The varieties of intersections of lines and hypersurfaces in projective spaces

By

Atsushi Ikeda*

§ 1. Introduction

We denote by X_F the hypersurface in \mathbf{P}^n defined by a homogeneous polynomial $F \in \mathbf{C}[x_0, \dots, x_n]$ of degree d, and denote by \mathbf{G} the set of all lines in \mathbf{P}^n . Let $1 \leq m \leq d+1$. Then the set

$$Y_{F,m} = \{(p,L) \in \mathbf{P}^n \times \mathbf{G} \mid L \text{ and } X_F \text{ intersect at } p \text{ with the multiplicity } \geq m\}$$

form a projective variety, whose defining equations are given by using the higher derivative of F (Theorem 2.1). For a general hypersurface X_F , the projective variety $Y_{F,m}$ is smooth of dimension 2n - m - 1 (Theorem 3.2). The purpose of this research is to characterize some geometric properties of X_F by using the Hodge structure of $Y_{F,m}$. In this paper, we give a method to describe the Hodge cohomologies of $Y_{F,m}$ by the Jacobian rings, which is a generalization of the theory of Jacobian ring for a hypersurface in \mathbf{P}^n by Griffiths [2]. Using this method, we study the injectivity of the infinitesimal period map for $Y_{F,m}$ (Theorem 6.2). In the case n = d = 3, we also yield a Torelli type theorem for the map $X_F \mapsto Y_{F,3}$ (Proposition 6.5). The full-detailed version with all proofs of this article will be appeared somewhere.

§ 2. Varieties of intersections

Let \mathbf{P}^n be a complex projective space of dimension n, and let $V = H^0(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1))$. We denote by $\mathbf{P} = \operatorname{Grass}(n, V)$ the Grassmannian variety of all n-dimensional subspaces

Received September 26, 2007. Revised March 18, 2008.

²⁰⁰⁰ Mathematics Subject Classification(s): Primary 14C05; Secondary; 14C30

Partially supported by the 21st century COE program towards a new basic science; depth and synthesis, Osaka university.

^{*}Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

email:atsushi@math.sci.osaka-u.ac.jp

^{© 2008} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

in V, and denote by $\mathcal{S}_{\mathbf{P}}$ (resp. $\mathcal{Q}_{\mathbf{P}}$) the universal sub (resp. quotient) bundle on \mathbf{P} . We have an exact sequence

$$0 \longrightarrow \mathcal{S}_{\mathbf{P}} \longrightarrow \mathcal{O}_{\mathbf{P}} \otimes V \longrightarrow \mathcal{Q}_{\mathbf{P}} \longrightarrow 0.$$

Then **P** is naturally identified with \mathbf{P}^n , and $\mathcal{Q}_{\mathbf{P}}$ is identified with the tautological line bundle $\mathcal{O}_{\mathbf{P}^n}(1)$. We denote by $\mathbf{G} = \operatorname{Grass}(n-1,V)$ the Grassmannian variety of all (n-1)-dimensional subspaces in V, and denote by $\mathcal{S}_{\mathbf{G}}$ (resp. $\mathcal{Q}_{\mathbf{G}}$) the universal sub (resp. quotient) bundle on \mathbf{G} . We have an exact sequence

$$0 \longrightarrow \mathcal{S}_{\mathbf{G}} \longrightarrow \mathcal{O}_{\mathbf{G}} \otimes V \longrightarrow \mathcal{Q}_{\mathbf{G}} \longrightarrow 0.$$

We remark that a point in **G** corresponds to a line in \mathbf{P}^n . Let $p_1 : \mathbf{P} \times \mathbf{G} \to \mathbf{P}$ and $p_2 : \mathbf{P} \times \mathbf{G} \to \mathbf{G}$ be the projections. We denote by Γ the subvariety of $\mathbf{P} \times \mathbf{G}$ defined as the zeros of the composition

$$p_2^* \mathcal{S}_{\mathbf{G}} \longrightarrow \mathcal{O}_{\mathbf{P} \times \mathbf{G}} \otimes V \longrightarrow p_1^* \mathcal{Q}_{\mathbf{P}}.$$

Then Γ is the flag variety of all pairs (p, L) of a point $p \in \mathbf{P}^n$ and a line $L \subset \mathbf{P}^n$ containing the point p. By the first projection $\phi = p_1|_{\Gamma}$, the subvariety Γ is considered as the \mathbf{P}^{n-1} -bundle

$$\phi: \Gamma = \operatorname{Grass}(n-1, \mathcal{S}_{\mathbf{P}}) = \mathbf{P}(\mathcal{S}_{\mathbf{P}}) \longrightarrow \mathbf{P}.$$

By the second projection $\pi = p_2|_{\Gamma}$, the subvariety Γ is considered as the \mathbf{P}^1 -bundle

$$\pi: \Gamma = \operatorname{Grass}(1, \mathcal{Q}_{\mathbf{G}}) = \mathbf{P}(\mathcal{Q}_{\mathbf{G}}) \longrightarrow \mathbf{G}.$$

We denote by \mathcal{Q}_{ϕ} the universal quotient bundle of the Grassmannian bundle $\phi: \Gamma \to \mathbf{P}$. We have exact sequences

$$0 \longrightarrow \pi^* \mathcal{S}_{\mathbf{G}} \longrightarrow \phi^* \mathcal{S}_{\mathbf{P}} \longrightarrow \mathcal{Q}_{\phi} \longrightarrow 0$$

and

$$0 \longrightarrow \mathcal{Q}_{\phi} \longrightarrow \pi^* \mathcal{Q}_{\mathbf{G}} \longrightarrow \phi^* \mathcal{Q}_{\mathbf{P}} \longrightarrow 0.$$

Note that \mathcal{Q}_{ϕ} is an invertible sheaf. We define a decreasing filtration

$$\operatorname{Sym}^d \pi^* \mathcal{Q}_{\mathbf{G}} = \operatorname{Fil}^0 \operatorname{Sym}^d \pi^* \mathcal{Q}_{\mathbf{G}} \supset \cdots \supset \operatorname{Fil}^{d+1} \operatorname{Sym}^d \pi^* \mathcal{Q}_{\mathbf{G}} = 0$$

on the d-th symmetric product of $\pi^*\mathcal{Q}_{\mathbf{G}}$, as $\mathrm{Fil}^m \, \mathrm{Sym}^d \, \pi^*\mathcal{Q}_{\mathbf{G}}$ being the image of the natural homomorphism

$$\operatorname{Sym}^m \mathcal{Q}_{\phi} \otimes \operatorname{Sym}^{d-m} \pi^* \mathcal{Q}_{\mathbf{G}} \longrightarrow \operatorname{Sym}^d \pi^* \mathcal{Q}_{\mathbf{G}}.$$

Let $F \in \operatorname{Sym}^d V$. We denote by X_F the hypersurface in **P** defined as the zeros of the section $[F]_{\mathbf{P}} \in H^0(\mathbf{P}, \operatorname{Sym}^d \mathcal{Q}_{\mathbf{P}})$ which is the image of F by the natural isomorphism

$$\operatorname{Sym}^d V \simeq H^0(\mathbf{P}, \operatorname{Sym}^d \mathcal{Q}_{\mathbf{P}}).$$

We denote by $Y_{F,m}$ the subvariety in Γ defined as the zeros of the section $[F]_{\Gamma,m} \in H^0(\Gamma, \operatorname{Sym}^d \pi^* \mathcal{Q}_{\mathbf{G}}/\operatorname{Fil}^m \operatorname{Sym}^d \pi^* \mathcal{Q}_{\mathbf{G}})$ which is the image of F by the natural homomorphism

$$\operatorname{Sym}^{d} V \simeq H^{0}(\Gamma, \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}) \longrightarrow H^{0}(\Gamma, \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}/\operatorname{Fil}^{m} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}).$$

We denote by Z_F the subvariety in \mathbf{G} defined as the zeros of the section $[F]_{\mathbf{G}} \in H^0(\mathbf{G}, \operatorname{Sym}^d \mathcal{Q}_{\mathbf{G}})$ which is the image of F by the natural isomorphism

$$\operatorname{Sym}^d V \simeq H^0(\mathbf{G}, \operatorname{Sym}^d \mathcal{Q}_{\mathbf{G}}).$$

Then a point in Z_F corresponds to a line which is contained in X_F . Let L be a line in \mathbf{P}^n , and let p be a point on L. The fiber of the line bundle \mathcal{Q}_{ϕ} at the point $(p, L) \in \Gamma$ is naturally identified with the kernel of the restriction

$$H^0(L, \mathcal{O}_{\mathbf{P}^n}(1)|_L) \longrightarrow H^0(p, \mathcal{O}_{\mathbf{P}^n}(1)|_p).$$

Hence, L and X_F intersect at p with the multiplicity $\geq m$ if and only if the pair (p, L) represents a point in $Y_{F,m}$. We have a diagram

$$P \stackrel{\phi}{\longleftarrow} \Gamma \stackrel{\pi}{\longrightarrow} G$$

$$\bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup$$

$$X_F = \phi(Y_{F,1}) \longleftarrow Y_{F,1} \longrightarrow \pi(Y_{F,1})$$

$$\bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup$$

$$\phi(Y_{F,d}) \longleftarrow Y_{F,d} \longrightarrow \pi(Y_{F,d})$$

$$\bigcup \qquad \qquad \bigcup$$

$$\phi(Y_{F,d+1}) \longleftarrow Y_{F,d+1} \longrightarrow \pi(Y_{F,d+1}) = Z_F.$$

The morphism $\phi|_{Y_{F,1}}:Y_{F,1}\to X_F$ is the \mathbf{P}^{n-1} -bundle

$$\mathbf{P}(\mathcal{S}_{\mathbf{P}}|_{X_F}) = \mathbf{P}(\Omega^1_{\mathbf{P}} \otimes \mathcal{Q}_{\mathbf{P}}|_{X_F}) \longrightarrow X_F.$$

If X_F is a smooth hypersurface, then $\phi|_{Y_{F,2}}:Y_{F,2}\to X_F$ is the \mathbf{P}^{n-2} -bundle

$$\mathbf{P}(\Omega^1_{X_F}\otimes \mathcal{Q}_{\mathbf{P}}|_{X_F})\longrightarrow X_F.$$

The morphism $\pi|_{Y_{F,m}}: Y_{F,m} \to \pi(Y_{F,m})$ is generically finite for $1 \leq m \leq d$, and the morphism $\pi|_{Y_{F,d+1}}: Y_{F,d+1} \to Z_F$ is the \mathbf{P}^1 -bundle

$$\mathbf{P}(\mathcal{Q}_{\mathbf{G}}|_{Z_F}) \longrightarrow Z_F.$$

We remark that the isomorphism

$$\sigma: \operatorname{Sym}^d \pi^* \mathcal{Q}_{\mathbf{G}} / \operatorname{Fil}^m \operatorname{Sym}^d \pi^* \mathcal{Q}_{\mathbf{G}} \xrightarrow{\sim} \operatorname{Sym}^{d-m+1} \phi^* \mathcal{Q}_{\mathbf{P}} \otimes \operatorname{Sym}^{m-1} \pi^* \mathcal{Q}_{\mathbf{G}}$$

is induced by the homomorphism

$$\operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}} \longrightarrow \operatorname{Sym}^{d-m+1} \phi^{*} \mathcal{Q}_{\mathbf{P}} \otimes \operatorname{Sym}^{m-1} \pi^{*} \mathcal{Q}_{\mathbf{G}};$$

$$A_{1} \cdots A_{d} \longmapsto_{d!} \sum_{\sigma \in \mathfrak{S}_{d}} [A_{\sigma(1)} \cdots A_{\sigma(d-m+1)}]_{\mathbf{P}} \otimes A_{\sigma(d-m+2)} \cdots A_{\sigma(d)},$$

where $[A]_{\mathbf{P}} \in \operatorname{Sym}^j \phi^* \mathcal{Q}_{\mathbf{P}}$ denotes the image of a local section $A \in \operatorname{Sym}^j \pi^* \mathcal{Q}_{\mathbf{G}}$, and \mathfrak{S}_d denotes the permutation group of the index set $\{1, \ldots, d\}$.

For $F \in \operatorname{Sym}^d V$, we define the tensor $F_k \in \operatorname{Sym}^{d-k} V \otimes \operatorname{Sym}^k V$ by

$$F_k = \frac{(d-k+1)!}{d!} \sum_{0 < i_1, \dots, i_{k-1} < n} \frac{\partial^{k-1} F}{\partial x_{i_1} \cdots \partial x_{i_{k-1}}} \otimes x_{i_1} \cdots x_{i_{k-1}},$$

which does not depend on the choice of the basis (x_0, \ldots, x_n) of V.

Theorem 2.1. The subvariety $Y_{F,m}$ in Γ is defined as the zeros of the section $F_m \in \operatorname{Sym}^{d-m+1} V \otimes \operatorname{Sym}^{m-1} V \simeq H^0(\Gamma, \operatorname{Sym}^{d-m+1} \phi^* \mathcal{Q}_{\mathbf{P}} \otimes \operatorname{Sym}^{m-1} \pi^* \mathcal{Q}_{\mathbf{G}}).$

§ 3. Smoothness and connectedness

Since the variety $Y_{F,d+1}$ is a \mathbf{P}^1 -bundle over Z_F , the following theorem is directly induced from the results in [1, Theorem 8] and [5, Chapter V. 4].

Theorem 3.1. Assume $d \ge 1$.

- (1) If $d \ge 2n 2$, then $Y_{F,d+1}$ is empty for general $F \in \operatorname{Sym}^d V \setminus \{0\}$.
- (2) If $d \leq 2n 3$, then $Y_{F,d+1}$ is non-empty for any $F \in \operatorname{Sym}^d V \setminus \{0\}$.
- (3) If $d \leq 2n-3$, then $Y_{F,d+1}$ is smooth of dimension 2n-d-2 for general $F \in \operatorname{Sym}^d V \setminus \{0\}$.
- (4) If $d \leq 2n 4$ and $(d, n) \neq (2, 3)$, then $Y_{F,d+1}$ is connected for any $F \in \operatorname{Sym}^d V \setminus \{0\}$. For $1 \leq m \leq d$, we have the following theorem.

Theorem 3.2. Assume $1 \le m \le d$.

- (1) If m ≥ 2n, then Y_{F,m} is empty for general F ∈ Sym^d V \ {0}.
 (2) If m ≤ 2n − 1, then Y_{F,m} is non-empty for any F ∈ Sym^d V \ {0}.
- (3) If $m \leq 2n-1$, then $Y_{F,m}$ is smooth of dimension 2n-m-1 for general $F \in$ $\operatorname{Sym}^d V \setminus \{0\}.$
- (4) If $m \leq 2n 2$, then $Y_{F,m}$ is connected for any $F \in \operatorname{Sym}^d V \setminus \{0\}$.

In the case when X_F is a cubic hypersurface in \mathbf{P}^n , the variety $Y_{F,m}$ is smooth of dimension 2n - m - 1 if and only if X_F is smooth.

If $Y_{F,m}$ is smooth of dimension 2n-m-1, then we can compute some topological invariants of $Y_{F,m}$. For example, if m=d=2n-1, then dim $Y_{F,m}=0$, and we can compute the number of the points of $Y_{F,m}$ by Schubert calculus;

$$\begin{cases}
n = 1, & m = d = 1 \implies \sharp Y_{F,m} = 1. \\
n = 2, & m = d = 3 \implies \sharp Y_{F,m} = 9, \\
n = 3, & m = d = 5 \implies \sharp Y_{F,m} = 575, \\
n = 4, & m = d = 7 \implies \sharp Y_{F,m} = 99715, \\
\dots
\end{cases}$$

for general F. Similarly, if d = 2n - 3, then dim $Z_F = 0$ and we have

$$\begin{cases}
n = 2, d = 1 & \implies \sharp Z_F = 1. \\
n = 3, d = 3 & \implies \sharp Z_F = 9 \times 3 = 27, \\
n = 4, d = 5 & \implies \sharp Z_F = 575 \times 5 = 2785, \\
n = 5, d = 7 & \implies \sharp Z_F = 99715 \times 7 = 698005, \\
\dots
\end{cases}$$

for general F, that is known in [3]. When $\dim Y_{F,m} = 1$, we can compute the genus $g(Y_{F,m})$ of $Y_{F,m}$. For example, if m=d=2n-2, then $\dim Y_{F,m}=1$ and we have

$$\begin{cases}
n = 2, & m = d = 2 \implies g(Y_{F,m}) = 0. \\
n = 3, & m = d = 4 \implies g(Y_{F,m}) = 201, \\
n = 4, & m = d = 6 \implies g(Y_{F,m}) = 75601, \\
n = 5, & m = d = 8 \implies g(Y_{F,m}) = 39001985, \\
& \dots
\end{cases}$$

for general F.

§ 4. Jacobian rings

We denote by

$$S = \mathbf{C}[x_0, \dots, x_n, z_0, \dots, z_n] = \bigoplus_{a,b \in \mathbf{Z}} S^{a,b}$$

the polynomial ring bi-graded by $\deg x_i = (1,0)$ and $\deg z_j = (0,1)$. We define homomorphisms δ and ε by

$$\delta: S^{a,b} \longrightarrow S^{a-1,b+1}; A \mapsto \frac{1}{a} \sum_{i=0}^{n} \frac{\partial A}{\partial x_i} \cdot z_i$$

and

$$\varepsilon: S^{a,b} \longrightarrow S^{a+1,b-1}; A \mapsto \frac{1}{b} \sum_{i=0}^{n} \frac{\partial A}{\partial z_i} \cdot x_i.$$

Let V be the (n+1)-dimensional vector space as in Section 2. For $F \in \operatorname{Sym}^d V$, we have a bi-homogeneous polynomial $F_1 \in S^{d,0}$ by considering x_0, \ldots, x_n as a basis of V. We set the bi-homogeneous polynomial F_k by

$$F_k = \delta^{k-1}(F_1) \in S^{d-k+1,k-1}$$

for $k \geq 1$. We define the bi-graded ring $S_{F,m}$ by

$$S_{F,m} = S/(F_k; 1 \le k \le m),$$

and we define the Jacobian ring $R_{F,m}$ as the bi-graded ring by

$$R_{F,m} = S_{F,m-1} / \left(\frac{\partial F_m}{\partial x_i} \cdot x_j + \frac{\partial F_m}{\partial z_i} \cdot z_j; \ 0 \le i \le n, \ 0 \le j \le n \right)$$

for $m \geq 1$, where we set $S_{F,0} = S$. Since

$$\frac{1}{d} \sum_{i=0}^{n} \left(\frac{\partial F_m}{\partial x_i} \cdot x_i + \frac{\partial F_m}{\partial z_i} \cdot z_i \right) = F_m,$$

 $S_{F,m-1} \to R_{F,m}$ factors through $S_{F,m}$. We set

$$S_{F,m}^{a,b,c} = \mathrm{Ker}\,(\varepsilon^c: S_{F,m}^{a,b} \longrightarrow S_{F,m}^{a+c,b-c}).$$

In the following, we describe the relation between these rings and the variety $Y_{F,m}$. We denote by T_{Γ} (resp. $T_{Y_{F,m}}$) the tangent bundle of Γ (resp. $Y_{F,m}$). Then we have the exact sequences

$$0 \longrightarrow \mathcal{O}_{\Gamma} \longrightarrow \phi^* \mathcal{S}_{\mathbf{P}}^{\vee} \otimes \pi^* \mathcal{Q}_{\mathbf{G}} \longrightarrow T_{\Gamma} \longrightarrow 0,$$

where $\mathcal{S}_{\mathbf{P}}^{\vee}$ denotes the \mathcal{O}_{Γ} -dual of $\mathcal{S}_{\mathbf{P}}$. If $Y_{F,m}$ is smooth of dimension 2n-m-1, then we define the coherent sheaf \mathcal{N}_m of $\mathcal{O}_{Y_{F,m-1}}$ -modules by

$$\mathcal{N}_m = \operatorname{Coker} (T_{Y_{F,m-1}}(-\log Y_{F,m}) \longrightarrow T_{\Gamma}|_{Y_{F,m-1}}).$$

Then we have an exact sequence

$$0 \longrightarrow \mathcal{O}_{Y_{F,m-1}} \longrightarrow (\operatorname{Sym}^{d-m+1} \phi^* \mathcal{Q}_{\mathbf{P}} \otimes \operatorname{Sym}^{m-1} \pi^* \mathcal{Q}_{\mathbf{G}})|_{Y_{F,m-1}} \longrightarrow \mathcal{N}_m \longrightarrow 0.$$

Using Lemma 5.5 in the next section, we have the following proposition.

Proposition 4.1. If $Y_{F,m}$ is smooth of dimension 2n-m-1, then

$$H^0(Y_{F,m-1}, \mathcal{N}_m) \simeq S_{F,m}^{d-m+1,m-1}$$

for $1 \le m \le n - 1$.

We remark that the composition

$$V^{\vee} \otimes \pi^* \mathcal{Q}_{\mathbf{G}} \longrightarrow \phi^* \mathcal{S}_{\mathbf{P}}^{\vee} \otimes \pi^* \mathcal{Q}_{\mathbf{G}} \longrightarrow T_{\Gamma} \longrightarrow \mathcal{N}_m$$

induces the homomorphism

$$V^{\vee} \otimes V \simeq V^{\vee} \otimes H^{0}(\Gamma, \pi^{*}\mathcal{Q}_{\mathbf{G}}) \longrightarrow H^{0}(Y_{F,m-1}, \mathcal{N}_{m}) \simeq S_{F,m}^{d-m+1,m-1};$$

 $x_{i}^{\vee} \otimes x_{j} \longmapsto \frac{\partial F_{m}}{\partial x_{i}} \cdot x_{j} + \frac{\partial F_{m}}{\partial z_{i}} \cdot z_{j},$

where $x_0^{\vee}, \ldots, x_n^{\vee}$ denotes the dual basis of x_0, \ldots, x_n . Using Lemma 5.6 in the next section, we have the following theorem.

Theorem 4.2. If $Y_{F,m}$ is smooth of dimension 2n-m-1, then there is a natural injective homomorphism

$$\rho: R_{F,m}^{d-m+1,m-1} \longrightarrow H^1(Y_{F,m-1}, T_{Y_{F,m-1}}(-\log Y_{F,m})),$$

and it is an isomorphism for $m \leq n-2$.

We set the integers $\alpha(n, m, d, q)$ and $\beta(n, m, q)$ by

$$\begin{cases} \alpha(n, m, d, q) = md - \frac{m(m-1)}{2} - n - 2 + q(d - m + 1), \\ \beta(n, m, q) = \frac{m(m-1)}{2} - n + q(m - 1). \end{cases}$$

Since $\Omega^{2n-m}_{Y_{F,m-1}}(Y_{F,m})$ is isomorphic to

$$(\operatorname{Sym}^{\alpha(n,m,d,0)} \phi^* \mathcal{Q}_{\mathbf{P}} \otimes \operatorname{Sym}^{\beta(n,m,0)} \mathcal{Q}_{\phi})|_{Y_{F,m-1}},$$

using Lemma 5.5 in the next section, we have the following theorem.

Theorem 4.3. If $Y_{F,m}$ is smooth of dimension 2n-m-1, then there is a natural injective homomorphism

$$\gamma_0: S_{F,m-1}^{\alpha(n,m,d,0),\beta(n,m,0),1} \longrightarrow H^0(Y_{F,m-1}, \Omega^{2n-m}_{Y_{F,m-1}}(Y_{F,m})),$$

and it is an isomorphism for $m \leq n-1$.

Here we remark that $S_{F,m-1}^{\alpha(n,m,d,0),\beta(n,m,0)} = S_{F,m-1}^{\alpha(n,m,d,0),\beta(n,m,0),1}$ for $\frac{m(m-1)}{2} \leq n$.

The following theorem is proved by the similar way as Theorem 4.2, by using the exact sequence

$$0 \to \Omega^{2n-m-1}_{Y_{F,m-1}}(\log Y_{F,m}) \to T_{\Gamma}|_{Y_{F,m-1}} \otimes \Omega^{2n-m}_{Y_{F,m-1}}(Y_{F,m}) \to \mathcal{N}_m \otimes \Omega^{2n-m}_{Y_{F,m-1}}(Y_{F,m}) \to 0.$$

Theorem 4.4. If $\frac{m(m-1)}{2} = n$ and $Y_{F,m}$ is smooth of dimension 2n - m - 1, then there is a natural injective homomorphism

$$\gamma_1: R_{F,m}^{\alpha(n,m,d,1),\beta(n,m,1)} \longrightarrow H^1(Y_{F,m-1}, \Omega_{Y_{F,m-1}}^{2n-m-1}(\log Y_{F,m})),$$

and it is an isomorphism for $m \leq n-2$.

§ 5. Computation of cohomology

In this section, we enumerate several lemmas, which is used in the proof of theorems in Section 4. For simplicity of notations, we set the invertible sheaf $\mathcal{O}_{\Gamma}(p,q)$ on Γ by

$$\mathcal{O}_{\Gamma}(p,q) = \begin{cases} \operatorname{Sym}^{p} \phi^{*} \mathcal{Q}_{\mathbf{P}} \otimes \operatorname{Sym}^{q} \mathcal{Q}_{\phi} & (p \geq 0, \ q \geq 0), \\ \operatorname{Sym}^{p} \phi^{*} \mathcal{Q}_{\mathbf{P}} \otimes \operatorname{Sym}^{-q} \mathcal{Q}_{\phi}^{\vee} & (p \geq 0, \ q < 0), \\ \operatorname{Sym}^{-p} \phi^{*} \mathcal{Q}_{\mathbf{P}}^{\vee} \otimes \operatorname{Sym}^{q} \mathcal{Q}_{\phi} & (p < 0, \ q \geq 0), \\ \operatorname{Sym}^{-p} \phi^{*} \mathcal{Q}_{\mathbf{P}}^{\vee} \otimes \operatorname{Sym}^{-q} \mathcal{Q}_{\phi}^{\vee} & (p < 0, \ q < 0), \end{cases}$$

and we set $Q_{\mathbf{G}}^r = \operatorname{Sym}^r \pi^* \mathcal{Q}_{\mathbf{G}}$ for $r \geq 0$. For a sheaf \mathcal{E} of \mathcal{O}_{Γ} -modules, we set $\mathcal{E}(p,q) = \mathcal{E} \otimes \mathcal{O}_{\Gamma}(p,q)$.

Lemma 5.1. Assume $r \geq 0$.

$$H^0(\Gamma, Q^r_{\mathbf{G}}(p,q)) = \operatorname{Ker}\left(\varepsilon^{r+1}: S^{p,q+r} \to S^{p+r+1,q-1}\right).$$

Lemma 5.2. Assume $q \leq 0$ and $r \geq 0$.

- (1) $H^{j}(\Gamma, Q_{\mathbf{G}}^{r}(p,q)) = 0 \text{ for } 1 \leq j \leq n-2.$
- (2) When $n \ge 2$, if $q \ge -n+1$ or $p+r \le -2$, then $H^{n-1}(\Gamma, Q_{\mathbf{G}}^r(p,q)) = 0$.

Lemma 5.3. Assume $q \leq 0$.

- (1) $H^{j}(\Gamma, T_{\Gamma}(p, q)) = 0 \text{ for } 1 \leq j \leq n 3.$
- (2) When $n \geq 3$, if $q \geq -n + 1$ or $p \leq -2$, then $H^{n-2}(\Gamma, T_{\Gamma}(p, q)) = 0$.

Lemma 5.4. Assume $q \le 0$ and $r \ge 0$.

- (1) $H^1(Y_{F,m}, Q^r_{\mathbf{G}}(p,q)|_{Y_{F,m}}) = 0 \text{ for } 1 \le m \le n-3.$
- (2) If $q \ge \frac{n^2 7n + 8}{2}$ or $p + r \le (n 2)d \frac{n^2 5n + 10}{2}$, then

$$H^1(Y_{F,n-2}, Q_{\mathbf{G}}^r(p,q)|_{Y_{F,n-2}}) = 0.$$

Lemma 5.5. Assume $r \geq 0$.

(1)
$$H^0(Y_{F,m}, Q^r_{\mathbf{G}}(p,q)|_{Y_{F,m}}) \simeq \operatorname{Ker}(\varepsilon^{r+1}: S^{p,q+r}_{F,m} \to S^{p+r+1,q-1}_{F,m}) \text{ for } 1 \leq m \leq n-2.$$

(2) If
$$\min\{q,0\} \ge \frac{n^2 - 5n + 4}{2}$$
 or $p + r + \max\{q,0\} \le (n-1)d - \frac{n^2 - 3n + 6}{2}$, then
$$H^0(Y_{F,n-1}, Q^r_{\mathbf{G}}(p,q)|_{Y_{F,n-1}}) \simeq \operatorname{Ker}(\varepsilon^{r+1}: S^{p,q+r}_{F,n-1} \to S^{p+r+1,q-1}_{F,n-1}).$$

Lemma 5.6. Assume q < 0.

(1)
$$H^1(Y_{F,m}, T_{\Gamma}(p,q)|_{Y_{F,m}}) = 0$$
 for $1 \le m \le n-4$.

(2) If
$$q \ge \frac{n^2 - 9n + 14}{2}$$
 or $p \le (n-3)d - \frac{n^2 - 7n + 16}{2}$, then

$$H^1(Y_{F,n-3}, T_{\Gamma}(p,q)|_{Y_{F,n-3}}) = 0.$$

§ 6. The case n = 3

In this section, we consider a hypersurface X_F in \mathbf{P}^3 . Then $Y_{F,1}$ is a \mathbf{P}^2 -bundle over X_F . If X_F is a smooth hypersurface, then $Y_{F,2}$ is a \mathbf{P}^1 -bundle over X_F . If $d \geq 4$, then $Y_{F,4}$ is a smooth algebraic curve of genus $31d^3 - 158d^2 + 186d + 1$ for general F. If $d \geq 5$, then dim $Y_{F,5} = 0$ and $\sharp Y_{F,5} = 5d(d-4)(7d-12)$ for general F. In the following, we study the variety $Y_{F,3}$. If $Y_{F,3}$ is smooth, then $Y_{F,3}$ is an algebraic surface of the square of the first chern class $c_1^2 = 2d(3d-8)^2$ and the second chern class $c_2 = 2d(11d^2 - 48d + 54)$.

Proposition 6.1. If the variety $Y_{F,3}$ is smooth of dimension 2, then the morphism $\phi|_{Y_{F,3}}: Y_{F,3} \to X_F$ is the double covering branched along B_F , where B_F is the divisor on X_F defined by the equation

$$\det\left(\frac{\partial^2 F}{\partial x_i \partial x_j}\right)_{0 \le i, j \le 3} = 0.$$

By the results in Section 4, we have natural injective homomorphisms

$$\rho: R_{F,3}^{d-2,2} \longrightarrow H^1(Y_{F,2}, T_{Y_{F,2}}(-\log Y_{F,3})),$$
$$\gamma_0: S_{F,2}^{3d-8,0} \longrightarrow H^0(Y_{F,2}, \Omega^3_{Y_{F,2}}(Y_{F,3}))$$

and

$$\gamma_1: R_{F,3}^{4d-10,2} \longrightarrow H^1(Y_{F,2}, \Omega^2_{Y_{F,2}}(\log Y_{F,3})).$$

By the similar way, we have a natural surjective homomorphism

$$R_{F,3}^{7d-18,2} \simeq H^1(Y_{F,2}, \Omega^3_{Y_{F,2}}(Y_{F,3}) \otimes \Omega^2_{Y_{F,2}}(\log Y_{F,3})) \longrightarrow H^1(Y_{F,2}, T_{Y_{F,2}}(-\log Y_{F,3}))^{\vee}.$$

Since the multiplication map

$$S_{F,2}^{3d-8,0} \otimes R_{F,3}^{4d-10,2} \longrightarrow R_{F,3}^{7d-18,2}$$

is surjective, we have the following theorem.

Theorem 6.2. If $d \ge 3$ and $Y_{F,3}$ is smooth of dimension 2, then the homomorphism

$$H^1(Y_{F,2}, T_{Y_{F,2}}(-\log Y_{F,3})) \longrightarrow \operatorname{Hom}_{\mathbf{C}}(H^0(Y_{F,2}, \Omega^3_{Y_{F,2}}(Y_{F,3})), H^1(Y_{F,2}, \Omega^2_{Y_{F,2}}(\log Y_{F,3})))$$
is injective.

We consider the period map

$$\psi: M \longrightarrow W; [X_F] \longmapsto [H^3(Y_{F,2} \setminus Y_{F,3})],$$

where M denotes the set of isomorphism classes of hypersurfaces X_F in \mathbf{P}^3 such that $Y_{F,3}$ is smooth, and W denotes the set of isomorphism classes of Hodge structures of weight 2. By Theorem 6.2, the differential $d\psi$ of the period map ψ at a general point in M is injective, where we remark that the sets M and W have geometric structure. Now we have a natural question of Torelli type.

Question 6.3. For smooth surfaces X_{F_1} and X_{F_2} in \mathbf{P}^3 , if there is an isomorphism $H^3(Y_{F_1,2} \setminus Y_{F_1,3}) \simeq H^3(Y_{F_2,2} \setminus Y_{F_2,3})$ as Hodge structures, then is there an isomorphism $X_{F_1} \simeq X_{F_2}$ as algebraic varieties?

§ 6.1. The case
$$d = 3$$

We assume that d = 3. If $Y_{F,3}$ is smooth, then $Y_{F,3}$ is a minimal algebraic surface with the geometric genus $p_g = 4$, the irregularity q = 0 and the square of the first chern class $c_1^2 = 6$. Such algebraic surfaces are classified by Horikawa, and $Y_{F,3}$ is called of

type Ib in [4]. For $F \in S^{3,0}$, the cubic surface X_F is smooth if and only if $Y_{F,3}$ is a smooth surface. If X_F is a smooth cubic surface, then X_F contains 27 lines, which means that $\sharp Z_F = 27$. Hence $Y_{F,4}$ is a disjoint union of 27 rational curves, which are (-3)-curves in $Y_{F,3}$.

Proposition 6.4. If X_F is a smooth cubic surface, then B_F has at most nodes as its singularities. A point $p \in X_F$ is a node of B_F if and only if there are three lines in X_F which contains the point p.

Since the morphism $\phi|_{Y_{F,3}}:Y_{F,3}\to \mathbf{P}^3$ is the canonical map for d=3, we have the following proposition.

Proposition 6.5. For smooth cubic surfaces X_{F_1} and X_{F_2} , there is an isomorphism $X_{F_1} \simeq X_{F_2}$ if and only if there is an isomorphism $Y_{F_1,3} \simeq Y_{F_2,3}$.

In the case when d=3, the Hodge structure $H^2(X_F)$ is trivial, but the Hodge structure $H^3(Y_{F,2}\backslash Y_{F,3})$ is not trivial. Hence the Question 6.3 is particularly interesting in this case.

References

- [1] W. Barth and A. Van de Ven, Fano-Varieties of lines on hypersurfaces, Arch. Math. (Basel) **31** (1978), 96–104.
- [2] P. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) **90** (1969), 460–495, 496–541.
- [3] J. Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), 685–724.
- [4] E. Horikawa, Algebraic surface of general type with small c_1^2 . III, Invent. Math. 47 (1978), 209-248.
- [5] J. Kollár, Rational curves on algebraic varieties, Springer-Verlag Berlin Heidelberg (1996).