

and

$$\beta^{\vee} < \gamma^{\vee}$$
.

Lemma 5.4. Let $\lambda \in P_{\geq -1}$ be finite. Let $\alpha_i \in D(\lambda) \cap \Pi$. Let $\beta, \gamma \in D(\lambda) \setminus \{\alpha_i\}$. If $\gamma^{\vee} \triangleleft \beta^{\vee}$, then we have $s_i(\gamma^{\vee}), s_i(\beta^{\vee}) \in D(s_{\alpha_i}(\lambda))^{\vee}$, and $s_i(\gamma^{\vee}) \triangleleft s_i(\beta^{\vee})$.

Proof. By Lemma 3.1(2), we have $s_i(\gamma^{\vee}), s_i(\beta^{\vee}) \in D(s_{\alpha_i}(\lambda))^{\vee}$.

Since $\gamma^{\vee} \triangleleft \beta^{\vee}$, we have $\langle \beta, \gamma^{\vee} \rangle \ge 1$. By Proposition 5.2(2), we have $\langle \gamma, \beta^{\vee} \rangle = 1$, or $\langle \beta, \gamma^{\vee} \rangle = 1$. By Proposition 5.3(1), we have $\beta^{\vee} - \gamma^{\vee} \in \Phi_{+}^{\vee}$. Hence, we have either $s_{i}(\beta^{\vee} - \gamma^{\vee}) < 0$, or $s_{i}(\beta^{\vee} - \gamma^{\vee}) > 0$. Suppose $s_{i}(\beta^{\vee} - \gamma^{\vee}) < 0$. Then we have $\beta^{\vee} - \gamma^{\vee} = \alpha_{i}^{\vee}$. Hence, we have $\beta^{\vee} = \gamma^{\vee} + \alpha_{i}^{\vee}$. Since $\langle \lambda, \beta^{\vee} \rangle = \langle \lambda, \gamma^{\vee} + \alpha_{i}^{\vee} \rangle = (-1) + (-1) = -2$, this contradicts $\lambda \in P_{\geq -1}$. Hence, we have $s_{i}(\beta^{\vee} - \gamma^{\vee}) > 0$. Since $\langle s_{i}(\gamma), s_{i}(\beta^{\vee}) \rangle = \langle \gamma, \beta^{\vee} \rangle \ge 1$, we have $s_{i}(\gamma^{\vee}) \triangleleft s_{i}(\beta^{\vee})$.

Lemma 5.5. Let $\lambda \in P_{\geq -1}$ be finite. Let $\beta \in D(\lambda)$. If β is not a simple root, then there exists $\gamma \in D(\lambda) \cap \Phi(s_{\beta})$ such that $\gamma^{\vee} < \beta^{\vee}$.

Proof. Let $\alpha_i \in \Phi(s_\beta) \cap \Pi$. Since $0 > s_\beta(\alpha_i) = \alpha_i - \langle \alpha_i, \beta^{\vee} \rangle \beta$, we have $\langle \alpha_i, \beta^{\vee} \rangle \geq 1$. Since $s_i(\beta^{\vee}) = \beta^{\vee} - \langle \alpha_i, \beta^{\vee} \rangle \alpha_i^{\vee}$, we have:

$$\beta^{\vee} = s_i(\beta^{\vee}) + \langle \alpha_i, \beta^{\vee} \rangle \alpha_i^{\vee},$$

$$0 < s_i(\beta^{\vee}) < \beta^{\vee}, \text{ and } 0 < \alpha_i^{\vee} < \beta^{\vee}.$$

Since $\lambda \in P_{\geq -1}$ and $-1 = \langle \lambda, \beta^{\vee} \rangle = \langle \lambda, s_i(\beta^{\vee}) \rangle + \langle \alpha_i, \beta^{\vee} \rangle \langle \lambda, \alpha_i^{\vee} \rangle$, we have either $\langle \lambda, \alpha_i^{\vee} \rangle = -1$, or $\langle \lambda, s_i(\beta^{\vee}) \rangle = -1$.

If $\langle \lambda, \alpha_i^{\vee} \rangle = -1$, then $\alpha_i \in D(\lambda)$. Hence we get:

$$\alpha_i \in D(\lambda) \cap \Phi(s_\beta)$$
, and $\alpha_i^{\vee} < \beta^{\vee}$.

If $\langle \lambda, s_i(\beta^{\vee}) \rangle = -1$, then $\langle \lambda, \alpha_i^{\vee} \rangle = 0$. We have $\langle \beta, s_i(\beta^{\vee}) \rangle = 2 - \langle \beta, \alpha_i^{\vee} \rangle \langle \alpha_i, \beta^{\vee} \rangle$. Since $\beta, s_i(\beta) \in D(\lambda)$, by Proposition 5.2 (1), we have $\langle \beta, \alpha_i^{\vee} \rangle \langle \alpha_i, \beta^{\vee} \rangle \leq 2$. Since $\langle \beta, \alpha_i^{\vee} \rangle \geq 1$ and $\langle \alpha_i, \beta^{\vee} \rangle \geq 1$, we have either:

$$\langle \beta, \alpha_i^{\vee} \rangle = 2$$
 and $\langle \alpha_i, \beta^{\vee} \rangle = 1$,

$$\langle \beta, \alpha_i^{\vee} \rangle = 1$$
 and $\langle \alpha_i, \beta^{\vee} \rangle = 2$,

or

$$\langle \beta, \alpha_i^{\vee} \rangle = 1$$
 and $\langle \alpha_i, \beta^{\vee} \rangle = 1$.

If $\langle \beta, \alpha_i^\vee \rangle = 2$ and $\langle \alpha_i, \beta^\vee \rangle = 1$, then we have $0 < 2\beta^\vee - \alpha_i^\vee = s_{s_i(\beta)}(\alpha_i^\vee) \in \Phi^\vee$. Since $\langle \lambda, s_{s_i(\beta)}(\alpha_i^\vee) \rangle = 2\langle \lambda, \beta^\vee \rangle - \langle \lambda, \alpha_i^\vee \rangle = -2$, This contradicts that $\lambda \in P_{\geq -1}$. If $\langle \beta, \alpha_i^\vee \rangle = 1$ and $\langle \alpha_i, \beta^\vee \rangle = 2$, then we have $0 < \beta^\vee - \alpha_i^\vee = s_{s_i(\beta)}(\alpha_i^\vee) \in \Phi^\vee$. Since $s_\beta(\beta^\vee - \alpha_i^\vee) = -\beta^\vee - (\alpha_i^\vee - \beta^\vee) = -\alpha_i < 0$ and $\langle \lambda, \beta^\vee - \alpha_i^\vee \rangle = -1 - 0 = -1$, we get:

$$(\beta^{\vee} - \alpha_i^{\vee})^{\vee} \in D(\lambda) \cap \Phi(s_{\beta}), \text{ and } \beta^{\vee} - \alpha_i^{\vee} < \beta^{\vee}.$$

If $\langle \beta, \alpha_i^{\vee} \rangle = 1$ and $\langle \alpha_i, \beta^{\vee} \rangle = 1$, then we have $0 < \beta^{\vee} - \alpha_i^{\vee} = s_i(\beta^{\vee}) \in \Phi^{\vee}$. Since $s_{\beta}(\beta^{\vee} - \alpha_i^{\vee}) = -\beta^{\vee} - (\alpha_i^{\vee} - \beta^{\vee}) = -\alpha_i < 0$ and $\langle \lambda, \beta^{\vee} - \alpha_i^{\vee} \rangle = -1 - 0 = -1$, we get:

$$(\beta^{\vee} - \alpha_i^{\vee})^{\vee} \in D(\lambda) \cap \Phi(s_{\beta}), \text{ and } \beta^{\vee} - \alpha_i^{\vee} < \beta^{\vee}.$$

Thus, there always exists $\gamma \in D(\lambda) \cap \Phi(s_{\beta})$ such that $\gamma^{\vee} < \beta^{\vee}$.

Definition 6. Let $\lambda \in P_{\geq -1}$ be finite. Put $d := \#D(\lambda)^{\vee}$. A sequence $L = (\gamma_1^{\vee}, \dots, \gamma_d^{\vee})$ of elements of $D(\lambda)^{\vee}$ of length d is said to be a standard labelling of shape λ if the following condition holds:

(SLab) If $\gamma_i^{\vee} \triangleleft \gamma_k^{\vee}$, then we have j < k.

The set of standard labellings of shape λ is denoted by $SLab(\lambda)$.

Theorem 5.6. Let $\lambda \in P_{\geq -1}$ be finite. Put $d := \#D(\lambda)^{\vee}$.

(1) For a maximal λ -path $\mathcal{B} = (\alpha_{i_1}, \dots, \alpha_{i_d})$, we put

$$L_{\mathcal{B}} := (\gamma_1^{\vee}, \cdots, \gamma_d^{\vee}),$$

where $\gamma_k^{\vee} = s_{i_1} \cdots s_{i_{k-1}}(\alpha_k)^{\vee}$, $1 \le k \le d$. Then, $L_{\mathcal{B}}$ is a standard labelling of shape λ .

(2) For a standard labelling $L = (\gamma_1^{\vee}, \dots, \gamma_d^{\vee})$ of shape λ , we put

$$\mathcal{B}_L := (\beta_1, \cdots, \beta_d),$$

where $\beta_k = s_{\gamma_1} \cdots s_{\gamma_{k-1}}(\gamma_k)$, $1 \le k \le d$. Then, \mathcal{B}_L is a maximal λ -path.

(3) The correspondence $\mathcal{B}\mapsto L_{\mathcal{B}}$ from $MPath(\lambda)$ to $SLab(\lambda)$ is the inverse of the correspondence $L\mapsto \mathcal{B}_L$ from $SLab(\lambda)$ to $MPath(\lambda)$

Proof. (1) Let $\mathcal{B} = (\alpha_{i_1}, \cdots, \alpha_{i_d}) \in \mathrm{MPath}(\lambda)$. Put $\gamma_k^{\vee} := s_{i_1} \cdots s_{i_{k-1}}(\alpha_{i_k}^{\vee})$, for each $1 \leq k \leq d$. Let $1 \leq k \leq d$. By Lemma 3.1 (2), we have $\mathrm{D}(s_{i_{k-1}} \cdots s_{i_1}(\lambda)) \subseteq s_{i_{k-1}} \cdots s_{i_1}(\mathrm{D}(\lambda))$. Since $\alpha_{i_k}^{\vee} \in \mathrm{D}(s_{i_{k-1}} \cdots s_{i_1}(\lambda))^{\vee}$, we have $\gamma_k^{\vee} = s_{i_1} \cdots s_{i_{k-1}}(\alpha_{i_k})^{\vee} \in \mathrm{D}(\lambda)^{\vee}$. Hence, $L_{\mathcal{B}}$ is a sequence of elements of $\mathrm{D}(\lambda)^{\vee}$ of length d.

Let $1 \le j, k \le d$. Suppose $\gamma_j^{\vee} \triangleleft \gamma_k^{\vee}$. Suppose j > k. We have:

$$(5.3) s_{i_1} \cdots s_{i_{l-1}}(\alpha_{i_l}^{\vee}), s_{i_1} \cdots s_{i_{k-1}}(\alpha_{i_k}^{\vee}) \in D(\lambda), \text{ and } s_{i_1} \cdots s_{i_{l-1}}(\alpha_{i_l}^{\vee}) \triangleleft s_{i_1} \cdots s_{i_{k-1}}(\alpha_{i_k}^{\vee}).$$

Applying Lemma 5.4 to (5.3) repeatedly, we get:

$$(5.4) s_{i_k} \cdots s_{i_{j-1}}(\alpha_{i_j}^{\vee}), s_{i_k} \cdots s_{i_{k-1}}(\alpha_{i_k}^{\vee}) \in D(s_{i_{k-1}} \cdots s_{i_1}(\lambda)), \text{ and } s_{i_k} \cdots s_{i_{j-1}}(\alpha_{i_j}^{\vee}) \triangleleft \alpha_{i_k}^{\vee}.$$

This contradicts that α_h^{\vee} is a simple coroot. Hence, we have $k \leq j$. Since it is trivial that $k \neq j$, we have k < j. Hence, we have $L_{\mathcal{B}} \in \mathrm{SLab}(\lambda)$.

(2) Let $L = (\gamma_1^{\vee}, \dots, \gamma_d^{\vee}) \in \mathrm{SLab}(\lambda)$. Put $\beta_k := s_{\gamma_1} \dots s_{\gamma_{k-1}}(\gamma_k)$, for each $1 \le k \le d$. Let $1 \le k \le d$. Since

$$s_{\beta_1}\cdots s_{\beta_{k-1}}(\beta_k^{\vee})=\gamma_k^{\vee},$$

we have $\langle s_{\beta_{k-1}} \cdots s_{\beta_1}(\lambda), \beta_k^{\vee} \rangle = \langle \lambda, s_{\beta_1} \cdots s_{\beta_{k-1}}(\beta_k^{\vee}) \rangle = \langle \lambda, \gamma_k^{\vee} \rangle = -1$. Since $s_{\gamma_1} \cdots s_{\gamma_{k-1}} = s_{\beta_{k-1}} \cdots s_{\beta_1}$, we have:

$$\beta_k^{\vee} = s_{\gamma_1} \cdots s_{\gamma_{k-1}}(\gamma_k^{\vee}) = s_{\beta_{k-1}} \cdots s_{\beta_1}(\gamma_k^{\vee}).$$

Let $1 \le p \le k-1$. Suppose

$$s_{\beta_{n-1}}\cdots s_{\beta_1}(\gamma_k^{\vee})\in \mathrm{D}(s_{\beta_{n-1}}\cdots s_{\beta_1}(\lambda))^{\vee}$$

and

$$\beta_p^{\vee} \in \mathrm{D}(s_{\beta_{p-1}} \cdots s_{\beta_1}(\lambda))^{\vee} \cap \Pi^{\vee}.$$

Then, by Lemma 3.1, we have

$$s_{\beta_n}(s_{\beta_{n-1}}\cdots s_{\beta_1}(\gamma_k^{\vee})) \in D(s_{\beta_n}(s_{\beta_{n-1}}\cdots s_{\beta_1}(\lambda)))^{\vee}.$$

By Lemma 5.5, we have $s_{\beta_p}(s_{\beta_{p-1}}\cdots s_{\beta_1}(\gamma_k^{\vee}))\in D(s_{\beta_p}(s_{\beta_{p-1}}\cdots s_{\beta_1}(\lambda)))^{\vee}\cap \Pi^{\vee}$. By induction on p, we have $\beta_k^{\vee}\in D(s_{\beta_{k-1}}\cdots s_{\beta_1}(\lambda))^{\vee}\cap \Pi^{\vee}$. Hence, we get $(\beta_1,\cdots,\beta_d)\in MPath(\lambda)$.

(3) This follows from the definitions of $\mathcal{B}\mapsto L_{\mathcal{B}}$ and $L\mapsto \mathcal{B}_L$.

By Corollary 3.5 and Theorem 5.6, we get:

(5.5)
$$\#\mathrm{SLab}(\lambda) = \frac{d!}{\prod_{\beta \in \mathrm{D}(\lambda)} \mathrm{ht}(\beta)},$$

where $ht(\beta)$ is the height of β .

6. PROOF OF THEOREM 4.1 (SECOND PART)

Let $P = (P; \leq)$ be a (possibly infinite) partially ordered set. We define a set min(P) by:

$$\min(P) := \{ x \in P \mid x \text{ is a minimal element of } P \}.$$

Corollary 6.1. Let $\lambda \in P_{>-1}$. Then we have:

$$\min(D(\lambda)^{\vee}) = D(\lambda)^{\vee} \cap \Pi^{\vee}.$$

Proof. It is trivial that $\min(D(\lambda)^{\vee}) \supseteq D(\lambda)^{\vee} \cap \Pi^{\vee}$. Now, we prove the converse. Let $\beta^{\vee} \in \min(D(\lambda)^{\vee})$. Suppose $\beta^{\vee} \notin D(\lambda)^{\vee} \cap \Pi^{\vee}$. Then, by Lemma 5.5, there exists $\gamma^{\vee} \in D(\lambda)^{\vee} \cap \Pi^{\vee}$. $D(\lambda)^{\vee} \cap \Phi(s_{\beta})^{\vee} \subseteq D(\lambda)^{\vee}$ such that $\gamma^{\vee} < \beta^{\vee}$. This contradicts that $\beta^{\vee} \in \min(D(\lambda)^{\vee})$. Hence, we have $\beta^{\vee} \in D(\lambda)^{\vee} \cap \Pi^{\vee}$. This proves the statement.

Lemma 6.2. Let $P = (P, \leq)$ be a finite partially ordered set. Put d := #P. Let $x \in \min(P)$. Put $S := \{ T \in STab(P) \mid T(d) = x \}$. We define a map $\phi : STab(P \setminus \{x\}) \longrightarrow S$ by:

$$(\phi T)(k) = T(k), \quad \text{for } k = 1, \dots, d-1.$$

Then the map ϕ is a bijection from $STab(P \setminus \{x\})$ to S.

Proof. This is straightforward to see.

Corollary 6.3. Let $P = (P, \leq)$ be a finite partially ordered set. Then we have:

$$\#STab(P) = \sum_{x \in min(P)} \#STab(P \setminus \{x\}).$$

Proof. This follows from Lemma 6.2.

Lemma 6.4. Let $\lambda \in P_{\geq -1}$ be finite. Then we have:

$$\#\mathsf{MPath}(\lambda) = \sum_{\alpha_i \in \mathsf{D}(\lambda) \cap \mathsf{II}} \#\mathsf{MPath}(s_{\alpha_i}(\lambda)).$$

Proof. This follows from the definition of λ -paths.

Theorem 6.5. Let $\lambda \in P_{>-1}$ be finite. Put $d := \#D(\lambda)^{\vee}$.

(1) For a standard tableau T of shape $D(\lambda)^{\vee}$, we put

$$L_T := (T(d), \cdots, T(1)).$$

Then, L_T is a standard labelling of shape λ .

(2) We have:

$$#STab(D(\lambda)^{\vee}) = \frac{d!}{\prod_{\beta \in D(\lambda)} ht(\beta)}.$$

- (3) The correspondence $T \mapsto L_T$ from $STab(D(\lambda)^{\vee})$ to $SLab(\lambda)$ is a bijection.
- *Proof.* (1) Since whenever $\beta^{\vee} \triangleleft \gamma^{\vee}$ we have $\beta^{\vee} < \gamma^{\vee}$, it is obvious that $L_T \in SLab(\lambda)$.
- (2) By Corollary 6.3 and Lemma 6.4, #STab(*) and #MPath(*) satisfy the same recursive relation. Hence, by induction on $\#D(\lambda)$, we have $\#STab(D(\lambda)^{\vee}) = \#MPath(\lambda)$.
- (3) Since the injectivity of the correspondence $T \mapsto L_T$ is trivial, this follows from part
- (1), part (2), and (5.5).

REFERENCES

- J. B. Carrell, Vector fields, flag varieties and Schubert calculus, Proc. Hyderbad Conference on Algebraic Groups (ed. S.Ramanan), Manoj Prakashan, Madras, 1991.
- [2] J. S. Frame, G. de B. Robinson, R. M. Thrall, The hook graphs of symmetric group, Canad. J. Math. 6 (1954),316-325.
- [3] V. G. Kac, "Infinite Dimentional Lie Algebras," Cambridge Univ. Press, Cambridge, UK, 1990.
- [4] N. Kawanaka, Coxeter groups and Nakayama algorithm, in preparation.
- [5] R. V. Moody and A. Pianzola, "Lie Algebras With Triangular Decompositions," Canadian Mathematical Society Series of Monograph and Advanced Text, 1995.
- [6] K. Nakada, Colored hook formula for a generalized Young diagram, to appear in Osaka J. Math.
- [7] K. Nakada, q-Hook formula for a generalized Young diagram, preprint.
- [8] S. Okamura, An algorithm which generates a random standard tableau on a generalized Young diagram, (in Japanese), master's thesis, Osaka university, 2003.
- [9] R. A. Proctor, Minuscule elements of Weyl groups, the numbers games, and d-complete posets, J.Algebra 213 (1999), 272-303.
- [10] R. A. Proctor, Dynkin diagram classification of λ-minuscule Bruhat lattices and of d-complete posets, J.Algebraic Combin. 9 (1999), 61-94.
- [11] B. E. Sagan, "The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions," Springer, New York, 2001.
- [12] J. R. Stembridge, Minuscule elements of Weyl groups, J.Algebra 235(2001), 722-743.