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Semistable objects in derived categories of K3

surfaces

By

Yukinobu Toda
*

Abstract

For a triangulated category \mathcal{T}
,

the space of stability conditions Stab ( \mathcal{T}) is introduced by
T. Bridgeland. In this article, we give a survey of the recent developments on the study of the

stability conditions, and we consider moduli problems and counting invariants of semistable

objects on K3 surfaces.

§1. Introduction

The aim of this article is to give a survey of the theory of stability conditions on

triangulated categories, and introduce the results in [22], where the author studied the

moduli problem of semistable objects on K3 surfaces and counting invariants of them.

For a triangulated category \mathcal{T}
,

the notion of stability conditions on \mathcal{T} is introduced

by T. Bridgeland [4], in order to give a mathematical framework of M. Douglas� $\Pi$_{-}

stability [7], [8]. First let us introduce the stability conditions on abelian categories.

Definition 1.1. Let \mathcal{A} be an abelian category. A stability function on \mathcal{A} is a

group homomorphism Z:K(\mathcal{A})\rightarrow \mathbb{C} such that we have

Z(\mathcal{A}\backslash \{0\})\subset \mathcal{H}\cup \mathbb{R}<0.

Here K() is the Grothendieck group of \mathcal{A} and \mathcal{H}\subset \mathbb{C} is the upper half plane.
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Given a stability function Z:K(\mathcal{A})\rightarrow \mathbb{C} ,
we can uniquely determine the phase

 $\phi$(E)\in(0,1] for a non‐zero object E\in \mathcal{A} by the formula,

 $\phi$(E)=\displaystyle \frac{1}{ $\pi$ i}(\log Z(E)-\log|Z(E)|) .

We say E\in \mathcal{A} is Z‐semistable if for any non‐zero subobject F\subset E one has  $\phi$(F)\leq $\phi$(E) .

Definition 1.2. A stability function Z:K(\mathcal{A})\rightarrow \mathbb{C} is a stability condition on

\mathcal{A} if for any non‐zero object E\in \mathcal{A} there is a filtration

0=E_{0}\subset E_{1}\subset\cdots\subset E_{n}=E,

such that F_{i}=E_{i}/E_{i-1} is Z‐semistable with  $\phi$(F_{1})> $\phi$(F_{2})>\cdots> $\phi$(F_{n}) .

Now we introduce the notion of stability conditions on triangulated categories.

Definition 1.3. Let \mathcal{T} be a triangulated category. A stability condition on \mathcal{T}

consists of data  $\sigma$=(Z, \mathcal{A}) ,
where \mathcal{A}\subset \mathcal{T} is the heart of a bounded \mathrm{t} ‐structure on \mathcal{T}

and Z is a stability condition on \mathcal{A}.

Example 1.4. (i) Let \mathcal{T}=D(C) for a smooth projective curve C . Here for a

variety X
,

we denote by D(X) the bounded derived category of coherent sheaves on X.

Let Z:K(C)\rightarrow \mathbb{C} be E\mapsto-\deg(E)+\mathrm{r}\mathrm{k}(E)\cdot i . Then the pair (Z , Coh determines

a stability condition on \mathcal{T} . In this case, an object E\in \mathrm{C}\mathrm{o}\mathrm{h}(C) is Z‐semistable if and

only if it is an usual semistable sheaf.

(ii) Let A be a finite dimensional k‐algebra with k a field, and \mathcal{T}=D() where

\mathcal{A}=\mathrm{m}\mathrm{o}\mathrm{d} A is the abelian category of finitely generated right A‐modules. Then there is

a finite number of simple objects S_{1}, \cdots, S_{N}\in \mathcal{A} which generates \mathcal{A} . One can choose

Z:K(\mathcal{A})\rightarrow \mathbb{C} such that Z(S_{i})\in \mathcal{H} for all1 \leq i\leq N . Then the pair (A) determines

a stability condition on \mathcal{T}.

Remark. The original definition of stability conditions ([4, Definition 1.1]) on

triangulated categories differs from Definition 1.3. Roughly speaking a stability condi‐

tion in the sense of [4, Definition 1.1] is defined by a pair of a group homomorphism

Z:K(\mathcal{T})\rightarrow \mathbb{C} and a sull subcategory \mathcal{P}( $\phi$)\subset \mathcal{T} for each  $\phi$\in \mathbb{R} which satisfies some

axiom. However [4, Proposition 4.2] shows that giving a stability condition in Defini‐

tion 1.3 is equivalent to giving a stability condition in [4, Definition 1.1].

Remark. For higher dimensional varieties, the usual notion of semistable sheaves

does not induce a stability condition on the derived category. For instance suppose

X is a smooth projective surface and H is an ample divisor on X . One may try to

construct a stability condition on D(X) as follows. For the heart of a \mathrm{t} ‐structure we



Semistable objects 1N derived categories 0F K3 surfaces 177

set \mathcal{A}=\mathrm{C}\mathrm{o}\mathrm{h}(X) ,
and for the stability function we set Z(E)=-c_{1}(E)\cdot H+\mathrm{r}\mathrm{k}(E)\cdot i.

However the pair (Z, \mathcal{A}) does not determine a stability condition because Z([\mathcal{O}_{x}])=0
for closed points x\in X.

In the paper [4], Bridgeland showed that the set of stability conditions on \mathcal{T} which

satisfy some good properties has a structure of a complex manifold, denoted by Stab ( \mathcal{T} ) .

To see how Stab ( \mathcal{T} ) looks like, it is helpful to consider Example 1.4 (ii). Let Stab() \subset

Stab ( \mathcal{T}) be the subset consisting of stability conditions corresponding to the fixed heart

of a \mathrm{t} ‐structure \mathcal{A}\subset \mathcal{T} . Suppose \mathcal{A}=\mathrm{m}\mathrm{o}\mathrm{d} A and \mathcal{T}=D^{b}(\mathrm{m}\mathrm{o}\mathrm{d} A) as in Example 1.4

(ii). Then the stability conditions constructed in Example 1.4 (ii) determine a dense

open subset  U_{\mathcal{A}}\subset Stab isomorphic to \mathcal{H}^{N} . In some nice situations, (for example
see [6],) the space Stab ( \mathcal{T} ) contains the subspace having the chamber structure,

(1.1) \displaystyle \bigcup_{i}\overline{U}_{\mathcal{A}_{i}}\subset \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(\mathcal{T}) ,  U_{\mathcal{A}_{i}}\cap U_{\mathcal{A}_{j}}=\emptyset for  i\neq j.

Here \mathcal{A}_{i} is equivalent to \mathrm{m}\mathrm{o}\mathrm{d} A_{i} for a finite dimensional k‐algebra A_{i} ,
and each  U_{\mathcal{A}_{i}}\cong

\mathcal{H}^{N} is an open subset of Stab ( \mathcal{T} ) .

Remark. Obviously the group of autoequivalences Auteq ( \mathcal{T} ) acts on Stab ( \mathcal{T} ) .

In some situations (cf. [6]), the chambers U_{\mathcal{A}_{i}} in (1.1) are obtained by the action of

Auteq ( \mathcal{T} ) from one of the chambers.

Remark. It is shown in [4] that the group \overline{\mathrm{G}\mathrm{L}}^{+}(2, \mathbb{R}) ,
the universal cover of

\mathrm{G}\mathrm{L}^{+}(2, \mathbb{R}) ,
also acts on Stab ( \mathcal{T} ) . When \mathcal{T}=D(C) for an elliptic curve C ,

the action

of \overline{\mathrm{G}\mathrm{L}}^{+}(2, \mathbb{R}) is free and transitive, thus we have Stab (\mathcal{T})\cong\overline{\mathrm{G}\mathrm{L}}^{+}(2, \mathbb{R}) in this case.

Suppose that X is a Calabi‐Yau manifold and \mathcal{T}=D(X) . Then conjecturally
Stab ( \mathcal{T} ) is related to the so called stringy Kähler moduli space \mathcal{M}_{K}(X) ,

a subspace of

the moduli space of \mathcal{N}=2 super conformal field theories. Its relationship to mirror

symmetry is as follows. Let \hat{X} be a mirror manifold of X . According to Kontsevich�s

Homological mirror symmetry [18], there should exist an equivalence of triangulated

categories,

D(X)\rightarrow D\mathrm{F}\mathrm{u}\mathrm{k}(\hat{X}) ,

where the RHS is the derived Fukaya category on \hat{X} . Then \mathcal{M}_{K}(X) should be isomor‐

phic to \mathcal{M}_{C}(\hat{X}) ,
the moduli space of complex structures on \hat{X} . More precisely it is

expected that the double quotient space

(1.2) \mathbb{C}\backslash \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(\mathcal{T})/\mathrm{A}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{q}(\mathcal{T}) ,

contains \mathcal{M}_{C}(\hat{X}) . For example if \mathcal{T}=D(C) for an elliptic curve C ,
then the space (1.2)

is nothing but the modular curve \mathcal{H}/\mathrm{S}\mathrm{L}(2, \mathbb{Z}) . Since an elliptic curve is self mirror, we

have the complete picture in this case.
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§2. Stability conditions on K3 surfaces

In this section, we assume X is a K3 surface or an abelian surface. Let  $\omega$ be an

ample divisor on  X . First let us recall the notion of $\mu$_{ $\omega$} ‐stability and  $\omega$‐Gieseker stability
on Coh(X). (For the introduction, one can consult [10].)

Definition 2.1. For a torsion free sheaf  E\in \mathrm{C}\mathrm{o}\mathrm{h}(X) ,
we set

$\mu$_{ $\omega$}(E)=\displaystyle \frac{c_{1}(E)\cdot $\omega$}{\mathrm{r}\mathrm{k}(E)}.
Then E is called $\mu$_{ $\omega$} ‐semistable if for any non‐zero subsheaf F\subset E ,

one has $\mu$_{ $\omega$}(F)\leq
$\mu$_{ $\omega$}(E) . Also for E\in \mathrm{C}\mathrm{o}\mathrm{h}(X) ,

its reduced Hilbert polynomial is defined by

p(E,  $\omega$, n)= $\chi$(E\otimes \mathcal{O}(n $\omega$))/ $\alpha$,

where  $\alpha$ is the leading coefficient of the polynomial  $\chi$(E\otimes \mathcal{O}(n $\omega$))\in \mathbb{Q}[n] . Then E is  $\omega$-

Gieseker semistable if for any non‐zero subsheaf F\subset E one has p(F,  $\omega$, n)\leq p(E,  $\omega$, n)
for n\gg 0.

Remark. Obviously the notions of $\mu$_{ $\omega$} ‐stability and  $\omega$‐Gieseker stability are ex‐

tended for a \mathbb{Q}‐ample divisor  $\omega$.

Next we discuss stability conditions on \mathcal{T}=D(X) ,
studied by Bridgeland [5]. As

discussed in the previous section, it is a non‐trivial problem to find a stability condition

on \mathcal{T} . Let  $\beta$,  $\omega$ be \mathbb{Q}‐divisors on X with  $\omega$ ample. For a torsion free sheaf  E\in \mathrm{C}\mathrm{o}\mathrm{h}(X) ,

one has the Harder‐Narasimhan filtration

0=E_{0}\subset E_{1}\subset\cdots\subset E_{n-1}\subset E_{n}=E,

such that F_{i}=E_{i}/E_{i+1} is $\mu$_{ $\omega$} ‐semistable and $\mu$_{ $\omega$}(F_{i})>$\mu$_{ $\omega$}(F_{i+1}) . Then define \mathcal{T}_{( $\beta,\ \omega$)}\subset
\mathrm{C}\mathrm{o}\mathrm{h}(X) to be the subcategory consisting of sheaves whose torsion free parts have $\mu$_{$\omega$^{-}}

semistable Harder‐Narasimhan factors of slope  $\mu$_{ $\omega$}(F_{i})> $\beta$\cdot $\omega$ . Also define \mathcal{F}_{( $\beta,\ \omega$)}\subset
\mathrm{C}\mathrm{o}\mathrm{h}(X) to be the subcategory consisting of torsion free sheaves whose $\mu$_{ $\omega$} ‐semistable

factors have slope $\mu$_{ $\omega$}(F_{i})\leq $\beta$\cdot $\omega$.

Definition 2.2. We define \mathcal{A}_{( $\beta,\ \omega$)} to be

\mathcal{A}_{( $\beta,\ \omega$)}=\{E\in D(X):\mathrm{a}\mathrm{n}\mathrm{d}\mathcal{H}^{p}(E)=0\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}veryp\neq-1,0\mathcal{H}^{-1}(E)\in \mathcal{F}_{( $\beta,\ \omega$)}\mathcal{H}^{0}(E)\in \mathcal{T}_{( $\beta,\ \omega$)},\}
We define Z_{( $\beta,\ \omega$)}:K(X)\rightarrow \mathbb{C} by the formula,

(2.1) Z_{( $\beta,\ \omega$)}(E)=-\displaystyle \int e^{-( $\beta$+i $\omega$)} ch (E)\sqrt{\mathrm{t}\mathrm{d}_{X}},

and define $\sigma$_{( $\beta,\ \omega$)} to be the pair (Z_{( $\beta,\ \omega$)}, \mathcal{A}_{( $\beta,\ \omega$)}) . The following is shown in [5, Proposition

7.1].
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Proposition 2.3 ([5]). The subcategory \mathcal{A}_{( $\beta,\ \omega$)}\subset D(X) is the heart of a bounded

t‐structure, and the pair $\sigma$_{( $\beta,\ \omega$)} gives a stability condition on D(X) if and only if for any

spherical sheaf E on X
,

one has Z_{( $\beta,\ \omega$)}(E)\not\in \mathbb{R}_{\leq 0} . This holds whenever $\omega$^{2}>2.

Here an object E\in D(X) is called spherical if the following holds,

\mathrm{H}\mathrm{o}\mathrm{m}(E, E[i])=\left\{\begin{array}{ll}
\mathbb{C} & i=0, 2,\\
0 & i\neq 0, 2.
\end{array}\right.
Recall that the pairing

 $\chi$:D(X)\displaystyle \times D(X)\ni(E, F)\mapsto\sum(-1)^{i}\dim \mathrm{E}\mathrm{x}\mathrm{t}^{i}(E, F)\in \mathbb{Z},
descends to a paring on K(X) . Let \mathcal{N}(X) be the quotient space,

\mathcal{N}(X)=K(X)/\equiv,

where E_{1}\equiv E_{2} if and only if  $\chi$(E_{1}, F)= $\chi$(E_{2}, F) for any F\in K(X) . Note that \mathcal{N}(X)
is a finitely generated \mathbb{Z}‐module.

Definition 2.4. A stability condition  $\sigma$=(Z, \mathcal{A}) is called numerical if  Z:K(X)\rightarrow
\mathbb{C} factors through the surjection K(X)\rightarrow \mathcal{N}(X) .

Let Stab(X) be the connected component of the good stability conditions (locally fi‐

nite, numerical in the notation of [4]) which contains $\sigma$_{( $\beta,\ \omega$)} . In the paper [5], Bridgeland
studies the complex manifold Stab(X) explicitly, and shows the following.

Theorem 2.5 ([5]). There is an open subset in \mathcal{N}(X)_{\mathbb{C}} , denoted by \mathcal{P}_{0}^{+}(X)
in [5], such that Stab(X) is a covering space over \mathcal{P}_{0}^{+}(X) .

§3. Moduli problem of semistable objects

In this section, we discuss the moduli problem of the semistable objects in D(X)
for a K3 surface X . As is well‐known, there are coarse moduli spaces of (, Gieseker)
semistable sheaves on projective varieties. However for  $\sigma$\in \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(X) ,

a  $\sigma$‐semistable

object in  D(X) is not necessary a sheaf, thus it is a non‐trivial problem to construct the

moduli space of  $\sigma$‐semistable objects. On the other hand, the moduli problem of objects
in derived categories is addressed in [11], [19]. Here let us recall Lieblich�s work [19].
We consider the following 2‐functor,

\mathcal{M}:(\mathrm{S}\mathrm{c}\mathrm{h}/\mathbb{C})\rightarrow( groupoid) ,



180 YUkinObU Toda

which sends a \mathbb{C}‐scheme S to the groupoid \mathcal{M}(S) whose objects are relatively perfect

objects [19, Definition 2.1.1] \mathcal{E}\in D(X\times S) satisfying

(3.1) \mathrm{E}\mathrm{x}\mathrm{t}^{i}(\mathcal{E}_{s}, \mathcal{E}_{S})=0 ,
for all i<0 and s\in S.

Lieblich [19] shows the following.

Theorem 3.1 ([19]). The 2‐functor \mathcal{M} is an Artin stack of locally finite type
over C.

One can consult [9] for the introduction of Artin stacks. Let  $\sigma$=(Z, \mathcal{A}) be a

stability condition on D(X) and take v\in \mathcal{N}(X) . Note that any  $\sigma$‐semistable object
 E\in \mathcal{A} satisfies (3.1). Thus we can consider the substack \mathcal{M}^{v}( $\sigma$)\subset \mathcal{M} ,

defined to be

the stack of  $\sigma$‐semistable objects  E\in \mathcal{A} of numerical type v . Note that \mathcal{M}^{v}( $\sigma$) is just
an abstract stack, and it is not obvious that \mathcal{M}^{v}( $\sigma$) is algebraic. In fact we have the

following result, which is one of the main results in [22].

Theorem 3.2. For any  $\sigma$=(Z, \mathcal{A})\in \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(X) and v\in \mathcal{N}(X) ,
the stack \mathcal{M}^{v}( $\sigma$)

is an Artin stack of finite type over C.

Proof. We just give the outline of the proof in [22].
Step 1. Let M^{v}( $\sigma$) be the set of objects,

M^{v}( $\sigma$)= {E\in D(X)|E is  $\sigma$‐semistable of numerical type  v }.

In order to show \mathcal{M}^{v}( $\sigma$) is an Artin stack of finite type, it is enough to show the

following.

(i) Openness of stability: the substack \mathcal{M}^{v}( $\sigma$)\subset \mathcal{M} is an open substack, i.e.

given a S‐valued point \mathcal{E}\in D(X\times S) of \mathcal{M} ,
the locus

S^{\mathrm{o}}=\{s\in S|\mathcal{E}_{S}\in M^{v}( $\sigma$)\}\subset S

is open in Zariski topology.

(ii) Boundedness of semistable objects: the set of objects M^{v}( $\sigma$) is bounded,
i.e. there exists a finite type \mathbb{C}‐scheme Q and an object \mathcal{F}\in D(X\times Q) such that any

object E\in M^{v}( $\sigma$) is isomorphic to \mathcal{F}_{q} for some q\in Q.
In fact Theorem 3.1 and (i) ensure that \mathcal{M}^{v}( $\sigma$) is an Artin stack, and it is also of

finite type by (ii). Next let \mathcal{V}\subset \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(X) be the subset

\mathcal{V}= { $\sigma$_{( $\beta,\ \omega$)}\in \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(X)|$\sigma$_{( $\beta,\ \omega$)} is constructed in Proposition 2.3.}

Then it is shown in [5] that for  $\sigma$\in \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(X) ,
there is  $\Phi$\in Auteq  D(X) and  g\in

\overline{\mathrm{G}\mathrm{L}}^{+}(2, \mathbb{R}) such that  $\Phi$ 0 $\sigma$\circ g\in\overline{\mathcal{V}} . Since the action of \overline{\mathrm{G}\mathrm{L}}^{+}(2, \mathbb{R}) does not change the
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set of semistable objects, it is enough to show (i) and (ii) for  $\sigma$\in\overline{\mathcal{V}} . Together with some

more technical arguments, we may also assume that  $\sigma$=$\sigma$_{( $\beta,\ \omega$)}\in \mathcal{V} . (See [22, Theorem

3.20, Step 1].)
Step 2. The conditions (i), (ii) in Step 1 are satisfied if we show (i) , (ii), where

(i) is as follows.

(i) Generic flatness for \mathcal{A} : given \mathcal{E}\in D(X\times S) ,
the locus \{s\in S|\mathcal{E}_{s}\in \mathcal{A}\} is

open in S.

This is technically most important part, and we give the idea for the proof. For the

detail, see [22, Lemma 3.13, Proposition 3.18]. We want to show that (i) together with

(ii) imply (i). Let S be a smooth quasi‐projective variety and take a S‐valued point of

\mathcal{M}, \mathcal{E}\in D(X\times S) . Suppose that \mathcal{E}_{S}\in M^{v}( $\sigma$) for a closed point s\in S . In order to show

that the locus S^{\mathrm{o}}\subset S is open, it is enough to find a non‐empty Zariski open subset

U\subset S such that U\subset S^{\mathrm{o}} . (See [22, Lemma 3.6].) Since we assume (i) ,
we may assume

that \mathcal{E}_{S}\in \mathcal{A} for any s\in S.

Next we use the conditions (i) and (ii) to show the following. There exist finite

type S‐schemes and objects, (i=1,2,)

$\pi$_{i}:Q_{i}\rightarrow S, \mathcal{F}_{i}\in D(X\times Q_{i}) ,

together with a morphism u_{1}:$\pi$_{1}^{*}\mathcal{E}\rightarrow \mathcal{F}_{1} , (resp. u_{2}:\mathcal{F}_{2}\rightarrow$\pi$_{2}^{*}\mathcal{E}, ) such that

\bullet For each closed point  q\in Q_{1} ,
the induced morphism u_{1,q}:\mathcal{E}_{q}\rightarrow \mathcal{F}_{1,q} is surjective in

\mathcal{A} and  $\phi$(\mathcal{E}_{q})> $\phi$(\mathcal{F}_{1,q}) . (resp. for each closed point q\in Q_{2} ,
the induced morphism

u_{2,q}:\mathcal{F}_{2}\rightarrow \mathcal{E}_{q,2} is injective in \mathcal{A} and  $\phi$(\mathcal{E}_{q})< $\phi$(\mathcal{F}_{2}). )

\bullet If there are  s\in S and a surjection \mathcal{E}_{S}\rightarrow F_{1} in \mathcal{A} with  $\phi$(\mathcal{E}_{s})> $\phi$(F_{1}) ,
then there

exists q\in$\pi$_{1}^{-1}(s) such that F_{1}\cong \mathcal{F}_{1,q} . (resp. if there are s\in S and an injection

F_{2}\rightarrow \mathcal{E}_{S} in \mathcal{A} with  $\phi$(F_{2})> $\phi$(\mathcal{E}_{s}) ,
then there exists q\in$\pi$_{2}^{-1}(s) such that F_{2}\cong \mathcal{F}_{2,q}. )

See [22, Proposition 3.17] for the above constructions. By the properties of $\pi$_{i} ,
an object

\mathcal{E}_{S} is an object of M^{v}( $\sigma$) if and only if s\not\in(\mathrm{i}\mathrm{m}$\pi$_{1}\mathrm{U}\mathrm{i}\mathrm{m}$\pi$_{2}) . On the other hand, the locus

S^{\mathrm{o}} is at least dense in Zariski topology. This follows from an easy application of [1,
Proposition 3.5.3], and see [22, Lemma 3.13] for the proof. We thus conclude that $\pi$_{i}

are not dominant. Since Q_{i} are of finite type, we can then find an open subset

U\subset S\backslash (\mathrm{i}\mathrm{m}$\pi$_{1}\cup \mathrm{i}\mathrm{m}$\pi$_{2})=S^{\mathrm{o}},

as desired.

Step 3. By Step 1 and Step 2, it is enough to check (i) and (ii) for  $\sigma$\in \mathcal{V} . Both

conditions are verified by using explicit constructions of \mathcal{A}_{( $\beta,\ \omega$)} . As for the generic flat‐

ness of \mathcal{A}_{( $\beta,\ \omega$)} ,
this essentially follows from the existence of relative Harder‐Narasimhan
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filtration in $\mu$_{ $\omega$} ‐stability [10, Theorem 2.3.2], and the proof is given in [22, Lemma 4.7].
We emphasize here that showing (i) is much easier than showing (i) directly.

Finally we give the idea of showing (ii). Let us take a  $\sigma$‐semistable object  E\in

\mathcal{A}_{( $\beta,\ \omega$)} . Note that \mathcal{H}^{i}(E)=0 unless i=-1, 0 . Let \mathcal{H}^{0}(E)_{t} be the torsion part of \mathcal{H}^{0}(E)
and set \mathcal{H}^{0}(E)_{f}=\mathcal{H}^{0}(E)/\mathcal{H}^{0}(E)_{t} . Let

F_{1}, \cdots, F_{a(E)} , (resp. T_{1}, \cdots, T_{b(E)} )

be the $\mu$_{ $\omega$} ‐semistable factors of \mathcal{H}^{-1}(E) , (resp. \mathcal{H}^{0}(E)_{f}, ) and T_{1}', \cdots  T' the ( $\beta$,  $\omega$)-, c(E)
twisted semistable factors of \mathcal{H}^{0}(E)_{t} . (We omit the definition of twisted stability. For

the detail see [20].) Then using the  $\sigma$‐semistability of  E
,

one can show that the maps

M^{v}( $\sigma$)\ni E\mapsto a(E) , b(E) , c(E)\in \mathbb{Z}

are bounded. Moreover one can also show that the possible numerical classes

ch(F), ch(T), ch (T_{i}')\in H^{*}(X, \mathbb{Q}) ,

are also finite. Hence the set of sheaves \{F_{i}, T_{i}, T_{i}'|E\in M^{v}( $\sigma$)\} is bounded, and this

implies M^{v}( $\sigma$) is also bounded. (See [22, Proposition 4.11] for the detail.) \square 

§4. Counting invariants of semistable objects

In this section, we introduce the recent result of D. Joyce [15], and the related result

of [22] on counting invariants of Bridgeland semistable objects in D(X) . D. Joyce�s
works [12], [13], [14], [15], [17] are attempts to introduce some structures (Frobenius
structures, automorphic functions on Stab ( \mathcal{T} ) for a triangulated category \mathcal{T}

, using

�counting invariants� of semistable objects. (However at this time, his arguments only
work for Stab() for some abelian categories \mathcal{A}. )

Let K_{0}(\mathrm{V}\mathrm{a}\mathrm{r}/\mathbb{C}) be the Grothendieck ring of varieties, i.e.

K_{0}(\displaystyle \mathrm{V}\mathrm{a}\mathrm{r}/\mathbb{C})=\bigoplus_{Y}\mathbb{Z}[Y]/\sim,
where Y is a quasi‐projective variety, and the equivalence relation \sim is generated by
the relation,

[Y]\sim[Y\backslash Z]+[Z],

for closed subvarieties Z\subset Y . There is a ring structure on K_{0}(\mathrm{V}\mathrm{a}\mathrm{r}/\mathbb{C}) given by [Y]
[Z]=[Y\times Z] . Let  $\Lambda$ be a \mathbb{Q}‐algebra. By definition, a motivic invariant is a ring

homomorphism,

(4.1) \mathrm{T}:K_{0}(\mathrm{V}\mathrm{a}\mathrm{r}/\mathbb{C})\rightarrow $\Lambda$.

For simplicity, we write \mathrm{T}([Y]) as \mathrm{T}(Y) . We assume that \mathrm{T}(Y)\in $\Lambda$ is invertible for

any  Y\neq\emptyset.
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Example 4.1. Let  $\Lambda$=Q(t) and set \mathrm{T} as

\displaystyle \mathrm{T}(Y)=\sum(-1)^{i}b_{i}(Y)t^{i}
Here b_{i}(Y) is the i‐th virtual betti number of Y . If Y is smooth and projective, b_{i}(Y)
is the usual i‐th betti number of Y . Then \mathrm{T} satisfies the above conditions.

Let K_{0}(\mathrm{S}\mathrm{t}/\mathbb{C}) be the Grothendieck ring of Artin stacks, i.e.

K_{0}(\displaystyle \mathrm{S}\mathrm{t}/\mathbb{C})=\bigoplus_{\mathcal{Y}}\mathbb{Z}[\mathcal{Y}]/\sim,
where \mathcal{Y} is an Artin stack of finite type over C. For some technical reasons, we assume

that \mathcal{Y} has affine stabilizers. The equivalence relation \sim and the ring structure on

 K_{0}(\mathrm{S}\mathrm{t}/\mathbb{C}) are similarly defined. Under the above setting, the map \mathrm{T} extends to \mathrm{T}',

\mathrm{T}':K_{0}(\mathrm{S}\mathrm{t}/\mathbb{C})\rightarrow $\Lambda$,

such that if G is a special algebraic group acting on a variety Y
,

then \mathrm{T}'([Y/G])=
\mathrm{T}(Y)/\mathrm{T}(G) . (See [16] for the proof.) Here an algebraic group G is called special if any

principle G‐bundle is Zariski locally trivial, and [Y/G] is the global quotient stack.

Let C(X)\subset \mathcal{N}(X) the image of \mathrm{C}\mathrm{o}\mathrm{h}(X)\rightarrow \mathcal{N}(X) . For v\in C(X) ,
let \mathcal{M}^{v}( $\omega$) be

the moduli stack of  $\omega$‐Gieseker semistable sheaves  E\in \mathrm{C}\mathrm{o}\mathrm{h}(X) of numerical type v . As

is well‐known, the stack \mathcal{M}^{v}( $\omega$) is an Artin stack of finite type over \mathbb{C} . (Actually \mathcal{M}^{v}( $\omega$)
is obtained as a global quotient stack of the Grothendieck Quot scheme. See [10].) We

define \hat{I}^{v}( $\omega$)=\mathrm{T}'(\mathcal{M}^{v}( $\omega$)) ,
and the weighted counting

(4.2) \displaystyle \hat{J}^{v}( $\omega$)=\sum_{v_{1}+\cdots+v_{n}=v}l^{-$\Sigma$_{j>i} $\chi$(v_{j},v_{i})}\frac{(-1)^{n-1}(l-1)}{n}\prod_{i=1}^{n}\hat{I}^{v_{i}}( $\omega$)\in $\Lambda$.
Here v_{i}\in C(X) satisfy p(v_{i},  $\omega$, n)=p(v,  $\omega$, n) and l= T(AI) \in $\Lambda$ . Joyce [15] showed

that the sum (4.2) is a finite sum, and the following.

Theorem 4.2 ([15]). The invariant \hat{J}^{v}( $\omega$) does not depend on a choice of  $\omega$.

Remark. The formula (4.2) is roughly speaking the logarithm of the invariants

\hat{I}^{v}( $\omega$) ,
which is explained as follows. Let  A=\oplus_{v\in C(X)} $\Lambda$  c_{v} be the algebra with

multiplication given by c_{v_{1}}*c_{v_{2}}=l^{- $\chi$(v_{1},v_{2})}c_{v_{1}+v_{2}} . We set \hat{ $\delta$}^{v}( $\omega$)=\hat{I}^{v}( $\omega$)\cdot c_{v}\in $\Lambda$ . Then

\hat{J}^{v}( $\omega$) is the coefficient of the logarithm of \hat{ $\delta$}^{v}( $\omega$) multiplied by (l-1) ,

(l-1)\displaystyle \sum_{v_{1}+\cdots+v_{n}=v}\frac{(-1)^{n-1}}{n}\hat{ $\delta$}^{v_{1}}*\cdots*\hat{ $\delta$}^{v_{n}}.
The algebra A is related to the Hall type algebra. (cf. [15].)
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Remark. Suppose that v\in C(X) is primitive and  $\omega$ is in a general position of the

ample cone of  X . Then \mathcal{M}^{v}( $\omega$) is written as [M^{v}( $\omega$)/\mathbb{G}_{m}] ,
where M^{v}( $\omega$) is a projective

symplectic variety. Then \hat{J}^{v}( $\omega$) is written as \mathrm{T}(M^{v}( $\omega$)) . (Note that the factor (l-1)
cancels out the contribution of the stabilizer group \mathbb{G}_{m}. ) Now suppose that $\omega$' is another

ample divisor and M^{v}($\omega$') is birational to M^{v}( $\omega$) . In this case it is well known that

\mathrm{T}(M^{v}( $\omega$))=\mathrm{T}(M^{v}($\omega$')) ,
thus Theorem 4.2 indicates this fact.

Now let us return to Bridgeland�s stability conditions. The purpose of the paper [22]
is to generalize Theorem 4.2 for Bridgeland�s stability conditions on D(X) ,

whose precise
statements are conjectured by Joyce [15]. For  $\sigma$\in \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(X) and v\in \mathcal{N}(X) ,

consider the

Artin stack \mathcal{M}^{v}( $\sigma$) as in the previous section. For the heart of a \mathrm{t} ‐structure \mathcal{A}\subset \mathcal{T} , we

denote C(\mathcal{A})=\mathrm{i}\mathrm{m}(\mathrm{c}\mathrm{h}:\mathcal{A}\rightarrow \mathcal{N}(X)) .

Definition 4.3. For  $\sigma$=(Z, \mathcal{A})\in \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(X) and v\in \mathcal{N}(X) ,
we define I^{v}( $\sigma$) as

follows.

I^{v}( $\sigma$)=\mathrm{T}'(\mathcal{M}^{v}( $\sigma$)) (v\in C(\mathcal{A})) , I^{v}( $\sigma$)=I^{-v}( $\sigma$) (v\in-C(\mathcal{A})) ,

and if v\not\in\pm C() ,
we set I^{v}( $\sigma$)=0 . Also we define J^{v}( $\sigma$) as

(4.3) J^{v}( $\sigma$)=\displaystyle \sum_{v_{1}+\cdots+v_{n}=v}l^{-$\Sigma$_{j>i} $\chi$(v_{j},v_{i})}\frac{(-1)^{n-1}(l-1)}{n}\prod_{i=1}^{n}I^{v_{i}}( $\sigma$)\in $\Lambda$.
Here v_{i}\in \mathcal{N}(X) satisfies Z(v_{i})\in \mathbb{R}_{>0}Z(v) .

Note that I^{v}( $\sigma$) is well defined by Theorem 3.2. One can show that (4.3) is a finite

sum, thus J^{v}( $\sigma$) is also well defined. The following is the analogue of Theorem 4.2 for

Bridgeland�s stability conditions.

Theorem 4.4 ([22]). The invariant J^{v}( $\sigma$) does not depend on a choice of  $\sigma$\in

Stab (  X) . Furthermore if v\in C(X) ,
we have J^{v}( $\sigma$)=\hat{J}^{v}( $\omega$) for any ample divisor  $\omega$.

§5. Future works

In this section we discuss some problems related to the work [22].

\bullet Stability conditions on Calabi‐Yau 3‐folds.

From the viewpoint of string theory, it is very important to study the space Stab(X)
for a Calabi‐Yau 3‐fold  X

,
and discuss the counting invariants of (semi)stable ob‐

jects on X . In this case, we have the difficulty in constructing stability conditions in



Semistable objects 1N derived categories 0F K3 surfaces 185

the sense of Bridgeland. From the discussion in [8], we guess that stability functions

are given by

Z(E)=-\displaystyle \int e^{-( $\beta$+i $\omega$)}\mathrm{c}\mathrm{h}(E)\sqrt{\mathrm{t}\mathrm{d}}x+ (quantum corrections),

in a neighborhood of the large volume limit. Note that the presence of quantum

corrections is the different point from the K3 surface case. For E\in \mathrm{C}\mathrm{o}\mathrm{h}(X) ,
let us

investigate the value \arg Z(E) for  $\omega$\rightarrow\infty . We have

(5.1) \displaystyle \lim_{ $\omega$\rightarrow\infty} argZ(E) =\left\{\begin{array}{ll}
 $\pi$ & \dim \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(E)=0,\\
 $\pi$/2 & \dim \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(E)=1,\\
0 & \dim \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(E)=2,\\
- $\pi$/2 & \dim \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(E)=3,
\end{array}\right.
Let \mathcal{T}, \mathcal{F}\subset \mathrm{C}\mathrm{o}\mathrm{h}(X) be the subcategories defined by

\mathcal{T}=\{E\in \mathrm{C}\mathrm{o}\mathrm{h}(X)|\dim \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(E)\leq 1\},

\mathcal{F}=\{E\in \mathrm{C}\mathrm{o}\mathrm{h}(X)|\mathrm{H}\mathrm{o}\mathrm{m}(\mathcal{T}, E)=0\}.

Then the pair (\mathcal{T}, \mathcal{F}) determines a torsion theory on Coh(X), and let \mathcal{A}\subset D(X)
be the corresponding tilting, i.e.

\mathcal{A}=\{E\in D(X):\mathcal{H}^{-1}(E)\in \mathcal{F}\mathcal{H}^{0}(E)\in \mathcal{T},\mathrm{a}\mathrm{n}\mathrm{d}\mathcal{H}^{p}(E)=0\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}very p\neq-\mathrm{l},0\}
It is known that \mathcal{A} is the heart of a \mathrm{t} ‐structure and (5.1) implies that for a non‐zero

E\in \mathcal{A} ,
we have

Z(E)\in e^{ $\pi$ i/4}\cdot \mathcal{H},
for  $\omega$\gg 0 . Hence the phase  $\phi$(E)\in (1/4,5/4) is well‐defined for  $\omega$\gg 0 . (However
such sufficiently big  $\omega$ depends on  E

,
so we cannot conclude that (e^{- $\pi$ i/4}Z, \mathcal{A}) gives

a stability condition.) From this observation, we guess that there is a heart of a

\mathrm{t} ‐structure \mathcal{A}'\subset D(X) ,
which is an �approximation� of \mathcal{A} in some sense, such that

(Z, \mathcal{A}') gives a stability condition. Unfortunately we do not know how to find such

\mathcal{A}'.

\bullet Counting invariants of (semi)stable objects on Calabi‐Yau 3‐folds and

their relation to Donaldson‐Thomas invariants

For a Calabi‐Yau 3‐fold  X,  $\beta$\in H_{2}(X, \mathbb{Z}) and n\in \mathbb{Z} ,
let I_{n}(X,  $\beta$) be the moduli

space of ideal sheaves I\subset \mathcal{O}_{X} with

( \mathrm{c}\mathrm{h}_{0}(I) , ch(I), ch(I), \mathrm{c}\mathrm{h}_{3}(I) ) =(1,0,  $\beta$, n) ,
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i.e. I_{n}(X,  $\beta$) is the Hilbert scheme of curves. Then the Donaldson‐Thomas invari‐

ant [21] is defined by the integration over the virtual classes,

N_{n, $\beta$}=\displaystyle \int_{I_{n}(X, $\beta$)^{vir}}1\in \mathbb{Z}.
Note that any ideal sheaves are Gieseker stable with respect to any polarization, thus

N_{n, $\beta$} is a counting invariant of stable sheaves. As an analogy of this, we expect that

for a given stability condition  $\sigma$\in Stab (  X) ,
there should be the invariant N_{n, $\beta$}( $\sigma$) ,

which counts  $\sigma$‐stable objects as above. Furthermore the difference between  N_{n, $\beta$}( $\sigma$)
and N_{n, $\beta$}( $\tau$) should be described explicitly using the idea of Joyce [15]. However

Joyce�s theory does not take account of the virtual classes, and it seems a hard work

to involve virtual classes in his theory.

\bullet Automorphic functions on Stab(X) via counting invariants. Let  X be a K3

surface and consider the invariant J^{v}=J^{v}( $\sigma$) constructed in the previous section.

(Since J^{v}( $\sigma$) does not depend on  $\sigma$ by Theorem 4.4, we may omit  $\sigma$. ) Let G be

the group of autoequivalences of D(X) ,
which preserves the connected component

Stab(X). Then for g\in G ,
Theorem 4.4 implies

J^{v}=J^{v}( $\sigma$)=J^{g_{*}v}(g_{*}v)=J^{g_{*}v},

where g_{*}\in \mathrm{G}\mathrm{L}(\mathcal{N}(X)) is the induced isomorphism. This indicates that the invari‐

ants J^{v} for v\in H^{*}(X, \mathbb{Q}) posses the automorphic property with respect to G . Thus

it is natural to guess the existence of an automorphic form on Stab(X) with respect

to G using J^{v} . For example the function (ignoring convergence),

Stab(X) \displaystyle \ni $\sigma$=(Z, \mathcal{P})\ovalbox{\tt\small REJECT}\sum_{v\in \mathcal{N}(X)\backslash \{0\}}\frac{J^{v}}{Z(v)^{k}}\in $\Lambda$\otimes_{\mathbb{Q}}\mathbb{C},
for k\in \mathbb{Z} gives an automorphic function of weight k . Of course the above function

is only one of the possibilities. It seems interesting to construct automorphic func‐

tions on Stab(X) via counting invariants, and compare them with a mirror side or

Borcherds� automorphic functions [3]. For this purpose, the first step is to calculate

the invariants J^{v} explicitly.

\bullet Moduli problems of stable objects on K3 surfaces. Let  X be a K3 sur‐

face. In [22], the author proved that the moduli stack of semistable objects in

D(X) is algebraic. In particular the moduli of stable objects are represented by an

algebraic space of finite type. Thus it is interesting to study such moduli spaces

concretely, and see how they vary under change of stability conditions. In their

recent work [2], Arcara, Bertram and Lieblich study such a problem in some spe‐

cial situations. (They focus on the case Pic(X) =\mathbb{Z}
,

and consider only special
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stability conditions contained in \mathcal{V}\subset \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(X) . They also put a certain restriction

on \mathrm{c}\mathrm{h}(E)\in H^{*}(X, \mathbb{Q}) for stable objects E. ) In that situation, they prove that

moduli spaces are connected by Mukai flops under change of stability conditions. It

is interesting to generalize the work [2] for arbitrary K3 surfaces, numerical classes

and stability conditions.
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