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ABSTRACT. An ordered partition with & blocks of [n] := {1,2,...,n} is a sequence of k
disjoint and nonempty subsets, called blocks, whose union is [n]. In this article, we con-
sider Steingrimsson’s conjectures about Euler-Mahonian statistics on ordered partitions
dated back to 1997. We encode ordered partitions by walks in some digraphs and then
derive their generating functions using the transfer-matrix method. In particular, we
prove half of Steingrimsson’s conjectures by the computation of the resulting determi-
nants. This article is a very short version of our paper: “Statistics on Ordered Partitions
of Sets and q-Stirling Numbers” (arxiv:math.C0/0605390), announcing and surveying
some of the results in it.
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1. INTRODUCTION

The systematic study of statistics on permutations and words has its origins in the work
of MacMahon, at the turn of the last century. MacMahon [12] considered four different
statistics for a permutation 7: The number of descents (des ), the number of excedances
(exc), the number of inversions (inv ), and the major index (maj 7). These are defined
as follows: A descent in a permutation 7 = ajas---a, is an i such that a; > i1, A0
excedance is an i such that a; > 7, an inversion is a pair (4, j) such that ¢ < j and a; > a;,
and the major index of 7 is the sum of the descents in .

In fact, MacMahon studied these statistics in greater generality, namely over the re-
arrangement class of an arbitrary word w with repeated letters. The rearrangement class
R(w) of a word w = ayas - - - ay, is the set of all words obtained by permutating the letters
of w. All of the statistics mentioned above generalize to words, and in each case, except
for that of exc, the generalization is trivial.

MacMahon showed, algebraically, that exc is equi-distributed with des, and that inv is
equi-distributed with maj, over R(w) for any word w. That is to say,

Z poxez Z tdcsz and Z finve — Z tmajz.
zER(w) z€R(w) z€R(w) 2€R(w) .

Any statistic that is equi-distributed with des is said to be Eulerian, while any statistic
equi-distributed with inv is said to be Mahonian. Foata [5] coined the name Euler-
Mahonian statistic for a bivariate statistic (eul 7, mah ), where eul is Eulerian and mah
is Mahonian and carried out the first study of such pairs.
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In 1997 Steingrimsson [19] introduced the notion of Euler-Mahonian statistic on or-
dered partitions. A partition 7 = B;/Bs/--- /By of [n] is a collection of disjoint and
nonempty subsets Bjs, called blocks, whose union is [n], where we write 7 in the standard
way, i.e., the blocks B; are arranged in increasing order of their minimal elements and
separated by /. Let P¥ denote the set of partitions of [n] with k blocks. For example,
7 =148/2/3/56/7/9 is a partition of [9] with 6 blocks.

Now, if 7 = By/By/ /By € P and ¢ is a permutation in S, the sequence 7, =
By1)/Bo@)/ -+ | Bo(x) is called an ordered partition of [n] with k blocks. We set o =
perm(7). Let OPF denote the set of ordered partitions of [r] into k blocks. For example,
m=2/9/3/148/56/7 is an ordered partition of [9] with 6 blocks.

Define the p, g-integer [n],, = Z=L, the p, g-factorial [n]pg! = [1]pq[2lpq - - [lpq and
the p, g-binomial coefficient

[n] ={mﬁl§f‘;cm f0<k<n,
Y20

pr=g”
p—q’

k 0 otherwise.

If p = 1, we shall write [n]y, [n],! and [Z]q for [n]1,q, [n]1,4! and [Z]l,q’ and we usually call
them g¢-integer, g-factorial and g-binomial coeflicient, respectively.

The Stirling number S(n, k) of the second kind counts the partitions of n-element set
into k blocks. A natural ¢g-Stirling numbers S;(n, k) of the second kind is defined by the
recurrence equation

Sy(n, k) =g 1S (n—1, k= 1)+ [k]gSy(n =1, k)  (n>k>0), (1.1)

where Sy(n,k) = bp if n=0o0r k=0.

There has been a considerable amount of recent interest in properties and combinatorial
interpretations of the ¢-Stirling numbers and related numbers (see e.g. [1, 2, 3, 11, 13,
14, 15, 16, 17, 19, 22, 21, 23)). '

Definition 1.1. A statistic STAT on OP¥ is called Euler-Mahonian if its generating
function is equal to [k]o!Sq(n, k), i.e.,

3 ¢STAT T =[] 1 Sy(n, k).
n€OPk

An Euler-Mahonian statistic on ordered partitions can be derived from a result of
Wachs [13, Theorem 2.1] (see also [19, Theorem 4]). Steingrimsson [19] gave several
Euler-Mahonian statistics and conjectured more such statistics.

2. DEFINITIONS AND STEINGRIMSSON’S CONJECTURES

Let 7 be an ordered partition. The opener of a block is its least element and the closer
is its greatest element. For instance, the ordered partition 7 = 2/9/3/148/56/7 has
openers 2, 9, 3, 1, 5 and 7 and closers 2, 9, 3, 8, 6 and 7.

Definition 2.1. (Steingrimsson) Given an ordered partition 1 € OP¥, let openw and
clos 7 be the set of openers and closers of w, respectively. Let block, (i) denote the indez of
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the block (counting from left to right) which contains the letteri. Following Steingrimsson,
we introduce the eight coordinate statistics:

ros;m = f{j|i>j, j € openm, block, (j) > block, (i)},

rob;m = H{j|i < j, j € openm, block, (j) > block, (i)},
res;m = f{j|i > j, j € closm, block, (j) > block, (4)},
reh;m = #{j|i<j, j€closm, block, (j) > block, (3)},
los;m = #{j|i>j, j € openm, block, (j) < block, (i)},
lob;m = #{j|i <j, j € openm, block, (j) < block, (i)},
les;m = #{j]i>j, j € closm, block, (j) < block, ()},

leb;m = f§{j|i<j, j€clos, block, (j) < block, (i)}

Let rsb; be the number of blocks B in m such that B is to the right of the block containing
i, the opener of B is smaller than i and the closer of B is greater than i. We also define
Isb; analogously with “right” replaced by “left”. Then define ros, rob, rcs, rcb, lob, los,
Ics, lcb, Isb and rsb as the sum of their coordinate statistics, e.g.

ros = E ros; .
i

Note that ros is the abbreviation of "right, opener, smaller”, while Icb is the abbre-
viation of "left, closer, bigger”, ete. For instance, we give the values of the coordinate
statistics computed on the ordered partition = =6 8/5/1 4 7/3 9/2:

m= 68 / 5/ 147 / 39 / 2

los;: 00 /0 / 002 / 13 / 1
ros;: 44 / 3/ 022 / 11 / 0
lob;: 00 / 1 / 220 / 20 / 3
rob;: 00 / 0 / 200 / 00 / 0
les;: 00 / 0 / 001 / 03 / 0
res;: 23 /1 /011 / 11 / 0
leb;: 00 / 1 / 221 / 30 / 4
rch;: 21 /2 / 211 / 00 / O
Isb;: 00 / 0 / 001 / 10 / 1
rsb;: 21 / 2/ 011 / 00 / O

Thus we have los(m) = 7, ros(m) = 17, lob(r) = 10, rob(n) = 2, les(w) = 4, res() = 10,
leb(m) = 13, rcb(m) = 9, Isb() = 3 and rsb() = 7.

- Let m= By/B;/--- /By be an ordered partition in OP*. We define a partial order on

blocks B;’s as follows : B; > B; if each letter of B; is greater than every letter of Bj; in

other words, if the opener of B; is greater than the closer of B;.

Definition 2.2. Let m = By/By/--- / By be an ordered partition in OP. We say that
is a block descent in m if B; > B;i,. The block major index of m, denoted by bMaj ,
is the sum of the block descents in . A block inversion in 7 is a pair (¢,7) such that
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i < j and B; > Bj;. The block inversion number, denote by blnv 7, is the number of block
inversions in w. We also set cbMaj = (’2“) — bMaj and cblnv = (’;) — blnv.

For instance, if 7 = 6 8/5/1 4 7/3 9/2 € OP§, then there are four block inversions:
{6,8} > {5}, {6,8} > {2}, {56} > {2} and {3,9} > {2}, and two block descents at i = 1
and 4; thus blnv 7 = 4 and bmaj 7 = 1 + 4 = 5. Note also that cbMaj 7 = (2) -5=3
and cbInv 7= (5) —4=4.

Inspired by the statistic mak on the permutations in [6], Steingrimsson introduced its
analogues on OP¥ as follows:

mak = ros +lcs, (2.1)
lmak = n(k — 1) — (los +rcs), - (2.2)
mak’ = lob +rcb, (2.3)
lmak’ = n(k — 1) — (lcb+rob). (2.4)

In [19] Steingrimsson conjectured each of the following statistics on OP! is Euler-
Mahonian.

Conjecture 2.3. (Steingrimsson) Each of the following eight statistics is Euler-Mahonian
on OPE.

mak + bMaj, mak’ + bMaj, lmak + bMaj, lmak’ + bMaj,
mak + blnv, mak’ + blnv, lmak + blnv, lmak’ + bInv .

In this article, we prove that the last half of the above eight statistics are really Euler-
Mahonian. Steingrimsson also presented the following conjecture in [19].

Conjecture 2.4. (Steingrimsson) The statistics

cmajLSB = Isb + cbMaj + (l;)

cinvLSB = Isb + cbInv + (I;)

are Buler-Mahonian on OPE.

We also prove that cinvLSB is Euler-Mahonian.

3. MAIN RESULTS AND A REFINED CONJECTURE

In this section, we give joint distribution functions of the statistics which are the main
purpose of this article (see Theorem 3.3). From the joint distribution functions, we
conclude that the half of the statistics defined by Steingrimsson are Euler-Mahonian (see
Theorem 3.4). The main ingredients to obtain the generating functions are walk diagrams
and the transfer matrix method, which we explain in the next section. At the end of this
section we present a new conjecture which generalize the remaining half of Steingrimsson’s
conjecture in the viewpoint of the joint distribution (see Conjecture 3.7).
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Definition 3.1. For a permutation o of [n], the pair (i, §) is an inversion if 1 <i < j < n
and (i) > o(j). Let inv o be the number of inversions in o and

. n .
Cinvo = (2) —vao.

By convention, for any ordered partition w, we put inv 7 = inv(perm(r)) and cinv T =
cinv(perm(r)).

The following result due to Ksavrelof and Zeng [11] permits to reduce the original
conjectures in [19] almost by half. The rcader can also find a straightforward proof in [9].

Proposition 3.2. On OP! the following functional identities hold:
mak = lmak’ and mak’ = lmak.

. Let OP* be the set of all ordered partitions with & blocks. Consider the following two
generating functions of ordered partitions with k > 0 blocks:

¢k(a; z,y,t, u) - Z x(ma.k+blnv)1r ycinvLSB ™ ginv 7, cinv ”al"l, (31)
meOPk :

Ok (a; z,y,L, u) = Z x(lmak+b1nv)1r ycinvLSB ™ tinv ™ cinv w alnl) (32)
w€OPk

where |r| = n if 7 is an ordered partition of [n]. The aim of this article is to prove the
following theorem.

Theorem 3.3. We have
aF (x'l/) (';) [k]tm,uy!

y Y, Uy = ; 3.3
P T (1 abluy) 9
Qﬂk(a; z,Y, t’u) =ﬁk(—zy)ﬁM (34)

i (1~ alilsy)
We first show how to derive Euler-Mahonian statistics on ordered partitions from the
above theorem. By (3.1) and (3.2) we have

Y gkt gl — g (a59,1,1,1),
TEOPk

D glmektblom gl — o, (a;9,1,1, 1),
TeOPk

> BTG = 4y(a1,q,1,1) = gu(a; 1, 4,1, 1),
T€EOPF
Theorem 3.3 infers that the right-hand sides of the above three identities are all equal to

kqB)g) 1
g o = S ), 9
=1 q n2k

where the last equality follows directly from (1.1). Thus we can prove the following result,
which was conjectured by Steingrimsson [19].
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Theorem 3.4. The following inversion-like statistics are Euler-Mahonian on OPk:

mak +blnv, mak/ +blnv, Imak+blnv, lmak'+blnv, cinvLSB.

In other words, the generating functions of the above statistics over OPk are all equal to
[k]g!Sq(n, k).

By a similar argument on the'generating functions, we can easily obtain the following
result.

Theorem 3.5. The following statistics are Euler-Mahonian on OPE:
mak + blnv —(inv — cinv), lmak +bInv —(inv — cinv), cinvLSB +(inv ~ cinv).

As a further consequence of Theorem 3.3, we can give an alternative proof of the
following "hard” combinatorial interpretations for ¢-Stirling numbers of the second kind,
where the first two interpretations were proved by Ksavrelof and Zeng [11] and the third
interpretation was first proved by Stanton (see [21]).

Corollary 3.6. We have
Sy(n, k) = Z g = z gk T = Z ¢ m+(5)

nePk nePk wePk

As the reader may notice, the half of Steingrimsson’s conjectures are still open, i.e.
the remaining five statistics mak +bMaj, mak’ +bMaj, lmak + bMaj, Imak’ 4+ bMaj and
cmajLSB are conjectured to be Euler-Mahonian. From the reasoning on the symmetry
and numerical experiments we can expect more than Conjecture 2.3 and Conjecture 2.4.
Consider the following two generating functions of ordered partitions with k > 0 blocks:

§k(a§ z, y) = Z x(mak+bMaj)7r ycmajLSB ™ alwl’ (36)
T €OPk

7,'k(a,; z, y) - Z x(lma.k+bMaj)1r ycmajLSB w ahrl’ (37)
EeOPF

Then we expect the following more general conjecture would hold:

Conjecture 3.7. For k > 0, the following identities would hold:

L ak (ey) B[y
0 = (1, .
@z, y) = 2@ eyl 39

Hf=1(1 — afiley) .

Comparing Conjecture 3.7 with Theorem 3.3, one may notice that (3.9) lacks the sta-
tistics corresponding to inv and cinv. At this point we don’t have a guess on the statistics.
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4. ORDERED PARTITIONS AND WALKS IN DIGRAPHS

Let m € OPF be an ordered partition. We classify each element of [n] into the following
four classes. Let S(m) denote the set of i € [n] which is in a block composed of a single
element. We call the elements of S(7) the singletons of w. Let O(r) (resp. C()) denote
the set of the openers (resp. closers) which are not singletons. Let 7(7) denotes the set
of ¢ € [n] which is not an opener nor a closer. We call the elements of 7 () the transients
of w. Thus we easily see that O(m) UC(r) US(m) UT () = [n] is a disjoint union. We call
the 4-tuple (O(7),C(7),S(n), T (x)) the type of m. For instance, if 7 = 35/246/1/78,
then we have

O(m) =1{2,3,7}, C(n)=1{5,6,8}, S(r)={1} and T(r)={4}.

Let t = (1,12, t3,t4, 85,86, t7) be T-tuple of variables. We define the generating function
Qr(a;t) of the set OP* of ordered partitions as

Qk(a; t) — Z t(llcs+rcs)(OUS)1r tglcs+rcs)(’TUC)7r t;sb(TUC)w

TeOPk

% t;sb(T uC)m t;os(OUS)w téos(OUS)w t,(?lsb+rsb)(0U8)1r alﬂ‘l ] ( 41)

In this section we restate ordered partitions in terms of walk diagrams, then use the
transfer matrix method to obtain a determinantal expression for the generating function

Qr(a; t). ‘
Let D = (V, E) be the digraph on V = N? with edge set F defined by
E={e=(u,v)€eVxV]|u=v=(z,y)withy >0 or u—v=(0,1), (1,0), (1,-1)}.

For any integer k > 0, let Vi = {(¢,7) € V|i+j < k} and Dy, = (Vj, Ex) be the restriction
of the digraph D on Vj. Thus the number of vertices in Dy, is equal to
(k+1)(k+2)
-
An illustration of Dy is given in Figure 1. For each type of edges in D, we call an edge
e=(u,v)

e North if v =u+(0,1);

o Fast if v=u+(1,0);

e South-East if v=u+ (1,-1);

e Nullifv=nu.

Let e = (u,v) be an edge in Dy, where the coordinates of u is (p, q). Assign the weight of
the edge e to be

Ei=1+2+ - +(k+1) =

v(e) = { ati t2[p+ g+ 1)4, 4, if e is North or East;

at2 [les . if e is Null or South-East. (4.2)

Let Ap = (Ak(% 7)1« i<k be the adjacency matrix of Dy relative the above weight v. We
label the vertices of Dy by their ranks in the following total ordering: (i,7) < (#,4) if
and only if i+j <4+ 5 or (i+j =¢+5 and j > j'). Thus v; = (0,0), v = (0,1), v3 =
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1 2 3 k-1 k

FIGURE 1. The digraph Dy

(1,0), vs = (0,2), vs = (1,1), vg = (2,0),--- ,v; = (k,0). From this labeling, one easily
sees that, for k > 1, the k x k matrix Ay, is defined by the following recursive equation:

Apor | Ar
Ao=(1), A= Y ) , (43)
o

where Aj_; is the (k4 1) x (k + 1) matrix

Apor = (ath [k + 1 = tliga (85 + 6:419)) 11 et (44)

and Aj_; is the & — 1 x (k + 1) matrix

O
— =Bk+1
Apoy = | ——
Ak
with the k x (k + 1) matrix

Ak“l = (atil_lt”?_i[k]ts,ts (611 + 5i+1’j))1_<_i§k,15j$k+1 . (45)

Here §;; stands for the Kronecker delta and Op,, denotes the m x n zero matrix. For
instance, when k& = 2, we have

Ola a 0 0 0
0la alatr[2iszse atr[2s.ts 0
A — 0/0 O 0 aty [2]‘55»% aty [2]%#?6
2 010 0 af2lesta  al2is,ta 0
0/0 O 0 atp atz
010 0 0 0 0
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4.1. Encoding ordered partitions by walk diagrams. Let 7 = B;/B,/--- /By be
an ordered partition of [n] and ¢ an integer in [n]. The restriction B; N [i] of a block B;
on [1] is said to be active if B; # [i] and B; N [i] # 0, complete if B; C [{]. We define tho
trace of the ordered partition 7 on [¢] as an ordered partition T,(7r) on [i] with two kmds
of blocks, active or complete, i.e.,

Ti(m) = Bi(< 9)/Ba(< §)/ -+ - [ Be(< 1),

where B;(< 1) is the complete or active block B; N [i], while empty sets are omitted.
The sequence (T;())1<i<n is called the trace of the ordered partition 7. Let w; = (p;, ¢;)
be the pair such that p; and ¢; are the numbers of complete and active blocks of T;(r),
respectively.

A walk of depth k and length n in D is a sequence w = (wo,wy, . ..,wy,) of vertices in
D such that wy = (0,0), w, = (k,0) and (w;,w;+1) is an edge of D for i=0,...,n—1.
Moreover, the first coordmate p and the second coordinate g of w; are called the absc1ssa
and height of the step (w;,w;t1), respectively. Let QF be the set of walks of depth k and
length n and QF be the set of walks of depth k. We can visualize a walk w by drawing a
segment from w; to w;1; in the plane. For instance, if

w = ((0,0), (0,1), (0,2), (0,3), (0,3), (0,3), (1,3), (2,2), (3,1), (4,1), (5,0)),

then the illustration is given in Figure 2.

[§ 5
FIGURE 2. A walk in Qf, with two successive Null steps from (0, 3) to (0,3).

Definition 4.1. A walk diagram of depth k and length n is a pair (w,§), where w =
((Pi; :))osi<n is a walk in QF and & = (&)1<i<n 15 a sequence of integers such that

o 1 <& < qiy if the i-th step of w is Null or South-East,

o 1 <& < pimi+gim1+ 1 if the i-th step of w is North or East.

Denote by AX the set of walk diagrams of depth k and length n and by AF = Unso &%
the set of walk dlagrams of depth k. The following is the main result of this section.

Theorem 4.2. For each n > k > 1, the above construction gives a bijection 1 : AR —
OP¥ such that if Y((w,&)) = 7 for (w €) € Ak, then
(a) if the i-th step of w is North (resp. East), then i € O(r) (resp. i € S(r)) and
(les +res)i(m) =pi1, losi(m)=§& —1,
(Isb+1sb)i(m) = g1, rosi(m) =pi1+ ¢ +1-&;
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(b) if the i-th step of w is South-East (resp. Null), then i € C(m) (resp. i € T(m)) and
(les +res);(m) = pi-1, Isbi(m) =& — 1,
(Isb+1sb)i(m) = g1 — 1, 18bi(7) = g1 — &
4.2. Generating functions of walks. Given a walk w of finite length in Dy, define the
weight of a step (w;,w;t1) of abscissa p and height g by (4.2). The valuation v(w) of w is

the product of the weights of all its steps. From the transfer-matrix method (see e.g. [18,
Theorem 4.7.2]), it is easy to see that

_1\14% _ AT
Q)= v(w) = =) ;:::?j—ilf Ask’k’l)» (4.6)

wek

where (B;1,7) denotes the matrix obtained by removing the i-th row and j-th column of
B and I, is the k x k identity matrix. For instance, we have
D3 det(l2 - aA2; 6, 1) _ a2[2]t5,ts(at2t7 + tl(l - a’[Q]tam))
Q2(a" t) - = .
det(l — aA2) (1= a)(1 — a[2ltz,)(1 — ata)
It seems that Q(a;t) are messy rational functions in general, but, to prove Theorem 3.3,
it is sufficient to evaluate the following special cases of Qx(a;t):

felaiz,y,t,u) = Qi(a; 2, 2, 2,9, 1, u, ), 4.7)
gk(a; z,y, i ’U/) = Qk(a; 13 z, 1’ zy, t,u, y) (48)

From (4.1), we obtain
fk (a; z,y,t, u) = Z x(lcs+rcs+rsb)(TUC) wy((lsb+rsb)(OUS)+lsb(TUC)) ﬂtiﬂv wucinv 7ra|1r|
TEOPk
Ik (a. z,y,t u) — Z x(lcs +res+ lsb)(‘TUC)wy((lsb +1sb)(OUS)+1sb(TUC)) 7 ginv ﬂucinv 1ra|1r|
k] b ) : ?
neOPk

and these identities and the following proposition immediately combines the evaluation
of fx(a;z,y,t,u) and gi(a; z,y,t,u) to the proof of Theorem 3.3.

Proposition 4.3. The following functional identities hold on OPk:
mak + blnv = (les + res) + rsb(7 UC) + inv,
Imak + blnv = n(k ~ 1) — (les +res)(7 UC) — Isb(7 UC) — cinv,
“cinvLSB = (Isb +rsb)(O U S) + 1sb(7 UC) + inv +2 cinv .
5. DETERMINANT EVALUATIONS

The aim of this section is to prove the following theorem.
Theorem 5.1. For k > 1, we have

‘ _ abaG)[k],

fk(a" z, yvta 7.1.) - mv (51)
, k

gk(a; z,y,t,u) = a” [Pl (5:2)

f:l(l — azk~i]yy) ‘
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Let A} and A} be the matrices obtained from Aj by making the substitutions corre-
sponding to (4.7) and (4.8), respectively. Now, for each k > 0, let

Mk = Ik - (I,A;c and N;c = Ik - a,AZ.
Then we derive from (4.6), (4.7) and (4.8) that for each k > 1,
b = (CDMHF det(MiiE 1)

fk(a’; x) y) t7 u) = det Mk ) (5.3)
o (=D)Rdet(N; E, 1)
gk(a'$ z,Y, t: u) = det Nk . (54)

Since M} and Nj, are upper triangular, we have

k m
det My = [ J[@ = azlm — ilz),
m=1 i=0
k n-m

det Ne = [ J[ @ - aa[mlsy),

m=1 i=0
for each k > 1. The evaluations of det(My; %, 1) and det(Ni; k, 1) are far from trivial.
Theorem 5.2. Let k > 1 be a positive integer. Then

k-1 m
det(M; &, 1) = (-1)®)a*2E k]! T] [T - azlm — i + 1lay), (5.5)
m=1 i=1
k-1 k-m
det(Ni; , 1) = (-1)8)a® [k], ! H [T - az*mls,). (5.6)
m=1 k=1

5.1. Proof of (5.5). By the specialization, the matrix M is defined recursively by

M-y | My
My=(1), M= — , (5.7)
0k+1,’E:T I M
where . ‘ _
Mk—l = (5” — (L’L"—l [k +1- i]z,y((sij + 5i+1,j)) 1<i,j<k+1 (5‘8)
and My_1 is the k — 1 x (k + 1) matrix
O
— F—2,k+1
My = | ——
My
with the & x (k + 1) matrix
Mk-l = (—axi"lyk'i[k]t,u(éij -+ 5i+1,j)) 1<i<k, 1<j<k+1 " (59)
Let
Ki=k—-1= M,

2
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and let P, = (Mk;E, 1). In general we can define Py as follows:

Pi1 | Prs
FPo=|—7—"1,
X1 | Pyq
where Pj_; is a Kx_; x (k + 1) matrix, Xj_; is a (k + 1) x Kj_; matrix, and B_,isa

(k+1) x (k+ 1) matrix. We shall compute det P; by the following well-known formula
for any block matrix with an invertible square matrix A,

A|B
det = det A - det (D - C’A‘IB) .
¢|D |

Since Py, is an K}, x (k + 2) matrix, we can write

—P'k — < OKgL};‘:k‘FZ > ,

where Uy, is the (k + 1) x (k + 2) matrix composed of the last (k + 1) rows of Px. For

1<5<k+2let
‘ Pyt | Prs
Bi=|——"—
X1 I Iy i_l
denote the Kj x Kj matrix obtained from Py by replacing the right-most column with
the jth column of Py. Here P!_, is the (k + 1) x (k + 1) matrix obtained from Pi_1 by

replacing the right-most column with the jth column of Uy. Here we don’t have space to
give the detailed proof of (5.5), but the proof essentially reduces to the following theorem.

Theorem 5.3. Let k > 1 be a positive integer. Then we have

det Py k-1, k-1 o _—
Ty =~ Ve ke [ aa'le — iey), (5.10)
- =1
and
det P,f (G=1)(=2)  k(k=1) (etl—i)(k+2-5) E+1
= - k 5.11
ap -t v +1]t’"[j—1L,y o4
for1<j <k,
det Pi+! '
det kpk =ay [k + 1]t,u [k]x,y » (5.12)

and det PF*% = 0.

Lastly we shall note that the following identity is very useful in the proof of Theorem 5.3.
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Lemma 5.4. For0 < m < n,

k-1
Z( I)M—kx(k)y(" ") [ ] yH {1 - az’[n—1il,y} H {—az’[n - i]oy}

£=0 i=0 i=k
=@y [ ] TT{1 - eal—iley} (5.13)
miay iy

5.2. Proof of (5.6). We first introduce two generalizations of g-binomial coefficients. For
any sequence of non-zero functions F = {F,}%2, in finitely many variables ¢1,ts,... we
define F,,! = [];_; F and for any positive integers n and k,

m _ ey i#0<k<n,
: kir |0, otherwise.
Next, for any positive integers n and k, let

]TL, k[z,y = [n]my - xn—k[k]my:
and

k
For instance, we have |3,1[, , =1+ zy + z%® — 2? and
] 3 L _ (U +ay+ 22 (1 + 3y + 2%y — 2?)
20,, (1+zy)
Note that |n, k[, = [n — k], and |} [, = [}]..
We prove (5.6) by considering the following matrix Ni(}, a), which reduces to the matrix

Nj, by setting A = 1 and F,, = [n];,. Let Ni(A, a) be the matrix defined inductively as
follows:

k-1 .
] n [ _ H—j‘,’;]]::—f[lﬂ if0<k<n,
.Y 0 otherwise.

No()«, a)=(A)

Ni(A, ) orsGua)| M) ) (5.14)
, @) = Py .
’ Ozt l Ni-1(A, @)

where Ny_1 (), a) is the (k + 1) x (k + 1) matrix defined by
ﬁk—l()\, a) = ()\(ijj - ami"l[k +1- i]wy(éij + 5i+1,j) )
and Ny_1(),a) is the k — 1 x (k + 1) matrix

O 3an
Ny
with the k x (k + 1) matrix

Nk—l = (“ayk_iFk : (5ij + 5i+1’j))15i5k,15j5k+1 . (516)

and

(5.15)

1<i,j<k+1
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For positive integers m and [, define the row vector X ™t of degree % as follows: For
1<i<k+1landl<j<i,the (i(—i;—12+j)thentryofXZ"l is equal to

X{,"j” _ (_1)i+m+lx—(m+l—1)(i—m—l)+(j;l) y("-';")

Fi_pm! 1—1 m
—_— . 5.17
><[z'-m—l]m,! [m—l—l—I]F]m-{—l—ij (5.17)

Here we use the convention that F,,! = [n]y,! = 1if » < 0. For example, if £ =
m=1=1, then

’ R, F . Ry RBF
L1 _ _f2 2 31/ 253y
x5t = (001,220, 2t o).
Then the following lemma shows that the vectors X Z"l 0O<m<k-1,1<1<k-m)
are eigenvectors of the matrix Ny(}, a), and plays essential role to prove (5.6).

Lemma 5.5. Let k be a positive integer. Let m and | be positive integers such that
0<m<k—-1andl<!<k—~m. Then we have

X Ne(h 0) = () = az* Y mlgy) X7 (5.18)

Let Ni(), a) denote the matrix obtained from Nj(), a) by deleting the Kth row and the
first column. Then the following corollary easily follows from Lemma 5.5 and the fact
that the last entry of X7 is always zero.

Corollary 5.6. Let k be a positive integer. Then there ezists a polynomial p()) such that
k-1 k-m

det Ne(M,a) = (WX [T T (A — az* {mley) - (5.19)

m=1 [=1

We regard det Ni(A,a) as a polynomial in A and check the degree and the leading
coefficicnt in the both sides of (5.19). Then it is not hard to sce the following theorem
holds. We omit the detail.

Theorem 5.7. We have
k-1 k-m .
det Ni(), a) = (—=1)*ED72¢k BINETT [ (2 — et~ mlay) - (5.20)

m=1 [=1
Finally, by setting A = 1 and F,, = [n];,, we obtain (5.6).
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