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Deformations of degenerate curves on a Segre 3‐fold

By

Hirokazu Nasu *

Abstract

We study the embedded deformations of degenerate curves C on the Segre variety \mathbb{P}^{1}\times \mathbb{P}^{2}

in \mathbb{P}^{5} . Here C is said to be degenerate if it is contained in a hyperplane in \mathbb{P}^{5} . We give a

necessary and sucient condition for each of the following: [\mathrm{i}]C is stably degenerate and [ii]
the Hilbert scheme of \mathbb{P}^{1}\times \mathbb{P}^{2} is singular at [C].

§1. Introduction

Let V\subset \mathbb{P}^{n} be a projective variety of dimension 3. A curve C on V is said to

be degenerate if C is contained in a hyperplane section S of V . We say C is stably

degenerate if every small deformation C' of C in V is contained in a deformation S'

of S in V . In [5], given a degenerate curve C on a smooth del Pezzo 3‐fold V ,
the

problem of determining whether or not C is stably degenerate has been studied. In this

paper we study the same problem when V is the Segre embedding of \mathbb{P}^{1}\times \mathbb{P}^{2} into \mathbb{P}^{5}.

Then every smooth hyperplane section S\subset \mathbb{P}^{4} of V is isomorphic to the rational scroll

\mathbb{F}_{1}=\mathbb{P}(\mathcal{O}_{\mathbb{P}^{1}}\oplus \mathcal{O}_{\mathbb{P}^{1}}(1)) (i.e. cubic scroll). In this paper Hil \mathrm{b}^{} V denotes the Hilbert

scheme of smooth connected curves on V . The following is our main theorem.

Theorem 1.1. Let V\subset \mathbb{P}^{5} be the Segre embedding of \mathbb{P}^{1}\times \mathbb{P}^{2} and let C be a

smooth connected curve on a smooth hyperplane section S of V. Then:
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(1) C is stably degenerate if and only if  $\chi$(V, \mathcal{I}_{C}(1))\geq 1.

(2) Let C_{0} and f be the negative section and a fiber of the \mathbb{P}^{1} ‐bundle S\rightarrow \mathbb{P}^{1} , respec‐

tively. In particular C_{0} is a(-1)-\mathbb{P}^{1} on S. Then:

[\mathrm{i}] If C\sim n(C_{0}+f) for some integer n\geq 5 ,
then Hil \mathrm{b}^{} V is non‐reduced along

a neighborhood of [C] ;

[ii] Otherwise Hil \mathrm{b}^{} V is nonsingular at [C].

Note that \mathbb{F}_{1} is isomorphic to \mathbb{P}^{2} blown‐up at a point. Theorem 1.1 shows that

every obstructed curve C (i.e. Hilb V is singular at [C] ) on a smooth hyperplane

section S is the pull‐back of a plane curve of degree n for n\geq 5 . The fact that the curve

C\sim 5C_{0}+5f has an obstructed deformation in V was first noticed by Akahori and

Namba in [1]. They considered a nonsingular plane quintic curve D\subset \mathbb{P}^{2} and proved

that the graph  $\Gamma$\subset D\times \mathbb{P}^{1} of the projection $\pi$_{p} : D\rightarrow \mathbb{P}^{1} with the center p\in \mathbb{P}^{2}\backslash D has

an obstructed first order innitesimal deformation by a dierent method from ours. In

Figure 1 we show the region of pairs (a, b) of integers such that C\sim aC_{0}+bf is stably

degenerate (cf. Lemma 3.8) and also the half‐line along which C is obstructed.

We refer to [5] for the deformations of degenerate curves on the Segre 3‐fold \mathbb{P}^{1}\times

\mathbb{P}^{1}\times \mathbb{P}^{1}\subset \mathbb{P}^{8} ,
which is del Pezzo and of degree 6. The organization of this paper is as

follows. In §2 we recall a few general results obtained in [4] and [5]. In §3 we study the

deformations of degenerate curves on the Segre 3‐fold V and prove Theorem 1.1 in x3.3.

Acknowledgements The author should like to express his sincere gratitude to Pro‐

fessor Shigeru Mukai, from whom he learned the example of obstructed holomorphic

maps in [1]. This paper is written as the proceeding of a workshop held at RIMS, Ky‐

oto University in July 2007, where he gave a lecture based on a result in his paper [5].
He is grateful to Professor Eiichi Sato, a main organizer of the workshop, for a valuable

comment given to his lecture. He also thanks the referee for carefully reading this paper

and for giving many helpful comments.

Notation and Conventions We work over an algebraically closed field k of char‐

acteristic 0 . Given a projective scheme V over k and its closed subscheme X, \mathcal{I}_{X} and

N_{X/V} denote the ideal sheaf of X in V and the normal sheaf (\mathcal{I}_{X}/\mathcal{I}_{x^{2}})^{\vee} of X
, respec‐

tively. For a sheaf \mathcal{F} on V ,
we denote the restriction map H^{i}(V, \mathcal{F})\rightarrow H^{i}(X, \mathcal{F}|_{X}) by
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Figure 1. Stably degenerate curves and obstructed curves

|_{X} . We denote the Euler‐Poincaré characteristic of \mathcal{F} by  $\chi$(V, \mathcal{F}) or  $\chi$(\mathcal{F}) . We denote

by (Z_{1} Z_{2})_{V} or Z_{1} Z_{2} ,
the intersection number of two cycles Z_{1} and Z_{2} on V if

\dim Z_{1}=\mathrm{c}\mathrm{o}\dim Z_{2}.

§2. Generalities

Let V\subset \mathbb{P}^{n} be a smooth projective 3‐fold and C a smooth connected curve on V.

Suppose that C is contained in a smooth hyperplane section S of V . We say C is stably

degenerate if every small deformation of C in V is contained in a deformation of S in

V ,
or more precisely if there exists an open neighborhood U\subset \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}^{sc}V of [C] such that

for any member [C']\in U ,
there exists a deformation S'\subset V of S such that C'\subset S'

We say C is S ‐normal if the restriction map

(2.1) H^{0}(S, N_{S/V})\rightarrow^{1c}H^{0}(C, N_{S/V}|_{C})
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is surjective. If Hilb V is nonsingular at [S] and H^{1}(C, N_{C/S})=0 ,
then the Hilbert‐flag

scheme Flag V ,
which parametrizes all pairs (C', S') of curves C' and surfaces S' such

that C'\subset S'\subset V ,
is nonsingular at (C, S) (cf. [2]). If C is S‐normal as well, then the

map

(2.2) $\kappa$_{C,S} : \mathcal{T}_{\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{g}V,(C,S)}\rightarrow \mathcal{T}_{\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}V,[C]}=H^{0}(N_{C/V})

of tangent spaces induced by the projection morphism pr_{1} : Flag  V\rightarrow Hilb V , (C', S')\rightarrow

[C0], is surjective at (C, S) (cf. [3],[4 ,
Lemma 3.1]). We deduce from these two facts the

following:

Theorem 2.1 (cf. [2],[5]). Suppose that Hilb V is nonsingular at [S] and that

H^{1}(C, N_{C/S})=0 . If C is S ‐normal, then (1) C is stably degenerate and (2) Hil \mathrm{b}^{} V

is nonsingular at [C].

If C is not S‐normal, then it is generally dicult to prove that C is stably degen‐

erate. However under some conditions, we can prove this by computing innitesimal

deformations of C and their obstructions.

Let C\subset V be as above. An (embedded) first order innitesimal defo rmation of

C in V is a closed subscheme \tilde{C}\subset V\times Spec k [t]/(t^{2}) which is flat over Spec k [t]/(t^{2})
and whose central fiber is C . It is well known that there exists a natural one‐to‐one

correspondence between the global sections  $\alpha$ of the normal bundle  N_{C/V} and the first

order innitesimal deformations \tilde{C} of C in V . The tangent space of the Hilbert scheme

Hilb V at [C] is isomorphic to H^{0}(N_{C/V}) . Let  $\alpha$\in H^{0}(N_{C/V}) be the global section

corresponding to \tilde{C} . Then there exists an element \mathrm{o}\mathrm{b}() of H^{1}(N_{C/V}) determined from

 $\alpha$ such that \tilde{C} lifts to a deformation over Spec k [t]/(t^{3}) if and only if \mathrm{o}\mathrm{b}( $\alpha$)=0 . In [4]
Mukai and Nasu have given a sucient condition for \mathrm{o}\mathrm{b}() to be nonzero in terms of

the exterior component. Here the exterior component of  $\alpha$ is the image  $\pi$_{C/S}() by the

natural projection $\pi$_{C/S}:N_{C/V}\rightarrow N_{S/V}|_{C}.

Theorem 2.2 ([4, Theorem 1.1]). Let C\subset S\subset V be as above and let E be a

(-1)-\mathbb{P}^{1} on S. A first order innitesimal defo rmation  $\alpha$\in H^{0}(N_{C/V}) is (primarily) ob‐

structed if its exterior component liftts to a global section v\in H^{0}(N_{S/V}(E))\backslash H^{0}(N_{S/V}) ,

i.e., $\pi$_{C/S}( $\alpha$)=v|_{C} in H^{0}(N_{S/V}(E)|_{C}) ,
and if the fo llowing conditions are satised:

(a) (\triangle\cdot E)_{S}=0 ,
where we put a divisor \triangle:=C-2E+K_{V}|_{S} on S,
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(b) v|_{E} does not belong to the image of

$\pi$_{E/S}(E) : H^{0}(E, N_{E/V}(E))\rightarrow H^{0}(E, N_{S/V}(E)|_{E}) ,

(c) The restriction map H^{0}(S, \triangle)\rightarrow H^{0}(E, \triangle|_{E})(a)\simeq H^{0}(E, \mathcal{O}_{E})=k is surjective.

The following diagram illustrates the relation between  $\alpha$ and  v|_{E} in (b).

H^{0}(N_{C/V}) \ni $\alpha$ H^{0}(N_{E/V}(E))

$\pi$_{C/S\downarrow} \downarrow $\pi$_{E/S}(E)\downarrow
 H^{0}(N_{S/V}|_{C}) \ni v|_{C}^{\underline{res}} v \mapsto resV|_{E}\in H^{0}(N_{S/V}(E))

\cap (\cap

 H^{0}(N_{S/V}(E)|_{C}) \leftarrow^{res} H^{0}(N_{S/V}(E))
Now we explain how to prove that C is stably degenerate when C is not S‐normal.

As we have seen, the projection pr_{1} : Flag V\rightarrow \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}^{sc}V, (C', S')\rightarrow[C'] induces the

map $\kappa$_{C,S}(2.2) of the tangent spaces. Then the kernel and the cokernel of the restriction

map (2.1) are isomorphic to those of $\kappa$_{C,S} , respectively by [4, Lemma 3.1]. Thus if C

is not S‐normal, then there exists a first order innitesimal deformation \tilde{C} of C in V

which is not contained in any first order innitesimal deformation \tilde{S} of S in V . When

C is not S‐normal, the following theorem is useful.

Theorem 2.3 (cf. [5]). Suppose that Hilb V is nonsingular at [S] and that

H^{1}(N_{C/S})=0 . Suppose further that C is not S ‐normal. If the obstruction \mathrm{o}\mathrm{b}()
is nonzero for any  $\alpha$\in H^{0}(N_{C/V})\backslash \mathrm{i}\mathrm{m}$\kappa$_{C,S} ,

then (1) C is stably degenerate and (2)
Hil \mathrm{b}^{} V is singular at [C].

Finally we recall the denition of S ‐maximal family introduced in [4]. Let \mathcal{W}_{S,C} be

the irreducible component of Flag V passing through (C, S) . Then the image  W_{S,C}\subset
Hil \mathrm{b}^{} V of \mathcal{W}_{S,C} by pr_{1} is called the S ‐maximal family of curves containing C.

§3. Stably degenerate curves

In this section, we prove Theorem 1.1 by applying Theorems 2.1, 2.2 and 2.3.

§3.1. Curves on a cubic scroll

First we recall cubic scrolls of dimension 2 and 3. Let V\subset \mathbb{P}^{5} be the Segre embed‐

ding of \mathbb{P}^{1}\times \mathbb{P}^{2} . We denote the two projections to \mathbb{P}^{1} and \mathbb{P}^{2} by p and q , respectively.
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Put L:=p^{*}\mathcal{O}_{\mathbb{P}^{1}}(1) and M:=q^{*}\mathcal{O}_{\mathbb{P}^{2}}(1) ,
the generators of Pic V\simeq \mathbb{Z}^{\oplus 2} . Here and later,

the same symbols L and M represent the class of Cartier divisors on V corresponding

to these invertible sheaves. The degree of V equals three by (L+M)^{3}=3L\cdot M^{2}=3.
Let \mathbb{F}_{1} denote the rational scroll \mathbb{P}(\mathcal{O}_{\mathbb{P}^{1}}\oplus \mathcal{O}_{\mathbb{P}^{1}}(1)) . As is well known, \mathbb{F}_{1} is isomorphic to

the blown‐up of \mathbb{P}^{2} at a point. We dene C_{0} and f as in the introduction. The complete

linear system |C_{0}+f| denes the blow‐up, which contracts C_{0} to the point. Similarly |f|
denes a morphism \mathbb{F}_{1}\rightarrow \mathbb{P}^{1} ,

which is the \mathbb{P}^{1} ‐bundle structure on \mathbb{F}_{1} . Since the multipli‐

cation map H^{0}(f)\otimes H^{0}(C_{0}+f)\rightarrow H^{0}(C_{0}+2f) is surjective and C_{0}+2f is very ample,

we have a closed embedding \mathbb{F}_{1}\mapsto V\subset \mathbb{P}^{5} . Moreover the image S of \mathbb{F}_{1} is contained

in a hyperplane of \mathbb{P}^{5}
,

because we have h^{0}(C_{0}+2f)=h^{0}(\mathbb{P}^{1}, \mathcal{O}(1)\oplus \mathcal{O}(2))=5 . By

degree reason, S is isomorphic to a hyperplane section of V . Conversely every smooth

hyperplane section S of V is obtained in this way and isomorphic to \mathbb{F}_{1} . Here S and V

are so‐called varieties of minimal degrees.

Let C be a smooth connected curve on V . We say C is of bidegree (a, b)(a, b\in \mathbb{Z}_{\geq 0})
if C\cdot L=a and C\cdot M=b . The degree d of C on V equals a+b because S\sim L+M.

In what follows, we assume that C is of bidegree (a, b) . The expected dimension of

the Hilbert scheme Hil \mathrm{b}^{} V at [C] is equal to 2a+3b because  $\chi$(N_{C/V})=-K_{V}\cdot C=
(2L+3M)\cdot C.

Lemma 3.1. Suppose that C is contained in a smooth hyperplane section S of

V. Then C\sim aC_{0}+bf . In particular, we have either b\geq a\geq 1, C=C_{0} ,
or C=f.

The genus g of C equals (a-1)(2b-a-2)/2.

Proof. Since L|_{S}\sim f and M|_{S}\sim C_{0}+f ,
we have C\cdot f=a and C\cdot(C_{0}+f)=b . Then

we deduce the divisor class of C from the fact that C_{0}^{2}=-1, C_{0}\cdot f=1 and f^{2}=0.
Since -K_{S}\sim 2C_{0}+3f ,

we obtain the genus of C by the adjunction theorem on S. \square 

§3.2. Deformation of degenerate curves

In what follows, we assume that C is contained in a smooth hyperplane section S

of V . Since -K_{V}=2L+3M and -K_{S}=2C_{0}+3f are ample, we have  H^{1}(N_{S/V})\simeq
 H^{1}(-K_{V}|_{S}+K_{S})=0 and H^{1}(N_{C/S})\simeq H^{1}(-K_{S}|_{C}+K_{C})=0 . In particular Hilb V

and Hilb S are nonsingular at [S] and [C] , respectively. Therefore by Theorem 2.1 if C is

S‐normal then C is stably degenerate and Hil \mathrm{b}^{} V is nonsingular at [C] . In Lemma 3.2

and Lemma 3.3, we give a few sucient conditions for C to be S‐normal.

Lemma 3.2. If C is irrational and C\cdot C_{0}\geq 1 ,
then C is S ‐normal.
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Proof. By the exact sequence

(3.1) 0\rightarrow N_{S/V}(-C)\rightarrow N_{S/V}\rightarrow N_{S/V}|_{C}\rightarrow 0,

it suces to show that H^{1}(N_{S/V}(-C))=0 . By Lemma 3.1, we have C\sim aC_{0}+bf.

Moreover since C\cdot C_{0}\geq 1 and C is irrational, we have b>a\geq 2 . Note that N_{S/V}\sim C_{0}+
2f . Then the dual invertible sheaf \{N_{S/V}(-C)\}^{-1} is represented by a smooth connected

curve D on S , i.e., N_{S/V}(-C)\simeq \mathcal{O}_{S}(-D) ,
because \{N_{S/V}(-C)\}^{-1}\sim(a-1)C_{0}+(b2)f

and b-2\geq a-1\geq 1 . Therefore we have H^{1}(N_{S/V}(-C))\simeq H^{1}(-D)=0. \square 

Lemma 3.3. Assume that  $\chi$(N_{S/V}(-C))\geq 0 . If H^{1}(N_{S/V}|_{C})=0 then C is

S ‐normal.

Proof. Though the proof is very similar to that of a lemma in [5, x4.3], we repeat

it here for the reader�s convenience. It suces to show that H^{1}(N_{S/V}(-C))=0.
Since H^{2}(N_{S/V})=H^{1}(N_{S/V}|_{C})=0 ,

we have H^{2}(N_{S/V}(-C))=0 by (3.1). Then

by assumption, we have 0\leq $\chi$(N_{S/V}(-C))=h^{0}(N_{S/V}(-C))-h^{1}(N_{S/V}(-C)) . Thus

if H^{0}(N_{S/V}(-C))=0 then the lemma has been proved. Otherwise there exists an

eective divisor D on S such that N_{S/V}(-C)\simeq \mathcal{O}_{S}(D) . If D=0 then the proof has

been finished. If D\neq 0 then we have D h>0 for a smooth hyperplane section h

of S . Since h\simeq \mathbb{P}^{1} (a twisted cubic curve), we have H^{1}(h, \mathcal{O}_{h}(D))=0 . Since C is

connected, it follows from the exact sequence 0\rightarrow \mathcal{O}_{S}(-C)\rightarrow \mathcal{O}_{S}\rightarrow \mathcal{O}_{C}\rightarrow 0 that

H^{1}(-C)=0 ,
and hence H^{1}(D-h)=0 . Therefore we conclude that H^{1}(D)=0 by

the exact sequence [0\rightarrow \mathcal{O}_{S}(-h)\rightarrow \mathcal{O}_{S}\rightarrow \mathcal{O}_{h}\rightarrow 0]\otimes \mathcal{O}_{S}(D) . \square 

A standard exact sequence

0\rightarrow N_{C/S}\rightarrow N_{C/V\rightarrow}^{$\pi$_{C/S}}N_{S/V}|_{C}\rightarrow 0
induces an isomorphism H^{1}(N_{C/V})\simeq H^{1}(N_{S/V}|_{C}) . Thus if H^{1}(N_{S/V}|_{C})=0 then

Hilb V is nonsingular of expected dimension 2a+3b . For example, if C is rational then

we have H^{1}(N_{S/V}|_{C})=0 ,
because N_{S/V} is ample.

Lemma 3.4. If C is not S ‐normal and H^{1}(N_{S/V}|_{C})\neq 0 ,
then C\sim n(C_{0}+f)

for some integer n\geq 5.

Proof. By the latter assumption C is irrational. Then by Lemma 3.2, we have C\cdot C_{0}=0.

Hence C\sim n(C_{0}+f) for some n\in \mathbb{Z}_{>0} . Note that H^{i}(N_{S/V})=0 for i=1 and 2.
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Then it follows from the exact sequence (3.1) and the Serre duality that

H^{1}(C, N_{S/V}|_{C})\simeq H^{2}(S, N_{S/V}(C))
\simeq H^{0}(S, N_{S/V^{-1}}(C+K_{S}))^{\vee}
\simeq H^{0}(S, (n-3)C_{0}+(n-5)f)^{\vee},

which concludes that n\geq 5. \square 

Proposition 3.5. Suppose that C\sim n(C_{0}+f) forn\geq 5 . Then C is stably

degenerate and Hil \mathrm{b}^{} V is singular at [C].

Proof. Note that H^{i}(N_{S/V}(C_{0}-C))\simeq H^{i}(-(n-2)(C_{0}+f))=0 for i=0 and 1.

Since C\cap C_{0}=;, it follows from the exact sequence (3.1)\otimes \mathcal{O}_{S}(C) that the restric‐

|c
tion map H^{0}(N_{S/V}(C_{0}))\rightarrow H^{0}(N_{S/V}|_{C}) is an isomorphism. Since h^{0}(N_{S/V}(C_{0}))=
h^{0}(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(2))=6 ,

we have h^{0}(N_{S/V}|_{C})=h^{0}(N_{S/V}(C_{0}))>h^{0}(N_{S/V})=5 . Therefore

C is not S‐normal and we have the following commutative diagram:

|c
H^{0}(N_{S/V}) \rightarrow H^{0}(N_{S/V}|_{C})\rightarrow  H^{1}(N_{S/V}(-C))\simeq k \rightarrow 0

\cap \Vert \downarrow
 H^{0}(N_{S/V}(C0)) \rightarrow^{1c\simeq}H^{0}(N_{S/V}|_{C})\rightarrow H^{1}(N_{S/V}(C_{0}-C))=0.

Let $\kappa$_{C,S} be the tangential map (2.2) and let  $\alpha$ be a global section of  N_{C/V} not

contained in the image of $\kappa$_{C,S} . Then the exterior component $\pi$_{C/S}() \in H^{0}(N_{S/V}|_{C}) is

not contained in the image of (2.1). By the diagram above, there exists a global section

v of N_{S/V}(C) such that v|_{C}=$\pi$_{C/S}() . Now we check that the three conditions (a),

(b) and (c) in Theorem 2.2 are satised. Put \triangle:=C-2C_{0}+K_{V}|_{S} ,
a divisor on S as in

the theorem. Since -K_{V}|_{S}=2L|_{S}+3M|_{S}=3C_{0}+5f ,
we have \triangle=(n-5)(C_{0}+f) and

hence \triangle\cdot C_{0}=0 ,
which is (a). Since C_{0} is a fiber of the \mathbb{P}^{1} ‐bundle V\rightarrow \mathbb{P}^{2}, C_{0} is a good

line on V ,
i.e. N_{C_{0}/V} is trivial. Then H^{0}(N_{C_{0}/V}(C_{0}))=H^{0}(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2})=0 ,

while

v|_{C_{0}} is nonzero in H^{0}(N_{S/V}(C_{0})|_{C_{0}}) because v\in H^{0}(N_{S/V}(C_{0}))\backslash H^{0}(N_{S/V}) . Therefore

we have (b). Finally we check (c). Let  $\epsilon$ :  S\rightarrow \mathbb{P}^{2} be the blow‐down contracting C_{0} to

a point P\in \mathbb{P}^{2} . Since \triangle\sim(n-5)(C_{0}+f) ,
we have a commutative diagram

|_{C_{0}}
H^{0}(S, \triangle) \rightarrow H^{0}(C_{0}, \triangle|_{C_{0}})\simeq k

\simeq\downarrow \simeq\downarrow
 H^{0}(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(n-5))\rightarrow^{\mathrm{e}\mathrm{v}_{P}} H^{0}(P, k(P)) ,
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where k(P) is the residue field at P and \mathrm{e}\mathrm{v}_{P} is the evaluation map at P . Since \mathrm{e}\mathrm{v}_{P}

is surjective, we obtain (c). Consequently by Theorem 2.2, the obstruction \mathrm{o}\mathrm{b}() is

nonzero. By Theorem 2.3, we have proved the proposition. \square 

We compute the dimension of the S‐maximal family W_{S,C} of curves containing C.

Notation is same as in §2.

Lemma 3.6.

(1) The Hilbert‐flag scheme Flag V is of dimension g+2d-a+4 at (C, S) .

(2) If d>3 then the projection morphism pr_{1} is a closed embedding in a neighborhood

of (C, S) and \dim W_{S,C}=g+2d-a+4.

Proof. (1) Let \mathcal{W}_{S,C} be the irreducible component of the Hilbert‐flag scheme Flag V

passing through (C, S) . Note that H^{i}(S, C)=0 for i=1
,
2. Then by the Riemann‐Roch

theorem, we compute that

h^{0}(S, C)=\displaystyle \frac{1}{2}(C+K_{S})\cdot C-K_{S}\cdot C+x(O)
=\displaystyle \frac{1}{2}\deg K_{C}-(-2h+f)\cdot C+1
=g+2d-a,

where h is the class of hyperplane sections of S . Then \mathcal{W}_{S,C} is birationally equivalent

to \mathbb{P}^{g+2d-a-1} ‐bundle over an open subset of the projective space |\mathcal{O}_{V}(1)|\simeq \mathbb{P}^{5} . Hence

we have \dim \mathcal{W}_{S,C}=g+2d-a+4.

(2) Since d=a+b>3 ,
we have (h-C)\cdot f=1-a<0 or (h-C)\cdot(C_{0}+f)=2-b<0.

Since both f and C_{0}+f are \mathrm{n}\mathrm{e}\mathrm{f}
,

we have H^{0}(N_{S/V}(-C))=H^{0}(h-C)=0 . Then the

restriction map (2.1) is injective, and hence so is the tangential map $\kappa$_{C,S}(2.2) . This

implies the first assertion. Hence we have \dim W_{S,C}=\dim \mathcal{W}_{S,C}. \square 

The dimension of every irreducible component of Hil \mathrm{b}^{} V passing through [C] is

greater than or equal to the expected dimension  $\chi$(N_{C/V})=2a+3b . By this fact we

have the following.

Proposition 3.7. If  $\chi$(V, \mathcal{I}_{C}(1))<1 then C is not stably degenerate, i.e., there

exists a global deformation C' of C in V which is not contained in any deformation S'

of S in V.
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Proof. By assumption, the lemma below shows that g<d-4 . Then we have \dim W_{S,C}\leq

\dim \mathcal{W}_{S,C}=g+2d-a+4<2a+3b . Hence there exists an irreducible component

W^{0}\supset W_{S,C} of Hil \mathrm{b}^{} V such that \dim W^{0}>\dim W_{S,C} . Every member C^{0} of W^{0}\backslash W_{S,C}
is a required deformation of C in V. \square 

Lemma 3.8. The following conditions are equivalent: (i)  $\chi$(S, N_{S/V}(-C))\geq 0,
(ii)  $\chi$(V, \mathcal{I}_{C}(1))\geq 1 , (iii) g\geq d-4 and (iv) 2\leq a\leq 2b-5 or 2b-5\leq a\leq 2.

Proof. By the exact sequence [0\rightarrow \mathcal{I}_{S}\rightarrow \mathcal{I}_{C}\rightarrow \mathcal{O}_{S}(-C)\rightarrow 0]\otimes \mathcal{O}_{V}(S) ,
we have

 $\chi$(N_{S/V}(-C))= $\chi$(\mathcal{I}_{C}(S))- $\chi$(\mathcal{I}_{S}(S))= $\chi$(\mathcal{I}_{C}(1))-1 . Hence we obtain (i) () (ii).
Note that  $\chi$(\mathcal{O}_{C}(1))=d+1-g and  $\chi$(\mathcal{O}_{V}(1))= $\chi$(\mathcal{O}_{\mathbb{P}^{1}\times \mathbb{P}^{2}}(1,1))=6 . By the exact

sequence [0\rightarrow \mathcal{I}_{C}\rightarrow \mathcal{O}_{V}\rightarrow \mathcal{O}_{C}\rightarrow 0]\otimes \mathcal{O}(1) ,
we have  $\chi$(\mathcal{I}_{C}(1))=g-d+5 . Hence we

obtain (ii)\Leftrightarrow(iii) . Finally we prove (iii) \Leftrightarrow(iv) . By Lemma 3.1, an easy calculation

shows that d-4-g=(a-2)(a-2b+5)/2 . Hence the proof is complete. \square 

§3.3. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. Notation is same as in the preceding

sections. First we prove the first statement of Theorem 1.1. We have already proved

the \backslash \backslash 

only if� part of the statement (Proposition 3.7). Suppose now that  $\chi$(V, \mathcal{I}_{C}(1))\geq 1,

i.e.,  $\chi$(S, N_{S/V}(-C))\geq 0 by Lemma 3.8. Then C is clearly stably degenerate if C is

S‐normal by Theorem 2.1, or if H^{1}(N_{S/V}|_{C})=0 by Lemma 3.3. Assume that C is not

S‐normal and H^{1}(N_{S/V}|_{C})\neq 0 . Then C\sim n(C_{0}+f) for some n\geq 5 by Lemma 3.4.

Then by Proposition 3.5, C is stably degenerate.

Next we prove the second statement of Theorem 1.1. If C\displaystyle \oint n(C_{0}+f) for any

n\geq 5 ,
then C is S‐normal or H^{1}(N_{S/V}|_{C})=0 by Lemma 3.4. Then Hil \mathrm{b}^{} V is

nonsingular at [C] . If C\sim n(C_{0}+f) for some n\geq 5 ,
then Hil \mathrm{b}^{} V is singular at

[C] by Proposition 3.5. In fact Hil \mathrm{b}^{} V is non‐reduced along a neighborhood of [C] by

Theorem 3.9 below.

We denote by \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{d,g}^{sc}V the open and closed subscheme of Hil \mathrm{b}^{} V of curves of

degree d and genus g . If C\sim n(C_{0}+f) ,
then we have d=2n and g=(n-1)(n-2)/2.

Given an integer n
,

let us dene a locally closed subset

W_{n}:=\{C\in \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}^{sc}VC
is contained i \mathrm{n}\mathrm{a} smooth h\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{p}1\mathrm{a}\mathrm{n}\mathrm{e}\mathrm{s}ection S

\mathrm{a}\mathrm{n}\mathrm{d}C\sim n(C_{0}+f)\mathrm{o}\mathrm{n}S

of

V\}
\subset \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{2n,\frac{1}{2}(n-1)(n-2)}^{sc}V.
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Theorem 3.9. If n\geq 5 then the closure \overline{W}_{n} of W_{n} in Hil \mathrm{b}^{} V is an irreducible

component of (Hilb V)_{\mathrm{r}\mathrm{e}\mathrm{d}} of dimension (n^{2}+3n+10)/2 and Hil \mathrm{b}^{} V is generically

non‐reduced along W_{n}.

Proof. Since d=2n\geq 10 , by Lemma 3.6 (2) every member C of W_{n} is contained in a

unique hyperplane section S of V . Every smooth hyperplane section of V is parametrized

by an open subset U of the projective space |\mathcal{O}_{V}(1)|\simeq \mathbb{P}^{5} . Since \dim|\mathcal{O}_{S}(C)|=

n(n+3)/2, W_{n} is isomorphic to an open subset of a \mathbb{P}^{n(n+3)/2} ‐bundle over U ,
and hence

\overline{W}_{n} is irreducible and of dimension (n^{2}+3n+10)/2 . Since C is stably degenerate, \overline{W}_{n} is

a maximal closed subset of Hil \mathrm{b}^{} V and hence an irreducible component of (Hilb V)_{\mathrm{r}\mathrm{e}\mathrm{d}}.
Since Hil \mathrm{b}^{} V is singular at the generic point of W_{n} ,

the proof is complete. \square 

Thus the proof of Theorem 1.1 has been completed.

Remark. Among the non‐reduced components obtained from Theorem 3.9, the

component \overline{W}_{5}\subset \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{10,6}^{sc}V is the only one of expected dimension, i.e., \dim W_{5}=25.

Given a pair (a, b) of integers such that either b\geq a>0 or (a, b)=(1,0) , (0,1) ,
we

dene a locally closed subset W_{a,b} of Hil \mathrm{b}^{} V by

W_{a_{;}b}:=\{C\in \mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}^{sc}VC
is contained

\mathrm{a}\mathrm{n}\mathrm{d}C\sim aC_{0}+bf\mathrm{o}\mathrm{n}S\mathrm{i}\mathrm{n}\mathrm{a}
smooth h\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{p}1\mathrm{a}\mathrm{n}\mathrm{e} section S of

V\}
Then an argument similar to Theorem 3.9 shows the following:

(1) If 2\leq a\leq 2b-5 or 2b-5\leq a\leq 2 ,
then \overline{W}_{a,b} is an irreducible component of

(\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}_{d,g}^{sc}V)_{\mathrm{r}\mathrm{e}\mathrm{d}} ,
where d=a+b and g=(a-1)(2b-a-2)/2 ;

(2) \dim W_{a,b}=\left\{\begin{array}{l}
g+2d-a+4 \mathrm{i}\mathrm{f} d>3,\\
; \mathrm{a}\mathrm{n}\mathrm{d}\\
2a+3b \mathrm{i}\mathrm{f} d\leq 3
\end{array}\right.
(3) If (a, b)\neq(n, n) for any integer n\geq 5 ,

then Hil \mathrm{b}^{} V is generically smooth along

W_{a,b}.

In particular \overline{W}_{a,b} is an irreducible component of (Hilb V)_{\mathrm{r}\mathrm{e}\mathrm{d}} of expected dimen‐

sion 2a+3b if and only if either d\leq 3 or g=d-4.
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