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§1. Introduction

Dimer models are introduced by string theorists to study four‐dimensional N=1

superconformal field theories. See e.g. a review by Kennaway [5] and references therein

for a physical background. A dimer model is a bipartite graph on a real two‐torus which

encodes the information of a quiver with relations. A typical example of such a quiver
is the McKay quiver determined by a finite abelian subgroup G of SL(3, \mathbb{C}) (see [8, 10]).
In this case, the moduli space of representations of the McKay quiver (for the dimension

vector (1, 1, . .

:; 1)) coincides with the moduli space of G‐constellations considered in [1].
For a generic choice of a stability parameter  $\theta$

,
the moduli space of  G‐constellations is a

crepant resolution of the quotient singularity \mathbb{C}^{3}/G and the derived category of coherent

sheaves on the moduli space is equivalent to the derived category of finitely‐generated
modules over the path algebra of the McKay quiver. It is expected that these kinds

of statements can be generalized to the case of dimer models that are
\backslash consistent� in

the physics context, which should be called \backslash brane tilings�. In this note, we discuss a

slightly weaker notion of non‐degenerate dimer models, which is strong enough to ensure

that the moduli space is a crepant resolution of the three‐dimensional toric singularity
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determined by the Newton polygon of the characteristic polynomial (see Theorem 6.4).
We expect that one has to impose further conditions to prove the derived equivalence.

For the proof, we use a generalization of the description of a torus‐fixed point on

the moduli space in terms of a choice of a covering by hexagons of the fundamental

region of a real 2‐torus due to Nakamura [7]. Many of the arguments are similar to

those in [4]. There is also a physics paper by Franco and Vegh [2] which deals with the

relation between brane tilings and moduli spaces.

Acknowledgment: We thank Alastair King for a number of very useful remarks,
and the anonymous referee for suggesting several improvements.

§2. Dimer models and quivers

Let T=\mathbb{R}^{2}/\mathbb{Z}^{2} be a real two‐torus equipped with an orientation. A bipartite graph
on T consists of

\bullet a set  B\subset T of black vertices,

\bullet a set  W\subset T of white vertices, and

\bullet a set  E of edges, consisting of embedded closed intervals e on T such that one

boundary of e belongs to B and the other boundary belongs to W . We assume that

two edges intersect only at the boundaries.

A bipartite graph on T is called a dimer model if the set of edges divide T into simply‐
connected polygons.

A quiver consists of

\bullet a set  V of vertices,

\bullet a set  A of arrows, and

\bullet two maps  s, t : A\rightarrow V from A to V.

For an arrow a\in A, s(a) and t(a) are said to be the source and the target of a re‐

spectively. A path on a quiver is an ordered set of arrows (a_{n}, a_{n-1}, . . :, a_{1}) such that

s(a_{i+1})=t(a) for i=1
,

.

::,
n-1 . We also allow for a path of length zero, starting

and ending at the same vertex. The path algebra \mathbb{C}Q of a quiver Q=(V, A, s, t) is the

algebra spanned by the set of paths as a vector space, and the multiplication is dened

by the concatenation of paths;

(bm, . . .

, b_{1} ). (an, . . .

, a_{1} ) =\left\{\begin{array}{ll}
(bm, . . . , b_{1}, an, . . . , a_{1}) & s(b_{1})=t(a_{n}) ,\\
0 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}:
\end{array}\right.
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A quiver with relations is a pair of a quiver and a two‐sided ideal \mathcal{I} of its path algebra.
For a quiver  $\Gamma$=(Q, \mathcal{I}) with relations, its path algebra \mathbb{C} $\Gamma$ is dened as the quotient

algebra \mathbb{C}Q/\mathcal{I}.
A dimer model (B, W, E) encodes the information of a quiver  $\Gamma$=(V, A, s, t, \mathcal{I}) with

relations in the following way: The set V of vertices is the set of connected components

of the complement T\displaystyle \backslash (\bigcup_{e\in E}e) ,
and the set A of arrows is the set E of edges of the

graph. The directions of the arrows are determined by the colors of the vertices of the

graph, so that the white vertex w\in W is on the right of the arrow. In other words,
the quiver is the dual graph of the dimer model equipped with an orientation given by

rotating the white‐to‐black flow on the edges of the dimer model by minus 90 degrees.
The relations of the quiver are described as follows: For an arrow a\in A ,

there

exist two paths p_{+}(a) and p(a) from t(a) to s(a) ,
the former going around the white

vertex connected to a\in E=A clockwise and the latter going around the black vertex

connected to a counterclockwise. Then the ideal \mathcal{I} of the path algebra is generated by

p_{+}(a)-p(a) for all a\in A.

A representation of  $\Gamma$ is a module over the path algebra \mathbb{C} $\Gamma$ with relations. In

other words, a representation is a collection ((V_{v})_{v\in V}, ( $\psi$(a))) of vector spaces V_{v}
for v\in V and linear maps  $\psi$(a) : V_{s(a)}\rightarrow V_{t(a)} for a\in A satisfying relations in \mathcal{I} . The

Grothendieck group of the abelian category mod \mathbb{C} $\Gamma$ of finite dimensional representations
of \mathbb{C} $\Gamma$ is a free abelian group generated by simple representations corresponding to

the idempotents of \mathbb{C} $\Gamma$ given as the paths of length zero. A simple representation

corresponding to a vertex  v\in V has V_{v}=\mathbb{C}, V_{w}=0 for w\neq v and  $\psi$(a)=0 for any

a\in A . Let N be the number of vertices of  $\Gamma$ . Then the Grothendieck group is isomorphic
to \mathbb{Z}^{N} with respect to this basis, and the class of a module in the Grothendieck group

considered as an element of \mathbb{Z}^{N} is called its dimension vector. The dimension vector of

a representation ((V_{v})_{v\in V}, ( $\psi$(a))) is given by (\dim V_{v})_{v\in V}.
The double \overline{Q} of a quiver Q is obtained from Q by adding an arrow \overline{a} with s(\overline{a})=t(a)

and t(\overline{a})=s(a) for each arrow a of Q . A representation  $\Psi$=((V_{v})_{v\in V}, ( $\psi$(a))) of

Q such that all  $\psi$(a) are linear isomorphisms determines a representation \overline{ $\Psi$} of \overline{Q} by

\overline{ $\Psi$}(a)= $\Psi$(a) and \overline{ $\Psi$}(\overline{a})= $\Psi$(a)^{-1}.
A perfe ct matching (or a dimer conguration) on a dimer model G=(B, W, E) is

a subset D of E such that for any vertex v\in B\cup W ,
there is a unique edge e\in D

connected to v . Consider the bipartite graph \overline{G} on \mathbb{R}^{2} obtained from G by pulling‐
back by the natural projection \mathbb{R}^{2}\rightarrow T

,
and identify the set of perfect matchings of

G with the set of periodic perfect matchings of \overline{G} . Fix a reference perfect matching

D_{0} . Then for any perfect matching D
,

the union D\cup D_{0} divides \mathbb{R}^{2} into connected

components. The height function h_{D,D_{0}} is a locally‐constant function on \mathbb{R}^{2}\backslash (D[D )
which increases (resp. decreases) by 1 when one crosses an edge e\in D with the black



130 Akira Ishii and Kazushi Ueda

(resp. white) vertex on his right or an edge e\in D_{0} with the white (resp. black) vertex

on his right. This rule determines the height function up to additions of constants.

The height function may not be periodic even if D and D_{0} are periodic, and the height

change h(D, D_{0})=(h_{x}(D, D_{0}), h_{y}(D, D_{0}))\in \mathbb{Z}^{2} of D with respect to D_{0} is dened as

the dierence

h_{x}(D, D_{0})=h_{D,D_{0}}(p+(1,0))-h_{D,D_{0}}(p) ,

h_{y}(D, D_{0})=h_{D,D_{0}}(p+(0,1))-h_{D,D_{0}}(p)

of the height function, which does not depend on the choice of p\in \mathbb{R}^{2}\backslash (D\cup D_{0}) .

More invariantly, height changes can be considered as an element of H^{1}(T, \mathbb{Z}) . The

dependence of the height change on the choice of the reference matching is given by

h(D, D_{1})=h(D, D_{0})-h(D_{1}, D_{0})

for any three perfect matchings D, D_{0} and D_{1} . We will often suppress the dependence
of the height dierence on the reference matching and just write h(D)=h(D, D_{0}) .

For a fixed reference matching D_{0} ,
the characteristic polynomial of G is dened by

Z(x, y)=\displaystyle \sum_{D\in \mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}(G)}x^{h_{x}(D)}y^{h_{y}(D)},
where Perf (G) denotes the set of perfect matchings of G . It is a Laurent polynomial in

two variables, whose Newton polygon coincides with the convex hull of the set

\{(h_{x}(D), h_{y}(D))\in \mathbb{Z}^{2}|D\in Perf (  G)\}

consisting of height changes of perfect matchings of the dimer model G.

A perfect matching can be considered as a set of walls which block some of the

arrows; for a perfect matching D
,

let Q_{D} be the subquiver of Q whose set of vertices

is the same as Q and whose set of arrows consists of A\backslash D (recall that A=E ). The

path algebra \mathbb{C}Q_{D} of Q_{D} is a subalgebra of \mathbb{C}Q ,
and the ideal \mathcal{I} of \mathbb{C}Q denes an ideal

\mathcal{I}_{D}=\mathcal{I}\cap \mathbb{C}Q_{D} of \mathbb{C}Q_{D} . A path p\in \mathbb{C}Q is said to be an allowed path with respect to

D if p\in \mathbb{C}Q_{D}.
As an example, consider the dimer model in Figure 1. The corresponding quiver is

shown in Figure 2, whose relations are given by

\mathcal{I}= (dbc ‐cbd; dac—cad; adb—bda; acb—bca):

This dimer model is non‐degenerate, and has four perfect matchings D_{0} ,
. .

:; D_{3} shown

in Figure 3. Their height changes with respect to D_{0} are given by

h(D_{0})=(0,0) , h(D_{1})=(1,0) , h(D_{2})=(0,1) , h(D_{3})=(1,1) ,
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Figure 1. A dimer model

D_{0} D_{1}

d a

b c

.

\cdot  c b

\circ.\cdot
a  d

Figure 2. The corresponding quiver
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Figure 3. Four perfect matchings

so that the characteristic polynomial is

Z(x, y)=1+x+y+xy.

§3. Torus actions on moduli spaces

Let  $\Gamma$=(V, A, s, t, \mathcal{I}) be the quiver with relations obtained from a dimer model

(B, W, E) on a real two‐torus T=\mathbb{R}^{2}/\mathbb{Z}^{2} and \overline{\mathcal{M}} be the set of representations of  $\Gamma$

with dimension vector (1, .

::, 1). In other words, \overline{\mathcal{M}} is the subset of \mathbb{C}^{A} consisting
of linear maps  $\psi$(a) : \mathbb{C}s(a)\rightarrow \mathbb{C}t(a) for arrows a\in A satisfying relations. \overline{\mathcal{M}} has a

natural scheme structure as a closed subscheme of \mathbb{C}^{A} dened by the ideal generated

by the relations. Let \displaystyle \prod_{v} Aut(V) \cong(\mathbb{C}^{\times})^{V} be the product of the set of automor‐

phisms of the vector spaces attached to vertices of the quiver. Two representations

((V_{v})_{v\in V}, ( $\psi$(a))) and ((W_{v})_{v\in V}, ((a))) will be called isomorphic if there is an

element (g_{v})_{v\in V} such that for any a\in A ,
the following diagram commutes;

V_{s(a)} \rightarrow^{ $\psi$(a)} V_{t(a)}

g_{\mathrm{s}(a)\downarrow} \downarrow g_{t(a)}
 $\phi$(a)

W_{s(a)}\rightarrow W_{t(a)}.
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The diagonal subgroup \mathbb{C}^{\times}\subset(\mathbb{C}^{\times})^{V} acts trivially on \overline{\mathcal{M}} and the quotient \mathcal{G}=(\mathbb{C}^{\times})^{V}/\mathbb{C}^{\times}
acts faithfully on \overline{\mathcal{M}} . The set‐theoretic quotient of \overline{\mathcal{M}} by the action of \mathcal{G} will be denoted

by \mathcal{M} . Let \mathrm{T}\subset \mathcal{M} be the subset consisting of isomorphism classes [( $\psi$(a))] such

that  $\psi$(a)\in \mathbb{C}^{\times} for any a\in A . It has a structure of an algebraic torus by the pointwise

multiplication: For two elements [( $\psi$(a))] and [((a))] of \mathrm{T}
,

their composition is

dened by

(3.1) [( $\psi$(a))_{a\in A}] [( $\phi$(a))_{a\in A}]=[( $\psi$(a)\cdot $\phi$(a))_{a\in A}],

which gives an element of \mathrm{T} again.
The set \mathcal{M} of isomorphism classes does not have a good geometric structure. We

use the notion of stability introduced by King [6] in order to construct moduli schemes

of quiver representations.

Denition 3.1. For  $\theta$\in \mathrm{H}\mathrm{o}\mathrm{m}_{\mathbb{Z}}(K(\mathrm{m}\mathrm{o}\mathrm{d} \mathbb{C} $\Gamma$), \mathbb{Z}) such that  $\theta$((1, . . :;1))=0, \mathrm{a}

representation  $\Psi$\in\overline{\mathcal{M}} is said to be  $\theta$ ‐stable if for any non‐trivial subrepresentation (i.e.,
subobject in mod C)  S (  $\Psi$

,
we have  $\theta$(S)>0.  $\Psi$ is  $\theta$ ‐semistable if  $\theta$(S)\geq 0 holds

instead of  $\theta$(S)>0 above.

In this denition,  $\theta$ corresponds to a character of \mathcal{G} . King [6] proved that there

is a moduli scheme \overline{\mathcal{M}_{ $\theta$}} which parameterizes the \mathrm{S}‐equivalence classes of  $\theta$‐semistable

representations in \overline{\mathcal{M}} . It contains the moduli scheme \mathcal{M}_{ $\theta$} which parameterizes the

isomorphism classes of  $\theta$‐stable representations as an open set.

Note that if  $\psi$(a)\in \mathbb{C}^{\times} for any a\in A ,
then  $\Psi$ doesn�t have any non‐trivial subrep‐

resentation and hence is  $\theta$‐stable for any  $\theta$\in \mathrm{H}\mathrm{o}\mathrm{m}_{\mathbb{Z}}(K(\mathrm{m}\mathrm{o}\mathrm{d} \mathbb{C} $\Gamma$), \mathbb{Z}) . Thus \mathrm{T} is naturally
contained in \mathcal{M}_{ $\theta$} for any  $\theta$ . Moreover, there is an action of \mathrm{T} on \mathcal{M}_{ $\theta$} dened by the

pointwise multiplication just as in (3.1).
Now consider the complex

1\rightarrow(\mathbb{C}^{\times})^{V}\rightarrow d^{1}(\mathbb{C}^{\times})^{A}\rightarrow d^{2}(\mathbb{C}^{\times})^{F}\rightarrow 1.

Here, F=B\cup W is the set of vertices of the dimer model which is in one‐to‐one

correspondence with the set of faces of the quiver. The map d^{1} is dened by

d^{1}:(\mathbb{C}^{\times})^{V}\rightarrow (\mathbb{C}^{\times})^{A}
2 2

(g_{v})_{v\in V}\mapsto(g_{s(a)}^{-1} . g_{t(a)})_{a\in A},
and the map d^{2} sends ( $\psi$(a))_{a\in A} to ($\phi$_{f})_{f\in F} ,

where $\phi$_{f} is the product of all  $\psi$(a) such

that a\in A=E is connected to f\in B\cup W . The above complex is the cochain complex

computing the \mathbb{C}^{\times} ‐valued cohomologies of T with respect to the polygonal division of

T determined by the quiver  $\Gamma$.
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Let \mathrm{T}_{0} denote the diagonal subgroup of (\mathbb{C}^{\times})^{F} and \overline{\mathrm{T}}\subset\overline{\mathcal{M}} the preimage of \mathrm{T}\subset \mathcal{M}.

Then one has

\overline{\mathrm{T}}=(d^{2})^{-1}(\mathrm{T}_{0}) ,

and the cohomology group in the middle of the subcomplex

1\rightarrow(\mathbb{C}^{\times})^{V}\rightarrow\overline{\mathrm{T}}d^{1}\rightarrow \mathrm{T}_{0}d^{2}\rightarrow 1
is isomorphic to H^{1}(T, \mathbb{C}^{\times}) . It follows from the denition that

\mathrm{T}=\overline{\mathrm{T}}/{\rm Im} d^{1},

and hence one has an exact sequence

(3.2) 1\rightarrow H^{1}(T, \mathbb{C}^{\times})\rightarrow \mathrm{T}\rightarrow \mathrm{T}_{0}.

This proves the following:

Lemma 3.2. The dimension of the algebraic torus \mathrm{T} is either two or three.

§4. Coordinates around T‐fixed points

Suppose that a representation  $\Psi$=( $\psi$(a))_{a\in A}\in\overline{\mathcal{M}} represents a point [] \in \mathcal{M}_{ $\theta$},
which is fixed by the action of T. Let $\Gamma$_{ $\Psi$} be the subquiver of  $\Gamma$ whose set of vertices is

 V and whose set of arrows consists of arrows a\in A such that  $\psi$(a)\neq 0 . The stability
of  $\Psi$ implies that  $\Gamma$_{ $\Psi$} is connected. Moreover, we have the following.

Lemma 4.1. If [] \in \mathcal{M} is fixed by the action of H^{1}(T, \mathbb{C}^{\times})\subset \mathrm{T} , then $\Gamma$_{ $\Psi$} can

be lift ed to a subquiver $\Gamma$_{ $\Psi$}' of \overline{ $\Gamma$}
,

which is isomorphically mapped to $\Gamma$_{ $\Psi$}. $\Gamma$_{ $\Psi$}' is unique

up to translations by \mathbb{Z}^{2}\subset \mathbb{R}^{2}.

Proof. Fix a vertex v_{0} of $\Gamma$_{ $\Psi$} and lift it to a vertex \tilde{v}_{0} of \overline{ $\Gamma$} . For a vertex v of $\Gamma$_{ $\Psi$},
take a path p of the double \overline{$\Gamma$_{ $\Psi$}} of $\Gamma$_{ $\Psi$} starting from v_{0} and ending at v . We can lift p to

a path \overline{p} of the double of \overline{ $\Gamma$} starting from \tilde{v}_{0} . We will show that the end point of \overline{p} does

not depend on the choice of p.

Assume that there are two paths p_{1} and p_{2} of \overline{$\Gamma$_{ $\Psi$}} starting from v_{0} and ending at v

such that the endpoints of their lifts \overline{p}_{1} and \overline{p}_{2} are dierent. The path  $\gamma$:=p_{2} (p_{1})^{-1}
is a loop starting from v and the assumption implies that it determines a non‐trivial

class [] \in H_{1}(T, \mathbb{Z}) . Consider the value  $\psi$( $\gamma$) of  $\Psi$ at  $\gamma$ ; we can dene values of  $\Psi$ for

arrows and paths of the double \overline{$\Gamma$_{ $\Psi$}} in an obvious way. Since [] is a non‐trivial class,
there is g\in H^{1}(T, \mathbb{C}^{\times}) with (g\cdot $\psi$)( $\gamma$)\neq $\psi$( $\gamma$) . This contradicts the assumption that

H^{1}(T, \mathbb{C}^{\times}) fixes []. \square 
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Let F_{ $\Psi$} be the closure of the union of the connected components of \displaystyle \mathbb{R}^{2}\backslash (\bigcup_{e\in\overline{E}}e)
corresponding to the vertices of $\Gamma$_{ $\Psi$}^{0} . It is a fundamental domain for the action of \mathbb{Z}^{2} on

\mathbb{R}^{2}.

Now recall that the set A of arrows of the quiver is identied with the set E of the

edges of the dimer model. Thus for an edge e\in E ,
we write  $\psi$(e) for the value of  $\psi$ at

the arrow corresponding to  e . For an edge e\in E ,
we also write  $\psi$(e) for the value of

 $\psi$ at the corresponding edge of  E . Let $\delta$_{ $\Psi$} be the union of edges e\in\overline{E} satisfying the

following:

\bullet $\psi$(e)=0

\bullet  e intersects with another edge e^{0} with  $\psi$(e^{0})=0.

The boundary of the fundamental domain F_{ $\Psi$} is obviously contained in $\delta$_{ $\Psi$} . On the

other hand, the relations of the quiver imply that there are no end points in $\delta$_{ $\Psi$} ,
and

therefore the interior of F_{ $\Psi$} does not intersect with $\delta$_{ $\Psi$} . Thus $\delta$_{ $\Psi$} is the union of the

translations of the boundary \partial F_{ $\Psi$} of F_{ $\Psi$} :

(4.1) $\delta$_{ $\Psi$}=\displaystyle \bigcup_{m\in \mathbb{Z}^{2}}(\partial F_{ $\Psi$}+m)
Lemma 4.2. By replacing  $\Psi$ with a representation equivalent to  $\Psi$

,
we may

assume  $\psi$(a)=1 for all arrows a of $\Gamma$_{ $\Psi$}.

Proof. The assertion means that we can attach a complex number g_{v}\in \mathbb{C}^{\times} to

each vertex v\in V such that  $\psi$(a)=g_{t(a)}g_{s(a)}^{-1} for any arrow a in $\Gamma$_{ $\Psi$} . Fix a vertex

v_{0}\in V . For any v\in V ,
we take a path p in the double quiver \overline{$\Gamma$_{ $\Psi$}} starting from v_{0} and

ending at v and we want to put g_{v}= $\psi$(p) . If we show that  $\psi$(p) does not depend on

the choice of p ,
we are done. Take two such paths p_{1} and p_{2} . Lemma 4.1 implies that

p_{1} and p_{2} are homotopic in T and (4.1) shows that the homotopy is generated by the

relations

\bullet  p+(a)\sim p(a) for arrows a of  $\Gamma$ such that  p_{+}(a) is a path in $\Gamma$_{ $\Psi$}.

\bullet  a^{-1}\cdot a\sim e_{s(a)} and a\cdot a^{-1}\sim e_{t(a)} for arrows a of $\Gamma$_{ $\Psi$}.

Thus we obtain  $\psi$(p_{1})= $\psi$(p_{2}) . \square 

From now on, we assume  $\psi$(a)=1 for all arrows a of $\Gamma$_{ $\Psi$} . In other words,  $\psi$(a) is

either 0 or 1. Consider the following subset U_{ $\Psi$} of \overline{\mathcal{M}} :

U_{ $\Psi$}= {  $\Phi$=( $\phi$(a))_{a\in A}\in\overline{\mathcal{M}}| $\phi$(a)=1 if  $\psi$(a)=1 }.

U_{ $\Psi$} is naturally a closed subscheme of \overline{\mathcal{M}}.
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Lemma 4.3. Every point in U_{ $\Psi$} is  $\theta$ ‐stable and the natural morphism  U_{ $\Psi$}\rightarrow

\mathcal{M}_{ $\theta$} is an open immersion. Thus U_{ $\Psi$} can be regarded as a \mathrm{T} ‐invariant ane open

neighborhood of [] in \mathcal{M}_{ $\theta$}.

Proof. Suppose  $\Phi$\in U_{ $\Psi$} . Since the dimension vector of  $\Phi$ is (1, 1, . .

:; 1), a sub‐

representation of  $\Phi$ is determined by a subset  V^{0} of V . By the denition of U_{ $\Psi$}, V^{0} also

determines a subrepresentation of  $\Psi$ . Thus the  $\theta$‐stability for  $\Psi$ implies that for  $\Phi$ ; the

first assertion follows. For the second assertion, put

\overline{U}_{ $\Psi$}= {  $\Phi$=( $\phi$(a))_{a\in A}\in\overline{\mathcal{M}}| $\phi$(a)\neq 0 if  $\psi$(a)=1 }.

This is an open subscheme of \overline{\mathcal{M}} . Then the same argument as in Lemma 4.2 shows that

the morphism

\mathcal{G}\times U_{ $\Psi$}\rightarrow\overline{U}_{ $\Psi$}

induced by the action of \mathcal{G} on \overline{U}_{ $\Psi$} is an isomorphism. Thus U_{ $\Psi$} is a section of the

morphism from \overline{U}_{ $\Psi$} to its quotient by \mathcal{G}. \square 

Lemma 4.4. Either of the following two cases must occur:

1. There are four quadrivalent points of the graph $\delta$_{ $\Psi$} lying in \partial F_{ $\Psi$} , and there are no

points of valency three or greater than four.

2. There are six trivalent points of $\delta$_{ $\Psi$} lying in \partial F_{ $\Psi$} , and there are no points of valency

greater than three.

Proof. Let a_{n} be the number of points of valency n of $\delta$_{ $\Psi$} lying in \partial F_{ $\Psi$} . These

points divide \partial F_{ $\Psi$} into (\displaystyle \sum_{n\geq 3}a_{n}) parts so that we can regard \partial F_{ $\Psi$} as a polygon with

(\displaystyle \sum_{n\geq 3}a_{n}) edges. Since a point of valency n is contained in n translations of F_{ $\Psi$} ,
the

equation that the topological Euler number of T is zero leads to

1-\displaystyle \frac{1}{2}\sum_{n\geq 3}a_{n}+\sum_{n\geq 3}\frac{a_{n}}{n}=0.
It is easy to see from this that there are only two possibilities as stated. \square 

Lemma 4.5. If \dim \mathrm{T}=3 ,
then it holds that \mathrm{T}\subset U_{ $\Psi$}\cong \mathbb{C}^{3} . If \dim \mathrm{T}=2

,
then

U_{ $\Psi$} is the disjoint union of \mathrm{T} and the isolated point \{[]\}.

Proof. We first consider the case 1 of Lemma 4.4. Assume that v_{1}, v_{2} , V3, v_{4} are

the quadrivalent points of $\delta$_{ $\Psi$} lying on \partial F_{ $\Psi$} ,
labeled counterclockwise. These points are

mapped to a common vertex v\in T of the dimer model. Since v_{1} is a quadrivalent point
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of $\delta$_{ $\Psi$} ,
there are four edges e_{1}, e_{2}, e_{3}, e_{4} of \overline{E} that are connected to v_{1} and that satisfy

 $\psi$(e_{i})=0 . The four points v_{i} divides \partial F_{ $\Psi$} into four parts and we may assume that

e_{1} is on the part between v_{1} and v_{2} ,
and e_{2} is between v_{1} and v_{4} . We further assume

e_{1}, e_{2}, e_{3}, e_{4} are arranged counterclockwise around v_{1}.

Now take  $\Phi$\in U_{ $\Psi$} and put t_{i}= $\phi$(e_{i}) . Then, the relations p+(a)=p(a) for arrows

a corresponding to the edges in \partial F_{ $\Psi$} determine the values of  $\Phi$ at the edges on \partial F_{ $\Psi$} :

\bullet For an edge  e of \partial F_{ $\Psi$} between v_{1} and v_{2},  $\phi$(e) coincides with either t_{1} or ttt,

depending on the conguration of the colors of the vertices of e . In particular, since

the colors of v_{1} and v_{2} are the same, we have t_{3}=t_{2}t_{3}t_{4} and t_{1}=t_{4}t_{1}t_{2}.

\bullet Similarly, for an edge  e of \partial F_{ $\Psi$} between v_{1} and v_{4},  $\phi$(e) coincides with either t_{2} or

ttt, and we have t_{4}=t_{3}t_{4}t_{1} and t_{2}=t_{1}t_{2}t_{3}.

Moreover, since ap+(a) does not depend on an arrow a
,

we obtain the following:

\bullet For an edge  e\in\overline{E} with  $\psi$(e)=0 that is not in $\delta$_{ $\Psi$} ,
we must have  $\phi$(e)=t_{1}t_{2}t_{3}t_{4}.

Thus  $\Phi$\in U_{ $\Psi$} is determined by the point (t_{1}, t_{2}, t_{3}, t_{4})\in \mathbb{C}^{4} . Conversely, for any point
in \mathbb{C}^{4} that satises the relations t_{3}=t_{2}t_{3}t_{4}, t_{1}=t_{4}t_{1}t_{2}, t_{4}=t_{3}t_{4}t_{1} and t_{2}=t_{1}t_{2}t_{3} ,

we

can find a corresponding point in U_{ $\Psi$} . Solving these four equations, we obtain

 U_{ $\Psi$}\cong { (t_{1}, t_{2}, t_{3}, t_{4})\in \mathbb{C}^{4}|(t_{1}, t_{2}, t_{3}, t_{4})=0 or t_{1}t_{3}=t_{2}t_{4}=1 }.

The two‐dimensional component dened by t_{1}t_{3}=t_{2}t_{4}=1 is \mathrm{T}‐invariant and is con‐

tained in \mathrm{T} ; hence it coincides with \mathrm{T} which must be two‐dimensional. The origin of \mathbb{C}^{4}

corresponds to [].
Next we consider the case 2 of Lemma 4.4. Let v_{1} ,

. . .

; v_{6} denote the six trivalent

points of $\delta$_{ $\Psi$} lying counterclockwise on \partial F_{ $\Psi$} . In this case, v_{1} , V3 and V5 are in a single
\mathbb{Z}^{2} ‐orbit in \mathbb{R}^{2}

,
and v_{2}, v_{4} and v_{6} are in another orbit. v_{1} is connected to three edges

e_{1}, e_{2}, e_{3} of \overline{E} that satisfy  $\psi$(e_{i})=0 and v_{2} is connected to e_{4}, e_{5}, e_{6} similarly. We may

assume that e_{1} and e_{4} are on the part of \partial F_{ $\Psi$} cut out by v_{1} and v_{2} which contains no

other v_{i} ,
and that e_{1}, e_{2}, e_{3} and e_{4}, e_{5}, e_{6} are arranged counterclockwise around v_{1} and

v_{2} respectively. As in the case 1,  $\Psi$ is determined by  t_{i}:= $\phi$(e_{i})(i=1, \ldots, 6) and we

can see

\bullet If one of  v_{1} and v_{2} is black and the other is white, then (t_{1}, t_{2}, t_{3})=(t_{4}, t_{5}, t_{6}) .

\bullet If the colors of  v_{1} and v_{2} are the same, then t_{i}=t_{j}t_{k} for (i, j, k)=(1,5,6) , (2, 6, 4),
(3,4,5), (4,2,3), (5,3,1) and (6,1,2).

In the first case, (t_{1}, t_{2}, t_{3}) gives rise to an isomorphism U_{ $\Psi$}\cong \mathbb{C}^{3} and \mathrm{T} coincides with

the open subset dened by t_{1}t_{2}t_{3}\neq 0 . In the second case, we can see

 U_{ $\Psi$}\cong { (t_{1}, t_{2}, t_{3})\in \mathbb{C}^{3}|(t_{1}, t_{2}, t_{3})=0 or t_{1}t_{2}t_{3}=1 },
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which, as in the case 1, is the union of \{[ $\Psi$]\} and the two‐dimensional tours T. \square 

§5. Moduli spaces as crepant resolutions

Our denition of dimer models in x2 contains a lot of \backslash inconsistent� ones from

a physics point of view (see Hanany‐Vegh [3]). Here we introduce a condition which

should be necessary (but not sucient) for the consistency.
A dimer model is said to be non‐degenerate if for any edge e\in E ,

there exists a

perfect matching D such that e\in D . An R ‐charge on a dimer model G=(B, W, E) is

a collection of positive real numbers R_{e}\in \mathbb{R}_{>0} indexed by edges e\in E , satisfying

(5.1) \displaystyle \sum_{e\in E,e\ni v}R_{e}=2
for each vertex v\in B\cup W . If G is non‐degenerate, one can dene an \mathrm{R}‐charge by

averaging

R_{e}=\displaystyle \frac{2}{|\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}(G)|} \sum $\chi$_{D}(e)
D\in \mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}(G)

over the set Perf (G) of perfect matchings. Here $\chi$_{D} is the characteristic function of the

subset D\subset E.

Remark. Alastair King pointed to us that the Birkhoff‐von Neumann theorem

implies that the non‐degeneracy condition is in fact equivalent to the existence of an

\mathrm{R}‐charge. He also remarked that Hall�s marriage theorem implies that this condition is

also equivalent to the following strong marriage condition; every proper subset of blacks

is connected to strictly more whites and vice versa.

Take the parameter 0\in \mathrm{H}\mathrm{o}\mathrm{m}_{\mathbb{Z}}(K(\mathrm{m}\mathrm{o}\mathrm{d} \mathbb{C} $\Gamma$), \mathbb{Z}) and consider the corresponding
moduli space \overline{\mathcal{M}_{0}} . Since any representation of  $\Gamma$ is  0‐semistable, this is the categorical

quotient of \overline{\mathcal{M}} by the action of \mathcal{G} . Hence \overline{\mathcal{M}_{0}} is an affine scheme with a distinguished

point [0]\in\overline{\mathcal{M}_{0}} which is the image of 0\in\overline{\mathcal{M}}\subset \mathbb{C}^{A} . Moreover, for any parameter  $\theta$
,

we

have a projective morphism \overline{\mathcal{M}_{ $\theta$}}\rightarrow\overline{\mathcal{M}_{0}}.

Proposition 5.1. Let (B, W, E) be a non‐degenerate dimer model. Then we

have \dim \mathrm{T}=3 ,
and for a generic parameter  $\theta$

,
the moduli space \mathcal{M}_{ $\theta$} is smooth and

irreducible with the trivial canonical bundle K_{\mathcal{M}_{ $\theta$}}.

Proof. We may assume the existence of an \mathrm{R}‐charge (R_{e})_{e}\in(\mathbb{Q}_{>0})^{E} satisfying

(5.1). Take a positive integer N such that r_{e}:=NR_{e} is an integer. Then t\mapsto(t^{r_{\mathrm{e}}})_{e\in E}
is a one parameter subgroup of \mathrm{T} not contained in H^{1}(T, \mathbb{C}^{\times}) ,

and hence we have

\dim \mathrm{T}=3.
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Take an arbitrary point [] =((a)) in \mathcal{M}_{ $\theta$} . We will show that there is a

T‐fixed point [] \in \mathcal{M}_{ $\theta$} such that [] \in U_{ $\Psi$}.

Consider the morphism  $\xi$ : Spec \mathbb{C}[t]\rightarrow\overline{\mathcal{M}_{0}} dened by t\mapsto[(t^{r_{a}} $\phi$(a))_{a\in A}] . We have

 $\xi$(1)= [] and  $\xi$(0)=[0] . Moreover, for t\neq 0,  $\xi$(t) is  $\theta$‐stable. By virtue of the valuative

criterion for the projective morphism \mathcal{M}_{ $\theta$}\rightarrow\overline{\mathcal{M}_{0}} , we can lift  $\xi$ to \overline{ $\xi$}: Spec \mathbb{C}[t]\rightarrow \mathcal{M}_{ $\theta$}.
Since U_{ $\Psi$} is a \mathrm{T}‐invariant open subset and \overline{ $\xi$}( Spec \mathbb{C}[t]\backslash \{0\}) is contained in a single
\mathrm{T}‐orbit, it suces to show \overline{ $\xi$}(0)\in U_{ $\Psi$} for some T‐fixed point [] . Since the fiber of

\mathcal{M}_{ $\theta$}\rightarrow\overline{\mathcal{M}_{0}} over [0]\in\overline{\mathcal{M}_{0}} is a \mathrm{T}‐invariant closed subscheme projective over Spec \mathbb{C} , we

can find such  $\Psi$ as a limit point of the \mathrm{T}‐action. Hence we have [] \in U_{ $\Psi$} ,
where U_{ $\Psi$}

contains \mathrm{T} and is isomorphic to \mathbb{C}^{3} by Lemma 4.5. Since [] is arbitrary, \mathcal{M}_{ $\theta$} is smooth

and irreducible.

Now we prove that the canonical bundle of \mathcal{M}_{ $\theta$} is trivial. As in the proof of

Lemma 4.5, we have a coordinate (t_{1}, t_{2}, t_{3}) on U_{ $\Psi$} . We show that we can patch the

3‐forms dt_{1}\wedge dt_{2}\wedge dt_{3} on U_{ $\Psi$} to obtain a global 3‐form on \mathcal{M}_{ $\theta$} . Let [] and [] be

two T‐fixed points on \mathcal{M}_{ $\theta$} . Then we have coordinates t_{1}, t_{2}, t_{3} on U_{ $\Psi$} and s_{1}, s_{2} , S3

on U_{ $\Phi$} respectively. On the torus \mathrm{T}
,

we can express t_{1}, t_{2}, t_{3} as Laurent monomials

in s_{1}, s_{2} , S3, and vice versa. Thus t_{1}, t_{2}, t_{3} and s_{1}, s_{2} , S3 are related by a matrix in

GL(3, \mathbb{Z}) . Moreover, we have t_{1}t_{2}t_{3}=s_{1}s_{2}s_{3} . These two facts imply dt_{1}\wedge dt_{2}\wedge dt_{3}=

\pm ds_{1}\wedge ds_{2}\wedge ds_{3} . To determine the sign, recall that the edges e_{1}, e_{2}, e_{3} that correspond
to t_{1}, t_{2}, t_{3} in the proof of Lemma 4.5 are arranged counterclockwise. We can make

the same assumption on the choice of s_{1}, s_{2} , S3. Then we can see that the matrix in

GL(3, \mathbb{Z}) has the determinant one, so that dt_{1}\wedge dt_{2}\wedge dt_{3}=ds_{1}\wedge ds_{2}\wedge ds_{3}. \square 

§6. Perfect matchings and toric divisors on moduli spaces

In this section, we discuss the relation between perfect matchings and \mathrm{T}‐invariant

divisors on moduli spaces. Throughout this section, we assume that G=(B, W, E) is a

non‐degenerate dimer model.

For a generic  $\theta$ and a two‐dimensional \mathrm{T}‐orbit Z in \mathcal{M}_{ $\theta$} , pick a representation

 $\Psi$=[( $\psi$(a))_{a\in A}]\in Z and put

D_{Z}=\{a\in A| $\psi$(a)=0\}.

This does not depend on the choice of  $\Psi$ in  Z.

Lemma 6.1. If  $\theta$ is generic, then  D_{Z} is a perfe ct matching for any two‐dimensional

\mathrm{T} ‐orbit Z in \mathcal{M}_{ $\theta$}.

Proof. Take a T‐fixed point [] \in\overline{Z} and consider the ane open neighborhood U_{ $\Phi$}

of [] appearing in §4. As in the proof of Lemma 4.5, there is a coordinate (t_{1}, t_{2}, t_{3}) on
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U_{ $\Phi$} that gives rise to an isomorphism U_{ $\Phi$}\cong \mathbb{C}^{3} . The action of \mathrm{T} on U_{ $\Psi$} is diagonalized
with respect to this coordinate and hence Z\subset U_{ $\Phi$} is dened by t_{i}=0 and t_{j}t_{k}\neq 0
where fi; j, k } =\{1 , 2, 3 \} . Then it follows from the proof of Lemma 4.5 that D_{Z} is a

perfect matching. \square 

Suppose that D is a perfect matching. For t\in \mathbb{C} ,
we dene $\Psi$_{t}=($\psi$_{t}(a))_{a\in A} by

(6.1) $\psi$_{t}(a)=\left\{\begin{array}{ll}
t & \mathrm{i}\mathrm{f} a\in D\subset E=A\\
1 & \mathrm{i}\mathrm{f} a\not\in D
\end{array}\right.
Then we can see that $\Psi$_{t} satises the relation of the quiver and the graph $\Gamma$_{$\Psi$_{t}} is con‐

nected.

Lemma 6.2. There is a generic parameter  $\theta$ such that  $\Psi$_{0} is  $\theta$ ‐stable. Moreover,
the \mathrm{T} ‐orbit Z of [] in \mathcal{M}_{ $\theta$} is two‐dimensional and it satises D=D_{Z}.

Proof. To find a parameter  $\theta$ such that  $\Psi$_{0} is  $\theta$‐stable, we can use an idea from

Sardo‐Infirri [9]: For an arrow  a\in A\backslash D ,
take an arbitrary positive rational number

$\xi$_{a} . For a vertex v of the quiver, we put

 $\theta$(v)=\displaystyle \sum_{a\in A\backslash D}$\xi$_{a}-\sum_{a\in A\backslash D}$\xi$_{a}.
t(a)=v s(a)=v

Then, for any non‐trivial subrepresentation S of $\Psi$_{t} ,
we have

 $\theta$(S)=\displaystyle \sum_{a\in A\backslash D}$\xi$_{a}>0,
s(a)\not\in S
t(a)\in S

which shows that $\Psi$_{t} is  $\theta$‐stable.

For the genericity of  $\theta$
,

it suces to show that we can take  $\theta$ so that

 $\theta$(S)=\displaystyle \sum_{a\in A\backslash D}$\xi$_{a}-\sum_{a\in A\backslash D}$\xi$_{a}\neq 0
s(a)\not\in S s(a)\in S
t(a)\in S t(a)\not\in S

for an arbitrary non‐empty subset S ( V . This is achieved if ($\xi$_{a})_{a\in A\backslash D} is suciently

general.

H^{1}(T, \mathbb{C}^{\times}) acts freely on Z since any element in H_{1}(T, \mathbb{Z}) can be represented by a

linear combination of paths of the double \overline{Q_{D}} . This shows that Z is two‐dimensional.

It follows from the denition of $\Psi$_{0} that D=D_{Z}. \square 
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Consider the closure X^{0} of \mathrm{T} in the moduli space \overline{\mathcal{M}_{0}} corresponding to the param‐

eter 0 . Since it is not a priori clear if X^{0} is normal, we take the normalization X of X'

which is an ane toric variety. Proposition 5.1 is saying that \mathcal{M}_{ $\theta$} is a crepant resolution

of X for a generic  $\theta$.

Now let \triangle\subset H^{1}(T, \mathbb{Z}) be the Newton polygon of the characteristic polynomial

(i.e., the convex hull of height changes) of the dimer model with respect to any fixed

perfect matching. Then we have the following:

Proposition 6.3. The ane coordinate ring of X is isomorphic to the semi‐

group ring \mathbb{C}[(\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{e}(\triangle\times\{1\}))^{\mathrm{o}}] of the dual cone of the cone over \triangle\times\{1\}\subset H^{1}(T, \mathbb{Z})\times \mathbb{Z}.

Proof. Put N=\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{\times}, \mathrm{T}) . Then the ane toric variety X is determined by a

cone C\subset N . For a perfect matching D of G=(B, W, E) ,
let

$\iota$_{D}:\mathbb{C}^{\times}\rightarrow \mathrm{T}

be the homomorphism sending t\in \mathbb{C}^{\times} to the representation $\Psi$_{t} dened by (6.1). Since

$\iota$_{D}(\mathrm{C}) is the stabilizer of [] \in Z\subset \mathcal{M}_{ $\theta$} where the orbit Z of [] is two‐dimensional

by Lemma 6.2, Lemmas 6.1 and 6.2 imply that the cone C is generated by the set

\{$\iota$_{D}|D\in Perf (  G)\}\subset N.

Recall that we have an exact sequence

1\rightarrow H^{1}(T, \mathbb{C}^{\times})\rightarrow \mathrm{T}\rightarrow \mathbb{C}^{\times}\rightarrow 1.

The map $\iota$_{D} gives a splitting

\mathrm{T}\cong H^{1}(T, \mathbb{C}^{\times})\times$\iota$_{D}(\mathrm{C})

of the above exact sequence. Let

$\pi$_{D}:\mathrm{T}\rightarrow H^{1}(T, \mathbb{C}^{\times})

be the projection with respect to this splitting. Now fix a reference perfect matching D_{0},
and hence the splitting \mathrm{T}\cong H^{1}(T, \mathbb{C}^{\times})\times \mathbb{C}^{\times} given by $\iota$_{D_{0}} . Then under the corresponding

splitting N\cong H^{1}(T, \mathbb{Z})\times \mathbb{Z} ,
we have $\iota$_{D}\in H^{1}(T, \mathbb{Z})\times\{1\} for any perfect matching D.

Therefore it suces to show that \triangle is the convex hull of

\{$\pi$_{D_{0}}\circ$\iota$_{D}|D\in \mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}(G)\}\subset H^{1}(T, \mathbb{Z}) ,

where we have identied \mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{C}^{\times}, H^{1}(T, \mathrm{C})) with H^{1}(T, \mathbb{Z}) .
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The projection $\pi$_{D} is dened as follows: For a homology class C\in H_{1}(T, \mathbb{Z}) ,
choose

an allowed path p_{C} with respect to D (i.e., a path which does not contain any arrow

a\in D\subset E=A) whose homology class lies in C . Then for  $\psi$\in \mathrm{T},

$\pi$_{D}( $\psi$)(C)= $\psi$(p_{C})\in \mathbb{C}^{\times}

It follows that the height change h_{D,D_{0}}\in H^{1}(T, \mathbb{Z}) of D with respect to the reference

perfect matching D_{0} coincides with $\pi$_{D_{0}}\circ$\iota$_{D} . Since \triangle is the convex hull of the set of

height changes, we are done. \square 

By combining Proposition 5.1 with Proposition 6.3, we obtain the main theorem

in this paper:

Theorem 6.4. Let (B, W, E) be a non‐degenerate dimer model. Then for a

generic parameter  $\theta$, \mathcal{M}_{ $\theta$} is a crepant resolution of Spec \mathbb{C}[(\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{e}(\triangle\times\{1\}))^{\mathrm{o}}].

For example, the moduli space \mathcal{M}_{ $\theta$} for the dimer model in Figure 1 and a generic

stability parameter  $\theta$ is the total space of the direct sum \mathcal{O}_{\mathbb{P}^{1}}(-1)\oplus \mathcal{O}_{\mathbb{P}^{1}}(1) of the

tautological bundle O(1) on the projective line \mathbb{P}^{1} . There is a real‐codimension one

wall in the space of stability parameters and the moduli space flops as one moves from

one chamber to the other.
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