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The varieties of intersections of lines and
hypersurfaces in projective spaces

By

Atsushi IKEDA*

§1. Introduction

We denote by X the hypersurface in P defined by a homogeneous polynomial
F € Clxyg,...,x,] of degree d, and denote by G the set of all lines in P™. Let 1 < m <
d + 1. Then the set

Yrm ={(p,L) € P" x G| L and X intersect at p with the multiplicity > m}

form a projective variety, whose defining equations are given by using the higher deriva-
tive of F' (Theorem 2.1). For a general hypersurface Xp, the projective variety Yr,,
is smooth of dimension 2n — m — 1 (Theorem 3.2). The purpose of this research is to
characterize some geometric properties of X by using the Hodge structure of Yg,,. In
this paper, we give a method to describe the Hodge cohomologies of Y, by the Jaco-
bian rings, which is a generalization of the theory of Jacobian ring for a hypersurface
in P™ by Griffiths [2]. Using this method, we study the injectivity of the infinitesimal
period map for Yr,, (Theorem 6.2). In the case n = d = 3, we also yield a Torelli type
theorem for the map Xr — Yr3 (Proposition 6.5). The full-detailed version with all
proofs of this article will be appeared somewhere.

§ 2. Varieties of intersections

Let P™ be a complex projective space of dimension n, and let V = H°(P™, Opx (1)).
We denote by P = Grass (n, V) the Grassmannian variety of all n-dimensional subspaces
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in V, and denote by Sp (resp. Qp) the universal sub (resp. quotient) bundle on P. We
have an exact sequence

0—Sp —0p®V — 9Op — 0.

Then P is naturally identified with P™, and Qp is identified with the tautological line
bundle Opx(1). We denote by G = Grass (n — 1, V) the Grassmannian variety of all
(n — 1)-dimensional subspaces in V', and denote by Sg (resp. Qg ) the universal sub
(resp. quotient) bundle on G. We have an exact sequence

0 —Sg —0cg®V — Qg — 0.

We remark that a point in G corresponds to a line in P”. Let p; : P x G — P and
p2 : P X G — G be the projections. We denote by I' the subvariety of P x G defined
as the zeros of the composition

psSa — Opxg @V — p1Qp.

Then T' is the flag variety of all pairs (p,L) of a point p € P™ and a line L C P™

containing the point p. By the first projection ¢ = p1|r, the subvariety I" is considered
as the P"~'-bundle

¢: T =Grass(n—1,5p) = P(Sp) — P.
By the second projection 7 = ps|r, the subvariety T is considered as the P-bundle
m:I'=Grass(1l,Q¢g) =P(Qc) — G.

We denote by Q4 the universal quotient bundle of the Grassmannian bundle ¢ : I' — P.
We have exact sequences

0 — 71"Sg — ¢"Sp — Qy — 0

and
0— Qp — 1" Qg — ¢"Qp — 0.

Note that Q4 is an invertible sheaf. We define a decreasing filtration
Sym? 7* Q¢ = Fil’ Sym?n*Qg O --- D Fil*™ Sym?7* Qg = 0

on the d-th symmetric product of 7*Qg, as Fil™ Symd Qg being the image of the

natural homomorphism

Sym™ Q, @ Sym® " 1* Qg — Sym? 7 Qq.
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Let F € Sym? V. We denote by X the hypersurface in P defined as the zeros of the
section [F|p € H(P, Sym¢ Qp) which is the image of F' by the natural isomorphism

Sym?V ~ H(P, Sym? Qp).

We denote by Yp,, the subvariety in I' defined as the zeros of the section [F|r,, €
HO(T',Sym? 7* Qg / Fil™ Sym? 7* Q¢) which is the image of F by the natural homo-
morphism

Sym?V ~ H(T, Sym? 7*Qg) — HO(T, Sym? 7* Qg/Fil™ Sym? 7*Q¢).

We denote by Zp the subvariety in G defined as the zeros of the section [Flg €
HO(G, Sym? Qg) which is the image of F' by the natural isomorphism

Sym?V ~ H°(G,Sym? Qg).

Then a point in Zr corresponds to a line which is contained in Xg. Let L be a line in
P, and let p be a point on L. The fiber of the line bundle Q4 at the point (p,L) € T
is naturally identified with the kernel of the restriction

H°(L,0p~(1)|1) — H°(p, Opn (1))

Hence, L and X intersect at p with the multiplicity > m if and only if the pair (p, L)
represents a point in Yg,,. We have a diagram

U U U
o(Yra) «— Yra — 7(Yra)
U U U

¢(Yra+1) — Yrar1 — 7(Yras1) =ZrF.
The morphism ¢|y;,, : Yr1 — Xp is the P l-bundle
P(Splx,) = P(2p ® Qp|x,) — Xr.
If X is a smooth hypersurface, then ¢5|yFy2 :Ypo — X is the P"2_-bundle

P(Q%, ® Qp|x,) — Xp.
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The morphism 7|y, . : Yrm — 7(YFm) is generically finite for 1 < m < d, and the
morphism 7r|yF’ asr P YFd41 — ZF is the P'-bundle

P(Qclzy) — Zr.
We remark that the isomorphism
o : Sym? m* Qg /Fil™ Sym? 7* Qg — Sym? ™! ¢*Qp ® Sym™ ! 7 Q¢
is induced by the homomorphism
Sym? 7*Qg— Sym® " ¢*Qp ® Sym™ ' 7 Qg;
Ay Ag '_>% 2ivee,[Aoct)  As(a—mt1)|P @ Ag(a—mi2) -+ As(a);

where [A]p € Sym’ ¢* Op denotes the image of a local section A € Sym’ 7*Qg, and Sy
denotes the permutation group of the index set {1,...,d}.
For F € Sym®V, we define the tensor Fj, € Sym? %V @ Sym* V by

d—k+1)! ok—1F
szg Z

& Tiy - Ty,
d! Ox;y -+ Oxyy ! o

0<i41,..,ik—1<N

which does not depend on the choice of the basis (xg,...,z,) of V.
Theorem 2.1.  The subvariety Yr ,, in I is defined as the zeros of the section

F,, € Symd—m+l Ve Symm—l V ~ HO(F, Symd—m+1 ¢* Op ® Symm—l * QG)

§3. Smoothness and connectedness

Since the variety Yp 441 is a P!-bundle over Zp, the following theorem is directly
induced from the results in [1, Theorem 8] and [5, Chapter V. 4].

Theorem 3.1. Assume d > 1.
(1) If d > 2n — 2, then Yrqy1 is empty for general F € Sym® V' \ {0}.
(2) Ifd < 2n — 3, then Y q41 is non-empty for any F € Sym? V \ {0}.

(3) If d < 2n — 3, then Ypq+1 is smooth of dimension 2n — d — 2 for general F €
Sym? v\ {0}.

(4) Ifd < 2n —4 and (d,n) # (2,3), then Yr gy is connected for any F € Sym® V' \ {0}.

For 1 < m < d, we have the following theorem.
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Theorem 3.2.

Assume 1 < m < d.

(1) If m > 2n, then Yp,, is empty for general F € Sym? VvV \ {0}.

(2) If m < 2n — 1, then Y, is non-empty for any F € Sym?V \ {0}.

(3) If m < 2n — 1, then Yr,, is smooth of dimension 2n — m — 1 for general F' €

Sym? V' \ {0}.

(4) If m < 2n — 2, then Y, is connected for any F € Sym? V \ {0}.

In the case when X is a cubic hypersurface in P", the variety Yg,, is smooth of

dimension 2n —m — 1 if and only if Xz is smooth.
If Yr,y, is smooth of dimension 2n —m — 1, then we can compute some topological
invariants of Yr,,. For example, if m = d = 2n — 1, then dimYFr,, = 0, and we can

compute the number of the points of Yr,, by Schubert calculus;

3 3 3 3

d=1 = 4§Yr, =1
d=3 = 1Yrm,m =9,
d=5 = 4Yp,, =575,
d=7 = {Yr., = 99715,

for general F'. Similarly, if d = 2n — 3, then dim Zr = 0 and we have

n=2,
n =3,
n =4,
n=>5,

QU & & &

1
3
5)
7

for general F', that is known in [3].
g (Ypm) of Yr,,. For example, if m = d = 2n — 2, then dim Yz, = 1 and we have

for general F.
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— iy = 1.

— #Zp =9 x 3 =27,

— #7p = 575 x 5 = 2785,

= f{Zr = 99715 x 7 = 698005,

When dimYr,, = 1, we can compute the genus

=2 = gYrm)=0.

=4 =g (Vin) =201,

=6 = g(Vim) = 75601,
=8 = g(Yrm) = 39001985,
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§4. Jacobian rings

We denote by
S=Clzo,...,Tn,20,---,2n] = @ S

a,beZ

the polynomial ring bi-graded by degz; = (1,0) and degz; = (0,1). We define homo-
morphisms ¢ and & by

1 = 04
§:8mb _, ga—Lb+l. 4, = .z
’ Hagaxi ‘
and
1 <= 04
. qa,b a+1,b—1, E ,
e: S — S ,AHEiZOa—%'$z.

Let V be the (n + 1)-dimensional vector space as in Section 2. For F' € Sym? V', we
have a bi-homogeneous polynomial F; € S%° by considering xo, . .., x, as a basis of V.

We set the bi-homogeneous polynomial Fj by

Fl, = 0F1(Fy) € §d—h+lh-1
for k > 1. We define the bi-graded ring S, by

Sem =S/(Fr; 1 <k <m),

and we define the Jacobian ring Rp,, as the bi-graded ring by

oF,, oF,, ) )
RF,mZSF,m—l/(a—-xj—i-a—-zj; 0<:<n, 0< g §n>
xI; Zi

for m > 1, where we set Spo = S. Since
OF,, oF,,

1 n
G ) =

SFm-1 — Rpm factors through Sg,,. We set
S = Ker (& S, — S350,

In the following, we describe the relation between these rings and the variety Yg,,. We
denote by Tt (resp. Ty, ) the tangent bundle of I' (resp. YFr,). Then we have the
exact sequences

0— Or — ¢*Sp@7*°Qg — Tt — 0,
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where Sp denotes the Op-dual of Sp. If Yp,,,, is smooth of dimension 2n —m — 1, then
we define the coherent sheaf NV, of Oy, _,-modules by

No = Coker (Ty,.,,,_ (—10g Yrm) — TT|ve )

Then we have an exact sequence

0— Oyy,y — (Sym? ™ ¢*Qp @ Sym™ ' 7 Q) v, , — N — 0.
Using Lemma 5.5 in the next section, we have the following proposition.

Proposition 4.1.  If Yr,, is smooth of dimension 2n —m — 1, then

HO (Y1, Nop) = Sld;;—mm—l—l,m—l

for1 <m<n-—1.

We remark that the composition

VVY@r*Qg — ¢*Sp @1 Qg — Tr — Ny,

induces the homomorphism

178% QV ~ vV ® HO(F,T(* QG)_)HO(YF,m—laNm) ~ S;:l:"—rg’t—i-l,m—l;

v OFm ... | OFm .
z; ® T — oz Ti T Tant Fs
where zy, ...,z denotes the dual basis of zg,...,x,. Using Lemma 5.6 in the next

section, we have the following theorem.

Theorem 4.2.  IfYp,, is smooth of dimension 2n—m—1, then there is a natural
injective homomorphism

P Rc}f_"—nT-i-l,m—l - Hl(YF,m—la TYF,m—l (_ IOg YF,m))a
and it is an isomorphism for m < n — 2.

We set the integers a(n, m,d, q) and 3(n,m,q) by

a(n,m,d,q)zmd—%—n—Q—I—q(d—m-ﬁ-l),

m(m—1)

Since Q%’;_m"fl (Yr,m) is isomorphic to

(SYma(n,m,d,O) ¢"Qp ® Symﬁ(n’m’O) Q¢)|YF,m—17

using Lemma 5.5 in the next section, we have the following theorem.
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Theorem 4.3.  IfYr,, is smooth of dimension 2n—m—1, then there is a natural
injective homomorphism

,d,0 0),1 .
Yo : S;(:%T )A(nm.0), —H(Yp 1, Q?};Ym"fl(YF,m)),
and it is an isomorphism for m <n — 1.

Here we remark that Sa(n md,0).8(n.m.0) _ galnm.d,0),5(nm0)1 ¢, w <n.

Fm—1 Fm—1

The following theorem is proved by the similar way as Theorem 4.2, by using the
exact sequence

0— an me 1(10gYFm) — TF|YFm 1 Q%;:_‘Y_m (Ypm) — N & Q2n m (Yp,m) — 0.

Theorem 4.4. If W =n and Ypm is smooth of dimension 2n —m — 1,
then there is a natural injective homomorphism

vy R%(g%mdl) ,B(n,m,1) . (YF,m—bQ2n m— l(logYpm))

and it is an isomorphism for m < n — 2.

§5. Computation of cohomology

In this section, we enumerate several lemmas, which is used in the proof of theorems
in Section 4. For simplicity of notations, we set the invertible sheaf Op(p,¢) on T' by

(Symp¢*QP®Squ Qg (p>0, ¢=>0),

Sym? ¢*OQp ® Sym™ ¢ Q; (p=0, ¢<0),
OF(p7Q) = _ v

Sym P ¢*Qp ® Sym?Q, (p<0, ¢>0),

(Sym ™ ¢*Qp @ Sym™?Qf  (p <0, ¢ <0),

and we set QG = Sym” 7" Qg for r > 0. For a sheaf £ of Op-modules, we set £(p, ¢) =
£ ® Or(p,q).

Lemma 5.1. Assumer > 0.
HO(I‘, Q& (p,q)) = Ker (5T+1 . GPatT Sp—l—r—i—l,q—l).

Lemma 5.2. Assume ¢ <0 and r > 0.

(1) HI(T, Q& (p,q)) =0 for 1 <j<mn-—2.

(2) Whenn>2,ifq>-n+1orp+r<-2, then H* (T, Q4(p,q)) = 0.
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Lemma 5.3. Assume q < 0.

(1) H/(T,Tr(p,q)) =0 for 1 <j <n—3.

(2) Whenn >3, ifq>-n+1 orp< -2, then H*" (T, Tr(p,q)) = 0.
Lemma 5.4. Assume ¢ <0 and r > 0.

(1) H(Ypm, Qe (P, Dlyr.,.) =0 for L <m <n—3.

(2) If ¢ > % orp+r<(n—2)d-— W, then

Hl (YF,n—27 Qa(pa Q)|YF,n—2) =0.

Lemma 5.5. Assume r > 0.

123

(1) HO(Vrm, Q9. @)lyr,) = Ker (71 ¢ SRLT — SEHHL0L) for 1 <m < — 2,

(2) If min{q,0} > % or p+r+max{q,0} < (n—1)d— %, then
H (Y1, Q& (P, @)lvp., ) = Ker (771 SEAT — SpI ),
Lemma 5.6. Assume q < 0.
(1) H'(YEm, Tr (0 @)y, ) =0 for 1 <m <n—4.
(2) If g > % orp<(n-—3)d— W, then

Hl (YF,n—3a Ir (p, Q) |YF,77,—3) =0.

8§6. The case n =3

In this section, we consider a hypersurface Xz in P3. Then Yrpiis a P2-bundle

over Xp. If Xr is a smooth hypersurface, then Yrs is a P!-bundle over Xp. If d > 4,

then Yp4 is a smooth algebraic curve of genus 31d* — 158d* + 186d + 1 for general
F. If d > 5, then dimYrs = 0 and §Yr5 = 5d(d — 4)(7d — 12) for general F'. In
the following, we study the variety Yp3. If Yp3 is smooth, then Yr3 is an algebraic

surface of the square of the first chern class ¢? = 2d(3d — 8)? and the second chern class

¢y = 2d(11d% — 48d + 54).

Proposition 6.1.  If the variety Yr 3 is smooth of dimension 2, then the mor-

phism </5|yF’3 : Yp3 — Xr is the double covering branched along Br, where B is the

divisor on X defined by the equation

32
8:131-;;)

det ( =0.

0<4,j<3
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By the results in Section 4, we have natural injective homomorphisms
d—
p: Ry — H' (Yra, Typ, (—log Yra)),

Yo : S?;flz_g’o — HO(YF,Q, Q%/Fj (Yr3))

and
R — HY (Yo, 03, , (log Vi)

By the similar way, we have a natural surjective homomorphism
7d—18,2
Rpg "~ H' (Yr2, 05, (Yrs) @ 03, (log Yr3)) — H'(Yra, Ty,.,(—log Yr3))".
Since the multiplication map
3d—8,0 4d—10,2 7d—18,2
Sps " ®@Rps — Rp3
is surjective, we have the following theorem.

Theorem 6.2. Ifd > 3 and Y3 is smooth of dimension 2, then the homomor-
phism

H' (Y2, Typ,(—log Yp3)) — Home (H*(Yrz2, 3, ,(Yrs)), H (Yr2, 95, , (log Yr3)))
18 injective.
We consider the period map
Y M — W; [Xp]— [H(Yp2 \ Yrs),

where M denotes the set of isomorphism classes of hypersurfaces X in P? such that
Yr 3 is smooth, and W denotes the set of isomorphism classes of Hodge structures of
weight 2. By Theorem 6.2, the differential dvy of the period map ¢ at a general point
in M is injective, where we remark that the sets M and W have geometric structure.
Now we have a natural question of Torelli type.

Question 6.3.  For smooth surfaces Xp, and X, in P3, if there is an isomor-
phism H3(Yr, 2\ Yr, 3) ~ H3(YE, 2 \ Yr,3) as Hodge structures, then is there an iso-
morphism Xp, >~ Xp, as algebraic varieties?

§6.1. The case d =3

We assume that d = 3. If Yr 3 is smooth, then Yz 3 is a minimal algebraic surface
with the geometric genus p, = 4, the irregularity ¢ = 0 and the square of the first chern
class ¢? = 6. Such algebraic surfaces are classified by Horikawa, and Yr3 is called of
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type Ib in [4]. For F € 530 the cubic surface Xr is smooth if and only if Yrs3is a
smooth surface. If Xg is a smooth cubic surface, then Xr contains 27 lines, which
means that §ZF = 27. Hence Yr 4 is a disjoint union of 27 rational curves, which are
(—3)-curves in Yr 3.

Proposition 6.4. If Xg is a smooth cubic surface, then Br has at most nodes
as its singularities. A point p € Xp is a node of Br if and only if there are three lines
i X which contains the point p.

Since the morphism ¢y, , : Yr3 — P32 is the canonical map for d = 3, we have the
following proposition.

Proposition 6.5.  For smooth cubic surfaces Xr, and Xp,, there is an isomor-
phism Xp, ~ Xp, if and only if there is an isomorphism Yp, 3 ~ YF, 3.

In the case when d = 3, the Hodge structure H?(Xr) is trivial, but the Hodge
structure H3 (Yr2\Yr3) is not trivial. Hence the Question 6.3 is particularly interesting
in this case.
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