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Abstract

We explain how the construction of double affine Hecke algebras of Vasserot [Duke
Math. 126 (2005)] carries over the case of unequal parameters by examing the simplest
case. In a technical language, we give a realization of double affine Hecke algebras of

type (C_{1}^{\vee} , C_{1}) with (4+1) parameters (while Vasserot�s construction treats the same

case with (1+1) parameters).

Introduction

It is a commonly accepted �fact� that a K‐theoretic realization of an algebra attached to a

semi‐simple algebraic group obtains one extra action of the character group of a torus in a

nice way when we take account into a torus action.

When this is applied to the Steinberg variety, which originally gave a geometric realization
of (finite) Weyl groups (cf. [Spr76]), then we obtain a geometric realization of an affine Hecke

algerbra (cf. [Lus85]). When this is applied to a quiver variety of finite type, then we get a

quantum loop algebra (cf. [NakOl]).
When we apply this idea to the affine version of Steinberg varieties, then we should obtain

\mathrm{a} (loop extension�� of an affine Hecke algebra, which is now widely recognized as the double
affine Hecke algebra in the sense of Cherednik (cf. [Che95]).

In fact, Vasserot [Vas05] pursues this analogy to obtain his geometric realization of double
affne Hecke algebras in terms of certain subvarieties of the �cotangent bundle� of the affine

flag varieties.

Here Vasserot obtains a geometric realization of a double affine Hecke algebra with (1+1)
parameters since he starts from a geometric realization of an one‐parameter affne Hecke

algebra due to Kazhdan‐Lusztig and Ginzburg (cf. [CG97]). (Here the meaning of (1+1) is
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that the first
((1 � stands for the parameter which appears in some Hecke (quadratic) relation

and the second (1� stands for the parameter which corresponds to the extra parameter

introduced in the affinization.)
In our previous paper [\mathrm{K}06\mathrm{a}] ,

we found a geometric realization of an affine Hecke algebra
with 3‐parameters of type C_{n} by modifying the construction of Lusztig and Ginzburg. There‐

fore, it is natural to consider its counter‐part in the setting of double affine Hecke algebra.
In view of [Vas05], it is rather straightforward to achieve this and we obtain a geometric
realization of the double affine Hecke algebra of type C_{n} with (3+1) parameters.

However, as Noumi noticed (cf. Sahi [Sah99] and the references therein), a double affine

Hecke algebra of type C_{n} acquires a distinguished two‐parameter deformation \mathcal{H} usually

called the Cherednik‐Noumi‐Sahi algebra (the CNS algebra for short).
In this article, we explain how to give a geometric realization of the CNS algebra by

adapting its rank one counterpart.
As in [Vas05], the main point is to justify the following story:

Let \mathcal{G} be the Kac‐Moody group associated to G=Sp(2n, \mathbb{C})(n\geq 2) . Let \mathcal{B} be the fiag

variety of \mathcal{G} . Consider a suitable vector bundle \mathcal{F} over B with a map  $\nu$ to a vector space V.

Then, we form a fiber product \mathcal{Z} :=\mathcal{F}\times \mathrm{v}\mathcal{F} . Consider a suitable \mathcal{G}\times(\mathbb{C}^{\times})^{5} ‐actionl on \mathcal{F}.

Then, we want to prove

�Theorem A. We have an isomorphism

K^{\mathcal{G}\times(\mathbb{C}^{\times})^{5}}(\mathcal{Z})\cong \mathcal{H},

where the LHS is the \mathcal{G}\mathrm{x}(\mathbb{C}^{\times})^{5} ‐equivariant K ‐theory with complex coefficient, together with

the ring structure given by the convolution operation.

For an algebraic group H , let R(H) be the finite‐dimensional representation ring of H

with complex coefficient.

Proposition B. We have

R(\mathcal{G}\times(\mathbb{C}^{\times})^{5})\cong R((\mathbb{C}^{\times})^{5})\cong Z(\mathcal{H})/(\mathrm{q}=1) ,

where \mathrm{q} is some distinguished element of \mathcal{H}.

Notice that the first isomorphism claims R(\mathcal{G})\cong \mathbb{C}[\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v}] ,
where triv is the trivial repre‐

sentation of \mathcal{G} . In other words, we have no finite dimensional representation of \mathcal{G} except for

the trivial one.

1In the main part of this article, we restrict ourselves to the case n=1 . In this case, the possible number

of \mathbb{C}^{\times} becomes 4 since the number of direct summands of \mathcal{F} is strictly smaller (2 summands) than that of

n\geq 2 case (3 summands). It is expected from the aspect of so‐called \mathrm{e} $\ddagger$liptic Hecke algebras studied by

Saito‐Shiota (cf. [Sho06]).
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For each semisimple element a\in \mathcal{G}\times(\mathbb{C}^{\times})^{5} , we have a map

R(\mathcal{G}\times(\mathbb{C}^{\times})^{5})\ni[V]\mapsto \mathrm{t}\mathrm{r}(a, V)\in \mathbb{C}
which we denote by \mathbb{C}_{a}.

�Theorem� C. Let a\in \mathcal{G}\times(\mathbb{C}^{\times})^{5} be a semi‐simple element. Let \mathcal{Z}^{a} be the set of a‐fixed
points of \mathcal{Z} . Then, we have an isomorphism2

K(\mathcal{Z}^{a})\cong \mathbb{C}_{a}\otimes_{Z(\mathcal{H})}\mathcal{H},
where the LHS is the K ‐theory with complex coefficient, equipped with the ring structure

given by the convolution operation.

�Theorem� \mathrm{C} should be derived from �Theorem� A by means of a localization argu‐
ment. However, we do not know how to do this in the setting of Kac‐Moody groups, As a

consequence, the rigorous relationship between �Theorems� A and \mathrm{C} is rather unclear to us.

Moreover, as we saw in Proposition \mathrm{B}
, the semi‐simple element of \mathcal{G} in a looks nothing

to do since every element of \mathcal{G} acts by 1 for every finite‐dimensional representation of \mathcal{G}.
It means that the LHS can vary significantly with the RHS fixed in the description of
�(Theorem� C. This is clearly strange

The main difficulties preventing us from the proof of �Theorem� A is the following:
1. The variety \mathcal{F} is smooth but infinite‐dimensional. It implies that we do not know a

good definition of K‐groups;

2. The map  $\nu$ is not proper. Hence, the convolution operation (ring structure of  K^{\mathcal{G}\times(\mathbb{C}^{\times})^{5}}(\mathcal{Z}) )
is not necessarily well‐defined;

3. The group \mathcal{G}\times(\mathbb{C}^{\times})^{5} cannot act on \mathcal{F} as we want to be.

The difficulties 1. and 2. are in common with [Vas05]. The only new difficulty arising from
our setting is 3. The author has no tool to overcome these difficulties in a straightforward
way.

Instead, we regard �Theorem� \mathrm{C} as a re‐incanation of �Theorem� A. However, it also
needs a suitable correction in order to deduce non‐trivial conclusions.

For this, we introduce an embedding of \mathbb{C}_{a}\otimes_{Z(\mathcal{H})}\mathcal{H} into a topological algebra \mathrm{E}\mathrm{n}\mathrm{d}2\mathrm{t}.,
whose structure and the embedding essentially depends on a . Then, we take the closure
of \mathbb{C}_{a}\otimes_{Z(?\{)}\mathcal{H} in \mathrm{E}\mathrm{n}\mathrm{d}\mathrm{U}\mathrm{t}_{a} . This makes subtle differences between the completed algebras,
which depend on the choice of semi‐simple elements of \mathcal{G} . This strategy itself is similar to

[Vas05] and our new finding is that we can introduce extra torus action after
((localization

(cf. Lemma 3.4).
Therefore, our main result (Theorem 4.2) in this article is an improvement of �Theorem�

\mathrm{C} , which depends on the data of semi‐simple elements of \mathcal{G}.
2This isomorphism is consistent with the description of the center of \mathcal{H} . See eg. Theorem 1,8.
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1 Preliminaries

Throughtout this article, we fix the base field to be \mathbb{C} . A variety is a possibly infinitely

many disjoint union of noetherian normal schemes of finite type over \mathbb{C} . For a variety \mathcal{X},

we denote by K(\mathcal{X}) the Grothendieck group of the category of coherent sheaves on \mathcal{X} with

coefficient \mathbb{C} . It coincides with the Grothendicek group of the locally eree sheaves oi \mathcal{X} (with

coefficient \mathbb{C} ) if X is smooth.

Let G :=SL(2, \mathbb{C}) . We define two subgroups B and T of G as:

T:=\{\left(\begin{array}{ll}
a & 0\\
0 & a^{-1}
\end{array}\right);a\in \mathbb{C}^{\times}\}\subset B:=\{\left(\begin{array}{ll}
a & b\\
0 & a^{-1}
\end{array}\right);a\in \mathbb{C}^{\times}, b\in \mathbb{C}\}.
Let X^{*}(T) be the character group of T . Let  $\epsilon$\in X^{*}(T) be the positive fundamental weight

with respect to the choice of B.

1.1 DAHAs of type A_{1}^{(1)}
In the following, a variable written by a boldface (eg. \mathrm{t}, \mathrm{q}, \ldots ) indicates that we treat it as

an indeterminant.

Let  A_{0} :=\mathbb{C}[\mathrm{t}_{0}^{\pm 1}, 1_{1}^{\pm 1}], A_{1} :=A_{0}[\mathrm{q}^{\pm 1}] ,
and A:=A_{1}[(\mathrm{t}_{0}^{*})^{\pm 1}, (\mathrm{t}_{1}^{*})^{\pm 1}].

Definition 1.1. An affine Hecke algebra of type A_{1}^{(1)} is an \mathcal{A}_{0}‐algebra \mathbb{H} generated by T_{0}

and T_{1} subject to:

(T_{0}+1)(T_{0}-\mathrm{t}_{0}^{2})=0 and (T_{1}+1)(T_{1}-\mathrm{t}_{1}^{2})=0 . (1.1)

Lemma 1.2. The group W generated by the images of T_{0}, T_{1} in the residual algebra \mathbb{H}/(\mathrm{t}_{0}=

1=\mathrm{t}_{1}) is isomorphic to the affine Coxeter group of type A_{1}^{(1)} with its Coxeter generators as

the images s_{0}, s_{1} of T_{0}, T_{1}.

Theorem 1.3 (Bernstein‐Lusztig). We put Y :=T_{1}T_{0} . Then, we have

\mathbb{H}=(A_{0}\oplus A_{0}T_{1})\otimes_{\mathbb{C}}\mathbb{C}[Y^{\pm 1}]

as vector spaces.

For a polynomial ring A_{1}[X^{\pm 1}] ,
we define an A_{1}‐linear action3 of W on it as

s_{0}(X)=\mathrm{q}^{2}X^{-1}, s_{1}(X) :=X^{-1} (1.2)

\overline{3\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}}action is supposed to be compatible with the multiplications,
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Theorem 1.4 (Noumi). There exists a two‐parameter family  $\pi$=$\pi$_{\mathrm{t}_{0}^{*},\mathrm{t}_{1}^{*}} of faithful represen‐
tations \mathbb{H} on the Laurant polynomial ring \mathcal{A}[X^{\pm 1}] such that:

 $\pi$(T_{0}):=\displaystyle \mathrm{t}_{0}^{2}+\frac{(1-\mathrm{c}X^{-1})(1-\mathrm{d}X^{-1})}{1-\mathrm{q}^{2}X^{-2}}(s_{0}-1)
 $\pi$(T_{1}):=\displaystyle \mathrm{t}_{1}^{2}+\frac{(1-\mathrm{a}X)(1-\mathrm{b}X)}{1-X^{2}}(s_{1}-1) ,

where a :=\mathrm{t}_{1}\mathrm{t}_{1}^{*}, \mathrm{b} :=-\mathrm{t}_{1}(\mathrm{t}_{1}^{*})^{-1} ,
\mathrm{c} :=\mathrm{q}\mathrm{t}_{0}\mathrm{t}_{0}^{*} , and \mathrm{d} :=-\mathrm{q}\mathrm{t}_{0}(\mathrm{t}_{0}^{*})^{-1}

Definition 1.5. The CNS algebra of rank one is defined as the subalgebra \mathcal{H}\subset \mathrm{E}\mathrm{n}\mathrm{d}_{A}A[X^{\pm 1}]
generated by  $\pi$(\mathbb{H}) and A[X^{\pm 1}].

Remark 1.6. The algebra \mathcal{H} can also be presented by its generators and relations as in

[Sahg9].

Theorem 1.7 (Poincaré‐Birkhoff‐Witt type theorem). We have an isomorphism

\displaystyle \mathcal{H}\cong\bigoplus_{l,m\in \mathbb{Z}}AX^{l}Y^{m}\oplus\bigoplus_{l,m\in \mathbb{Z}}\mathcal{A}X^{l}T_{1}Y^{m}
of free A‐modules.

1.2 Highest weight modules of \mathcal{H}

Let M be an irreducible \mathcal{H}‐module of at most countable dimension. By Diximir�s version of
Schur�s lemma, each element of the center of \mathcal{H} acts on M by some scalar.

Theorem 1.8 (Bernstein‐Lusztig). 1. The center of \mathbb{H} is  A_{0}[Y+Y^{-1}],\cdot

2. The center of \mathcal{H} is A.

Remark 1.9. It is known that the center of \mathcal{H} becomes pretty large if one specialize \mathrm{q} to a

root of unity (cf. Oblomkov [Obl04] or Shinkado [Shn0 $\eta$ ).

Corollary 1.10. The character of the center of \mathbb{H} can be identified with a conjugacy classes

of semi‐simple elements of G\times(\mathbb{C}^{\times})^{2} via the evaluation map

(s, t_{0}, t_{1}):\mathcal{A}_{0}[Y+Y^{-1}]\ni f(Y, \mathrm{t}_{0}, \mathrm{t}_{1})\mapsto f( $\eta$, t_{0}, t_{1})\in \mathbb{C},

where \left(\begin{array}{ll}
 $\eta$ & 0\\
0 & $\eta$^{-1}
\end{array}\right) is an element4 of T in the G ‐conjugacy class of s.

4Every possible  $\eta$ gives the same value.
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Definition 1.11 (Highest weight modules). A finitely generated \mathcal{H}‐module M is said to be a

highest weight module iff its restriction to \mathbb{H} is a direct sum of finite dimensional \mathbb{H}‐modules.

Let q be a non‐zero complex number. We put \overline{q}:=\left(\begin{array}{ll}
q & 0\\
0 & q^{-1}
\end{array}\right)\in SL(2, \mathbb{C}) .

Proposition 1.12. Let M be an irreducible \mathcal{H} ‐module with \mathrm{q} acting by q . Consider a

direct sum decomposition {\rm Res}_{\mathbb{H}}^{\mathcal{H}}M\prime=\oplus_{i}M_{i} of M into finite‐dimensional \mathbb{H} ‐modules. If

(s, t_{0}, t_{1})\in T\times(\mathbb{C}^{\times})^{2} is the (generalized) central character of M_{0}\neq 0 ,
then every cenral

character of M_{i} is contained in the set \{(q^{n} $\eta$ s, t_{0}, t_{1});m\in \mathbb{Z}\}.

Consider an equivalence relation \sim_{q} on T\times(\mathbb{C}^{\times})^{2}=(\mathbb{C}^{\times})^{3} generated by:

(s, t_{0}, t_{1})\sim_{q}(s^{-1}, t_{0}, t_{1}) ,
and (s, t_{0}, t_{1})\sim_{q}(\tilde{q}s, t_{0}, t_{1}) .

For each  $\lambda$\in(\mathbb{C}^{\times})^{3}/\sim_{q} , we denote by \mathcal{O}_{ $\lambda$}^{q} the category of finitely generated \mathcal{H}‐module

such that all of its (generalized) central characters as \mathbb{H}‐modules belongs to  $\lambda$.

Corollary 1.13. The category of finitely generated \mathcal{H} ‐modules with \mathrm{q} acting by q decomposes

into the direct sum of \mathcal{O}_{ $\lambda$}^{q}s.

1.3 An affine flag variety of SL(2, \mathbb{C})
Consider the groups

LG:=\{\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right);a, b, c, d\in \mathbb{C}((z)), ad- bc=1\}\supset LG\geq 0:=\{\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right);a, b, c, d\in \mathbb{C}[[z]]\}
obtained as some rational points of G ,

which we regard as algebraic groups over \mathbb{C} . We have

a canonical surjection
LG_{\geq 0}\rightarrow G

obtained by the map given by taking the residue modulo z\mathbb{C}[[z]] of their coordinates. We

define I to be the pullback of B via this map. We have an extension

1\rightarrow LG\rightarrow \mathcal{G}\rightarrow \mathbb{C}^{\times}\rightarrow 1 (exact),

whose multiplication rule is given by

(LG\times \mathbb{C}^{\times})^{2}\ni((h_{1}(z), c_{1}), (h_{2}(z), c_{2}))\mapsto(h_{1}(z)h_{2}(c_{1}z), c_{1}c_{2})\in LG\times \mathbb{C}^{\times}
By restricting this extension to I\subset LG ,

we obtain a subgroup \mathcal{I}\subset \mathcal{G}.

Let V_{1} be the vector representation of G with its T‐eigenvectors v+ (of weight  $\epsilon$ ) and

 v_{-} (of weight - $\epsilon$ ). We equip  V_{1}\otimes \mathbb{C}((z)) with an action of g via an extension of a natural

inclusion

LG\rightarrow GL(V_{1}\otimes \mathbb{C}((z)))\subset \mathrm{E}\mathrm{n}\mathrm{d}_{\mathbb{C}}(V_{1}\otimes \mathbb{C}((z)))
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to \mathcal{G} by letting \mathbb{C}^{\times} act by degree m‐character on z^{m}. Since \wedge^{2}V_{1} is isomorphic to a trivial

representation of G , we have a natural identification

\wedge^{2}(V_{1}\otimes \mathbb{C}((z)))\cong \mathbb{C}\otimes_{\mathbb{C}}\mathbb{C}((z))

of \mathcal{G}‐modules, where \wedge^{2} is taken as \mathbb{C}((z)) ‐vector spaces. Consider the set

\displaystyle \mathcal{B}:=\{E_{0}\subset E_{1}\subset z^{-1}E_{0}\subset V_{1}\otimes \mathbb{C}((z));\dim_{\mathbb{C}}E_{1}/E_{0}=1, \bigwedge_{[[t]]}^{2}E_{0}=\mathbb{C}[[z]]\subset \mathbb{C}((z))\},
where \displaystyle \bigwedge_{[[t]]}^{2} denotes the wedge product as \mathbb{C}[[t]] ‐modules. For the exhaustive sequence \{F_{i}\}_{i}
of \mathbb{C}‐vector subspaces

F_{0}:=V_{1}\otimes \mathbb{C}[[z]]\subset F_{1}:=V_{1}\otimes z^{-1}\mathbb{C}[[z]]\subset\cdots\subset V_{1}\otimes \mathbb{C}((z)) ,

we define B_{i} :=\{(E_{0}, E_{1})\in \mathcal{B}_{7}\cdot E_{0}\subset F_{i}\} as a subset of \mathcal{B}_{i} . It is straightforward to see that
each \mathcal{B}_{i} admits a scheme structure by regarding it as a subscheme of a suitable Grassmanian.

Clearly, each embedding \mathcal{B}_{i}\subset \mathcal{B}_{i+1} defines an embedding of schemes. It follows that \displaystyle \lim_{\rightarrow i}\mathcal{B}_{i}
equip \mathcal{B} with a structure of \mathrm{i}\mathrm{n}_{\wedge}\mathrm{d}-schemes on \mathcal{B}

, which we denote by the same letter. We refer
this as an affine flag variety of \mathrm{s}\mathrm{t}_{2} . We have a natural \mathcal{G}‐action on \mathcal{B} extending that of LG
at the level of points. This makes \mathcal{B} into a homogeneous space of \mathcal{G} with its stabilizer \mathcal{I} . We
have two‐dimensional torus \mathbb{T}\subset g such that \mathbb{T}\cap G=T.

Lemma 1.14. For each pair of integers l, m\in \mathbb{Z} , we define a \mathbb{C}[[z]] ‐lattice

E(l, m):=z^{l}\mathbb{C}[[z]]v_{+}\oplus z^{m}\mathbb{C}[[z]]v_{-}\subset V_{1}\otimes \mathbb{C}((z)) .

Then, we have

\mathcal{B}^{\mathrm{T}}=\{E_{0}=E(m, -m)\subset E_{1}=E(m-1, -m) or E(m, -m-1);m\in \mathbb{Z}\}
as sets.

Corollary 1.15. Define a projective action of W on V_{1}\otimes \mathbb{C}((z)) as

s_{0}(z^{m}v_{ $\sigma$})=\{
z^{m-1}v_{-} ( $\sigma$=+) z^{m}v_{-} ( $\sigma$=+)

-z^{ $\tau$ n}v_{+} ( $\sigma$=-)
�

-z^{m+1}v_{+} ( $\sigma$=-)' s_{1}(z^{m}v_{ $\sigma$})=\{
for each m\in \mathbb{Z} . We have

B^{\mathrm{T}}=W(\mathbb{C}[[z]]v_{+}\oplus \mathbb{C}[[z]]v_{-}\subset\prime^{-1}\mathbb{C}[[z]]v_{+}\oplus \mathbb{C}[[z]]v_{-})
In particular, the group W\cong N_{\mathcal{G}}(\mathbb{T})/\mathrm{T} acts transitively on the set B^{\mathbb{T}}.
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1.4 Exotic affine Springer map

Consider the linear subspace

\mathcal{V}:=(\mathbb{C}^{2})\otimes(\mathbb{C}v_{+}\oplus V_{1}\otimes z\mathbb{C}[[z]])\subset(\mathbb{C}^{2})\otimes(V_{1}\otimes \mathbb{C}((z)))=:\mathrm{V},

where GL(2, \mathbb{C}) acts on the first component as a vector representation and \mathcal{G} acts on the

second component of V (of the external tensor products). The inclusion \mathcal{V}\subset \mathrm{V} is clearly
\mathcal{I}‐stable. Moreover, the GL(2, \mathbb{C})‐action and the \mathcal{I}‐action (or the \mathcal{G}‐action) on \mathcal{V} (or V)
commutes with each other. As a consequence, we have a vector bundle� \mathcal{F} over \mathcal{B} whose

fiber over \mathcal{I} is \mathcal{V} . Using this, we form a \mathcal{G}\times GL(2, \mathbb{C}) ‐equivariant composition map of sets6

1.5 Assumption on parameter

In the following, we fix an element

a=(s,  $\tau$, q_{0}, q_{1}, r_{0}, r_{1})\in(\mathbb{C}^{\times})^{5}

satisfying:

(\star) $\tau$, r_{0}, r_{1} are not roots of unity.

We also regard a as an element \mathcal{G}\times GL(2, \mathbb{C})\times(\mathbb{C}^{\times})^{2} as:

s\in T\subset G, (s,  $\tau$)\in \mathrm{T}\subset \mathcal{G}, \left(\begin{array}{ll}
q_{0} & 0\\
0 & q_{1}
\end{array}\right)\in GL(2, \mathbb{C}) , (r_{0}, r_{1})\in(\mathbb{C}^{\times})^{2}.
2 Some completions of DAHA of type A_{1}^{(1)}
We work in the same setting as in the previous section. By definition, \mathcal{H} acts on A[X]
faithfully. Let  $\Lambda$ be a countable subset of maximal ideals of \mathcal{A}[X^{\pm 1}] . For each N>0 ,

we

have a map

\displaystyle \mathrm{e}\mathrm{x}_{ $\Lambda$}^{N}:\mathcal{A}[X^{\pm 1}]\rightarrow \mathcal{A}[X^{\pm 1}]_{ $\Lambda$}^{N}:=\prod_{\mathfrak{m}\in $\Lambda$}A[X^{\pm 1}]/\mathfrak{m}^{N}
5Notice that \mathcal{F} is not a vector bundle in some sense since it has uncountable rank (and hence not even

quasi‐coherent). Here we naively claim so because we do not need to justify this in the later part of this

paper.
6The map  $\nu$ makes sense as a map of pro‐ind‐varieties since \mathbb{C}[[z]] is written as the limit of an inverse

system of finite‐dimensional vector spaces. The fiber of a point on V along  $\nu$ makes sense as an ind‐variety.
However, we avoid to count this type of difficulty in this article.
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given by the degree7 (<N)‐terms of the expansion of a polynomial in A[X^{\pm 1}] along the all

points of  $\Lambda$.

Proposition 2.1. The subset \mathcal{H}\subset \mathrm{E}\mathrm{n}\mathrm{d}_{\mathbb{C}}A[X^{\pm 1}] defines a subset of \mathrm{E}\mathrm{n}\mathrm{d}_{\mathbb{C}}\mathcal{A}[X^{\pm 1}]_{ $\Lambda$}^{N} if and

only if  $\Lambda$ is stable under the  W ‐action on A[X^{\pm 1}] given as the scalar extention of (1.2).
Proof. A direct consequence of Corollary 1.13 and Remark 2.2. \square 

Remark 2.2. An automorphism  $\theta$ of  A[X^{\pm 1}] induces an automorphism of \mathcal{A}[X^{\pm 1}]_{ $\Lambda$}^{N} if and

only if  $\theta$( $\Lambda$)= $\Lambda$.
Assume that W acts transitively on  $\Lambda$ . Let  0\in $\Lambda$ be a point. Then, we define a sequence

of sets \{$\Lambda$_{m}\}_{m} inductively as:

$\Lambda$_{0} :=\{0\} , and $\Lambda$_{m} :=s_{0}$\Lambda$_{m-1}\cup s_{1}$\Lambda$_{m-1}\subset $\Lambda$.

Then, we form an inverse system

A[X^{\pm 1}]_{$\Lambda$_{l}}^{N}\rightarrow \mathcal{A}[X^{\pm 1}]_{$\Lambda$_{m}}^{N}
if l\geq m . Let A((X))_{ $\Lambda$}^{N} denote the limit of this inverse system. We introduce a topology8 on

A((X))_{ $\Lambda$}^{N} by setting its open sets as

\mathrm{k}\mathrm{e}\mathrm{r}[A((X))_{ $\Lambda$}^{N}\rightarrow \mathcal{A}[X^{\pm 1}]_{$\Lambda$_{m}}^{N}] for all m.

Lemma 2.3. Keep the settings as above. For each N>0 , the natural map \mathcal{A}[X^{\pm 1}]\rightarrow
\mathcal{A}((X))_{\mathrm{A}}^{N} is a dense open embedding.
Remark 2.4. Notice that if  $\tau$ is a root of unity, then every  W‐orbit is finite. In particular,
the above completion procedure gives a finite direct sum of finite dimensional vector spaces
and we have no chance to obtain an embedding as in Lemma 2.3.

Proposition 2.5. The elements T_{0}, T_{1}\in \mathcal{H} acts on \mathcal{A}((X))_{ $\Lambda$}^{N} continuously.
The summary of the construction of this section is:

Theorem 2.6. Fix an element a\in(\mathbb{C}^{\times})^{5} . Let \mathrm{A} :=Wa. For each N>0 ,
we have an

embedding
\mathcal{H}/(\mathrm{q}= $\tau$, \mathrm{t}_{0}=t_{0}, \ldots)\rightarrow \mathrm{E}\mathrm{n}\mathrm{d}A((X))_{ $\Lambda$}^{N},

where q, t_{0}, t_{1}, t_{0}^{*}, t_{1}^{*}\in \mathbb{C}^{\times} are some numbers satisfying

q^{2}= $\tau$, (t_{1})^{2}=-q_{0}q_{1}, (t_{1}^{*})^{2}=-q_{0}/q_{1}, (t_{0})^{2}:=-q_{0}q_{1}r_{0}r_{1} $\tau$, (t_{0}^{*})^{2}=-\displaystyle \frac{q_{0}r_{0}}{q_{1}r_{1}}.
Moreover, the closure of this embedding contains the ring multiplication of A((X))_{ $\Lambda$}^{N} on itself.

Proof. Note that the algebra structure on the RHS does not depend on the value of t_{0}, t_{1} ,
. . ..

Hence, the result is immediate from the discussion of this section and Definition 1.5. \square 

Remark 2.7. The algebra \mathcal{A}((X))_{ $\Lambda$}^{N} in Theorem 2.6 is the algebra \mathfrak{A}_{(l} mentioned in the

introduction.

7This degree is counted via the local uniformizers along \mathrm{m}.

8This is a natural topology coming from the inverse system.
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3 Geometry of basic representations

We work under the same setting as in the previous section.

Theorem 3.1. We have an isomorphism

X^{*}(\mathrm{T})\ni $\gamma$\mapsto[\mathcal{G}\times^{\mathcal{T}}$\gamma$^{-1}]\in \mathrm{P}\mathrm{i}\mathrm{c}\mathcal{B}.

Let a be an element of \mathrm{T}\times GL(2, \mathbb{C})\times(\mathbb{C}^{\times})^{2} . We have Z_{\mathcal{G}}(s,  $\tau$) , G\times \mathbb{C}^{\times}\subset \mathcal{G} , where the

second embedding arises from the natural embedding of G into the constant coefficient part

of LG.

Lemma 3.2. We have Z_{\mathcal{G}}(s,  $\tau$)\subset G\times \mathbb{C}^{\times} as algebraic subgroups of LG.

Definition 3.3. Let us introduce \mathrm{a}(\mathbb{C}^{\times})^{2}‐action on V_{1}\otimes \mathbb{C}((z)) by letting the first \mathbb{C}^{\times} act

as the scalar multiplication on the whole vector space and letting the second \mathbb{C}^{\times} act trivially
on V_{1} but dilates z^{m} as \mathbb{C}^{\times}\times \mathbb{C}((z))\ni(c, z^{m})\mapsto c^{m}z^{m}\in \mathbb{C}((z)) . We denote this action by

$\kappa$_{0}:(\mathbb{C}^{\times})^{2}\mathrm{O}V_{1}\otimes \mathbb{C}((z)) .

By duplicating the $\kappa$_{0} ‐action using the isomorphism \mathrm{V}\cong V_{1}\otimes \mathbb{C}((z))\oplus V_{1}\otimes \mathbb{C}((z)) ,
we

define (\mathbb{C}^{\times})^{4}‐action on V as

(q_{i}, r_{i})\in(\mathbb{C}^{\times})^{2} acts on the i‐th component of V by $\kappa$_{0} for i=1 ,
2.

We refer this (\mathbb{C}^{\times})^{4}‐action as the  $\kappa$‐action. Here we naturally regard (\mathbb{C}^{\times})^{4} as a subgroup
of \mathrm{T}\times GL(2, \mathbb{C})\times(\mathbb{C}^{\times})^{2} as in §1.5. By letting it act on the first factor trivially, we define a

(\mathbb{C}^{\times})^{4}‐action on B\times \mathrm{V} or \mathcal{F}.

Lemma 3.4. The  $\kappa$ ‐action on \mathcal{B}\times \mathrm{V} preserves \mathcal{F}^{a} and commutes with the Z_{\mathcal{G}}(s,  $\tau$) ‐action.

Remark 3.5. At a frst glance, the assumption of Lemma 3.4 may look restrictive. However,

all choices of (s,  $\tau$) in a single W ‐orbit give equivalent completions of \mathcal{H} . In other words, we

can freely assume the setting of Lemmas 3.2 and 3.4.

We have

\mathcal{F}=\{(g\mathcal{I}, X)\in \mathcal{G}/\mathcal{I}\times \mathrm{V};X\in g\mathcal{V}\} as sets.

By (\star) , it is straightforward to see that the set of a‐fixed points \mathrm{V}^{a} of V is a finite‐

dimensional vector space. Together with Lemma 3.2, the set of a‐fixed points \mathcal{F}^{a} of \mathcal{F} is a

disjoint union of infinitely many finite rank vector bundles on flag varieties9 of Zg (s,  $\tau$) .

Therefore, we regard \mathcal{F}^{a} as an infinite disjoint union of flag varieties in the below.

Lemma 3.6. We have a natural isomorphism W\cong N_{\mathcal{G}}(\mathrm{T})/\mathbb{T}.

9Thanks to Lemma 3.4, we know that it is either \mathbb{P}^{1} or one point.
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For each w\in W , we denote its lift in \mathcal{G} by w\in N_{\mathrm{g}}(\mathrm{T}) . We put

\mathcal{F}_{w}^{a}:=\{(g\dot{w}\mathcal{I}, X)\in \mathcal{F};g\in Z_{\mathcal{G}}(s,  $\tau$), X\in \mathrm{V}^{a}\}.

We define the restriction map1 \ovalbox{\tt\small REJECT}

\mathrm{r}\mathrm{e}\mathrm{s}_{w}^{a}:\mathrm{P}\mathrm{i}\mathrm{c}^{\mathcal{G}}B\ni[\mathcal{G}\times^{\mathcal{T}}$\gamma$^{-1}]\mapsto[Z_{\mathcal{G}}(s,  $\tau$)\times^{Z_{\mathcal{G}}(s, $\tau$)\cap \mathrm{A}\mathrm{d}(w)\mathcal{I}}w$\gamma$^{-1}]\in K^{\mathbb{T}}(\mathcal{F}_{w}^{a})
and the specialization map

\mathrm{s}\mathrm{p}_{w}^{a}:K^{\mathrm{T}}(\mathcal{F}_{w}^{a})\rightarrow R(\mathbb{T})/\mathfrak{m}(w(s,  $\tau$))\otimes K(\mathcal{F}_{w}^{a})\cong K(\mathcal{F}_{w}^{a}) ,

where \mathfrak{m}(w(s,  $\tau$)) is the maximal ideal of R(\mathrm{T}) corresponding to the point \mathrm{A}\mathrm{d}(w)(s,  $\tau$)\in \mathbb{T}.
By construction, we have a map

$\mu$_{w}^{(X}:\mathcal{F}_{w}^{a}\ni(g\dot{w}\mathcal{I}, X)\mapsto X\in \mathrm{V}^{a}.

Each $\mu$_{w}^{a} is projective. By sending all of \mathcal{F}_{w}^{a\prime}\mathrm{s} to the same target \mathrm{V}^{a} , we obtain a map11

$\mu$^{a}:\mathcal{F}^{a}\ni(g\mathcal{I}, X)\mapsto X\in \mathrm{V}^{a}.

We form a variety \mathcal{Z}^{a} :=\mathcal{F}^{a}\times \mathrm{V}^{a}\mathcal{F}^{a}.

Lemma 3.7. We have \displaystyle \mathcal{F}^{a}=\bigcup_{w\in W}\mathcal{F}_{w}^{a}.
Proof. Since (s,  $\tau$)\in \mathbb{T} ,

the variety \mathcal{F}^{a} is stable under the \mathrm{T}‐action. By construction, every
\mathbb{T}‐fixed point of \mathcal{F} is concentrated in \mathcal{B} , regarded as the zero section of \mathcal{F} . Here each

connected component of \mathcal{B}^{()} is projective. Thanks to Corollary 1.15, the RHS meets every

connected component of \mathcal{F}^{a} . It is easy to see that the connected component of \mathcal{F}^{a} containing
w\mathcal{I}\in \mathcal{B} must be the form \mathcal{F}_{w}^{\mathfrak{c} $\iota$}. \square 

Let W_{m}\subset W be the set consisting of elements of W written by at most m‐compositions
of s_{0} and s_{1} . We put

\displaystyle \mathcal{F}_{m}^{a}:=\bigcup_{w\in W_{m}}\mathcal{F}_{w}^{a}.
We have a pullback map

\displaystyle \sum_{w\in W_{l}}K(\mathcal{F}_{w}^{a})=K(\mathcal{F}_{$\iota$^{a}})\rightarrow K(\mathcal{F}_{m}^{a})=\sum_{w\in W_{m}}K(\mathcal{F}_{w}^{a})
if l\geq m holds. This gives an inverse system and we put

\displaystyle \overline{K(\mathcal{F}^{a}}):=\leftarrow\lim_{m}\bigoplus_{w\in W_{m}}K(\mathcal{F}_{w}^{a}) .

This vector space also admits a linear topology coming from the inverse system.
1 \ovalbox{\tt\small REJECT} This construction of restriction map is wrong from the point of view of localiLation theorem. Since we

absorb the difference by invertible factors, we do not take care of them.

�This map fails to be projective since the fiber is a disjoint union of infinitely many compact varieties.



126 SVU KATO

Lemma 3.8. We have a natural embedding

\displaystyle \prod_{w}\mathrm{s}\mathrm{p}_{w}^{a}\circ \mathrm{r}\mathrm{e}\mathrm{s}_{w}^{0_{\ovalbox{\tt\small REJECT}}}:X^{*}(\mathbb{T})\rightarrow\overline{K(\mathcal{F}^{a}}) .

Proof. This follows from the fact that different characters are sent to different values by

generic two \mathrm{s}\mathrm{p}_{w}^{\mathrm{t}l\prime}\mathrm{s} since (\star) holds. \square 

Lemma 3.9. We have an isomorphism as topological vector spaces:

\overline{K(\mathcal{F}^{a}})\rightarrow A((X^{\pm 1}))_{ $\Lambda$}^{N}/(\mathrm{q}=q, \mathrm{t}_{0}=t_{0}, \mathrm{t}_{1}=t_{1}, . .

where q, t_{0}, t_{2} ,
. . . are as in Theorem 2.6,  $\Lambda$=Wa, and N=1 (Z_{\mathcal{G}}(s,  $\tau$) is torus) or 2 (if

Z_{\mathcal{G}}(s,  $\tau$) contains G).

Proof. First of all, the topological structure of the RHS does not depend on t_{0} , tl. . .. Hence,

we can neglect it at this stage. This lemma follows from the following two observations. 1)
The set of connected components of \mathcal{F}^{a} is in one‐to‐one correspondence with the set Wa.

2) For each w\in W , we have an isomorphism

K(\mathcal{F}_{w}^{a})\cong \mathcal{A}((X^{\pm 1}))_{\{wa\}}^{N}

as algebras. \square 

Remark 3.10. For G general semi‐simple algebraic group, the algebra A((X^{\pm 1}))_{ $\Lambda$\leq 0}^{N} should

be replaced by the total cohomology ring of the flag variety of the commutator subgroup of
some semi‐simple element of G.

4 Main theorem

We work under the same setting as in the previous section. Let l, m\geq 0 be integers. We

consider a subvariety

\mathcal{Z}_{l,m}^{a}:=\mathcal{F}_{$\iota$^{a_{\times \mathrm{V}^{a}}}}\mathcal{F}_{m}^{a}\subset \mathcal{Z}^{a}.
We define the completion of K(\mathcal{Z}^{a}) as:

\displaystyle \overline{K(\mathcal{Z}^{a}})=\lim_{l}\lim_{\vec{rn}}K(\mathcal{Z}_{l,m}^{a})\leftarrow.
We have projections p_{1}:\mathcal{Z}_{l,m}^{a}\rightarrow \mathcal{F}_{$\iota$^{a}} and p_{2}:\mathcal{Z}_{l,rn}^{a}\rightarrow \mathcal{F}_{m}^{a} . Hence, we have a map

\displaystyle \star_{l,m}:K(Z_{ $\iota$,m}^{ $\sigma$})\times K(\mathcal{F}_{\uparrow n}^{a})\ni([\mathcal{E}], [\mathcal{F}])\mapsto\sum(-1)^{i}[\mathbb{R}^{i}(p_{1})_{*}(\mathcal{E}\otimes^{\mathrm{L}}p_{2}^{*}\mathcal{F})]\in K(\mathcal{F}_{l}^{a}) .
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Lemma 4.1. As the limit of\star_{l_{7}n} , we have an action

\star:\overline{K(\mathcal{Z}^{( $\iota$}})\otimes\overline{K(\mathcal{F}^{a}})\mapsto\overline{K(\mathcal{F}^{\mathfrak{a}}}) .

Moreover, \star makes \overline{K(\mathcal{Z}^{a}}) a unital12 subalgebra of \mathrm{E}\mathrm{n}\mathrm{d}\overline{K(\mathcal{F}^{a}}).
Theorem 4.2 (Main theorem). We have a dense open embedding

\mathcal{H}/(\mathrm{q}-q, \mathrm{t}_{0}-t_{0}, \ldots)\rightarrow\overline{K(\mathcal{Z}^{\mathrm{J}_{\ovalbox{\tt\small REJECT}}}})

compatible with the isomorphism of Lemma 3.9. Here the correspondence between parameters
(q, t_{0}, t_{0}^{*}, t_{1}, t_{1}^{*}) and a=(s,  $\tau$, q_{0}, q_{1}, r_{0}, r_{1}) is given as:

q^{2}= $\tau$, (t_{1})^{2}=-q_{0}q_{1}, (t_{1}^{*})^{2}=-q_{0}/q_{1}, (t_{0})^{2}:=-q_{0}q_{1}r_{0}r_{1} $\tau$, (t_{0}^{*})^{2}=-\displaystyle \frac{q_{0}r_{0}}{q_{1}r_{1}}.
The rest of this section is devoted to give a sketch of the proof of Theorem 4.2. Consider

\mathcal{G} ‐orbits

\mathbb{O}_{i}:=\mathcal{G}(\mathcal{I}\times\dot{s}_{i}\mathcal{I})\in \mathcal{B}\times \mathcal{B}
for i=0 , 1. Then, we define locally closed subsets \mathrm{O}_{i}\subset \mathcal{Z}^{a} to be the closures of the

pullbacks of \mathbb{O}_{i} via the composition map

\mathcal{Z}^{a}\rightarrow \mathcal{B}^{a}\times \mathcal{B}^{a_{\mathrm{c}}}-r\mathcal{B}\times B.

By means cf the push‐forward by the diagonal embedding \mathcal{F}^{a}\rightarrow \mathcal{Z}^{0i} , we have an inclusion

X^{*}(\mathcal{I})\subseteq\overline{K(\mathcal{F}^{ $\zeta$ l}})\subset\overline{K(\mathcal{Z}^{a}}) realized by line bundles on the diagonal subset of Z^{a} . By Theorem

1.7, it suffices to realize T_{0} and T_{1} as a generator set of the dense subalgebra of \overline{K(\mathcal{Z}^{a}}).
Remark 4.3. The inclusion \mathcal{F}_{w}^{a}\subset \mathcal{F}^{a} induces a projection map

Pw :\overline{K(\mathcal{F}^{a}})\rightarrow K(\mathcal{F}_{w}^{a})

for each w\in W. By construction, each p_{w} admits a splitting K(\mathcal{F}_{w}^{a})\mathrm{c}_{-\rangle}\overline{K(\mathcal{F}^{a}}) and thus

defines an element of End (\overline{K(\mathcal{F}^{a}}) ). Here the diagonal embedding enables us to regard \mathrm{P}w\in

\overline{K(Z^{0_{\ovalbox{\tt\small REJECT}}}})\subset \mathrm{E}\mathrm{n}\mathrm{d}(\overline{K(\mathcal{F}^{a}})) .

We define T_{i}^{geom} :=[\mathcal{O}_{\mathrm{O}_{i}}] for i=0 ,
1. Then, we have:

Lemma 4.4. The algebra \overline{K(\mathcal{Z}^{a}}) is presented as the closure of the algebra generated by the

diagonal embedding of \overline{K(\mathcal{F}^{a}}), T_{0}^{geom} , and T_{1}^{geom}

120ur choice of completion is aimed to satisfy this condition.
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Proof. We have

\mathcal{V}/V\cap\dot{s}_{1}\mathcal{V}\cong \mathbb{C}^{2}\square  \mathbb{C}v_{+} and \mathcal{V}/\mathcal{V}\cap s_{0}\mathcal{V}\cong \mathbb{C}^{2}\otimes \mathbb{C}zv_{-}.

It follows that \dim \mathcal{V}/\mathcal{V}\cap\dot{w}\mathcal{V}(w\in W) is equal to the twice of the length of w with respect

to s_{0}, s_{1} . In particular, the closure of the pullback of each orbit closure \mathcal{G}(\mathcal{I}\times\dot{w}\mathcal{I}) is given

by the \overline{K(\mathcal{F}^{a}})‐linear combination of products of T_{0}, T_{1} with its lenght at most that of w.

Taking account into the existence of p_{w} ,
the result follows. \square 

Since we have no nice localization map K(\mathcal{F}^{a})\rightarrow K(\mathcal{F}) associated to the direct image

map, we cannot expect to write the generators T_{i} of \mathbb{H} in a simple fashion13. Instead, we

adjust the difference by using \overline{K(\mathcal{F}^{a}})‐action to deduce:

Proposition 4.5. If we regard \mathcal{A}[X^{\pm 1}]/(\mathrm{q}=q, \mathrm{t}_{0}=t_{0}, \ldots)\subset\overline{K(\mathcal{F}^{a}}), then we have

 $\pi$(T_{i})\in\overline{K(\mathcal{F}^{a}})T_{i}^{geom}\overline{K(\mathcal{F}^{a}})+\overline{K(\mathcal{F}^{a}})
for each i=0 ,

1.
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