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Stability of cubic hypersurfaces of dimension 4

By

Mutsumi YOKOYAMA™

§1. Introduction

Hilbert’s idea of null forms appeared again as the (semi-)stability and plays an
important role in constructing the moduli space and its compactification in Geometric
Invariant Theory of Mumford [6]. By virtue of the numerical criterion, one can deter-
mine the stable objects explicitly. For example, Hilbert proved the following. (See [2]
§19 and [7] p15.)

Theorem 1.1. Let S be a cubic surface in the projective space P3.

(1) S is stable if and only if it has only rational double points of type Aj.

(2) S is semi-stable if and only if it has only rational double points of type Ay or
As.

(3) The moduli of stable ones is compactified by adding one point corresponding
to the semi-stable cubic xyz + w® = 0 with 3 Ay singularities.

Applying the sane criterion to cubic 3-folds, i.e. hypersurfaces of degree 3 in P4, we
can prove the following. (See [1] and [9])

Theorem 1.2. Let X be a cubic 3-fold.

(1) X is stable if and only if it has only double points of type A,, : v? + w? + 2% +
y" T =0 with n < 4.

(2) A non-stable cubic 3-fold is contained in a closed orbit if and only if it is either
stable or its defining equation is projectively equivalent to either

o, = vy? + w?z — vz — awry + Bx® with (a, 8) # (0,0) or

vwz + 23 + y3.
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According to the numerical criterion for hypersurfaces in P™, in order to classify stable
ones, it is enough to determine certain finite number of hyperplane sections passing
through the center of gravity in an n-dimensional simplex. In Hilbert’s case, we can
determine these hyperplane sections by intuition. Although it becomes more difficult
in the case n > 4, we prove Theorem 1.2 without an assistant of computer in [9]. In
Section 3 we prove the following by aid of computer.

Main Theorem 1.3. A cubic 4-fold X is not stable if and only if it satisfies either

(1) SingX contains a conic,

(2) Sing X contains a line,

(3) Sing X contains the intersection of two hyperquadrics in a space,

(4) X has a double point of rank < 2,

(5) there exist a double point p of rank 3 and a hyperplane section Y through p
with a line L as singular locus such that the point p on L is of rank 1 and any points
on L are of rank < 2, or

(6) there exist a double point p of rank 3 such that the singular locus of the tangent
cone at p of X is a 2-palne in X.

In Section 4 we give an algorithm to determine the family of hypersurfaces with closed
orbits. In Section 5 applying the algorithm, we determine non-stable cubic 4-folds
contained in closed orbits, that is, we prove the following.

Main Theorem 1.4. A non-stable cubic 4-fold is contained in a closed orbit if and
only if it is either stable or its defining equation is projectively equivalent to one of the
following:

[C.1] ugi(w,z,y,z) +vg(w,x,y, z) where V(u,v,q1,q2) is a smooth curve;
[C.2] u(xy+ 2z +yz + az?) + viat+w?y + 28vwz

where a # 1, —% £ 283, —562423/48% + 1,
[C.3] uy? + vz + I (w, ¥)uz + 2(w, z)vy + c(w, x) where l; fc and 13 Je;
[C4] wvw + ¢(x,y, z) where V(u,v,w, c) is smooth;
[C.5] auy? +v2z + wir —uzz + 2vwy (o # 0);
[C.6] wvw + zyz.

We note that the symbols [;, ¢; and ¢ denote a linear, quadratic and cubic homogeneous
polynomial respectively. And V(f1,---, fx) means {f; =--- = fi, = 0}.

For the relation among the above families, we have the following. The proof is
given in Section 3.
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Proposition 1.5. The families of [C.1] to [C.6] have dimension 1, 2, 3, 1, 1 and 0
respectively. If we denote them by C1,S5, V3, Cy, Cs and Py respectively, then

Cs C SoNVz and Ps € C, N Cy N Cs. (See Figure)

PS

CS
S2
V3

Figure

Remark 1.6. The maximal tori of the stabilizer groups of [C.1] to [C.6] are 1-PS’s
73 = [27 27 _17 _17 _17 _1]7 ’71 = [47 17 17 _27 _27 _2]7 ’75 = [27 17 07 07 _17 _2]7 [CL, b7 —a—
b,0,0,0], <~%,+° > and [a,b, —a — b, ¢, d, —c — d] respectively.

§2. Preparations

In this section we state some criterions playing an important role. A one-parameter
subgroup, 1-PS for short, of SL(n + 1) is a homomorphism A : G,, — SL(n + 1) of
algebraic groups. Such A\ can always be diagonalized in a suitable basis:

A(t) =diag (t°,t™, - t")and rg > 11 > - >, ro+ T+ 1 =0,



192 MuTsuMI YOKOYAMA

It is simply expressed by A(t) = [ro, 71, -, r](t) or A = [rg, 71, -+, 7). Since [rg, 71, -,
rn] #10,0,---,0], 7o is positive and 7, is negative.

Theorem 2.1. (Numerical Criterion) A hypersurface of degree d in P" de-
fined by a homogeneous polynomial f(xg,x1,---,2y,) of degree d is not stable (resp.
semi-stable) if and only if there exists an element o of SL(n + 1) and a 1-PS A(t) =
diag (t™,t"™,---,t™) € SL(n + 1) such that lim; o \(t)(o f) exists (resp. exists and is

equal to 0). Expressing o f = Zaij...kxéx{ -k this is equivalent to the condition

3 1-PS [ro, 71, -+, ) 8.t Toi +71j 4+ -+ 1k >0 (resp. > 0) if ajj...i # 0.

Let I be the set of exponents of monomials zjz7 - -z that is,

I:={(i,j,---,k)€Z" |i,j,--- k>0andi+j+---+k=d}.

Then the determination of all non-stable (resp. unstable) hypersurfaces is reduced to
that of the subsets in I

M®(x):={iel|i-r>0} (resp. M (r):={ieI|i-r>0})

for all 1-PS r = [rg, 71, -+, 7). We note that if i = (¢,7,---, k) and r = [ro, 71, -+, 75],
theni-r :=roi +7r15 4+ -+ rpk. We seek for only maximal ones instead of all such
subsets.

The following criterion is useful to show the closeness of the orbit.

Theorem 2.2. (Luna’s Criterion [3] or [8] Theorem 6.17) Suppose that a reductive
group G acts on an affine variety X, H is a reductive subgroup of GG, and x belongs to
the set X of fixed points of H. Then the following are equivalent:

(1) the orbit Gz is closed;

(2) the orbit Ng(H)x over the normalizer is closed;

(3) the orbit Zg(H)x over the centralizer is closed.

Lemma 2.3. ([8] 6.15) Suppose that T is an algebraic torus acting linearly on a
finite-dimensional vector space V and v € V be a vector. Then the following conditions
are equivalent:

(1) the orbit T is closed in V;

(2) 0 is an interior point of the set supp v in X (T) ®z Q,
where X (T') is the group of character of T.

Notation 2.4. We use the following notations without further mention. The symbols
l, ¢ and ¢ denote a linear, quadratic and cubic homogeneous polynomial respectively.
f ~ g means that f = og for some linear transformation o.
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§ 3. Stability for cubic 4-folds

In this section we begin the following Lemma which is obtained by computer cal-
culation.

Lemma 3.1. (1) For any 1-PSr, M®(r) C M®(y") for some 1 < i < 8, where

Al =1[4,1,1,-2,-2,-2], 72 =[1,1,1,1,-2,-2], ~43=[2,2,-1,-1,—1,—1],
~4+ =1,1,0,0,0,—2], 7 =1[2,1,0,0,—1,-2], ~%=1[2,2,2,—1,—1, 4],
4T =[2,0,0,0,—1,—1], ~8 = [1,0,0,0,0, —1].

(2) For any 1-PS v, M (r) C MT(\) for some 1 <1 < 10, where ¢ = 0.01 and

A=t [-1,0,-2,1, 1, e, A2 =~24[0,0,0,-2,1, 1],
A3 =72+ 12,0, -2, -6, 5, 1]e, A =424 (2,0, -2, -2,1,1]e,
A5 = ~34 (8,0, 8,1, -3, 2]e, A =A%+ 10, -6,1,1,1, 3]e,
N = 7+[007,1, —11, 3¢, A8 =7+[ 1,-6,1,1,2,3le,
A) =54 [11,0,1,—11,—4,3]e, A0 =A%+ [=7,7,7,1, —11, 3]e.

Lemman 3.2. modulo SL(6)-action, there are the following relations among the
maximal subsets:

(1) M®(y7) € M®(v") = M®(v®),

(2) M*(\) © M%), M*(A?) © M*(\¥) 2 M*(M), M*(\¥) € M*(\9) C
M*(\7).

Proof. We take (u:v:w:z:y:z) as a homogeneous coordinate system of P°.

(1) Let [A.k] be the ideal generated by monomials of M ®(y*) where k = 1,2,---,8.
Then we have the following list.

w, v, w, )3 + u(u,v,w, 1) (y, 2) + uly, 2)%
u,v,w, x,y)> + u(u, v, w, z,y)z.

[A1] (u,v,w)®+ (u,v,w)?(x,y, 2) + u(x,y, 2)%

[A.2] (u,v,w, )+ (u,v,w, )%y, 2);

[A3] (u,v)? + (u,v)*(w, z,y, 2) + (u,v)(w, z,y, 2)%

[A4] (u,v,w,x,y)>+ (u,v)?z;

[A5] (u,v,w,x) + (u,v)(u, v, w, )y + (uy?®) + (u,v)%z + u(w, x)z;
[A6] (u,v,w)? + (u,v,w)*(2,y) + (u,v,w)(x,9)* + (u, v, w)?2;

[ (

[ (

Since any polynomials in [A.4] and [A.8] have a double point of rank < 2, we have
[A.4] ~ [A.8]. For any F € [A.7], we have

F =c(u,v,w, ) + uly (u, v, w, x)y + ula(u, v, w, z)z + uq(y, 2)
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~ c(u, v, w, ) + ull (u, v, w, z)y + uly(u, v, w, )z + uls(y, 2)y
= {c(u, v, w, x) + ul| (u, v, w, )y + aruy®} + u{ls(u, v, w, ) + asy}z € [A.8],

where I3(y, z) = a1y + azz. Hence we have M®(y7) C M®(4®) modulo SL(5) action.
(2) Let [B.k] be the ideal generated by monomials of M (\F) where k = 1,2, - -, 10.
Then we have the following list.

B.1]  (u,v,w)3 + {(u,v)? + (vw)}zx,y, 2) + u(z,y, 2)%

B.2]  (u,v,w,z)?+ (u,v,w)*(y, 2);

B3] (u,v,w,z)? + {(u,v,w)? + (uz)}y + {(u,v)? + (vw)}z;
B4]  (u,v,w,2)®+ {(u,v)? + u(w, x)}(y, 2);

(
(
(
(
(u, v, w)? + (u,v,w)?(x,y) + {(u,v)* + (vw)}z + u(z,y)? + (vy?);
B.6] (u,v,w,z,y)®+ (u?z2);
(u, v, w, )2 + (u, v)y? + {(u,v,w)? + (u,v)z}y + (u,v)?z;
(u,v,w, )3 + (uy?) + {(u,v)? + u(w, z) }y + u(u, v, w, r)z;
(u, v, w)? + (u, 0) (u, v, W)z + {(u,v)* + (vw) }y, 2) +u{(z,y)* + (x2)} + (v2?);
(u,v,w, )3 + (uy?) + {(u, v, w)? + (ux)}y + u(u,v,w)z.

For any Fy, € [B.k], we have

Fy =c(u,v,w) + {q1(u,v) + aquw}tx + {g2(u, v) + asuw}y
+{g5(u,v) + aguw}z + ug(z,y, 2
~ c(u,v,w) + {¢} (u,v) + ajuw}z + {5 (u,v) + ajuw}y
+{g5(u,v) + asuw}tz + u{gy(x,y) + agzz} € [B.9]
by qi(z,y,2) — q4(z,y) + aszz,
Fy =c(u,v,w) + ¢ (u,v,w)y + g2(u, v, w)z
~ ' (u,v,w) + ¢) (u,v,w)y + {g5(u,v) + asuw}z € [B.3]
by q2(u, v, w) — ¢h(u,v) + aguw,
Fy=c(u,v,w,z) + {q1 (u,v) + uly (w, ) }y + {g2(u, v) + ulz(w, z)}z
~ ' (u,v,w, z) + {q} (u,v) + aruz}y + {g5(u,v) + aquw}z € [B.3] (%)
by (li(w,z),l2(w,z)) — (2, w),
Fs = c(u,v,w, z) + auy® + {q(u,v) + uly(w, )}y + uly(u, v, w, )z
~c (u,v,w, ) + ajuy® + {q(u,v) + aguz}y + ulb(u, v, w)z € [B.10]
by (I1(w,x),la(u,v,w,z)) — (x,15(u, v,w)),
Fio=c(u,v,w, z) + ayuy® + {q(u, v, w) + aguz}y + ul(u, v, w)z
~c (u,v,w, ) + aruy® + {¢' (u, v, w) + aguxty + ul' (u,v)z € [B.7]
by 1(u, v, w) — I'(u,v).

In (*)7 if ll(wvx) - l2(w7x)7 then by (y7 Zal2(w7x)) = (yvz - va)a

Fy =~ (u,v,w,2) + ¢) (u,0)y + {g2(u,v) + uw}z € [B.3].
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Hence we have M+ (A1) C M+ (\%), MT(\2) C MT(\3), MT(\%) C M+ (\3), Mt (\®) C
MT(AY) and MT(A'0) C M (A7) respectively. []

(1) to (6) in Theorem 1.3 are translations of [A.1] to [A.6] into geometric language.

Proof of Theorem 1.3: It is easy to see that (1), - -+, (4) correspond to M®(y1), .-,
M®(y*), respectively.

If a cubic 4-fold X defined by F satisfy (5), then we may assume that p =(0:0:0:0:0:1)
is a double point of rank 3, Y = XN{u=0}and L={v=w=2=0} CY. Since Y
has a double point or rank 1 at p and SingY contains L,

F= uqi (U, v, W, T, y) +c (Ua w, .TI?) + q2(va w, l’)y + Z{CLl'UQ + Ull (U, v, W, 33‘)}
Since any points on L in Y are of rank < 2, we have ¢a(v, w, x) = vily(v, w, x) and
F =uqy (u,v,w,2,y) + c1 (v, w, z) + vla (v, w, £)y + {a1v? + uly (u, v, w, )} 2
= co(u, v, w, ) + uls(u, v, w, )y + asuy® + via (v, w, x)y + {a1v? + uly (u, v, w, )} 2.

It is of type [A.5].

If X is a cubic 4-fold defined by a polynomial in [A.6], then p =(0:0:0:0:0:1) is a
double point of rank 3 and S = V(u, v, w) is a plane passing through p contained in X.
The converse is easy. (6) corresponds to [A.6]. []

§4. Family of hypersurfaces with closed orbits

In this section we give an algorithm to determine the family of hypersurfaces with
closed orbits, which is essentially depending on [8] (6.13). And this idea can be traced
back to Poincaré (See [8] 6.13 Example 1). To state the algorithm we need some
preparation.

Notation 4.1. We consider hypersurfaces of degree d in P". For 1-PS’s 71, -+, vm
of G =SL(n+ 1), put
H(yi, - oym) ={i€l]i-m=-=1 7, =0}

< >= QN @ @ Q) NZE™

For a homogeneous polynomial f = Zaij...kxéx{ -..xF of degree d and a subset
M of 1, if {(¢,7,--,k)|aij.... # 0} € M, then we denote f € M for short. And
f € M mod G means that of € M for some o € G.

Proposition 4.2. If a polynomial f is not stable and if its G-orbit is closed, then
of € H(~) for some 1-PS v and o0 € G.
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Proof. By Numerical Criterion 2.1, 7f € M®(v) for some 7 € G and 1-PS v. On the
other hand, we have

H(y) 3 lim ()7 €G- =G f.

Hence H(v) > o f for some 0 € G. [ ]

Theorem 4.3. Let f be a polynomial such that f € H(y). Then of € M®()\) for
some 1-PS X\ ¢< v > and o0 € Zg(v) if and only if the orbit G - f is not closed or
rank (stab(f)) > 1.

Proof. Assume of € M®()) for some 1-PS X\ and o € Zg(y). Then there exists
limy_o A(t)(of). If it belongs to G - f, then rank (stab(f)) > 2. Otherwise the orbit
G - f is not closed. If rank (stab(f)) > 2, then of € H(\) as required. If G - f is not
closed, the assertion follows from the proposition below. []

Proposition 4.4. Let f € H(v) and assume that the orbit G - f is not closed. Then
for some 1-PS A\ and o € Zg(y), the limit g = lim;_,o A(t)of and the orbit G - g is
closed.

Proof. According to Luna’s Criterion 2.2, Zg(7) - f is not closed. By Theorem 4.5, for
some 1-dimensional torus 7" in Zg(7), there exists lim;—,o 7'(t) f whose orbit over Zg(7)
is closed. Since T'(t) = o~ A\(t)o for some 1-PS A\(t) and elements o € Zg(y) by Lemma
4.6, the orbit of lim;_,g A(t)o f over Zg(7) is closed, which is equivalent to the closeness
over G by Luna’s Criterion 2.2. []

Theorem 4.5. (See [8] Theorem 6.9) Suppose a reductive group G acts on an affine va-
riety X and x € X. Then G contains a 1-dimensional torus T such that the intersection
of the variety T - x and the (unique) closed orbit in G - x is nonempty.

Lemma 4.6. Let T be a I-dimensional torus in Zg(y), v(t) = diag (™, --,t™).
Then there exists o € Zg(7y) such T(t) = odiag (t%°,---,t*")o~! for some sg, - -, sp.

As in the proof of Theorem 4.3, we have the following.

Corollary 4.7.  Assume that ~i,---,7v, are linearly independent 1-PS’s. Let f
be a polynomial and f € H(v1, - +,Ym). Then of € M®()\) for some 1-PS \ ¢<
Y1, yYm > and o € Zg(vy) if and only if either the orbit G - f is not closed or
rank (stab(f)) > m.

We state here the method to find the family of hypersurfaces contained in closed orbits.
In Step £ =0,1,---,n we determine the subfamily of ones whose stabilizers are of rank

k.
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Step 0: Take 1-PS’s 71, -+, such that M®(y;)’s are all the maximal subsets of I.
Then f is stable if and only if f & M®(v;) mod G for any i by Numerical Criterion
2.1. If f € M®(v;) mod G, then f = lim;_,o;(t)f belong to H(v;). So non-stable
hypersurfaces with close orbits belong H(vy;) for some i.

Step 1: We determine hypersurfaces in H(y;) with closed orbits whose stabilizers are
rank 1. Take 1-PS’s Ay, -+, Ay €< 7; > such that M®(\;)) N H(v) (j = 1,---,m)
are all the maximal subsets of H(v;). Then f € H(v;) belongs to closed orbit and
rank (stab(f)) = 1 if and only if f ¢ M®(\;) N H(v;) mod G for any j by Theorem
4.3. If f € M®(\;) N H(v;) mod G, then f = lim; o \;(t)f € H(vi, \j). So the other
hypersurfaces belong H(v;, A;) for some j.

Step k£ = 2,---,n: Repeating similar procedures, we can determine hypersurfaces which
belong to closed orbits and stabilizers are of rank k by Corollary 4.7.

8§5. The Proof of Theorem 1.4 and Proposition 1.5

In this section, from the algorithm in Section 4, we give [C.1] to [C.6] in Theorem
1.4 as defining equations with closed orbits.

Lemma 5.1. Let X be a cubic 4-folds defined by F'. If it is not stable and belongs to
a closed orbit, then F € H(v*) mod SL(6) for somei =3, 4, 5 or 6.

Proof. By Lemma 3.1 and 3.2, we have F € M®(v?) for some 1 <i < 6. Since its orbit
is closed,
F ~ ]ir% Yt F € H(vY).

t—

We note that H(y') ~ H(7%) and H(v?) ~ H(v?). []

Hence we may assume that F' € H(y?) for i = 3, 4, 5 or 6. First we consider the case
F € H(y%).

Lemma 5.2. If F € H(v*) belongs to a closed orbit, then it is of type either [C.4] or
[C.6].

Proof. Since v* = [1,1,0,0,0,—2] and F € H(y%), we have
F =q(u,v)z + c(w, z,y) ~ wwz + c(w, z,y).

We note that F' belongs to a closed orbit if and only if ¢(w, z,y) belongs to a closed
orbit. Hence we have either ¢(w, x,y) is smooth or ¢(w, z,y) ~ wzxy. Therefore F is of
type either [C.4] or [C.6]. []
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Second we consider the case F' € H(v3). To carry out Step 1 in Section 4 we use
computer in the following.

Lemma 5.3. Suppose F € H(y3) belongs to a closed orbit. Then its stabilizer is of
rank 1 if and only if it is of type [C.1]. If its stabilizer is of rank > 1, then it is of type
either [C.4] or [C.6].

Proof. Since 3 = [2,2,—1,—1,—1,—1] and F € H(+?%), we denote
F =uq(w,z,y,2) +vq (w, x,vy, 2).
By £(F) we define {q(w,x,y,2) = ¢'(w, z,y, z) = 0} in P*(w:2:y:2). We note that
E(F) is singular <— F ~u{q(w,x,y) + l(w,x,y)z} + vga(w, x,y). (%)

The computer calculation show that the following 1-PS’s

A =10,-2,1,1,1,-1], Ao =[2,0,1,—-1,—1,-1], A3 =10,0,1,0,0,—1],
Ay =10,-2,1,1,0,0], A5 =[0,0,1,1,—-1,—1]

give all the maximal subsets M ®(\;)NH (73) of H(?), which correspond to the following
homogeneous polynomials respectively:

¢1 = uw{q(w,2,y) + l(w, z,y) 2} + vga(w, 2, y),

¢2 = UQ(w7 x7 y7 Z) + le(w, aj’ y’ Z)?

o3 =u{q(w,z,y) + aqwz} + v{gz(w, 2, y) + azwz},

b4 =uq (w,x,y,2) + vga(w, x),

o5 =u{q1(w,x) + L1 (w, z)y + lo(w, z)z} + v{g2(w, z) + l3(w, x)y + ly(w, x)z}.

Since £(¢;) is singular for any 1 < ¢ < 5, if £(F) is smooth, then F % ¢, for any 1.
Hence F belongs to a closed orbit and its stabilizer is of rank 1 and F is of type [C.1].
If £(F) is singular, then we have F' ~ ¢; by (%) and

lim Ay (8)¢1 = wl(w, 2, y)2 + vg(w, z,y) = uwz + vg(w, z, y).

Therefore F is of type either [C.4] or [C.6]. []
Next we consdier the case F' € H(v°).
Proposition 5.4. Suppose F' € H(v°) belongs to a closed orbit. Then its stabilizer

is of rank 1 if and only if it is of type [C.3]. If its stabilizer is of rank > 1, then it is
either of type [C.5] or [C.6].
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Proof. Since v° = [2,1,0,0,—1,—2] and F' € H(v), we have
F = aqjuy® + av’z + 11 (w, £)uz + 2ls(w, z)vy + c(w, x).

The computer calculation show that the following 1-PS’s

A1 =[0,-1,0,0,1,0], A2 =10,1,0,0,—-1,0], A3 =10,1,0,0,1,—2],
A =10,-1,1,-2,0,2], X5=1[0,1,2,-1,0,-2], X¢=10,—1,—-2,-2,3,2]

give all the maximal subsets M ®(\;)NH (7°) of H(®), which correspond to the following
homogeneous polynomials:

b1 = uzly (w, ) + vyla(w, ) + auy?® + c(w, x),

b = uzly (w, ) + vyla(w, ) + av?z + c(w, x),

b3 = vyl(w, ) + a1v?z + asuy® + c(w, x),

by = uzly (w, ) + ajvwy + azv?z + asuy® + w?l(w, x),
b5 = ayuzw + vyl(w, ) + azv’z + azuy® + wq(w, x),
b6 = uzly (w, ) + vyla(w, ) + a1’z + azuy?.

We note that ¢2, ¢3 and ¢g are the special cases of ¢1, ¢5 and ¢4 respectively.

If F=ajuy?+asv?z+ 1 (w, x)uz 4 2ls(w, 2)vy + c(w, ) € H(\;) mod G for any j
then F % ¢y, F # ¢4 and F # ¢5, which mean ay,as # 0, 13 fc and 1} [fc respectively.
Therefore we have obtained [C.3].

If F € H(A\j) mod G for some j =1, 4 or 5 then there exists the limit below
respectively

F = }in% M () f = uzly(w, z) + vyla(w, ) ~ vwz + vay + ¢ (w, ) — vwz + vy,

F,= }in% A(t) f = arvwy + asuxz + asv?z + aguy® + asw’x or

Fs = }in% As(t) f = aruwz + asvxy + asv?z + asuy® + aswz?.
Hence they are either of tyep [C.5] or [C.6] by Lemma 5.5. []
Lemma 5.5. If F = auwz + asvxy + azv?z + aguy? + aswa? belongs to a closed orbit,
then either F ~ [C.5] or [C.6]

Proof. If a; = 0, then
lim(~1,1, -1, 1,1, ~1J())F = 0.

Hence we have a; # 0 and as # 0. If ag = 0, then

%im[l, —2,1,0,0,0](¢t)F = ayuwz + agvzy,

—0

which is of type [C.6]. Hence if azasas = 0, then F' is of type [C.6]. Otherwise F is of
type [C.5]. []
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To complete the proof of Theorem 1.4 we consider the case F' € H (7).
Lemma 5.6. Suppose F € H(~%) belongs to a closed orbit. If its stabilizer is of rank
1, then it is of type [C.2].
Proof. Since 4% = [2,2,2, -1, —1,—4] and F € H(~%), we have
F =11 (u,v,w)z? + lo(u, v, w)zy + l3(u, v, w)y* + q(u, v, w)z
~ 1y (u, v, w)z? + Uy (u, v)zy + auy® + ¢ (u, v, w)z
by (I3 (u, v, w), la(u, v, w)) = (u, l5(u,v)).
The computer calculation show that the following 1-PS’s
)\1 - [07 _27_2717172]7 )\2 - [272707_17_17_2]7 )\3 = [0707 _2717170]7
Ay =[2,0,0,—1,-1,0], A5 = [0,—-1,-2,1,0,2], X¢ = [0,0,0,1,—1,0]

give all the maximal subsets M ®(\;)NH (7°) of H(7°), which correspond to the following
homogeneous polynomials:

1 =l (u, v, w)a? + Iy (u, v, w)zy + I3(w, v, w)y? + uly(u, v, w)z,
b =11 (u, v)2? + la(u, v)zy + I3(u, v)y* + {q(u, v) + la(u, v)w}z,
b3 =11 (u, v, w)2x® + lo(u, v, w)zy + I3(u, v, w)y? + q(u,v)z =~ ¢,
¢4 =uqi(z,y) + q2(u,v,w)z,

b5 =11 (u, v, w)2z? + lo(u, v)2y + ayuy® + {asw? + uls(u, v, w)}z,
b6 =11 (u, v, w)x? + lo(u, v, w)zy + q(u, v, w)z.

Since F ~ Iy (u,v,w)x* + ls(u, v)zy + auy® + q(u, v, w)z # ¢; for i = 1, 6 and 4, we
have rank ¢(u,v,w) =3, a # 0 and dim (I; (u, v, w), la2(u, v), au) > 2 respectively.
If dim (/4 (u, v, w), la(u,v), au) = 2, then we have

F~uq(z,y) +ve(z, y) + g3(u, v, w)z.
Since F' # ¢g, quadrics ¢ (z,y) and g2(x,y) have no common divisor. Hence
F ~uy? + v2? + ¢ (u, v, w)z by (u,v) — (I(u,v),!'(u,v)).
Since F' # ¢2, we have ¢5(0,0,w) # 0. Hence we have

Qé(u7 v, w) = ’11)2 + l3(u7 v)w + Q4(U, 1))
~ w? + ayuv 4+ asvw + azwu by w — w + byu + bav.

Therefore we have

F ~uy? 4 vz? + (w? 4 ajuv + agvw + azwu)z
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~uy? + wr? + (aw? 4+ uv + vw + wu)z

where o # 1 because its rank is equal to 3.
If dim (I3 (u, v, w), lo(u, v), au) = 3, then we have

F ~uz? + vzy + wy? + q(u, v, w)z.
By Lemma 5.7, we have either

P { uzr? + vy + wy? + (a1v? + aguv + azvw + aguw)z or
L wa? + ey + wy? + {a1u® + az (v — duw) }z.

Since F' % ¢, the latter case does not hold and we have asas # 0 where
F ~ uz? + vry + wy? + (a10* + azuv + azvw + aguw)z.
Since rank q(u,v,w) = 3, we also have ay # 0. Therefore we have
F ~uz? 4 28vxy + wy? + (av? + ww 4+ vw + uw)z
where a # 1. []

Lemma 5.7. If F =uz? + vry + wy? + q(u, v, w)z, then either

o uz? + vy + wy? + (a1v? + aguv + azvw + aguw)z or
| ua? +vry + wy? + {a1u® + as(v? — duw)}z

Proof. If ad — be = 1, then for the linear transformation

u a? ac 2 0 0 0 U

v 2ab ad+bc 2cd 0 0 0 v
o | | b @ 00 0]||w
Tl | T o 0 0 a b 0f]a
y' 0 0 0 ¢ d 0 y

k4 0 0 0O 0 0 1 z

we have

o (uz? + vry + wy?) = ur? + vey + wy? and o* (v — duw) = v* — duw.

201

If {q(u,v,w) = v? — duw = 0} in P%(u:v:w) is not one point, then there exist two

points (d? : —2bd : b?) and (c¢? : —2ac : a?) in {q(u,v,w) = 0}. Since

o(d*: —2bd: b*) = (1:0:0) and o(c* : —2ac:a®) = (0:0:1),
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we have (6*¢)(1:0:0) = (6*¢)(0:0:1) =0, hence we have
oF = ux® + vy + wy? + (a1v? + asuv + azvw + aguw)z.
If { q(u,v,w) = v? — duw = 0} in P?(u:v:w) is one point, then we have easily
q(u,v,w) = ay(u+ v +w)? + as(v? — duw).
Ifa=c=d=1andb=0, then we have 0*¢ = a u? + ag(v2 — 4uw). ]

Proposition 5.8. Suppose F € H(~°) belongs to a closed orbit. Then its stabilizer
is of rank 1 if and only if

F ~uz? 4 28vay + wy? + (av? + ww 4+ vw + uw)z

where o # 1, —3%2 £ 23, —53° £26/452 + 1

Proof. If a # 1, then we have F' % ¢; for i =1, 2, 3, 4 and 6. Since F' 2 ¢5, it follows
from Lemma 5.9. []

Lemma 5.9. Let F = uy® + 2Bvry +wz? + (av? + uv + vw + uw)z. Then oF = ¢5
for some o € Zg(+°) if and only if

a=—3+28, 56> +£28/432 + 1. (%)

Proof. Let F = C(u,v,w,z,y) + Q(u,v,w)z. Then oF = ¢5 for some o € Zg(%) is
equivalent to that if Q|y—j(v,w) = I1(v,w)? for some [(v,w) then there exists lo(z,y)
such that

F|u=l(v,w) S (ll(vaw)7l2(x7y))2a

which means that
{(a+ 6% 4601 — a - §°)}* - 166*(a + §°)* = 0.
Solving it, we have easily (). []

Remark 5.10. From Lemma 5.9, if (%) holds then we have F' € H(y!,~%), hence F is
of type [C.5].

At last we prove Proposition 1.5.

Proof of Proposition 1.5: Since the family of elliptic curves is parameterized by
j-invariant, the first statement is trivial.
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In case [C.1] if V(u,v,q1,q2) is singular, then we may assume that the defining
equation

F=uw{q(w,z,y) +wz} +q2(w, z,y) and
lim[—1,-2,2,1,1, =1](¢) F = vwz + vq(z,y) ~ vwz + vy,

t—0

which means that Ps € C].
In case [C.2] if @ = 1, then we have

F =u(x + 2)(y + 2) + v’z + w?y + Bowz ~ uzy + v’z + v’y + zq(v,w) =: Fy and
%iI%[O, 1,1,0,0, =2](t) Fo = uxy + zq(v, w) ~ uxy + vwz,

which means that Ps € So. The other case refer to Remark 5.10.
In case [C.3] if l1]c, then we may assume that

F = uy® + v*2z + uwz + l(w, x)vy + wq(w, ) and
7%im%[o, 1,2,-1,0, =2|(t)F = vwz + avwy + vz + uy® + bwa?.

If 13|c, then we may assume that

F = uy® +v°z + uzly(w, x) + voy + 2%l (w, ) and
7%ir%[o, —1,-2,1,0,2)()F = uy® + v’z + auwz + vry + bwz?.

Hence we have C5 C V.

In case [C.4] if V(u,v,w,c) is singular, then we may assume that

F = wvw + ¢(z,y) + zq(x,y) and
%ir%[o, 0,0,1,1,=2](t)F = uvw + zyz,

which means that Ps € Cy.
In case [C.5] if @ = 0, then we have

%in%[—Q, 1,1,0,0,0](¢t)F ~ uvw + zyz,

which means that Ps € Cs. ]
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