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Existence of stable bundles on Calabi‐Yau manifolds

By

Tohru NAKASHIMA *

Abstract

We discuss the existence problem of  $\mu$‐stable bundles on Calabi‐Yau threefolds arising
from superstring theory. The possibility of strengthening the classical Bogomolov inequality
will be examined.

§1. Introduction

Let  X be a smooth projective variety of dimension n\geq 2 defined over \mathbb{C} and

let H be an ample line bundle on X . The notion of  $\mu$-( semi) stability has played a

central role in the classification of vector bundles on X . We fix an integer r\geq 2 and

c_{i}\in H^{2i}(X, \mathbb{Z})(1\leq i\leq n) . A fundamental problem concerning  $\mu$‐stable bundles is the

following

Problem 1. Determine  r and c_{i} for which a vector bundle (or torsion‐free sheaf)
E exists on X with \mathrm{r}\mathrm{k}(E)=r, c_{i}(E)=c_{i} which is  $\mu$‐stable with respect to  H.

The most general result concerning the problem above is the following asymptotic
theorem due to Maruyama.

Theorem 1.1 ([3]). Assume that r\geq n . Then, for any c_{1} and an integer s,

there exists a  $\mu$ ‐stable vector bundle  E with \mathrm{r}\mathrm{k}(E)=r, c_{1}(E)=c_{1} and c_{2}(E)\cdot H^{n-2}\geq s.

In particular, the theorem implies the existence of a sequence of  $\mu$‐stable bundles

\{E_{m}\}_{m=1}^{\infty} such that their discriminants (rc_{2}-(r-1)c_{1}^{2}) H^{n-2} become arbitrarily
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large as m goes to infinity. We notice that this result is not effective in the sense that

c_{2}(E)\cdot H^{n-2} are not given explicitly as a function of s . This is because the proof of the

theorem is based on the boundedness of certain family of coherent sheaves on X . So we

may pose the following weaker

Problem 2. Construct a sequence of  $\mu$‐stable vector bundles \{E_{m}\}_{m=1}^{\infty} with

effectively computable discriminants \triangle_{m} with \triangle_{m}\rightarrow\infty as  m\rightarrow\infty.

In the case of surfaces, there are some known results on the problem above. For

example, we have the following result due to Drézet‐Le Potier for the projective plane
\mathbb{P}^{2}.

Theorem 1.2 ([2]). Assume that X= P. There exists an explicit function  $\delta$

such that if

 2rc_{2}-(r-1)c_{1}^{2}\geq 2r^{2} $\delta$,
then there exists a  $\mu$ ‐semistable sheaf  E with \mathrm{r}\mathrm{k}(E)=r, c_{i}(E)=c_{i}.

For K3 surfaces, Yoshioka proved the following

Theorem 1.3 ([9]). Assume that X is a K3 surfa ce and H is general. If

2rc_{2}-(r-1)c_{1}^{2}-\displaystyle \frac{r^{2}}{12}c_{2}(X)\geq-2,
then there exists a  $\mu$ ‐semistable sheaf  E with \mathrm{r}\mathrm{k}(E)=r, c_{i}(E)=c_{i}.

In both of the results above certain strengthenings of the classical Bogomolov in‐

equality ensure the existence of (semi‐) stable sheaves and, if one excludes the case of

exceptional bundles, these inequalities are necessary for existence. No analogous results

have been obtained for varieties of dimension \geq 3 up to now. However, inspired by

superstring theory, very interesting conjectures have been recently proposed concern‐

ing the existence of stable sheaves on Calabi‐Yau threefolds([1]). Motivated by these

conjectures, we constructed in [7] a sequence of  $\mu$‐stable bundles which violate �strong

Bogomolov inequality�, and thereby gave an answer to Problem 2 at the same time. In

this note we review the construction of [7] and its application to the higher dimensional

Brill‐Noether problems proposed in [8].
The author would like to thank the organizers of the conference and Prof.E.Sato

for inviting him to the conference.

§2. Conjectures of Douglas‐Reinbacher‐Yau

In their study of superstring theory, Douglas‐Reinbacher‐Yau proposed the follow‐

ing conjectures on the existence of stable sheaves on Calabi‐Yau threefolds([1]).
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Conjecture 1. Let  X be a Calabi‐Yau threefold and let r\geq 2 and  c_{i}\in

 H^{2i}(X, \mathbb{Z})(1\leq i\leq 3) . Assume that there exists an ample \mathbb{R}‐divisor \overline{H} on X such

that

(2.1) \displaystyle \frac{1}{2r^{2}}(2rc_{2}-(r-1)c_{1}^{2}-\frac{r^{2}}{12}c_{2}(X))=\overline{H}^{2},
(2.2) \displaystyle \frac{1}{6r^{2}}(c_{1}^{3}+3r(rch_{3}-ch_{2}c_{1}))<\frac{2^{5/2}}{3}r\cdot\overline{H}^{3}
where ch_{i} denotes the i‐th Chern character. Then there exists a  $\mu$‐stable reflexive sheaf

 E on X with respect to some ample divisor such that \mathrm{r}\mathrm{k}(E)=r, c_{i}(E)=c_{i}.

Conjecture 2. Let X be Calabi‐Yau threefold and let D be a smooth ample
divisor on X . Let r\geq 2, c_{i}\in H^{2i}(D, \mathbb{Z})(i=1,2) . Assume that c_{1} lies in the image of

H^{1,1}(X)\rightarrow H^{1,1}(D) and

2rc_{2}-(r-1)c_{1}^{2}-\displaystyle \frac{r^{2}}{12}c_{2}(D)>0.
Then there exists a  $\mu$‐stable bundle  E on D with \mathrm{r}\mathrm{k}(E)=r, c_{i}(E)=c_{i}.

We briefly comment on the physical background of the above conjectures. First,

 $\mu$‐stable holomorphic vector bundles on a Calabi‐Yau threefold correspond to BPS par‐

ticles in type IIA superstring theory and their rank and Chern classes are identified

with the charges of these BPS particles. According to the attractor mechanism, the

assumptions on Chern classes in the DRY conjectures imply the existence of extremal

black hole solutions of supergravity. These solutions are indistinguishable from BPS

particles, hence we conclude that the existence of  $\mu$‐stable bundles should follow.

It is natural to ask whether the claimed sufficient conditions for the existence of

stable sheaves are in fact necessary conditions. If this is the case, from the equality

(2.1) the following inequality of Chern classes should hold for any stable bundle on

Calabi‐Yau threefolds:

(2.3) (2rc_{2}-(r-1)c_{1}^{2})\displaystyle \cdot H>\frac{r^{2}}{12}c_{2}(X)\cdot H
since, by the Hodge index theorem, for any ample divisor H

,
we have

(\overline{H}^{2}\cdot H)^{3}\geq(\overline{H}^{3})^{2}\cdot H^{3}>0.

This may be considered as a strengthening of the well‐known Bogomolov inequality

(2rc_{2}-(r-1)c_{1}^{2})\cdot H\geq 0
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since we have c_{2}(X)\cdot H\geq 0 for Calabi‐Yau threefolds. Further, combining (2.1) with

(2.2), we would obtain an upper bound for c_{3} of  $\mu$‐stable bundles.

Unfortunately it turns out that the inequality (2.3) cannot hold in general. In

fact, some counter‐examples are given by Jardim([1]) and the author([6]). However, one

expects that a strong form of Bogomolov inequality might hold, if we replace \underline{1}_{c_{2}(X)\cdot H}
12

in the RHS of (2.3) by some other positive constant. So we introduce the following

general definition for varieties not necessarily Calabi‐Yau.

Definition 2.1. Let X be a smooth projective variety of dimension n\geq 2 and

let H be an ample line bundle on X . Let  $\alpha$= $\alpha$(X, H) be a positive real number

depending on X and H . We say that the strong Bogomolov inequality of type  $\alpha$ holds

if, for any  H‐stable bundles of rank r and Chern classes c_{i} ,
we have

(2rc_{2}-(r-1)c_{1}^{2})\cdot H^{n-2}\geq r^{2} $\alpha$.

Later we shall show that such inequality fails for large class of complete intersec‐

tions.

§3. Construction of stable bundles

In this section we review a method of constructing stable sheaves via extensions

given in [5],[6],[7]. We assume that in the rest of this note all varieties are defined over

\mathbb{C}.

Definition 3.1. Let X be a smooth projective variety of dimension n\geq 2 and

let H be an ample line bundle on X . The minimal H ‐degree d_{\min}(H) is defined as

follows.

d_{\min}(H) :=\displaystyle \min\{L\cdot H^{n-1}|L\in \mathrm{P}\mathrm{i}\mathrm{c}(X), L\cdot H^{n-1}>0\}.

A line bundle L on X is said to be H ‐minimal if L\cdot H^{n-1}=d_{\min}(H) .

Remark. Let X is a variety such that the Picard group Pic(X) is generated by
an ample line bundle \mathcal{O}_{X}(1) ,

then \mathcal{O}_{X}(1) itself is \mathcal{O}_{X}(1) ‐minimal.

A coherent sheaf Q is said to be of pure codimension one, if Q has the form $\iota$_{*}\mathcal{L} for

an integral divisor  $\iota$ :  D\mapsto X and a line bundle \mathcal{L} on D . The following result is proved
for Calabi‐Yau manifolds in [6], and for general projective varieties in [5], [7].

Proposition 3.2. Let X be a smooth projective variety of dimension n\geq 2 such

that H^{1}() =0 . Let Q be a torsion‐fr ee sheaf or a sheaf of pure codimension one such
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that C(Q) is H ‐minimal. Let U be a non‐zero vector space and let E be a coherent sheaf
with \mathrm{H}\mathrm{o}\mathrm{m}(E, \mathcal{O}_{X})=0 which fits in a non‐split extension

0\rightarrow U\otimes \mathcal{O}_{X}\rightarrow E\rightarrow Q\rightarrow 0.

Then E is a  $\mu$ ‐stable torsion‐fr ee sheaf.

Example 3.3. Let  U\subset Ex \mathrm{t}^{} (Q, \mathcal{O}_{X}) be a non‐zero subspace. Under the iso‐

morphism

\mathrm{H}\mathrm{o}\mathrm{m}(U, \mathrm{E}\mathrm{x}\mathrm{t}^{1}(Q, \mathcal{O}_{X}))\cong \mathrm{E}\mathrm{x}\mathrm{t}^{1}(Q, U^{\vee}\otimes \mathcal{O}_{X}) ,

the inclusion U\mapsto \mathrm{E}\mathrm{x}\mathrm{t}^{1}(Q, \mathcal{O}_{X}) corresponds to the following extension, which is called

the universal extension.

0\rightarrow U^{\vee}\otimes \mathcal{O}_{X}\rightarrow E\rightarrow Q\rightarrow 0.

By Proposition 3.2, E is  $\mu$‐stable if  C(Q) is H‐minimal.

Example 3.4. Assume that there exists a divisor D\in|L| which is smooth and

irreducible and let  $\iota$ :  D\mapsto X denote the inclusion. Let \mathcal{L} be a line bundle on D which

is generated by global sections. We extend the evaluation map H^{0}(D, \mathcal{L})\otimes \mathcal{O}_{D}\rightarrow \mathcal{L} to

the map  $\varphi$ :  H^{0}(D, \mathcal{L})\otimes \mathcal{O}_{X}\rightarrow$\iota$_{*}\mathcal{L} . It is well‐known that the kernel of  $\varphi$ is locally free

and is called the elementary transfO rmation of  H^{0}(D, \mathcal{L})\otimes \mathcal{O}_{X} along \mathcal{L} . We denote its

dual by E . Thus E fits in the exact sequence

0\rightarrow E^{\vee}\rightarrow H^{0}(D, \mathcal{L})\otimes \mathcal{O}_{X}\rightarrow$\iota$_{*}\mathcal{L}\rightarrow 0.

By taking \mathcal{H}om_{\mathcal{O}_{X}} (, \mathcal{O}_{X}) ,
we obtain the exact sequence

0\rightarrow H^{0}(D, \mathcal{L})^{\vee}\otimes \mathcal{O}_{X}\rightarrow E\rightarrow$\iota$_{*}(L_{|D}\otimes \mathcal{L}^{\vee})\rightarrow 0

since \mathcal{E}xt_{\mathcal{O}_{X}}^{1}($\iota$_{*}\mathcal{L}, \mathcal{O}_{X})\cong$\iota$_{*}(L_{|D}\otimes \mathcal{L}^{\vee}) . Since we have H^{0}(E^{\vee})=0 ,
it follows from

Proposition 3.2 that E is a  $\mu$‐stable bundle.

§4. Counter‐examples to strong Bogomolov inequality

In this section we use the construction in the previous section to give some examples
of stable bundles which violate the strong Bogomolov inequality([7]).

Proposition 4.1. Let  X be a smooth projective variety of dimension n\geq 2

such that H^{1}() =0 and Pic(X) is generated by a very ample line bundle \mathcal{O}_{X}(1) .

Let D\in|\mathcal{O}_{X}(1)| be a smooth irreducible divisor. Let E_{m} be the dual of the elementary
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transfO rmation of H^{0}(D, \mathcal{O}_{D}(m))\otimes \mathcal{O}_{X} along \mathcal{O}_{D}(m) for sufficiently large m . Then

E_{m} is an \mathcal{O}_{X}(1) ‐stable vector bundle of rank

r_{m}=h^{0}(D, \mathcal{O}_{D}(m))

and

c_{1}(E_{m})=\mathcal{O}_{X}(1) , c_{2}(E_{m})=m\mathcal{O}_{X}(1)^{2}

Furthermore, E_{m} has non‐trivial moduli space, that is, \mathrm{E}\mathrm{x}\mathrm{t}^{1}(E_{m}, E_{m})\neq 0.

We choose sufficiently large m so that \mathcal{O}_{D}(m) is globally generated and h^{i}(\mathcal{O}_{D}(m))=
0 for i>0 . Let E_{m} denote the dual of the elementary transformation of  H^{0}(D, \mathcal{O}_{D}(m))\otimes
\mathcal{O}_{X} . Then the stability of E_{m} follows from Example 3.3.

By the Riemann‐Roch formula, we have the following asymptotic formula for r_{m} :

r_{m}= $\chi$(\mathcal{O}_{D}(m))

=\displaystyle \frac{\mathcal{O}_{X}(1)^{n}}{(n-1)!}m^{n-1}+O(m^{n-2}) .

Thus

(2r_{m}c_{2}(E_{m})-(r_{m}-1)c_{1}(E_{m})^{2})\cdot \mathcal{O}_{X}(1)^{n-2}

=\displaystyle \frac{2(\mathcal{O}_{X}(1)^{n})^{2}}{(n-1)!}m^{n}+O(m^{n-1}) .

This implies that the discriminants of E_{m} become arbitrarily large as m goes to infinity.
Notice that these values are effectively computable once X, D and m are given. Further,
for any  $\alpha$>0 ,

we have

r_{m}^{2} $\alpha$=(\displaystyle \frac{\mathcal{O}_{X}(1)^{n}}{(n-1)!})^{2} $\alpha$ m^{2n-2}+O(m^{2n-3}) .

Thus we see that the sequence \{E_{m}\}_{m=1}^{\infty} yields counter‐examples to the strong Bogo‐
molov inequality for sufficiently large m . We obtain the following result in the case of

surfaces.

Theorem 4.2. Let X be a smooth projective surfa ce with H^{1}() =0 and

assume that Pic(X) is generated by a very ample line bundle \mathcal{O}_{X}(1) . Then the strong

Bogomolov inequality of type  $\alpha$ fails for any  $\alpha$>2.

Hence, by Noether‐Lefschetz theorem, we obtain

Corollary 4.3. Let X\subset \mathbb{P}^{n} be a general smooth complete intersection surfa ce

of type (d_{1}, d_{2}, \ldots, d_{n-2}) . Assume that

(\displaystyle \sum_{i=1}^{n-2}d_{i}-(n+1))\prod_{i=1}^{n-2}d_{i}>72
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and that X\neq(2) , (3), (4), (2, 2), (3, 2), (2, 2, 2). Then, form>>0, E_{m} satisfies

2r_{m}c_{2}(E_{m})-(r_{m}-1)c_{1}(E_{m})^{2}<\displaystyle \frac{r_{m}^{2}}{12}c_{2}(X) .

The assumptions of the corollary are satisfied for a general complete intersection

surface of type (5, d) in \mathbb{P}^{4} with d>>0 ,
which is a divisor with ample canonical bundle

of a quintic Calabi‐Yau threefold. In particular, we obtain a negative answer to the

following problem posed by Douglas et al.([1]).

Problem. Let S be a simply connected surface with ample or trivial canonical

bundle. Then does the inequality

2rc_{2}-(r-1)c_{1}^{2}-\displaystyle \frac{r^{2}}{12}c_{2}(D)\geq 0
hold for any  $\mu$‐stable bundles on  S with non‐trivial moduli space?

For varieties of dimension \geq 3 ,
we obtain the following

Theorem 4.4. Let X be a smooth projective variety of dimension n\geq 3 . As‐

sume that H^{1}() =0 and Pic(X) is generated by a very ample line bundle \mathcal{O}_{X}(1) .

Then the strong Bogomolov inequality of type  $\alpha$ fails for any  $\alpha$>0.

The next result shows that the inequality of type (2.3) does not hold in any dimen‐

sion \geq 3.

Corollary 4.5. Let X\subset \mathbb{P}^{N} be a general complete intersection Calabi‐Yaau man‐

ifold of dimension n\geq 3 with sufficiently large multidegree. Then the strong Bogomolov

inequality

(2rc_{2}-(r-1)c_{1}^{2})\cdot \mathcal{O}_{X}(1)^{n-2}>\underline{r^{2}}_{\mathcal{C}_{2}(X)\cdot \mathcal{O}_{X}(1)^{n-2}}
-12

fails.

§5. Higher dimensional Brill‐Noether problems

In this section we review an approach to the �higher dimensional Brill‐Noether

problem� posed in [8] by means of the construction in section 3.

Definition 5.1. Let X be a smooth projective variety of dimension n\geq 2 with

H^{1}() =0 . For a coherent sheaf E on X
,

its Mukai vector v(E) is the following
element of the rational cohomology ring H^{*}(X, \mathbb{Q})=\oplus_{i=1}^{n}H^{2i}(X, \mathbb{Q}) .

v(E) :=\mathrm{c}\mathrm{h}(E) \sqrt{\mathrm{T}\mathrm{d}(X)}.
For given v

,
let \mathcal{M}(v) denote the moduli space of  $\mu$‐stable torsion‐free sheaves  E on X

with v(E)=v with respect to H.
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When X is a K3 surface, these moduli spaces have been extensively studied by

Mukai([4]). We introduce the following generalization of classical Brill‐Noether locus.

Definition 5.2. For non‐negative integers i, j ,
we define the Brill‐Noether locus

\mathcal{M}(v)_{i,j} of type (i, j) to be the following locally closed subset of \mathcal{M}(v) :

\mathcal{M}(v)_{i,j}:=\{E\in \mathcal{M}(v)|\dim H^{0}(E)=i, \dim \mathrm{E}\mathrm{x}\mathrm{t}^{1}(E, \mathcal{O}_{X})=j\}.

We put a reduced induced scheme structure on \mathcal{M}(v)_{i,j} . We pose the following

higher dimensional Brill‐Noether problem, which may be regarded as a refinement of

Problem 1 in section 2.

Problem. Determine the integers i, j for which \mathcal{M}(v)_{i,j} is non‐empty. If it is

non‐empty, describe its geometric structure.

Definition 5.3. A coherent sheaf Q is said to be regular if

H^{1}(Q)=\mathrm{E}\mathrm{x}\mathrm{t}^{2}(Q, \mathcal{O}_{X})=0.

We denote by \mathcal{M}(v)_{i,j}^{reg} the open subset of \mathcal{M}(v)_{i,j} consisting of regular sheaves.

The next proposition shows how  $\mu$‐stable sheaves contained in different Brill‐Noether

loci are related under the universal extension.

Proposition 5.4. Let  Q be as in Proposition 3.2 with Q\in \mathcal{M}(v)_{i,j}^{reg} . For a

subspace U\subset \mathrm{E}\mathrm{x}\mathrm{t}^{1}(Q, \mathcal{O}_{X}) of dimension s(0<s\leq j) ,
the universal extension E

corresponding to U belongs to \mathcal{M}(v^{s})_{i+s,j-s}^{reg} where v^{S}:=v+sv(\mathcal{O}_{X}) . Furthermore, we

have

\dim \mathrm{E}\mathrm{x}\mathrm{t}^{1}(E, E)=\dim \mathrm{E}\mathrm{x}\mathrm{t}^{1}(Q, Q)+s(j-i-s) .

Remark. The proposition above can be used to show that \mathcal{M}(v^{S})_{s,j-s} is bira‐

tional to a Grassmann fibration over \mathcal{M}(v)_{0,j} in many cases(cf.[8]).
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