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On the cohomological cycle of a normal

surface singularity

To the memory of Profe ssor Eiji Horikawa

By

Kazuhiro KONNO *

Abstract

The cohomological cycles of normal surface singular points are studied by means of the

chain‐decomposition. It is shown that the cohomological cycle of a weakly elliptic singularity
contracts to a Gorenstein singularity with the same geometric genus as the original one, and

that of a weakly elliptic numerically Gorenstein singularity can be computed by Yau�s elliptic
sequence for the canonical cycle on the minimal resolution.

§1. Introduction

We shall work over an algebraically closed field k of characteristic zero. Let (V, o)
be the germ of a normal surface singular point and  $\pi$ :  X\rightarrow V a desingularization. Since

the intersection form is negative definite on $\pi$^{-1}(0) ,
there exists a curve D supported

on $\pi$^{-1}(0) such that \mathcal{O}_{D}(D) is \mathrm{n}\mathrm{e}\mathrm{f} . The smallest one Z among such curves exists and

is called the fundamental cycle ([1], [2]). We have three basic genera for (V, 0) (see, e.g.,

[9]):

\bullet Fundamental genus  p_{f}(V, 0) :=p_{a}(Z)

\bullet Arithmetic genus  p_{a}(V, 0) :=\mathrm{s}\mathrm{u}\mathrm{p}_{\mathrm{p}}(\mathrm{D}) : 0\prec D, \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(D)\subseteq$\pi$^{-1}(0) }

\bullet Geometric genus  p_{g}(V, 0) :=\dim_{k}R^{1}$\pi$_{*}\mathcal{O}_{X}
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We have p_{f}(V, 0)\leq p_{a}(V, 0)\leq p_{g}(V, 0) ,
where the inequalities are usually strict.

The geometric genus is an analytic invariant which is hard to compute, even when

we know the weighted dual graph of the exceptional set. However, as shown in [7], one

can associate with it a canonically determined curve as follows. If D is a sufficiently �big�
curve with support in $\pi$^{-1}(0) ,

then we obtain an isomorphism R^{1}$\pi$_{*}\mathcal{O}_{X}\simeq H^{1}(D, \mathcal{O}_{D})
from the exact sequence 0\rightarrow \mathcal{O}_{X}(-D)\rightarrow \mathcal{O}_{X}\rightarrow \mathcal{O}_{D}\rightarrow 0 . In [7] (see also [8]), it is

shown that there exists the smallest one among curves enjoying such a property. We

denote it by Z_{1} and call it the cohomological cycle according to [8]. Therefore, we have

h^{1}(D, \mathcal{O}_{D})=p_{g}(V, 0) when Z_{1}\preceq D ,
and h^{1}(D, \mathcal{O}_{D})<p_{g}(V, 0) when Z_{1}\not\leq D.

We say that (V, 0) is a numerically Gorenstein singularity if there exists a curve Z_{K}

such that K_{X}\equiv-Z_{K} on $\pi$^{-1}(0) ,
where the symbol \equiv means the numerical equivalence.

Such a curve  Z_{K} is called the canonical cycle. We have K_{X}\sim-Z_{K} (linearly equivalent)
if and only if (V, o) is a Gorenstein singularity, that is, \mathcal{O}_{V,0} is a Gorenstein local ring.
Note that Z_{K}=0 is equivalent to saying that (V, o) is a rational double point. In [7], it

is shown that Z_{1}=Z_{K} holds when (V, o) is Gorenstein (see also [8]). But our knowledge
is very poor when we are in a more general situation. We do not know even whether

the support of Z_{1} is connected or not.

The purpose of the present note is to study the still mysterious curve Z_{1} by a

numerical method as a continuation of [3], where we considered the chain‐decomposition
of the canonical cycle among other things. After recalling from [3] some basic results

for chain‐connected curves in Sect. 2, we state fundamental properties of the chain‐

decomposition of Z_{1} in Sect. 3. Then we restrict ourselves to weakly elliptic singularities
in Sect. 4 in order to clarify what Z_{1} is in this special case. Here, (V, o) is called weakly

elliptic if p_{a}(V, 0)=1 ([9], [10]). We shall show in Theorem 4.2 that Z_{1} is the canonical

cycle of a weakly elliptic Gorenstein singularity with the same geometric genus as (V, 0) .

Furthermore, Theorem 4.4 shows that the chain‐decomposition of Z_{1} can be realized

as a subsequence of Yau�s elliptic sequence [10] for the canonical cycle, when (V, o)
is numerically Gorenstein. On the minimal resolution, this also follows from [6] (see,
Remark after Theorem 4.4).

The author would like to thank Professors Tadashi Tomaru and Tomohiro Okuma

for their interests and helpful comments. He also thanks the organizers of the conference.

The author�s talk was given on July 3rd 2007, which is exactly one year after since

Professor Eiji Horikawa passed away. He would like to dedicate the paper to him with

his deepest sympathy.

§2. Curves on a smooth surface

In this section, we collect some results from [3] for the later use. See [3] for the full

detail.
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By a curve, we mean an effective (non‐zero) divisor on a smooth surface X . Let D

be a curve. We put p_{a}(D)=1- $\chi$(\mathcal{O}_{D}) and call it the arithmetic genus of D . If D_{1} is

a subcurve of D
,

then we have an exact sequence of sheaves

0\rightarrow \mathcal{O}_{D-D_{1}}(-D_{1})\rightarrow \mathcal{O}_{D}\rightarrow \mathcal{O}_{D_{1}}\rightarrow 0,

which yields p_{a}(D)=p_{a}(D_{1})+p_{a}(D-D_{1})-1+(D-D_{1})D_{1} . Since D is Gorenstein,
the dualizing sheaf $\omega$_{D} is invertible. We have $\omega$_{D}=\mathcal{O}_{D}(K_{X}+D) by the adjunction
formula and \deg$\omega$_{D}=2p_{a}(D)-2 . A line bundle (or an invertible sheaf) L on D is

called nef if it is of non‐negative degree on any irreducible components of D.

A curve D is called chain‐connected ( \mathrm{s}‐connected in the terminology of [5]) if

\mathcal{O}_{D- $\Gamma$}(- $\Gamma$) is not nef for any strict subcurve  $\Gamma$\prec D . It is easy to see that h^{0}(D, \mathcal{O}_{D})=1
and that a non‐zero element in H^{0}(D, \mathcal{O}_{D}) is nowhere vanishing, when D is chain‐

connected. Furthermore, the following three properties are satisfied.

Lemma 2.1. Let L be a nef line bundle on a chain‐connected curve D. Then

H^{0}(D, -L)\neq 0 if and only if L is trivial.

Lemma 2.2. Let D_{1} and D_{2} be curves such that \mathcal{O}_{D_{1}}(D) is nef. If D_{1} is

chain‐connected, then either D_{1}\preceq D_{2} or D_{1}\cap D_{2}=\emptyset.

Lemma 2.3. Let D be a chain‐connected curve with p_{a}(D)>0 . Then there

uniquely exists a subcurve D_{\min} with p_{a}(D_{\min})=p_{a}(D) and K_{D_{\min}} is nef. Furthermore,

D_{\min}=\displaystyle \min_{0\prec $\Gamma$\preceq D}\{p_{a}( $\Gamma$)=p_{a}(D)\}=0 $\Gamma$\preceq D\max_{\prec}\{K_{ $\Gamma$} is nef\}.
The curve D_{\min} as above is called the minimal model of D . The first half of the following
can be already found in [5].

Theorem 2.4. Let D be a curve. Then there exist a positive integern and chain‐

connected subcurves $\Gamma$_{i}\preceq D, 1\leq i\leq n ,
such that (1) D=\displaystyle \sum_{i=1}^{n}$\Gamma$_{i} and (2) \mathcal{O}_{$\Gamma$_{j}}(-$\Gamma$_{i})

is neffor any i<j . Such an ordered decomposition is unique up to permutations of
indices preserving the second property.

The ordered decomposition as above will be referred to as the chain‐decomposition
of D . We remark that

(2.1) h^{0}(D, \displaystyle \mathcal{O}_{D})\leq n-\sum_{i<j}$\Gamma$_{i}$\Gamma$_{j}, p_{a}(D)=\sum_{i=1}^{n}p_{a}($\Gamma$_{i})-(n-1)+\sum_{i<j}$\Gamma$_{i}$\Gamma$_{j}
hold ([3], see [5] for the first inequality). By Lemma 2.2, we have either $\Gamma$_{j}\preceq$\Gamma$_{i} or

$\Gamma$_{i}\cap$\Gamma$_{j}=\emptyset when  i<j . Hence, the support of every maximal curve in \{$\Gamma$_{i}\}_{i=1}^{n} is a

connected component of Supp (D) .
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There is another notion for connectedness of curves. For an integer m
,

a curve D

is called (numerically) m‐connected if (D-D_{1})D_{1}\geq m holds for any proper subcurve

D_{1}\prec D . A nef and big curve is necessarily 1‐connected by Hodge�s index theorem.

Every 1‐connected curve is chain‐connected. But the converse does not hold in general.
We sometimes need to consider a curve D with the property:

(2.2) p_{a}(D')\leq 1 holds for any subcurve D'\preceq D

For such curves, we have the following:

Lemma 2.5. Let D be a curve with p_{a}(D)=1 satisfy ing (2.2). Then D is

0 ‐connected. If D=$\Gamma$_{1}+\cdots+$\Gamma$_{n} is the chain‐decomposition, then every $\Gamma$_{i} is a

0 ‐connected curve with p_{a}($\Gamma$_{i})=1, \mathcal{O}_{$\Gamma$_{j}}(-$\Gamma$_{i}) is numerically trivial for any i<j.

Furthermore, h^{0}(D, \mathcal{O}_{D})\leq n.

§3. Cohomological cycles

From now on, we let (V, o) be the germ of a normal surface singular point with

p_{g}(V, 0)>0 and  $\pi$ :  X\rightarrow V a resolution of (V, 0) . The fundamental cycle and the

cohomological cycle on $\pi$^{-1}(0) are respectively denoted by Z and Z_{1} . We remark that

Z is chain‐connected. We tacitly assume hereafter that every curve is supported in

$\pi$^{-1}(0) .

§3.1. Some basic properties

The following lemma gives us the �dual� characterization of Z_{1} that |K_{Z_{1}}| is the

common variable part of the canonical linear systems of any bigger curves.

Lemma 3.1. The following hold.

(1) When Z_{1}\prec D , every element in H^{0}(D, K_{D}) vanishes identically on D-Z_{1}.

(2) The canonical linear system |K_{Z_{1}}| of Z_{1} has no fixed components. In particular,

K_{Z_{1}} is nef.

Proof. (1) We consider the cohomology long exact sequence for

0\rightarrow \mathcal{O}_{Z_{1}}(K_{Z_{1}})\rightarrow \mathcal{O}_{D}(K_{D})\rightarrow \mathcal{O}_{D-Z_{1}}(K_{D})\rightarrow 0.

The injection H^{0}(Z_{1}, K_{Z_{1}})\rightarrow H^{0}(D, K_{D}) is the dual map of H^{1}(D, \mathcal{O}_{D})\rightarrow H^{1}(Z_{1}, \mathcal{O}_{Z_{1}})
which is an isomorphism, since Z_{1}\prec D . Hence H^{0}(D, K_{D})\rightarrow H^{0}(D-Z_{1}, K_{D}) is

the zero map. (2) Assume that there is an irreducible component C of Z_{1} such that
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the restriction map H^{0}(Z_{1}, K_{Z_{1}})\rightarrow H^{0}(C, K_{Z_{1}}) is zero. Then  H^{0}(Z_{1}-C, K_{Z_{1}-C})\simeq
 H^{0}(Z_{1}, K_{Z_{1}}) . By the Serre duality theorem, this gives us H^{1}(Z_{1}, \mathcal{O}_{Z_{1}})\simeq H^{1}(Z_{1}-
C, \mathcal{O}_{Z_{1}-C}) ,

which is impossible because Z_{1} is the smallest curve with h^{1}(Z_{1}, \mathcal{O}_{Z_{1}}) =

p_{g}(V, 0) . \square 

Let Z_{1}=\triangle_{1}+\cdots+\triangle_{ $\nu$} be the chain‐decomposition: each \triangle_{i} is chain‐connected,

\mathcal{O}_{\triangle_{j}} () is nef when i<j.

Lemma 3.2. Any \triangle_{i} is a subcurve of the fundamental cycle Z. If \triangle_{i} is a

minimal curve in \{\triangle_{j}\}_{j=1}^{ $\nu$} ,
then K_{\triangle_{i}} is nef and p_{a}(\triangle_{i})>0.

Proof. \mathcal{O}_{\triangle_{i}}(Z) is \mathrm{n}\mathrm{e}\mathrm{f} . Since \triangle_{i} is chain‐connected and \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\triangle_{i})\subseteq$\pi$^{-1}(0) ,
we

get \triangle_{i}\preceq Z by Lemma 2.2. Let \triangle_{i} be a minimal curve in \{\triangle_{j}\}_{j=1}^{ $\nu$} . By a permutation
of indices, we may assume that i=v . Recall that -\displaystyle \sum_{j=1}^{ $\nu$-1}\triangle_{j} is nef on \triangle_{ $\nu$} . Since K_{Z_{1}}
is nef and $\omega$_{\triangle_{ $\nu$}}=\displaystyle \mathcal{O}_{\triangle_{ $\nu$}}(K_{Z_{1}}-\sum_{j=1}^{ $\nu$-1}\triangle_{j}) ,

we see that K_{\triangle_{ $\nu$}} is also \mathrm{n}\mathrm{e}\mathrm{f} . In particular, we

have p_{a}(\triangle_{ $\nu$})>0 . Then p_{a}(\triangle_{j})>0 for any j. \square 

The following shows that we can bound p_{g}(V, 0) by a topological data, if we could

find a way to compute Z_{1} from the weighted dual graph.

Lemma 3.3. p_{g}(V, 0)\displaystyle \leq\sum_{i=1}^{ $\nu$}p_{a}(\triangle_{i})\leq v\cdot p_{f}(V, 0) .

Proof. By (2.1), h^{0}(Z_{1}, \displaystyle \mathcal{O}_{Z_{1}})\leq v-\sum_{i<j}\triangle_{i}\triangle_{j} and p_{a}(Z_{1})=\displaystyle \sum_{j=1}^{ $\nu$}p_{a}(\triangle_{j})-(v-
1)+\displaystyle \sum_{i<j}\triangle_{i}\triangle_{j} . Since h^{1}(Z_{1}, \mathcal{O}_{Z_{1}}) =p_{g}(V, 0) ,

we get p_{g}(V, o) =h^{0}(Z_{1}, \mathcal{O}_{Z_{1}}) -(1-

p_{a}(Z_{1}))\displaystyle \leq\sum p_{a}(\triangle_{j})+h^{0}(Z_{1}, \mathcal{O}_{Z_{1}})-v+\sum_{i<j}\triangle_{i}\triangle_{j}\leq\sum_{j}p_{a}(\triangle_{j}) . Note that we have

p_{a}(\triangle_{j})\leq p_{a}(Z)=p_{f}(V, 0) for each j by \triangle_{j}\preceq Z. \square 

§3.2. Numerically Gorenstein case

In this subsection, (V, o) denotes a numerically Gorenstein surface singularity with

p_{g}(V, 0)>0 . Let Z_{K} be the canonical cycle on a resolution  $\pi$ :  X\rightarrow V . It is shown in

[7] (also [8]) that Z_{1}=Z_{K} if (V, o) is Gorenstein.

Lemma 3.4 ([7]). Z_{1}\preceq Z_{K}.

Proof. In order to see that \dim R^{1}$\pi$_{*}\mathcal{O}_{X}=h^{1}(Z_{K}, \mathcal{O}_{Z_{K}}) ,
it suffices to show that

the restriction H^{1}(D, \mathcal{O}_{D})\rightarrow H^{1}(Z_{K}, \mathcal{O}_{Z_{K}}) is an isomorphism for any curve D with

Z_{K}\preceq D . For this purpose, we have only to show that H^{1}(D-Z_{K}, -Z_{K})=0 . This

can be seen as follows. By duality, H^{1}(D-Z_{K}, -Z_{K})^{\vee}\simeq H^{0}(D-Z_{K}, K_{D-Z_{K}}+

Z_{K})=H^{0}(D-Z_{K}, D+K_{X}) . Recall that K_{X} and -Z_{K} are numerically equivalent. If
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H^{0}(D-Z_{K}, D+K_{X}) were not zero, since we have \deg(D+K_{X})|_{D-Z_{K}}=(D-Z_{K})^{2}<0,
any non‐zero element s\in H^{0}(D-Z_{K}, D+K_{X}) vanishes on a component. Letting C_{S}
be the biggest subcurve on which s vanishes identically, s induces a non‐zero element s'

of H^{0}(D-Z_{K}-C_{s}, D+K_{X}-C_{S}) . But we still have \deg(D+K_{X}-C_{S})|_{D-Z_{K}-C_{\mathrm{S}}}=
(D-Z_{K}-C_{S})^{2}<0 and s' should vanish on a component, which is impossible by the

choice of C_{S} . Therefore, H^{0}(D-Z_{K}, D+K_{X})=0. \square 

Then, by the Riemann‐Roch theorem and p_{a}(Z_{K})=1 ,
we get h^{0}(Z_{K}, \mathcal{O}_{Z_{K}})=

h^{1}(Z_{K}, \mathcal{O}_{Z_{K}})=p_{g}(V, 0) .

Lemma 3.5. Let F be the fixed part of|K_{Z_{K}}| ,
that is, the biggest subcurve of Z_{K}

such that the restriction map H^{0}(Z_{K}, K_{Z_{K}})\rightarrow H^{0}(F, K_{Z_{K}}) is zero. Then Z_{1}=Z_{K}-F.

In particular, Z_{1}=Z_{K} holds when (V, o) is Gorenstein.

Proof. Since Z_{1}\preceq Z_{K} ,
the first assertion follows from Lemma 3.1. If (V, o) is

Gorenstein, then K_{Z_{K}} is trivial and, hence, |K_{Z_{K}}| cannot have a base point. \square 

This yields the following well‐known fact.

Corollary 3.6. Let (V, o) be a Gorenstein surfa ce singularity with p_{g}(V, 0)\geq 2.
Then p_{f}(V, 0)<p_{g}(V, 0) .

Proof. We may assume that  $\pi$ is the minimal resolution. Then  Z\preceq Z_{K} ,
since

K_{X}\sim-Z_{K} is \mathrm{n}\mathrm{e}\mathrm{f} . We have h^{0}(Z_{K}, \mathcal{O}_{Z_{K}})=p_{g}(V, 0)\geq 2 ,
while h^{0}(Z, \mathcal{O}_{Z})=1 because

Z is chain‐connected. So, Z\prec Z_{K} and we have p_{f}(V, 0)=h^{1}(Z, \mathcal{O}_{Z})<h^{1}(Z_{K}, \mathcal{O}_{Z_{K}})=
p_{g}(V, 0) by Z_{K}=Z_{1}. \square 

We let Z_{K}=$\Gamma$_{1}+\cdots+$\Gamma$_{n} be the chain‐decomposition. It is known that $\Gamma$_{1}=Z

when  $\pi$ is the minimal resolution (see [3]).

Lemma 3.7. If (V, 0) is a numerically Gorenstein singularity which is not Goren‐

stein, then Z_{1}\preceq Z_{K}-$\Gamma$_{1}.

Proof. By the assumption, K_{Z_{K}} is numerically trivial but not trivial. Hence, for

any non‐zero s\in H^{0}(Z_{K}, K_{Z_{K}}) ,
there exists an irreducible component E_{S} on which s

vanishes identically. Since Supp ( \mathrm{Z}) is connected, we have \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}($\Gamma$_{1})= Supp ( \mathrm{Z}) and

hence E_{s}\preceq$\Gamma$_{1} . We consider the cohomology long exact sequence for

0\rightarrow \mathcal{O}_{Z_{K}-$\Gamma$_{1}}(K_{Z_{K}-$\Gamma$_{1}})\rightarrow \mathcal{O}_{Z_{K}}(K_{Z_{K}})\rightarrow \mathcal{O}_{$\Gamma$_{1}}(K_{Z_{K}})\rightarrow 0.

Suppose that s restricts to a non‐zero element of H^{0}($\Gamma$_{1}, K_{Z_{K}}) . Since $\Gamma$_{1} is chain‐

connected and K_{Z_{K}} is numerically trivial, we get \mathcal{O}_{$\Gamma$_{1}}(K_{Z_{K}})\simeq \mathcal{O}_{$\Gamma$_{1}} by Lemma 2.1.
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Note that we have h^{0}($\Gamma$_{1}, \mathcal{O}_{$\Gamma$_{1}})=1 and s should be nowhere vanishing on $\Gamma$_{1} . This is

impossible, because s vanishes on E_{s}\preceq$\Gamma$_{1} . Therefore, H^{0}(Z_{K}, K_{Z_{K}})\rightarrow H^{0}($\Gamma$_{1}, K_{Z_{K}})
is zero. \square 

From the above lemmas, we get the following:

Proposition 3.8. Let (V, o) be a numerically Gorenstein singular point. Then

the following two conditions are equivalent.

(1) (V, o) is Gorenstein. (2) Z_{1}=Z_{K}.

§4. Weakly elliptic singularities

We say that (V, o) is a weakly elliptic singularity when p_{a}(V, 0)=1 . It is equivalent
to saying that p_{f}(V, 0)=1 ,

as is well‐known ([9], [4], see also [3]).

Lemma 4.1. Let (V, o) be a weakly elliptic singularity. Then the cohomolog‐
ical cycle Z_{1} is 0 ‐connected and p_{a}(Z_{1})=1 . If Z_{1}=\triangle_{1}+\cdots+\triangle_{ $\nu$} is the chain‐

decomposition, then p_{a}(\triangle_{i})=1 for any i, \triangle_{ $\nu$}\prec\triangle_{ $\nu$-1}\prec . . . \prec\triangle_{1}, \mathcal{O}_{\triangle_{j}}(-\triangle_{i}) is

numerically trivial when i<j, \triangle_{ $\nu$} is the minimal model of the fundamental cycle Z.

Furthermore, p_{g}(V, 0)\leq v.

Proof. We know from Lemma 3.1 that K_{Z_{1}} is \mathrm{n}\mathrm{e}\mathrm{f} . So p_{a}(Z_{1})>0 by \deg K_{Z_{1}}=
2p_{a}(Z_{1})-2 . On the other hand, we have p_{a}(Z_{1})\leq p_{a}(V, 0)=1 . Hence p_{a}(Z_{1})=1.
Since Z_{1} satisfies the property (2.2) by p_{a}(V, 0)=1 ,

it follows from Lemma 2.5 that Z_{1}

is a 0‐connected curve whose chain‐decomposition \triangle_{1}+\cdots+\triangle_{ $\nu$} has the properties listed

there: p_{a}(\triangle_{i})=1, \mathcal{O}_{\triangle_{j}} () is numerically trivial for i<j, h^{0}(Z_{1}, \mathcal{O}_{Z_{1}})\leq v . The last

inequality shows that p_{g}(V, 0)\leq v ,
because p_{a}(Z_{1})=1 and p_{g}(V, 0)=h^{1}(Z_{1}, \mathcal{O}_{Z_{1}}) .

Recall that \triangle_{i}\preceq Z and p_{a}(\triangle_{i})=p_{a}(Z)=1 . It follows from Lemma 2.3 that

each \triangle_{i} contains the minimal model of Z as a subcurve. This is sufficient to imply that

\triangle_{j}\preceq\triangle_{i} when i<j . Note that we cannot have \triangle_{j}=\triangle_{i} here, because \triangle_{i}\triangle_{j}=0
but \triangle_{i}^{2}<0 . Since K_{\triangle_{ $\nu$}} is nef by Lemma 3.2 and p_{a}(\triangle_{ $\nu$})=p_{a}(Z) ,

we see that \triangle_{ $\nu$} is

nothing but the minimal model of Z . We know that K_{\triangle_{ $\nu$}} is trivial from Lemma 2.1,
because \triangle_{ $\nu$} is chain‐connected and h^{0}(, K_{\triangle_{ $\nu$}})=1 . Then it is easy to see that \triangle_{ $\nu$} is

2‐connected. \square 

In particular, when (V, o) is weakly elliptic, we know that the support of Z_{1} is

connected, because it coincides with the support of the chain‐connected curve \triangle_{1} . The

singular point obtained by contracting the smallest curve \triangle_{ $\nu$} as above is a minimally

elliptic singularity [4] (or, an elliptic Gorenstein singularity in the sense of [7]). (N.B.
\triangle_{ $\nu$} is not necessarily the fundamental cycle on its support.)
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Theorem 4.2. Let (V, 0) be a weakly elliptic singularity and Z_{1} the cohomologi‐
cal cycle. Then the singular point (V_{\mathrm{b}}, 0_{\mathrm{b}}) obtained by contracting \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\mathrm{Z}) is a weakly

elliptic Gorenstein singularity with p_{g}(V_{\mathrm{b}}, 0_{\mathrm{b}})=p_{g}(V, 0) and Z_{1} is the canonical cycle

of (V_{\mathrm{b}}, 0_{\mathrm{b}}) .

Proof. Recall that K_{Z_{1}} is \mathrm{n}\mathrm{e}\mathrm{f} . Since p_{a}(Z_{1})=1 ,
we see that K_{Z_{1}} is numerically

trivial, which is equivalent to saying that Z_{1} is the canonical cycle on its support.

Therefore, the singular point (V_{\mathrm{b}}, 0_{\mathrm{b}}) obtained by contracting Supp ( \mathrm{Z}) is numerically
Gorenstein. We clearly have p_{g}(V_{\mathrm{b}}, 0_{\mathrm{b}})=p_{g}(V, 0) . Since the canonical cycle and the

cohomological cycle coincide, (V_{\mathrm{b}}, 0_{\mathrm{b}}) is a Gorenstein singularity by Proposition 3.8. \square 

Corollary 4.3. If (V, 0) is a normal surfa ce singularity with p_{g}(V, 0)=1 ,
then

its cohomological cycle on the minimal resolution is the fundamental cycle of a minimally

elliptic singularity.

When (V, o) is a weakly elliptic numerically Gorenstein singularity, using Lemma 2.5

as in Lemma 4.1, one can show that the chain‐decomposition Z_{K}=$\Gamma$_{1}+\cdots+$\Gamma$_{n} of the

canonical cycle satisfies: p_{a}($\Gamma$_{i})=1 for any i, $\Gamma$_{n}\prec$\Gamma$_{n-1}\prec\cdots\prec$\Gamma$_{1}, \mathcal{O}_{$\Gamma$_{i}+\cdots+$\Gamma$_{n}}(-$\Gamma$_{i-1})
is numerically trivial for 2\leq i\leq n, $\Gamma$_{n} is the minimal model of the fundamental cycle
Z . It is shown in [3] that the sequence $\Gamma$_{n}\prec$\Gamma$_{n-1}\prec\cdots\prec$\Gamma$_{1} is nothing more than

Yau�s elliptic sequence ([10]) if  $\pi$ is the minimal resolution. In this case, each  $\Gamma$_{i} is the

fundamental cycle on its support and $\Gamma$_{1}=Z . The following in particular shows that

Z_{1} can be computed by using the elliptic sequence for Z_{K} on the minimal resolution.

Theorem 4.4. Let (V, 0) be a weakly elliptic numerically Gorenstein singularity
and  $\pi$ :  X\rightarrow V a resolution. Let Z_{K} and Z_{1} be the canonical cycle and the cohomological

cycle on $\pi$^{-1}(0) , respectively. Then there exists a weakly elliptic Gorenstein singularity

(V_{\mathrm{b}}, 0_{\mathrm{b}}) with p_{g}(V_{\mathrm{b}}, 0_{\mathrm{b}})=p_{g}(V, 0) satisfy ing

(1) (V_{\mathrm{b}}, 0_{\mathrm{b}}) is obtained by contracting the connected subset Supp ( \mathrm{Z}) of $\pi$^{-1}(0) and Z_{1}

is the canonical cycle for (V_{\mathrm{b}}, 0

(2) if Z_{K}=\displaystyle \sum_{i=1}^{n}$\Gamma$_{i} is the chain‐decomposition of Z_{K} ,
then Z_{1}=\displaystyle \sum_{j=i}^{n}$\Gamma$_{j} is the

chain‐decomposition of Z_{1} for some i\in\{1, 2, . . . , n\}.

In particular, p_{g}(V, 0)\leq n-i+1.

Proof. By Theorem 4.2, we only have to show (2). If (V, 0) itself is Gorenstein,
then it suffices to take i=1 . Assume that (V, o) is not Gorenstein. Then  Z_{1}\preceq

 Z_{K}-$\Gamma$_{1}=$\Gamma$_{2}+\cdots+$\Gamma$_{n} by Lemma 3.7. We denote by (V_{1},0_{1}) the singularity obtained by

contracting Z_{K}-$\Gamma$_{1} . Then it is a weakly elliptic numerically Gorenstein singularity with
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p_{g}(V_{1},0_{1})=p_{g}(V, 0) whose canonical cycle is Z_{K}-$\Gamma$_{1} ,
since -$\Gamma$_{1} is numerically trivial

on Z_{K}-$\Gamma$_{1} . If (V_{1},0_{1}) is Gorenstein, then we have Z_{1}=Z_{K}-$\Gamma$_{1} by Proposition 3.8

and put i=2 . Otherwise, we have Z_{1}\preceq Z_{K}-$\Gamma$_{1}-$\Gamma$_{2} and let (V_{2},0_{2}) be the weakly

elliptic numerically Gorenstein singularity obtained by contracting Z_{K}-$\Gamma$_{1}-$\Gamma$_{2} . Then

p_{g}(V_{2},0_{2})=p_{g}(V_{1},0_{1})=p_{g}(V, 0) and Z_{K}-$\Gamma$_{1}-$\Gamma$_{2} is the canonical cycle for (V_{2},0_{2}) ,

since -$\Gamma$_{1}-$\Gamma$_{2} is numerically trivial on Z_{K}-$\Gamma$_{1}-$\Gamma$_{2}=\displaystyle \sum_{j=3}^{n}$\Gamma$_{j} . Now the obvious

induction shows that there is an index i as in (2). Then we clearly have  p_{g}(V, 0)\leq
 n-i+1. \square 

Remark. As Professor T. Okuma kindly pointed out to the author, Theorem 4.4

also follows from [6] at least on the minimal resolution. In fact, since Z_{1} is the canonical

cycle on its support, we have Z_{1}=$\Gamma$_{i}+\cdots+$\Gamma$_{n} for some i by [6, Proposition 2.9

(Némethi, Tomari)]. Then it follows from [6, Lemma 2.12] that (V_{\mathrm{b}}, 0_{\mathrm{b}}) is Gorenstein.

Recall that a weakly elliptic numerically Gorenstein singularity is called maximally

elliptic, if the geometric genus coincides with the length of the elliptic sequence (i.e.,
p_{g}(V, 0)=n in the above notation). Theorem 4.4 in particular implies the following
result due to Yau [10].

Corollary 4.5 ([10]). Every maximally elliptic singularity is Gorenstein.
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