Part 2

Non-abelian Invariant Differentials x)

*) Mimeographed Note 1971

Part 1 was published later as "Schwarzian equations";

J.Fac.Sci. Univ. of Tokyo IA21(1974)

The section- and the theorem-numberings used in Part I are basically kept unchanged in the published version.

- Part 2A The Frobenius map σ , the associated differential ω , and the σ -invariant S-operator
- Part 2B Theory of ω in some cases of automorphic functions

Y. Ihara

§5 Valued differential fields

 \S 5-1 The valuation V We shall keep the notations and assumption of \S 1-1. Suppose now that we are given:

v: a discrete valuation of k, additive and normalized;

V: a discrete valuation of K extending v, <u>assumed to have</u>

the same value group as v;

 $\star \mapsto \star$: the reduction map modulo V.

We assume that K and \overline{K} have unequal characteristics, i.e.,

$$ch(K) = 0, \quad ch(K) = p > 0;$$

and that the differentiation d: $K \rightarrow D(K)$ is V-continuous, i.e., continuous with respect to the V-adic topology of K and that induce on D(K).

Since d is V-continuous, the constant field k is closed in K not only algebraically, but also topologically.

Let Θ be the valuation ring of V, and \mathcal{P} , the maximal ideal of Θ . Since multiplications of elements of k^{\times} commute with d, the V-continuity of d implies that the G-submodule of D(K) generally its subset $\{dx \mid x \in \Theta\}$ must be a free Θ -module of rank one. Salt this Θ -module $D(\Theta)$. It is generated by some (single) element of the form dx with $x \in \Theta$. Such an element x will be called regular over Θ). Then each $D^h(\Theta)$ is a free Θ -module of rank one. Indeed over Θ). Then each $D^h(\Theta)$ is a free Θ -module of rank one. Indeed

if x is a regular element, then $D^h(\theta) = \theta (dx)^h$. A differential

Let \bigcirc be the valuation ring of V, and ?, the maximal ideal. Let $D(\bigcirc)$ denote the \bigcirc -submodule of D(K) generated by all elements of D(K) of the form dx with $x \in \Theta$. Then D(Θ) is a free Θ -module of rank one. In fact, since every Θ -submodule of D(K), other than $\{0\}$ and D(K) itself, is a free (-)-module of rank one (because D(K) is one dimensional over K, and (-) is the valuation ring of a discrete valuation of K), it suffices to check $D(\Theta) \neq \{0\}$, $\neq D(K)$. First, since $d \neq 0$, there is some $z \in K^{\times}$ with $dz \neq 0$. But since $V(K^{\times}) = v(k^{\times})$, there is some $c \in k^{\times}$ with $cz \in \Theta$, and $d(cz) = c.dz \neq 0$; hence $D(\Theta) \neq \{0\}$. Secondly, take any $\xi \in D(K)^{\times}$. Then since d is V-continuous and $V(K^{\times})$ = $v(k^{\times})$, there is some $c \in k^{\times}$ such that $V(dz) \in \bigcirc \xi$ for all $z \in c. \ominus$. But then, $dx \in c^{-1} \ominus \xi$ for all $x \in \ominus$; hence $D(\bigcirc) \neq D(K)$, and accordingly, $D(\bigcirc)$ is a free \bigcirc -module of rank one.

An element $x \in \bigcirc$ is called <u>regular</u> if dx generates $D(\bigcirc)$, i.e., if $D(\bigcirc) = \bigcirc .dx$. Put $D^0(\bigcirc) = \bigcirc$, and for each $h \ge 1$, $D^h(\bigcirc) = D(\bigcirc) \otimes ... \otimes D(\bigcirc)$ (h copies, over \bigcirc). Then each $D^h(\bigcirc)$ is a free \bigcirc -module of rank one. In fact, if x is a regular element, then $D^h(\bigcirc) = \bigcirc .(dx)^h$. A differential

 $\xi \in D^h(K)$ will be called V-<u>integral</u> if it belongs to $D^h(\Theta)$.

We shall extend the valuation V of K = $D^0(K)$ to a $\mathbb{Z}^{\cup}(\infty)$ -valued function on $\bigcup_{h>0} D^h(K)$, by imposing the condition:

 $V(\xi \otimes \eta) = V(\xi) + V(\eta)$ (for any ξ , $\eta \in \bigcup_{h \ge 0} D^h(K)$

together with the normalization:

V(dx) = 0 (for x: regular).

It is clear that $\xi \in D^h(K)$ is V-integral if and only if $V(\xi) \geq 0$. Note that $V(dx) \geq V(x)$ holds for any $x \in K$. Indeed, since $V(K^{\times}) = V(k^{\times})$, we may assume V(x) = 0. But then, $V(dx) \geq 0$, since dx is V-integral. It is also clear that $x \in K$ is regular if and only if V(x) = V(dx) = 0.

Put $D^h(\beta) = \beta \cdot D^h(\theta)$ ($h \ge 0$). Then $D^h(\theta)/D^h(\beta)$ is a one-dimensional vector space over $\overline{K} = \theta/\beta$. Call it $D^h(\overline{K})$, and put $D(\overline{K}) = D^1(\overline{K})$. Then $D^0(\overline{K}) = \overline{K}$, and $D^h(\overline{K})$ ($h \ge 1$) can be identified naturally with $D(\overline{K}) \otimes \ldots \otimes D(\overline{K})$ (h copies, over \overline{K}). For each $\xi \in D^h(\theta)$, let ξ denote its residue class modulo $D^h(\beta)$. Then $\overline{x} \mapsto \overline{dx}$ ($x \in \theta$) defines a differentiation $\overline{K} \mapsto D(\overline{K})$, which will be denoted by \overline{d} . The constant field of \overline{d} contains $\overline{k} \cdot \overline{K}^p$, and is strictly smaller than \overline{K} , since $\overline{dx} \neq 0$ for x: regular.

 \S 5-2 Field extensions (I) Effect of completion Let K_V be the completion of K with respect to V. Then the differentials and the

differentiation of K can be extended to those of K_V in a natural manner. First, define $D(K_V)$ by $D(K) \underset{K}{\otimes} K_V$. Then, d_V is defined to be the unique V-continuous differentiation $K_V \longrightarrow D(K_V)$ that extends d. Clearly, a regular element of K is also regular in K_V . Hence $D^h(\mathcal{O}_V) = D^h(\mathcal{O}) \underset{\mathcal{O}}{\otimes} \mathcal{O}_V$, \mathcal{O}_V being the valuation ring of V in K_V . The constant field k_V of K_V contains the V-adic closure of k in K_V . But they do not coincide in general. In any case, it is obvious that $V(K_V^\times) = V(k_V^\times)$, since k_V contains k.

(II) Effect of unramified extensions Let L be a separably algebraic extension of K. Then we know that d can be uniquely extended to $d_L: L \longrightarrow D(L) = D(K) \underset{K}{\otimes} L$, and that the constant field of d_L is the algebraic closure of k in L, denoted by \mathcal{L} (§ 1-4). Now, let V_L be a valuation of L extending V. By definition, V_L/V is unramified if $V_L(L^X) = V(K^X)$ and if the residue field extension $\overline{L/K}$ is also separable. Suppose that V_L/V is unramified. Then, it is clear that $V_L(L^X) = V_L(\ell^X)$, i.e., the condition of § 5-1 on the value groups is preserved. We shall show that:

Proposition 8 The differential d_L is V_L -continuous, and regular elements of K are also regular in L; hence

$$D^{h}(\mathcal{O}_{L}) = D^{h}(\mathcal{O}) \otimes \mathcal{O}_{L} \qquad (h \ge 0),$$

 \mathcal{O}_{L} being the valuation ring of \mathbf{V}_{L} .

<u>Proof</u> It is enough to check (the two assertions) when [L:K] is finite. Let \mathcal{O}^i be the integral closure of \mathcal{O} in L. Then \mathcal{O}^i is

the intersection of all valuation rings of L containing ${\mathcal O}$ (hence $\mathcal{O}_{L}\supset \mathcal{O}^{\mathbf{i}}$). Let $y\in \mathcal{O}_{L}$. Take such $\alpha\in L$ that satisfy $V_{L}(\alpha)=0$ and also $V_L^{\prime}(\alpha)$, $V_L^{\prime}(\alpha y) \geq 0$, for all other extensions V_L^{\prime} of V to L. This is possible by the approximation theorem on distinct discrete valuations. Put y = β/α . Then α , $\beta \in \mathcal{O}^1$, and $V_L(\alpha)$ = 0. Now, since L/K is a finite separable extension, $\mathcal{O}^{\mathbf{i}}$ is a finite \mathcal{O} -module; $\bigcirc^{i} = \sum_{i} \bigcirc z_{i}$. Therefore, if x is a regular element of K and $z \in \mathcal{O}^{i}$, we have $V_{L}(d_{L}z/dx) \geq \min_{i} V(d_{L}z_{i}/dx)$; hence the set $\left\{ V_L(d_Lz/dx) \mid z \in \mathcal{O}^i \right\}$ is bounded from below. By using the above expression y = β/α for y $\in \mathcal{O}_L$, we see immediately that the set $\left\{ \mathbf{V_L}(\mathbf{d_Ly/dx}) \ \middle| \ \mathbf{y} \in \mathcal{O}_L \right\} \text{ is also bounded from below. Therefore, } \mathbf{d_L}$ is V_L -continuous. Now we shall check that ${\bf x}$ is also regular in L. Suppose it were not. Then, the restriction of $\overline{d}_{\overline{l}}$ to \overline{K} must vanish identically, which is impossible since $\overline{L/K}$ is separable and $\overline{d_1} \neq 0$. Q.E.D.

$$\mathcal{G}_{\bullet} \circ d_{L} = d_{V} \circ \mathcal{G}$$

holds, where \mathcal{G}_* is the canonical embedding D(L) \mathcal{G}_V induced by $\mathcal{G}: L \mathcal{G}_V$.

 \S 6 The Frobenius map σ and the associated differential ω

 \S 6-1 The q-th Frobenius map σ . As assumed in \S 5-1, let $p = ch(\overline{K}) > 0$, and let $q = p^f$ be a fixed positive power of p. Let K_V be the completion of K with respect to V. We shall always consider K as a subfield of K_V , identifying in particular the residue field of K_V with that of K. Now, an injective isomorphism

$$\sigma: K \longrightarrow K_{V}$$

will be called a q-th Frobenius map of K, if the following two conditions are satisfied:

(σ 1) σ is V-preserving, and induces the q-th power map $\overline{x} \to \overline{x}^q$ of the residue field.

(σ 2) σ commutes with the differentiation, i.e., $k \subset k$, $(K - k)^{\sigma} \subset K - k$, and

$$\left(\frac{dy}{dx}\right)^{\sigma} = \frac{d_V(y^{\sigma})}{d_V(x^{\sigma})}$$

holds for all x, y \in K with x \notin k. (Here, as in \S 5-2(I), d_V is the canonical extension of d to K_V.)

For each $h \ge 0$, $D^h(K)$ is canonically embedded into $D^h(K_V)$. On the other hand, σ' induces a map $D^h(K) \longmapsto D^h(K_V)$, which maps $y(dx)^h$ to $y^\sigma\{d_V(x^\sigma)\}^h$. This is well-defined by $(\sigma'2)$. In the following, we shall write d instead of d_V , for the simplicity of notations.

Proposition 9 Let or be a q-th Frobenius map of K. Then there

is a positive integer $V = V(\sigma)$ such that

$$V(\xi^{\sigma}) = V(\xi) + h\nu$$

holds for all $\xi \in D^h(K)$, $\xi \neq 0$, $h \geq 0$.

Proof Let x be a regular element of K, and put $\mathcal{V} = V(dx^{\sigma})$. Let $\xi = y(dx)^h$ $(y \in K^{\times})$. Then $V(\xi^{\sigma}) - V(\xi) = V(y^{\sigma}/y) + h \cdot V(dx^{\sigma}/dx)$ = $h \cdot V(dx^{\sigma}) = h \cdot V$. On the other hand, let π be a prime element of v, and put $x^{\sigma} = x^q + \pi z$ $(z \in \mathcal{O})$. Then we have $dx^{\sigma} = qx^{q-1}dx + \pi dz$; hence v > 0.

Corollary Let $\eta \in D^h(K)$, with $h \ge 1$. Then the equation $\eta = \xi - \xi^{\sigma}$ has at most a unique solution $\xi \in D^h(K)$. If K is complete, then such a solution exists.

Proof The uniqueness follows immediately from the Proposition. The solution ξ for the complete case is given by $\xi = \sum_{n=0}^{\infty} \gamma^{\sigma^n}$ (which is convergent by the Proposition).

§ 6-2 The associated differential ω . Let σ be a q-th Frobenius map of K. A differential $\omega \in D(K)^{\times}$ will be called a differential associated with σ , if

$$\omega^{r}/\omega \in k^{\times}$$

holds.

Theorem 2 Let o be a q-th Frobenius map of K. Then (i) the

associated differential ω is at most unique up to k^{\times} -multiples, (ii) ω exists if K is complete and K is separably closed.

<u>Proof</u> (i) If ω and $z\omega$ ($z \in K^{\times}$) are two associated differentials, then $z^{\sigma-1} \in k^{\times}$. Hence dz/z is σ -invariant, contradicting Proposition 9 unless dz = 0. (ii) Let c be any element of k^{\times} with v(c) = ${\mathcal V}$ (see Proposition 9 for the symbol ${\mathcal V}$). We shall show that there exists $\omega = y \cdot dx \in D(K)^{\times}$ with $\omega^{\sigma}/\omega = c$. Put U = $c \cdot (dx^{\circ}/dx)^{-1}$, which is a V-unit in K. It is enough to show that the equation $y^{\sigma-1} = U$ has a solution y in K^{\times} . This can be shown by a standard type argument, as follows. First, since K is separably closed, \overline{U} has a (q-1)-th root \overline{U}_1 in \overline{K} ($U_1 \in K$). Replacing y by $y y U_1$, we may assume from the beginning that $\overline{U} = 1$. Let π be a prime element of v. It is enough to find a sequence $\left\{y_n\right\}_1^\infty$ of V-units of K, such that $y_{n+1} = y_n \pmod{\pi^n}$ and that $y_n^{\sigma-1} \equiv U$ (mod π^n). Put $y_1 = 1$, and suppose that y_1, \ldots, y_n are already found. Put $y_n^{\sigma-1} = U + \pi^n A_n$, and $y_{n+1} = y_n (1 + \pi^n B_n)$ $(A_n, B_n \in \mathcal{O})$. Then,

 $y_{n+1}^{\sigma-1} \equiv (U + \pi^n A_n) \left\{ 1 + \pi^n (B_n^q - B_n) \right\} \pmod{\pi^{n+1}};$ hence it is enough to solve the Artin-Schreier equation $\overline{B}_n^q - \overline{B}_n = -\overline{U}^{-1}\overline{A}_n$ in \overline{K} , which is possible since \overline{K} is assumed to be separably closed. $\underline{Q.E.D.}$

The following Proposition will be needed later.

Proposition 10 Let σ be a q-th Frobenius map of K, and suppose that an associated differential $\omega \in D(K)^{\times}$ exists. Assume that $\overline{k}^{1/p} \cap \overline{K} = \overline{k}$. Then ω is non-exact in K.

Proof Suppose that ω were exact; $\omega = \mathrm{d} y \ (y \in K)$. Since $\omega \neq 0$, we have $y \notin k$. Hence y cannot be approximated by elements of k. Among all elements of k, let a be one of the nearest to y. Choose $b \in k^{\times}$ in such a way that $y_1 = b(y - a)$ is a V-unit. Then $\overline{y}_1 \notin \overline{k}$. Since $\omega^{\sigma} = c\omega$ with $c \in k^{\times}$, we have $y_1^{\sigma} = cy_1 + e \ (e \in k)$. But $v(c) = \mathcal{V} > 0$; hence e is also a v-unit, and $y_1^{\sigma} \equiv e \ (\text{mod } \mathcal{V})$; hence $\overline{y}_1^q = \overline{e} \in \overline{k}^{\times}$. But since it is assumed that $\overline{k}^{1/p} \cap \overline{k} = \overline{k}$, we deduce that $\overline{y}_1 \in \overline{k}^{\times}$, which is a contradiction. Therefore, ω must be non-exact.

§ 6-3 Extending K to the field of ω (I) Extending σ to K_V . In general, an associated differential ω may not exist in the given field K. But Theorem 2 (ii) suggests that such an ω should exist in the completion of a certain unramified extension of K. To fix this, it is necessary to study the extensions of a Frobenius map σ to the completion and unramified extensions of K. To begin with, we see that \underline{a} q-th Frobenius map σ of K can be uniquely extended to that of the completion K_V . Indeed, it can be extended uniquely to an injective isomorphism σ_V of K_V into itself that satisfies

(of) of § 6-1. The only point to be checked is that if $x \in K_V$, then $d_V(x) = 0$ and $d_V(x^{\sigma V}) = 0$ are equivalent. To check this, let $\{x_n\}_1^{\infty}$ be a sequence in K converging to x. Then since $V(dx_n^{\sigma}) = V(dx_n) + \mathcal{V}$ (Proposition 9), $\{dx_n\}_1^{\infty}$ is a null sequence if and only if $\{dx_n^{\sigma}\}_1^{\infty}$ is so; hence our assertion.

(II) Complete unramified extension L. Now we assume that K is complete. Then, unramified extensions of K and separable extensions of \overline{K} correspond in a one-to-one manner (by L $\longmapsto \overline{L}$). By a complete unramified extension of K, we mean the completion of a (possibly infinite) unramified extension L of K. Let L be an unramified normal extension of K, and let $G = Aut_K L$ be the Krull's Galois group. Let $g \in G$. Then g can be extended uniquely to a V-continuous automorphism g_V of L_V . The group $G_V = \{g_V \mid g \in G\}$ consists of all V-continuous automorphisms of $\boldsymbol{L}_{\boldsymbol{V}}$ over K. We shall call G_{V} the Galois group of L_{V} over K. Sometimes, the two groups GV and G will be identified with each other. The completion of a normal (unramified) extension will also be called normal. We note that the fixed field of GV in LV is K. Let us briefly recall the proof. Let \mathcal{O}_L be the ring of integers in L, and put $\mathcal{V}_L = \mathcal{V} \cdot \mathcal{O}_L$. It is enough to construct a G-invariant complete set of representative $\mathfrak{M}_{\mathtt{L}}$ of $\theta_{\mathtt{L}}$ mod $\mathfrak{P}_{\mathtt{L}}.$ In fact, our assertion then follows immediately by using V-adic expansions with coefficients in $\mathcal{M}_{\mathrm{L}}.$ Let $\mathcal{M}\ni 0$, 1 be a complete set of representatives of Θ mod β . Let $\overline{\alpha} \in \overline{L}$,

and let $x^n + \overline{a_1}x^{n-1} + \ldots + \overline{a_n} = 0$ be the monic irreducible equation for $\overline{\alpha}$ over \overline{K} . For each i, let a_i be the unique lifting of $\overline{a_i}$ in \overline{M} . Then there exists a unique lifting $\alpha \in L$ of $\overline{\alpha}$ satisfying $\alpha + a_1 \alpha^{n-1} + \ldots + a_n = 0$. The set $\overline{M}_L = \{\alpha \mid \overline{\alpha} \in \overline{L}\}$ is a required G-invariant complete set of representatives.

By this (applied to any complete intermediate fields in place of K), we see that the Galois theory holds between closed subgroups H of G_V and complete intermediate fields M_V of L_V/K . If M is the fixed field of H in L, then M_V coincides with its completion. By $\S 1-4$, 5-2, the space of differentials, the differentiation d, and the valuation V can be extended uniquely to any complete unramified extension L of K. They preserve the conditions of $\S 5-1$, and also $D^h(\Theta_L) = D^h(\Theta) \otimes \Theta_L$. Let $\omega \in D^h(L)$, and put $\omega = y \cdot \S$ with $y \in L$, $\S \in D^h(K)$, $\S \neq 0$. Then the smallest complete field containing K and y is independent of the above expression of ω . We shall call this field the field obtained by adjoining ω to K, and denote it by $K(\omega)$.

(III) Extending or to L.

Proposition 11 Let σ be a q-th Frobenius map of a complete field K, and let L be either an unramified extension of K, or the completion of an unramified extension of K. Then σ can be extended uniquely to a q-th Frobenius map σ_L of L into itself. Moreover, if L/K is normal, then σ_L commutes with each element of the Galois

group_Aut_L.

Proof We may assume that L/K is finite and normal. $x \in L$ such that $\overline{L} = \overline{K}(\overline{x})$. Then L = K(x). Let $f(X) = \sum_{i=0}^{n} a_i X^i = 0$ be the monic irreducible equation for x over K, and let $x = x_1, \dots, x_n$ be the zeros of f(X). Choose the subscripts of the zeros $y = y_1, \dots, y_n$ of $f^{\sigma}(X)$ in such a way that $\overline{y_i} = \overline{x_i^q}$ holds for all i. If σ_L is any extension of σ to an isomorphism of L, then $\sigma_{L}(x)$ must be one of the y_i . Since \overline{x}_i $(1 \le i \le n)$, and hence also \overline{y}_i $(1 \le i \le n)$, are all mutually distinct, $\sigma_{
m L}$ cannot be a q-th Frobenius map unless $\sigma_L(x) = y$; hence the uniqueness. Now let σ_L be the isomorphism of L that extends σ and that maps x to y. The $\sigma_{\overline{\iota}}$ preserves the valuation V, and the reduced map $\overline{\sigma}_{\mathrm{L}}$ coincides with the q-th power map on \overline{K} and also on \overline{x} ; hence on \overline{L} . Since $\overline{L} = \overline{K}(\overline{x})$ and $\overline{L}/\overline{K}$ is separable, we have $\overline{L} = \overline{K}(\overline{y})$. Therefore, if we put L' = K(y), then $n \ge [L':K] \ge [\overline{L}':\overline{K}] \ge [\overline{K}(\overline{y}):\overline{K}] = n$; hence $[L':K] = [\overline{L}':\overline{K}] = n$, and $\overline{L}' = \overline{L}$. Therefore, L'/K is unramified, and $\overline{L}' = \overline{L}$; hence L' = L; i.e., L = K(y). Therefore, $\sigma_L(L) \subset L$. That σ_L commutes with the differentiation follows immediately. If $\varepsilon \in \operatorname{Aut}_K L$, then $\varepsilon \sigma_L \varepsilon^{-1}$ is also a q-th Frobenius map of L extending σ ; hence it coincides with σ_{τ} . Q.E.D.

(IV) The differential ω in the general case Let σ be a q-th Frobenius map of K. In general, K may or may not contain the associated differential ω . We shall extend the definition of ω to

the general cases simply by considering the differentials in the bigger fields. Namely, in such cases, we take the maximum complete unramified extension L of the completion of K. Then σ is uniquely extended to a q-th Frobenius map σ_L of L, and L satisfies the assumption of Theorem 2A(ii). Hence D(L)^X contains a differential ω associated with σ_L . We call ω also the differential associated with σ . Then ω is a differential of L determined up to the non-zero multiples of elements of the constant field ω of L. On the other hand, the proof of Theorem 2A(ii) shows that $\omega^{\sigma}/\omega = c$ has a solution ω for any $c \in \mathcal{L}^X$ with $v(c) = \mathcal{V}$. So, there exists some ω such that $\omega^{\sigma}/\omega \in \mathbf{k}^X$. To give a finer definition of ω , we shall impose the conditions that $\omega^{\sigma}/\omega \in \mathbf{k}^X$ (and not merely $\omega \in \mathcal{L}^X$). Then, ω is determined up to such constant multiples $\omega \in \mathcal{L}^X$ that $\omega^{\sigma-1} \in \mathbf{k}^X$.

We note that the iterates σ^n of σ (defined in an obvious sense) associate the same differential ω as σ .

(V) The field $K(\omega)$ Suppose that K is complete. Let σ be a q-th Frobenius map of K, and let c be an element of K^{\times} with $v(c) = \mathcal{V}$ Let ω be an associated differential, normalized by $\omega^{\sigma}/\omega = c$, in the completion L of the maximum unramified extension of K. Let $K(\omega)$ be the complete field obtained by adjoining ω to K (see (II)). Then we have the following:

Theorem 3 Assume that k is so large as to contain the fixed field of $\sigma|_{\ell}$, ℓ being the constant field of L. Then $K(\omega)$ is a complete unramified extension of K whose Galois group is abelian and topologically isomorphic to a subgroup of the v-unit group of k. The field $K(\omega)$ depends only on the Frobenius map σ and the normalizing constant c.

Proof Let $\xi \in G(L/K)$. Then $\xi \sigma = \sigma \xi$ (Proposition 11); hence $(\omega^{\xi})^{\sigma} = c \omega^{\xi}$. Therefore, by the uniqueness of ω , ω^{ξ}/ω belongs to \mathcal{L}^{\times} , and moreover is invariant by σ . Hence $\omega^{\xi}/\omega \in k^{\times}$. Put $\chi(\xi) = \omega^{\xi}/\omega$. Then χ is a continuous homomorphism of G(L/K) into \mathcal{U} , the v-unit group of k. But $K(\omega)$ is the fixed field of the kernel of χ . (In fact, if we put $\omega = w \cdot \xi$ ($\xi \in D(K)^{\times}$), then $\omega^{\xi} = \omega$ if and only if $w^{\xi} = w$, and $K(\omega)$ is the complete field generated by K and w.) Therefore, $K(\omega)/K$ is a Galois extension, its Galois group being isomorphic to $Aut_K L/Ker \chi$. Since $Aut_K L$ is compact, the induced map $Aut_K L/Ker \chi \to Image(\chi)$ is a topological isomorphism. The last assertion follows immediately, since the fixed field of σ/ℓ is contained in k. Q.E.D.

 $(\text{VI}) \quad \underline{\text{The fields}} \ \text{K}(\omega)_n. \quad \text{Assumptions being as in (V), put } \\ \text{G} = \text{Aut}_K \text{K}(\omega). \quad \text{Then } \chi : \text{G} \longrightarrow \chi(\text{G}) \subset \mathcal{V} \quad \text{is a topological isomorphism.} \\ \text{For each } n \geq 1, \text{ put } \mathcal{W}_n = \left\{ u \in \mathcal{V} \; \middle| \; u \equiv 1 \pmod{\pi^n} \right\} \ (\pi : \text{a prime element of v), and } \\ \text{G}_n = \chi^{-1}(\mathcal{V}_n). \quad \text{Then since G_n is open, G/G_n is } \\ \text{Then since G_n is } \\ \text{The$

finite. Let $K(\omega)_n$ be the fixed field of G_n , so that $K(\omega)_n/K$ is finite and abelian. Then it is easy to prove, by using the V-adic expansions with respect to the representatives \mathcal{M}_L of (II), the following:

Proposition 12 Let the assumptions be as in (V) and as immediately above. Then $K(\omega)_n$ is the smallest unramified extension of K containing a differential ω_n satisfying $V(\omega_n) = 0$ and $c^{-1}\omega_n^{\sigma} \equiv \omega_n \pmod{\pi^n}$. Such ω_n is unique up to $\mathcal{W} \cdot \{1 + \pi^n \mathcal{O}_L\}$ multiples.

<u>6-4</u> The reduced differential $\overline{\omega}$. Here, K is not assumed to be complete. Let σ be a q-th Frobenius map of K. Fix $c \in k^{\times}$ with $v(c) = \mathcal{V}$; $\mathcal{V} = \mathcal{V}(\sigma)$ being as in $\{6-1$. Take any $\xi \in D(K)^{\times}$ with $V(\xi) = 0$, and put

$$\omega_* = c \cdot \xi^q / \xi^{\sigma}$$
 $(\xi^q = \xi \otimes ... \otimes \xi; q \text{ copies})$

Then ω_* , which is a non-zero differential of K of degree q-1, is independent of ξ . Indeed, let z be any V-unit of K, and replace ξ by $z \cdot \xi$. Then ω_* is simply multiplied by z^q/z ; but since σ is a q-th Frobenius map, we have $(z^q/z^{\sigma}) = 1$. Therefore, $\overline{\omega}_*$ remains unchanged.

On the other hand, we have defined a differential ω associated with σ . Normalize ω by the two conditions ω^{σ}/ω = c and

 $V(\omega) = 0$. Then, with the notations of 6-3 (IV), ω is determined up to multiples of such element $a \in \mathcal{L}^{\times}$ that $a^{\sigma-1} = 1$ and V(a) = 0. Therefore, the reduction $\overline{\omega}$ of ω is determined up to multiples of elements of $\overline{\mathbb{F}_q}^{\times}$. Hence its (q-1)-th power $\overline{\omega}^{q-1}$ is a (non-zero) differential of L of degree q-1, which is determined uniquely. Now we claim that

Theorem 4
$$\overline{\omega}^{q-1} = \overline{\omega}_*$$
.

(This shows in particular that $\overline{\omega}^{q-1}$ belongs to \overline{K} .)

The proof is immediate. In fact, put $\omega = y \cdot \xi$ $(y \in L, \times)$ $\xi \in D(K)^{\times}$, $V(y) = V(\xi) = 0$. Then $\overline{\omega}_{*} = \overline{c \cdot \xi^{q}/\xi^{\sigma}} = \overline{c \cdot \omega^{q}/\omega^{\sigma}}$ $= \overline{\omega^{q-1}} = \overline{\omega}^{q-1}$.

Thus, $\overline{\omega}^{q-1}$ is directly defined by Theorem 4, without looking at big extensions of K, and $\overline{\omega}$ is obtained by taking its (q-1)-th root in a finite separable extension of \overline{K} . As can be checked immediately, the field $\overline{K}(\overline{\omega})$ is nothing but the residue field of $K(\omega)_1$.

Of course, $\overline{\omega}$ depends on the choice of the normalizing constant c. If c is unfixed, then $\overline{\omega}$ (resp. $\overline{\omega}^{q-1}$) is determined \underline{up} to $-\frac{x^{1/(q-1)}}{k}$ -multiples (resp. \overline{k}^{\times} -multiples).

§ 7 The σ -invariant S-operator and the differential ω .

 \S 7-1 V-integral S-operators We shall now consider some V-adic properties of S-operators of K. (See \S 1 for the definition and basic properties of the symbol \langle , \rangle and the S-operators.)

Proposition 13 $\langle \gamma, \xi \rangle$ is V-integral for any $\xi, \gamma \in D(K)^{\times}$.

Proof By Proposition 2 ($\S1-2$), $\langle \gamma, \xi \rangle$ remains unaltered if we replace γ or ξ by their k^{\times} -multiples. So, we can assume $V(\gamma) = V(\xi) = 0$. But then, $V(\gamma/\xi) = 0$. Since $V(dx) \geq V(x)$ for any $x \in K$, our assertion follows immediately from the definition of $\langle \gamma, \xi \rangle$.

Corollary 1 Let S be an S-operator of K. Then $S\langle\xi\rangle$ is V-integral for all ξ if and only if it is so for one ξ .

Proof $S\langle \gamma \rangle - S\langle \xi \rangle = \langle \gamma, \xi \rangle$, and Proposition 13. Q.E.D. An S-operator S will be called V-<u>integral</u> if $S\langle \xi \rangle$ is so. All inner S-operators are V-integral.

Corollary 2 Let S be a V-integral S-operator of K, and let ξ , η be V-integral differentials of K, with $\overline{\xi} = \overline{\eta} \neq 0$. Then $\overline{S\langle\xi\rangle} = \overline{S\langle\gamma\rangle}$.

Proof Immediate, since $\overline{\langle \gamma, \xi \rangle} = \langle \overline{\gamma}, \overline{\xi} \rangle = 0$. Q.E.D. Let S be a V-integral S-operator of K. Then its reduction \overline{S} , which is an S-operator of \overline{K} , will be defined by $\overline{S}\langle \overline{\xi} \rangle = \overline{S\langle \xi \rangle}$ (for any $\xi \in D(K)$ with $V(\xi) = 0$).

 $\S{7-2}$ The σ -invariant S-operator (I) Let σ be a q-th Frobenius map of K. An S-operator S of K is said to be σ -invariant if $S : \langle \xi \rangle^{\sigma} = S : \langle \xi^{\sigma} \rangle$ holds for all (or equivalently, one) $\xi \in D(K)^{\times}$.

Theorem 5 Let σ be a q-th Frobenius map of K. Then,

(i) a σ -invariant S-operator S of K is at most unique, (ii) S is

V-integral, (iii) S exists if K is complete.

Proof Take any $\zeta \in D(K)^{\times}$. Then, the S-operators of K are of the form $S \langle \xi \rangle = \langle \xi, \zeta \rangle + C$, C being an arbitrary constant of $D^2(K)$. With this expression, S is σ -invariant if and only if $\langle \xi, \zeta \rangle = C - C^{\sigma}$. Hence S(i) and S(ii) are immediate consequences of the Corollary of Proposition 9 (S(i)). To check (ii), let x be a regular element of K, and put S(i) = y(i) ($y \in K$). If y = 0, then there is no problem; so assume $y \neq 0$. We have S(i) - S(i) = S(i) =

Deogramma, Gi Wayawimia Aga

(II) Here, we note that an S-operator of K can be extended uniquely to that of L, where L is either a separable extension or the completion of K. The first case is already explained in \S 1-4, and the same argument applies to the second case. Indeed, let S be an S operator of K, and take any $\S \in D(L)^{\times}$ and $\S \in D(K)^{\times}$. Then, the formula $S_L \langle \S \rangle = \langle \S , \S \rangle + S \langle \S \rangle$ defines an S operator S_L of L (independently of \S). It is clear that S_L is the unique S operator of L which extends S.

So, an S-operator of K can be extended uniquely to that of the completion of K, an unramified extension of K, or the towers of such extensions (e.g., a complete unramified extension of the completion of K). Since each such extension of S is unique, we shall always identify it with S, and denote it also by S (instead of S_L). Note that the V-integrality and the σ -invariance properties of S are preserved by each of such extensions.

(III) If K contains an associated differential ω , then the S-operator of K defined by

$$S\langle\omega\rangle = 0$$

is the (unique) σ -invariant S-operator of K. Indeed, $S \langle \xi \rangle = \langle \xi, \omega \rangle$ ($\xi \in D(K)^{\times}$), so that $S \langle \xi \rangle^{\sigma} - S \langle \xi^{\sigma} \rangle = \langle \omega^{\sigma}, \omega \rangle = \langle c\omega, \omega \rangle = 0$. Let us look at this very simple fact from the reverse side, since we are often given a σ -invariant S-operator without knowing ω . Thus, it is somewhat useful to state the following theorem.

Theorem 6 Let σ be a q-th Frobenius map of a complete field K, and let S be the unique σ -invariant S-operator of K. Then the equation $S\langle\omega\rangle=0$ has a solution ω in a certain complete unramified extension $K(\omega)$ of K. Let L be the maximum complete unramified extension of K and let $\mathcal L$ be the algebraic closure of k in L. Then if \overline{k} is perfect, ω is a unique solution of $S\langle\omega\rangle=0$ in $D(L)^{\times}$, up to $\mathcal L$ -multiples.

Proof It is enough to take the associated differential ω in L (see \S 6-3(IV)). The uniqueness is a direct consequence of Propostion 2 (ii) (\S 1-2) and Proposition 10 (\S 6-2). Q.E.D.

Remark The V-integrality of a σ -invariant S-operator S (Theorem 5(ii)) can also be deduced immediately from the fact that S is inner with respect to ω . But then, we must use big field extensions. This is why an alternative proof is given.

Remark Let S be a σ -invariant S-operator. Then the solution of S $\langle \omega \rangle = 0$ generally exists only in a big extension of K. On the other hand, the equation S $\langle \zeta_n \rangle \equiv 0 \pmod{\pi^n}$ has a solution

 $\zeta_n \in D(K)$ for any n. Indeed, take any $\zeta \in D(K)$ and put $\zeta_n = a_n \cdot \zeta^{\sigma^n}$ ($a_n \in k^{\times}$). Then $S(\zeta_n) = S(\zeta)^{\sigma^n} \equiv 0 \pmod{\pi^{2\nu n}}$ by Proposition 9 (and by the V-integrality of S). Note that one may choose a_n in such a way that $V(\zeta_n) = 0$. The point is that, in general, such "partial solutions" ζ_n cannot be chosen to be convergent (even if K is complete). In any case, \overline{S} must always be an inner S-operator of \overline{K} , which, as a necessary condition for the σ -invariance of S, is not totally useless.

7-3 Digression; the Cartier operator $\{\!\!/\,$. In $\{\!\!/\,$ 7-3, and only in this section, we are released from the previous notations and assumptions. Here, \overline{k} will denote any perfect field of characteristic p>0, and \overline{K} will denote any (finitely or infinitely generated) dimensional regular extension of \overline{k} , i.e., such an extension as that satisfying $\dim_{\overline{k}}(\overline{K})=1$, \overline{k} : algebraically closed in \overline{K} , and $\overline{K}/\overline{k}$: separably generated. Let $D(\overline{K})$ be a one-dimensional vector space over \overline{K} . A differentiation $\overline{d}:\overline{K}\to D(\overline{K})$ (see $\{1-1\}$ will be called a differentiation of $\overline{K}/\overline{k}$, if it is trivial on \overline{k} , i.e., if its constant field $\{\alpha\in\overline{K}\mid\overline{d}\alpha\}=0$ contains \overline{k} . It follows easily from our assumptions that the differentiations \overline{d} of $\overline{K}/\overline{k}$ form a one dimensional vector space over \overline{K} , and that if $\overline{d}\neq 0$, then its constant field coincides with \overline{K}^p .

Now, fix any non-zero differentiation \overline{d} of $\overline{K/k}$. Then the Cartier operator of $\overline{K/k}$ with respect to \overline{d} is the unique map \emptyset of $D(\overline{K})$ into itself, satisfying the following conditions (%1) (%3):

(
$$\%$$
1) $\%$ is semi-linear, i.e.,
$$\%(\S + \gamma) = \%(\S) + \%(\gamma)$$

and

$$\delta(\alpha^p.\xi) = \alpha \cdot \delta(\xi)$$

for any ξ , $\eta \in D(\overline{K})$, $\alpha \in \overline{K}$.

(82) $l(\xi) = 0$ if ξ is exact, i.e., if $\xi = \overline{d} \propto$ with some $\alpha \in \overline{K}$.

($\[\] \] \] \begin{cases} (\xi) = \xi \] & \text{if } \xi \text{ is logarithmically exact, i.e., if} \\ \xi = \[\] \] \] \begin{cases} -1 \[\] \] & \text{with some} \end{cases} \] \] \] \] < K.$

The unique existence of \mathbb{Y} is proved in P. Cartier []. It is also proved there that the converses of (\mathbb{Y}^2 2) and (\mathbb{Y}^2 3) are valid. Note that for $\mathbb{A} \in \overline{\mathbb{K}}^{\times}$, the Cartier operator of $\overline{\mathbb{K}}/\overline{\mathbb{k}}$ with respect to $\mathbb{A} \cdot \overline{\mathbb{d}}$ is given by $\mathbb{A} \cdot \mathbb{A} \cdot \mathbb{A}^{-1}$. Let $\overline{\mathbb{L}}$ be any separable extension of $\overline{\mathbb{K}}$, let $D(\overline{\mathbb{L}}) = D(\overline{\mathbb{K}})$ $\mathbb{A} \cdot \overline{\mathbb{K}}$ is also proved in P. Cartier []. It is a like the valid. Note that for $\mathbb{A} \cdot \overline{\mathbb{K}}$ is a let $\mathbb{A} \cdot \overline{\mathbb{K}}$ with respect to $\mathbb{A} \cdot \overline{\mathbb{K}}$. Let $\mathbb{A} \cdot \overline{\mathbb{K}}$ be the Cartier operator of $\mathbb{A} \cdot \overline{\mathbb{K}}$ with respect to $\mathbb{A} \cdot \overline{\mathbb{K}}$. Then it can be checked immediately that $\mathbb{A} \cdot \overline{\mathbb{K}}$ coincides with $\mathbb{A} \cdot \overline{\mathbb{K}}$ on $D(\overline{\mathbb{K}})$.

Lemma 2 Let
$$\alpha \in \overline{K}^{\times}$$
, and $r \ge 0$. Then
$$\chi(\alpha^{p^r-1}\overline{d}\alpha) = \alpha^{p^{r-1}-1}\overline{d}\alpha \qquad \dots \qquad r \ge 1,$$

$$= 0 \qquad \qquad \dots \qquad r = 0.$$

<u>Proof</u> Immediate, by $(\mathcal{Y}2)$, $(\mathcal{Y}3)$. Q.E.D.

Corollary Let $\alpha_1, \dots, \alpha_n$ be elements of \overline{k} not contained in \overline{k}^p , and let $r_1 > \dots > r_n \geq 0$. Then the differentials $\alpha_i^{p_i - \frac{1}{2}} d\alpha_i$ are linearly independent over \overline{k} .

 $\underline{\text{Proof}}$ This follows immediately from the lemma, by using the iterates of $\sqrt[k]{}$. $\underline{\text{Q.E.D.}}$

 $\{7-4 \text{ A characterization of } \overline{\omega} \text{ by } \overline{S} \text{ and } \ensuremath{\mathcal{K}} \ .$ (I) Now we come back to the notations and assumptions of $\{\{1-1, 5-1\}$. But now, we assume further; namely that $\overline{K}/\overline{k}$ is one-dimensional, that \overline{k} is perfect, and that \overline{k} is algebraically closed in \overline{K} . It follows from our assumptions that $\overline{K}/\overline{k}$ is separably generated. In fact, let \overline{K} be a regular element of \overline{K} (see $\{5-1\}$). Then $\overline{dx} \neq 0$; hence $\overline{x} \notin \overline{k}$, which implies that \overline{x} is transcendental over \overline{k} . But then, $\overline{K}/\overline{k}(\overline{x})$ is algebraic. Since $\overline{dx} \neq 0$, we conclude that $\overline{K}/\overline{k}(\overline{x})$ must be separable. Therefore, $\overline{K}/\overline{k}$ is separably generated. Note that this is not a consequence of the perfectness assumption of \overline{k} , since $\overline{K}/\overline{k}$ may be

infinitely generated. At any rate, $\overline{K/k}$ satisfies the assumptions of $\{7-3.$

Let $\alpha \in \overline{K}$. Then $\overline{d} \propto = 0$ if and only if $\alpha \in \overline{K}^p$. On the other hand, $\overline{K}/\overline{k}$ is separably generated. Therefore, any element $\alpha \in \overline{K}$ not contained in \overline{k} can be expressed as $\alpha = \beta^p$ ($\beta \in \overline{K}$, $r \ge 0$) with $\overline{d} \beta \ne 0$. Let K_V be the completion of K, and let $y \in K_V$. Then y has a V-adic expansion of the form

(*)
$$y = \sum_{i \in I} y_i^{p^{r_i}} \pi^i + \sum_{j \in J} c_j \pi^j,$$

where π is a prime element of v, I and J are disjoint sets of integers (containing only finitely many negative ones), y_i are regular elements of K, $r_i \geq 0$, and c_j are v-units of k. The following Proposition is somewhat noteworthy:

Proposition 14 The constant field of K_V coincides with the V-adic closure of k in K_V .

Proof Let k_V and k_V' be the constant field of K_V and the V-adic closure of k in K_V , respectively. The inclusion $k_V' \subset k_V$ being trivial, we shall prove $k_V \subset k_V'$. Let $y \in k_V$, and let (*) (above) be its V-adic expansion. Suppose $I \neq \emptyset$. Put e = v(p), $r = \min_{i \in I} \{i + er_i\}$, and $I_0 = \{i \in I \mid i + er_i = r\}$. Then we obtain, by differentiating (*),

$$\sum_{i \in I_0} \overline{a_i y_i}^{r_i - 1} \cdot \overline{dy_i} = 0 \qquad (\overline{a_i} \in \overline{k}^{\times}),$$

which is a contradiction to the Corollary of Lemma 2 (\S 7-3), since $\overline{dy_i} \neq 0$ for $i \in I$. Therefore, $I = \emptyset$. But then $y \in k_V'$. Q.E.D.

(II) Now let $q = p^f$, and let σ be a q-th Frobenius map of K. Take $c \in k^{\times}$ with $v(c) = \mathcal{V}$ (= $\mathcal{V}(\sigma)$; see §6-1), and let ω be an associated differential, normalized by the two conditions $\omega^{\sigma}/\omega = c$ and $V(\omega) = 0$. Let $\overline{\omega}$ be the reduction of ω .

Theorem 7 We have

$$y^{f}(\overline{\omega}) = \overline{a} \cdot \overline{\omega},$$

where $\overline{a} = (qc^{-1}) \in \overline{k}$. If q = p and v(p) = 1, then $\overline{a} \neq 0$.

<u>Proof</u> Let x be a regular element of K, and π be a prime element of v. Then $x = x^q \pmod{\pi}$, and hence x has a following V-adic expansion (see (I) above):

$$\mathbf{x}^{\sigma} = \mathbf{x}^{q} + \sum_{i \in \mathbf{I}} \mathbf{x}_{i}^{p^{r_{i}}} \pi^{i} + \sum_{i \in \mathbf{I}} c_{j} \pi^{j},$$

where I and J are disjoint sets of positive integers, x_i are regular elements of K, $r_i \geq 0$, and c_j are v-units of k. By differentiating this, we obtain

$$dx^{\sigma} = qx^{q-1}dx + \sum_{i \in I} \pi^{i} p^{r_{i}} x_{i}^{p-1} dx_{i}.$$

Put e = v(p), $r = \underset{i \in I}{\min} \{i + er_i\}$, and $r_0 = \underset{0}{\min} \{ef, r\}$. Take any $c_1 \in k^{\times}$ with $v(c_1) = r_0$, put $\xi = c_1^{-1} dx^{-1}$, and let I_0 be the finite subset of I consisting of all $i \in I$ such that $i + er_i = r_0$. Then $I_0 \neq \phi$ if and only if $r \leq ef$, and we have

(**)
$$\overline{\xi} = \overline{a}\overline{x}^{q-1}\overline{dx} + \sum_{i \in I_0} \overline{a}_i \overline{x}_i^{p^{r_{i-1}}} \overline{dx}_i,$$

with $\overline{a}_i \in \overline{k}^{\times}$ and $\overline{a} = (\overline{qc_1}^{-1}) \in \overline{k}$; hence $\overline{a} \neq 0$ if and only if $ef \leq r$. Since \overline{dx} , $\overline{dx}_i \neq 0$, we conclude by (**) with the use of the Corollary of Lemma 2 (\S 7-3) that $\overline{\xi} \neq 0$. Therefore, $r_0 = \S$. On the other hand, by operating \S^f on both sides of (**), we obtain by Lemma 2: $\S^f(\overline{\xi}) = \overline{a} \ \overline{dx}$.

Since $r_0 = \mathcal{V}$, we may now put $c_1 = c$. Then, $\overline{\omega}^{q-1} = (\overline{dx})^q/\overline{\xi}$ by Theorem 4(\S 6-4); hence $\overline{\omega} = (\overline{\xi}/\overline{dx})^{q/1-q} \overline{\xi}$. Hence $\mathcal{V}^f(\overline{\omega}) = (\overline{\xi}/\overline{dx})^{1/1-q}$. $\mathcal{V}^f(\overline{\xi}) = \overline{a} (\overline{\xi}/\overline{dx})^{1/1-q} \overline{dx} = \overline{a} \overline{\omega}$. On the other hand, $\overline{a} = (\overline{qc^{-1}})$. If q = p and v(p) = 1, then $ef = 1 \le r$; hence $\overline{a} \ne 0$.

Q.E.D.

In the case where q = p and v(p) = 1, we have $v(\sigma) = r_0 = 1$; hence one may normalize ω further by imposing ω ω ω . Then ω is given by

(***)
$$\widetilde{\omega} = \left(\overline{x^{p-1} + \frac{dR}{dx}}\right)^{\frac{-1}{p-1}} \overline{dx},$$

where R is a V-integer of K such that

$$x^{\sigma} \equiv x^{p} + pR \pmod{p^2}$$
.

Since q = c = p, we have $\overline{a} = 1$ in this case; i.e.,

$$\chi(\overline{\omega}) = \overline{\omega}$$
.

(III) The proof of Theorem 7 tells us that $\overline{\omega}$ can be expressed explicitly by means of x_i and r_i for $i \in I_0$. Hence if one has a sufficient knowledge about the expansion of x^{σ} , then one is able to compute $\overline{\omega}$; for instance, by the above formula (***) in the case of q = p and v(p) = 1. But in the theoretically interesting cases, one does not have a sufficient knowledge about the expansion of x^{σ} . Instead, one is often provided with a good knowledge about the σ -invariant S-operator S. Recall that if S is a σ -invariant S-operator of K, then $S(\omega) = 0$, S is V-integral, and hence also $S(\overline{\omega}) = 0$ (see § 7-2). Thus, the following characterization of $\overline{\omega}$ is useful for its explicit calculations.

Theorem 8 Suppose that p is a prime element of v, and let σ be a p-th Frobenius map of K. Let S be the σ -invariant S-operator of the completion K_V of K, so that S is V-integral and S is an S-operator of K (σ 7-1,2). Let σ be an associated differential (σ 6-3(IV)), normalized by the two conditions σ 4/ σ 4 = p, σ 5 V(σ 6) = 0. Let σ 6 be the reduction of σ 6, so that σ 6 is a

differential of a separable extension of \overline{K} , which is intrinsic up to $\overline{\mathbb{F}}_p^{\times}$ -multiples. Then $\overline{\omega}$ satisfies

(i) $\overline{S}\langle\overline{\omega}\rangle = 0$,

and

(ii)
$$\delta(\bar{\omega}) = \bar{\omega}$$
,

y being the Cartier operator.

Conversely, if L is the separable closure of K, then the two equations (i) and (ii) for the differentials $\overline{\omega} \in D(\overline{L})^{\times}$ determine $\overline{\omega}$ uniquely up to \mathbb{F}_p^{\times} -multiples, and thus characterize the reduced associated differential.

Remark The condition (ii) is equivalent to the logarithmical exactness of $\overline{\omega}$ (in $\overline{K}(\overline{\omega})$, and also in \overline{L} ; see $\{7-3\}$.

Proof It remains to prove the converse. Take any $\overline{\omega}' \in D(\overline{L})^{\times}$ satisfying $\overline{S}\langle\overline{\omega}'\rangle = 0$ and $\delta(\overline{\omega}') = \overline{\omega}'$. Put $\overline{\omega}' = \alpha \overline{\omega}$ ($\alpha \in \overline{L}$). We shall show that $\alpha \in \overline{\mathbb{F}}_p^{\times}$. First, since $\delta(\overline{\omega}) \neq 0$, $\overline{\omega}$ is non-exact in \overline{L} . On the other hand, $\delta(\overline{\omega}', \overline{\omega}) = S(\overline{\omega}') - S(\overline{\omega}) = 0$. Therefore, by Proposition 2 ($\delta(1-1)$), we conclude $\delta(\overline{\omega}')/\overline{\omega} \in \ker(\overline{d}) = \overline{L}^p$. Therefore, $\delta(\overline{\omega})/\overline{\omega} = \beta^p$ ($\delta(\overline{\omega})/\overline{\omega} = \beta^{p-1} = 1$. Therefore, $\delta(\overline{\omega})/\overline{\omega} = \beta^p \in \overline{\mathbb{F}}_p^{\times}$. Q.E.D.

§8-1 The weak congruence relation (I) Let k be a field with a non-trivial discrete valuation v, additive and normalized. Let \overline{k} be the residue field. We assume that ch(k) = 0, $ch(\overline{k}) = p > 0$, and that \overline{k} is algebraic over the prime field $\overline{\mathbb{F}}_p$.

Let $\mathcal E$ be a complete non-singular irreducible algebraic curve, and $\mathcal E$ be a closed irreducible algebraic curve on $\mathcal E \times \mathcal E$ considered as an algebraic correspondence of $\mathcal E$, both defined over k. Let $q = p^f$ be a positive power of p. We shall assume that:

- (i) $\overline{\mathcal{E}}$ is a good reduction of \mathcal{E} ;
- (ii) (the weak congruence relation): $\overline{\mathcal{C}}^q = \overline{\mathcal{C}}$, and $\overline{\mathcal{H}}$ contains the q-th power correspondence

$$T = \{ \xi \times \xi^q | \xi \in \overline{\xi} \}$$

as a simple component.

Here, in general, * denotes the reduction mod v of *. We say that $\overline{\mathcal{E}}$ is a good reduction of \mathcal{E} , if \mathcal{E} has a structure of a v-variety and is v-simple in the sense of Shimura [].

(II) Here, we shall discuss some immediate consequences of our assumptions. Let K be the field of k-rational functions on \angle . We shall show that the above assumptions give rise to a discrete valuation V of K satisfying the assumptions of \S 5-1, and a q-th

Frobenius map σ of K. Let P and P be generic points of $\mathcal E$ and $\overline{\mathscr{C}}$ over k and \overline{k} , respectively. Take $Q \in \mathscr{C}$ such that $P \times Q \in \mathscr{K}$. (By the weak congruence relation, ${\mathcal X}$ cannot be of the form ${\bf P}_0{ imes}{\not\sim}{\it C}$ (nor of $\mathcal{E} \times Q_0$); hence this is possible.) Then $P \times Q$ is a generic point of $\stackrel{\sim}{P}$ over k. Let \overline{P}^q denote the image of \overline{P} under the q-th power correspondence $\overline{\parallel}$, so that $\overline{P} \times \overline{P}^q$ is a generic point of $\overline{\parallel}$ over \overline{k} . Put L = k(P, Q), and identify K with k(P). Let \mathcal{O}_{T} be the specialization ring of PimesQ o $\overline{P} imes\overline{P}^q$. Then, since op is a simple component of $\overline{\mathfrak{X}}$, we conclude that \mathcal{O}_{L} is a discrete valuation ring in L, and that the corresponding discrete valuation ${f V}_{f L}$ has the same group as $v = V_L|_k$. These are immediate consequences of [] (Th. 15, its Coroll. 2, and Prop. 5). Accordingly, the restriction V of $V_{_{\mbox{\scriptsize T}}}$ to K satisfies the assumption of \S 5-1 on the value groups (i.e., $V(K^{\times}) = v(k^{\times})$). Let D(K) be the space of differentials of K/k, and let d : K \rightarrow D(K) be the usual differentiation. Then, since $\mathcal{E} \Rightarrow \overline{\mathcal{E}}$ is a good reduction, d is V-continuous. Hence the assumptions of $\S 5$ -1 are satisfied for K, V and d. Now, the residue fields of K and L coincide; indeed, $\overline{K} = \overline{L} = \overline{k}(\overline{P})$. Since V and V_{I} have the same value groups, this implies that K is ${
m V}_{
m L}$ -adically dense in L. Accordingly, L may be considered as a subfield of the V-adic completion $K_{\overline{V}}$ of K. Since $\mathcal H$ cannot be of the form $\mathcal{C} \times Q_0$, Q is also a generic point of \mathcal{C} over k; hence there is a unique isomorphism of K into L (over k) that maps P to Q. Call

it σ . Then σ maps the specialization ring of $P \to P$ to that of $Q \to \overline{P}^q$, and hence leaves V_L invariant, and moreover induces the q-th power isomorphism of the residue field \overline{K} . On the other hand, σ commutes with the differentiation d. Therefore, σ is a q-th Frobenius map of K.

Note that \overline{k} is algebraically closed in $\overline{K},$ since $\overline{\xi}$ is a good reduction of ξ .

 $\S{8-2}$ The ramification conditions. (I) In addition to (i), (ii) ($\S{8-1}$), we shall assume the following condition (iii). It is in essence a condition on the ramifications of some covering maps related to \mathcal{L} and \mathcal{H} (see (II) below), but it can be formulated more simply by using fuchsian groups, as:

(iii) \mathcal{E} , \mathfrak{X} are those obtained in §3-1 (II).

Namely, we assume that k is embedded into $\mathbb C$, and that there is a fuchsian group of the first kind \triangle and an element

 $\mathcal{E} \in G_{\mathbb{R}} = \mathrm{PSL}_2(\mathbb{R})$ with the following properties: \triangle and $\mathcal{E}^{-1} \triangle \mathcal{E}$ are commensurable and generate a dense subgroup of $G_{\mathbb{R}}$, and \mathcal{E} , \mathcal{X} are algebraico-geometric models of \triangle^{++} , $\triangle \cap \mathcal{E}^{-1} \triangle \mathcal{E}^{++}$ respectively. The embedding of \mathcal{X} into $\mathcal{E} \times \mathcal{E}$ is the one defined by the embedding $\tau \rightarrow \tau \times \mathcal{E} \tau$ of $\triangle \cap \mathcal{E}^{1} \triangle \mathcal{E}^{++}$ into $\mathcal{E} \times \mathcal{E}^{++}$.

The condition (iii) is for the existence of a natural and sometimes calculable σ -invariant S-operator of K. Indeed, let S be the canonical S-operator of $\mathcal E$ with respect to Δ . Then S is k-rational by the Corollary of Theorem 1A ($\S 3$ -1). Hence it can be considered as an S-operator of K. Let $\xi \in D(K)^{\times}$. Then $S \setminus \{\xi\}^{\circ} - S \setminus \{\xi\}^{\circ} = \langle d\mathcal{T}, d\mathcal{T}^{\mathcal{E}} \rangle = 0$, since $\mathcal{T}^{\mathcal{E}}$ is a linear fractional function of \mathcal{T} (see Proposition 2, $\S 1$ -2). Therefore, S is σ -invariant (in the sense of $\S 7$ -2).

We note here that the density condition for the subgroup of $G_{\mathbb{R}}$ generated by \triangle and $\varepsilon^{-1} \triangle \varepsilon$ is actually superfluous. In fact, it follows automatically from the weak congruence relation. But we will not stop here for the verification.

(II) We shall give another formulation of (iii). Let \mathcal{E}_0 be a complete non-singular model of \mathcal{X} over k. For each i=1, 2, let $\operatorname{pr}_i:\mathcal{E}_0\to\mathcal{E}$ be the covering map corresponding to the projection of \mathcal{X} to the i-th component of $\mathcal{E}\times\mathcal{E}$. Let g be the genus of \mathcal{E} , and let P run over all points of \mathcal{E} . For each $R\in\mathcal{E}_0$, let $\mathcal{S}_i(R)$

denote the ramification index of the covering map pr_i at R (i = 1, 2) Then, (iii) is equivalent to:

(iii)' there is a $\mathbb{Z}^{+\cup}(\infty)$ -valued function e on \mathcal{C} such that e(P) = 1 for almost all P, that

(#)
$$2g - 2 + \sum_{P} (1 - 1/e(P)) > 0,$$

and that the quotients

(b)
$$e(pr_i(R))/ Q_i(R)$$
 (i = 1, 2)

are independent of i, and are integral (if finite). Moreover, the two coverings pr_1 , pr_2 are "essentially different," in the sense that there is no algebraic curve \mathcal{C}' and rational maps $f_i: \mathcal{C} \rightarrow \mathcal{C}'$ (i = 1, 2) such that $f_1 \circ pr_1 = f_2 \circ pr_2$.

This last condition corresponds to the density condition (in (iii)) of the subgroup of $G_{\mathbb{R}}$ generated by \triangle and $\varepsilon^{-1} \triangle \varepsilon$. We shall leave the verification of the equivalence of (iii) and (iii)' to the readers. See § 2-2 for the one-to-one correspondence $\triangle \longleftrightarrow \{\ell, e\}$, and note that the assumptions of § 8-2 on the field k implies $\overline{k} \le \overline{\lambda}$, and hence that k can be embedded into \mathbb{C} .

Finally, we note that the function e in (iii)' is actually unique. But this will not be used, and the proof will be omitted. It is reduced to some properties of a certain family of subgroups of a fuchsian group.

8-3 The Main Theorem 1. By applying our results of $6 \sim 7$ to the present case, we obtain the following Main Theorem 1. Our assumptions in this theorem are (i) (ii) ($6 \sim 8$ -1 (I)), and (iii) ($6 \sim 8$ -2 (I)). Before stating the theorem, we recall the following natations:

K : the field of k-rational functions on \mathcal{E} ;

V : the (additive) discrete valuation of K whose valuation $\hbox{ring is the specialization ring of the reduction } \mathcal{E}\!\!\to\!\!\overline{\mathcal{C}} \ ;$

 K_{V} (resp. k_{v}): the V-adic completion of K (resp. the v-adic completion of k);

 ${\rm K}_{\rm V}^\infty$ (resp. ${\rm k}_{\rm V}^\infty$) : the completion of the maximum unramified extension of ${\rm K}_{\rm V}$ (resp. ${\rm k}_{\rm V}$);

 $* \rightarrow \overline{*}$: the reduction mod V;

 $D(*)^{\times}$: the set of non-zero differentials of the field *;

the Cartier operator;

S : the canonical S-operator of $\mathcal E$ w.r.t. \triangle .

Recall that S is by definition the unique S-operator of \mathcal{E} such that $S\langle d\tau\rangle = 0$, where τ is the inverse of the covering map $\mathcal{H} \to \mathcal{H} \subset \mathcal{E}$ (see § 2).

- Main Theorem 1 (i) The canonical S-operator S is k-rational.

 So, S will henceforth be considered as an S-operator of K.
 - (ii) S is moreover V-integral.
- So, we can consider its reduction mod V, denoted by S (see (7-1).
- (iii) The equation $S(\omega) = 0$ has a V-adic solution ω in $D(K_V^{\infty})^{\times}$, which is unique up to $(k_V^{\infty})^{\times}$ -multiples. This differential ω is non-exact in K_V^{∞} .
- (iv) If ω is suitably normalized and k is so taken that $k \supset \mathbb{F}_q$, then the Galois group of $K_V(\omega)/K_V$, in the sense of $\{6-3, 1\}$ is abelian and is isomorphic to a closed subgroup of the v-unit group of k_V .
- (v) Normalize ω to be a V-unit. Then, $\overline{\omega}^{q-1}$ is a non-zero differential (of degree q-1) of \overline{K} , intrinsic up to \overline{k}^{\times} -multiples; and $\overline{\omega}$ satisfies the two equations:

$$\overline{S}\langle\overline{\omega}\rangle = 0,$$
 $\chi^{f}(\overline{\omega}) = \overline{a}\overline{\omega}$ $(\overline{a}\in\overline{k}).$

(vi) If f = 1 (i.e., q = p) and v(p) = 1, we can normalize ω further in a certain manner ($\sqrt[3]{7-4}$ (II)). This normalization determines $\overline{\omega}^{p-1}$ uniquely, and hence $\overline{\omega}$ up to $\overline{\mathbb{F}}_p^{\times}$ -multiples. The differential $\overline{\omega}$ satisfies the above two equations with f = 1, $\overline{a} = 1$, and is moreover characterized by these two equations.

Proof We have checked (i) and the \(\sigma \)-invariance of S (\S 8-2(I)). Since σ is a q-th Frobenius map (\S 8-1 (II)) of K, (ii) is a special case of Theorem 5 (ii) (\S 7-2). After extending the differentials, the differentiation d, the Frobenius map σ , and the S-operator S of K to K_V , and further to K_V^{∞} (see \S 5-2, 6-3, 7-2 (II)), apply Theorem 6 (\S 7-2) to conclude (iii), and Theorem 3 ($\prescript{0}{6-3}$ (V)) to conclude (iv). Here, note the following. By Proposition 14 (\S 7-4), the constant field of K_V is k_V , and that of K_V^∞ is k_v^∞ . On the other hand, if $k > \mathbb{F}_q$, then the Galois group of k_v^{∞}/k_v is contained in the group topologically generated by $\sigma|_{k_{-}}$ Therefore, the σ -invariant elements of $k_{_{f V}}^{\infty}$ must belong to $k_{_{f V}}$ (cf. the argument of \S 6-3(II)), and hence the assumptions of Theorem 3 are satisfied. The assertions (v), (vi) follow immediately from Theorems 7, 8 ($\prescript{5}$ 7-4). Q.E.D.

 $\S{8-4}$ V-integrality of S for the Morita's models. We shall keep the notations of $\S{3-3}$ including those used in the proof of Theorem 1C The Shimura models C for A are unique up to biregular morphisms over k ([]). It is probable that among the Shimura models C, there exists such a nice model C as would satisfy the following conditions.

- (ξ^* 1) ξ^* has a good reduction ξ^* at every prime divisor ξ of $k = C(F, \xi)$ not dividing $\xi \cdot D(B/F)$.
- (f^*2) For each such f^* , let f^* be its restriction to f^* , and let f^* be an element of f^* such that f^* be the algebraic correspondence of f^* defined with respect to this f^* (f^*). Then the reduction f^* of f^* modulo f^* contains a f^* -th power correspondence of f^* as a simple component, where f^* and f^* and f^* -th power defined with respect to this f^* -contains a f^* -th power correspondence of f^* -as a simple component,
- Y. Morita [] constructed such a nice model \mathcal{E}^* , when $F = \mathbb{Q}$. Therefore, by the Main Theorem 1 (ii), we conclude, for instance, that if $\mathcal{F} = \mathbb{Q}$ and $\mathcal{F} = \mathbb{Q}$, then the canonical S-operator of \mathcal{E}^* is "p-integral" for all $p \nmid D(B/\mathbb{Q})$, i.e., $S \not\subset \S$ is finite with respect to the reduction $\mathcal{E}^* \to \overline{\mathcal{E}}^*$ mod p, for any \mathbb{Q} -rational differential $\xi \neq 0$ of \mathcal{E}^* .
- §8-5 Calculation of $\overline{\omega}$ in certain triangular cases (I) The Main Theorem 1 (vi) provides us with a principle of explicit calculations of $\overline{\omega}$ in the following special cases, where in addition to (i), (ii) (§8-1(I)) and (iii) (§8-2(I)), the following assumptions are fulfilled:
- (iv) \triangle is commensurable with a triangular fuchsian group (see $\{2-4\}$;

(v) q = p, and v(p) = 1.

First, in view of the assumption (iv), we can compute the canonical S-operator S of $\mathcal E$ explicitly by combining the Corollary of Proposition 7 ($\S 2$ -4) with Proposition 5' ($\S 2$ -2). By the Main Theorem 1, S is k-rational, V-integral, and $\overline{\omega}$ satisfies $\overline{S}\langle\overline{\omega}\rangle=0$. Solve the equation $\overline{S}\langle\ \zeta\rangle=0$ in the separable closure \overline{L} of field \overline{K} . It is equivalent to solving the corresponding linear differential equation of degree two (see $\S 1$ -5)*). But \overline{L} is a p-dimensional vector space over the constant field $\overline{\ell}=\overline{L}^p$, and the corresponding differential operator is an $\overline{\ell}$ -linear map of \overline{L} . Hence it is the question of calculating some pxp matrices over $\overline{\ell}$ (cf. the example of $\S 1$ -6). Now let $\zeta \in D(L)$ be any solution of $\overline{S}\langle\ \zeta\rangle=0$, and put $\overline{\omega}'=(\xi'(\zeta)/\zeta)^{p-1}$. ζ . Then $\overline{\omega}'$ is another solution, and satisfies $\xi'(\overline{\omega}')=\overline{\omega}'$; hence $\overline{\omega}'=\overline{\omega}$ (by the Main Theorem 1 (vi)).

(II) We shall put in practice the calculations of $\overline{\omega}$ assuming (in addition to (i) (ii) (iii)) the following conditions (iv)*, (iv)** and (v)*. The conditions (iv)* and (v)* are stronger than (iv) and (v) of (I).

 $(iv)^* \triangle is triangular.$

Let $(\triangle^{\mathbb{H}})^*$ denote the compactification of $\triangle^{\mathbb{H}}$. Then $(iv)^*$ implies that $(\triangle^{\mathbb{H}})^*$ is of genus 0 and that there are exactly three points P on $(\triangle^{\mathbb{H}})^*$ with e(P)>1. Here, as in $\{2,2,e(P)\}$ is the ramification index of the covering map $\mathbb{H} \to \mathbb{A}^{\mathbb{H}} \subset (\triangle^{\mathbb{H}})^*$ at P. Hence there is a biholomorphic map $x : (\triangle^{\mathbb{H}})^* \to \mathbb{C} \cup (\infty)$ such that $x(P) = 0,1,\infty$ for the above three points P of $(\triangle^{\mathbb{H}})^*$. As is well-known, there are six different choices of x; namely, if x is one of them, the others are given by x^{-1} , 1-x, $1-x^{-1}$, $(1-x)^{-1}$, $(1-x^{-1})^{-1}$. Fix any one x, and regard $\mathbb{C} \cup (\infty)$ as a rational algebraic curve. Put $e(P) = e_0, e_1, e_\infty$, accordingly to $x(P) = 0, 1, \infty$, respectively. $(iv)^{**} \subset$ is a rational curve, identified with $(\triangle^{\mathbb{H}})^* =$ in the above manner.

This condition will be abbreviated as " $\not\sim$ is a rational x-curve."

(v)* $q = p \neq 2$, v(p) = 1, and the following two congruences

hold for some suitable choice of $\mathcal{E}_i = \pm 1$ ($i = 0, 1, \infty$): $p \equiv \mathcal{E}_i \pmod{e_i}$... $i = 0, 1, \infty$,

$$\sum_{i=0,1,\infty} \frac{p-\epsilon_i}{e_i} \equiv 0 \pmod{2}.$$

(E.g., $p \equiv 1 \pmod{2e_i}$ for $i = 0, 1, \infty$.) In particular, e_i are not divisible by p.

Now we shall calculate $\overline{\omega}$. By the Corollary of Proposition 7 (\S 2-4), the canonical S-operator S of E with respect to \triangle is given by the formula

$$S \langle dx \rangle = \frac{ax^2 + bx + c}{x^2(1 - x)^2} (dx)^2,$$

with

$$a = \frac{1}{e_{\infty}^2} - 1$$
, $a + b + c = \frac{1}{e_1^2} - 1$, $c = \frac{1}{e_0^2} - 1$.

Therefore, if we put

$$S_{i} = \frac{\xi_{i}}{e_{i}} \qquad (i = 0, 1, \infty)$$

and consider $\mathcal{Q}_{\mathbf{i}}$ as elements of $\mathbb{F}_{\mathbf{p}}$, then

$$\overline{S} \langle dt \rangle = \frac{\alpha t^2 + \beta t + \beta t}{t^2 (1 - t)^2} (dt)^2,$$

with

Hence we can apply the results of \{1-6. Put

$$g_{i} = \frac{p - \xi_{i}}{e_{i}}$$
 (i = 0, 1, ∞).

Then, A, B, C of $\{1-6 \text{ are given by }$

$$\frac{1}{2}(1+p+g_0+g_1+g_\infty), \quad \frac{1}{2}(1+p+g_0+g_1-g_\infty), \quad 1+g_0,$$
 respectively. Since $e_0^{-1}+e_1^{-1}+e_\infty^{-1}<1$ ((e2) of §2-2), it follows

^{*)} Recall that we used the condition " \triangle and $\varepsilon^{-1} \triangle \varepsilon$ generate a dense subgroup of G_R ," only to deduce the k-rationality of S (by the Corollary of Theorem 1A). But here, the k-rationality is obvious by this explicit formula. Hence we need not check the density assumption in the triangular case. See also the remark at the end of $\{8\text{-}2(I)\}$.

easily that $1 \le C \le B \le A \le p$ and $\frac{1}{2}(p+1) \le A$. Therefore, by $\S 1$ 6, the solutions of (n-1) are 1 dimensional, and one of them is given by u(t) = f(A, B; C; t).

Put

$$\delta_{i} = \frac{1}{2}(p - 1 - g_{i})$$
 (i = 0, 1, ∞).

Theorem 9 The notations and the assumptions being as above, we have

(*)
$$(\overline{\omega})^{\frac{1}{2}(p-1)} = \frac{u(t)}{t^{\frac{50}{10}(1-t)}} (dt)^{\frac{1}{2}(p-1)}.$$

The degree of the polynomial u(t) is p - A, and the roots of u(t) are simple and are neither 0 nor 1.

Proof First, we shall check our assertions on the polynomial u(t). Since $u(t) = f(A^{\bullet}, B^{\bullet}; C^{\bullet}; t)$ and $1 \le C^{\bullet} \le B^{\bullet} \le A^{\bullet} \le p$, the degree of u(t) is $p - A^{\bullet}$. It is clear that $u(0) \ne 0$. That $u(1) \ne 0$ follows immediately by changing the variable $t \to 1 - t$. That u(t) has no multiple roots follows by an argument of Igusa ([]). Namely, if u(t) has a multiple root λ , then $u(\lambda) = \frac{du}{dt}(\lambda) = 0$; hence $\frac{d^2u}{dt^2}(\lambda) = 0$ by $(\frac{u}{t})$ (since $\frac{u}{t} \ne 0$, 1). By differentiating $(\frac{u}{t})$, we obtain successively $\frac{d^3u}{dt^3}(\lambda) = \cdots = 0$, which is a contradiction since u(t) is a non-zero polynomial of a degree less than p.

Now let us define $\overline{\omega}$ by the formula (*), and complete the proof by showing that $\overline{\omega}$ satisfies the two equations $\overline{S}\langle\overline{\omega}\rangle=0$ and $\sqrt[3]{(\overline{\omega})}=\overline{\omega}$. Put

$$v(t) = \frac{u(t)}{t^{\delta_0}(1-t)} \delta_1.$$

Then v(t) concides with $t^{\frac{1}{2}(1-s_0)}(1-t)^{\frac{1}{2}(1-s_1)}$ u(t), up to $(\overline{L}^x)^p$ multiples, \overline{L} being the separable closure of $\overline{K} = \mathbb{F}_p(t)$. Hence v(t)
satisfies the equation (b) of s_0 1-6. But $\overline{\omega} = v(t)^{\frac{2}{p-1}}dt$; hence $\overline{\omega}$ coincides with $v(t)^{-2}dt$ up to $(\overline{L}^x)^p$ -multiples. Therefore, $\overline{\omega}$ satisfies (\sharp) ; i.e., $\overline{S}(\overline{\omega}) = 0$. On the other hand, the s_0 -invariance of $\overline{\omega}$ is equivalent to the following:

Lemma 3
$$\forall (v(t)^{-2}dt) = c dt$$
 $(c \in \mathbb{F}_p^{\times}).$

To check this, put $y(t) = u(t)^p v(t)^{-2} = t^{2\delta_0} (1-t)^{2\delta_1} u(t)^{p-2}$. Put $H = \deg u(t) = p - A^{\bullet}$. Then y(t) is a polynomial of degree $p(H+1) + g_{\infty} - 1$, which is strictly smaller than p(H+2) - 1. Therefore, $\sqrt[g]{(y(t)dt)} = z(t)dt$ with some polynomial z(t) of degree at most H. But since $\sqrt[g]{(v(t)^{-2}dt)} = u(t)^{-1}z(t)dt$, it suffices to show that z(t) is divisible by u(t). Therefore, it suffices to show that $\sqrt[g]{(v(t)^{-2}dt)}$ has no poles at the roots λ of u(t). Let λ be a root of u(t). Since it is a simple root, the pole of $v(t)^{-2}dt$ at λ is of order 2. Hence it is enough to show that the residue of $v(t)^{-2}dt$ at λ is zero, or equivalently, that

$$\frac{d \log_{100} \left\{ t^{2\delta_c} (1-t)^{2\delta_1} u(t)^{-2} (t-\lambda)^2 \right\}_{t=\lambda} = 0.$$

This is equivalent to

$$\delta_0 \lambda^{-1} + \delta_1 (\lambda - 1)^{-1} - \sum_{\mu \neq \lambda} (\lambda - \mu)^{-1} = 0,$$

where μ runs over all roots $\neq \lambda$ of u(t). But

$$\sum_{\mu \neq \lambda} (\lambda - \mu)^{-1} = a_2/a_1,$$

where

$$u(t + \lambda) = a_1 t + a_2 t^2 + \cdots;$$

hence $a_1 = \frac{du}{dt}(\lambda)$, $a_2 = \frac{1}{2} \frac{d^2u}{dt^2}(\lambda)$. But by (4), we obtain

$$\lambda(1-\lambda)\frac{\frac{d^2u}{dt^2}(\lambda)}{\frac{du}{dt}(\lambda)} + (C^{\bullet}-(A^{\bullet}+B^{\bullet}+1)\lambda) = 0;$$

whence

$$\sum_{\mu \neq \lambda} (\lambda - \mu)^{-1} = -\frac{(A^{\bullet} + B^{\bullet} + 1)\lambda - C^{\bullet}}{2\lambda(\lambda - 1)}$$
$$= \delta_0 \lambda^{-1} + \delta_1(\lambda - 1)^{-1},$$

which proves Lemma 3 and hence also Theorem 9.

\$\frac{8-6}{2}\$ The differential \$\overline{\omega}\$ in the elliptic modular case (I) This is the case of \$\int = \text{PSL}_2(\overline{\omega})\$. Put \$\overline{\omega}^{\overline{\omega}} = \overline{\omega}^{\overline{\omega}}(\overline{\omega})\$, so that \$\overline{\omega}^{\overline{\omega}^{\overline{\omega}}}\$ compaction files \$\overline{\omega}^{\overline{\omega}}\$. Put \$i = \sqrt{-1}\$, \$\overline{\omega} = \frac{1}{2}(-1 + \sqrt{-3})\$, and let \$P^i\$, \$\overline{\omega}^{\omega}\$, \$\overline{\omega}^{\omega}\$}\$.

respectively denote the points of \bigwedge^{H^*} represented by i, \Im , $\infty \in H^*$. Then, e(P) = 2, 3, ∞ , or 1, according to $P = P^i$, P^g , P^∞ , or others. Since the genus of \bigwedge^{H^*} is 0, this shows that \triangle is triangular. Let $j(\Upsilon)$ be the "analyst's modular function," i.e., the unique biholomorphic isomorphism $j: \bigwedge^{H^*} \longrightarrow \mathbb{C}^{\cup}(\infty)$ that maps P^i , P^{\Im} , P^{∞} to 1, 0, ∞ respectively. Put $J(\Upsilon) = 12^3 j(\Upsilon)$ ("arithmetist's modular function"), and first, take \swarrow to be the rational curve with the coordinate variable $J(\Upsilon)$.

Let p be any prime number, and let \mathcal{E}^* be the element of $G_{\mathbb{R}}$, which is represented by the matrix $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$ modulo scalar multiples. Let \mathcal{E} be any element of the double coset $\Delta \mathcal{E}^*\Delta$. Then $\mathcal{E}^{-1}\Delta \mathcal{E}$ is conjugate, by some element of Δ , to the group

$$\left\{ \begin{pmatrix} a & p^{-1}b \\ pc & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Delta \right\};$$

hence $(\triangle:\triangle\cap \mathcal{E}^{-1}\triangle\mathcal{E})=(\mathcal{E}^{-1}\triangle\mathcal{E}:\triangle\cap \mathcal{E}^{-1}\triangle\mathcal{E})=p+1$. The correspondence \mathfrak{X} defined by \mathcal{E} (as in $\S 8-2$) consists of all points on $\mathcal{E}_{\mathsf{X}}\mathcal{E}$ of the form $(J(\tau),J(\mathcal{E}_{\mathsf{T}}))$ ($\tau\in\mathbb{H}^{\mathsf{X}}$). Let $\Phi(\mathsf{X},\mathsf{Y})=0$ be the irreducible equation defining \mathfrak{X} . The polynomial Φ is determined only up to constant multiples, but we know that if the constant is suitably chosen, then $\Phi(\mathsf{X},\mathsf{Y})\in \mathsf{Z}[\mathsf{X},\mathsf{Y}]$, and moreover that the Kronecker congruence relation is satisfied, i.e.,

$$\Phi(X, Y) \equiv (Y - X^p)(Y^p - X) \quad \text{mod} (pZ[X, Y]);$$

(cf. e.g., Deuring $[\]$). In other words, earrow and earrow are defined over earrow, and

$$\overline{X} = T + T'$$

holds, where \prod is the p-th power correspondence of E, and \prod is the transpose of \prod . Therefore, the conditions (i) (ii) (iii) (\S 8-1, 2) are satisfied with $k = \mathbb{Q}$ and q = p.

First, we shall specialize the notations of $\S 8-1(II)$ to this case. Let J be a generic point of \pounds over $\mathbb Q$, and let $(J, J') \in \mathcal K$. Then, with the notations of $\S 8-2$, we have $K = \mathbb Q(J)$, $J^{\circ} = J'$ and $L = \mathbb Q(J, J')$. The valuation V of K is defined by

$$V\left(p^{c}\frac{f(J)}{g(J)}\right) = c,$$
 for $f(J),g(J) \in \mathbb{Z}[J] \notin p\mathbb{Z}[J]$

By the Kronecker congruence relation and Hensel's lemma, there is a unique solution * of the equation $\Phi(J, *) = 0$ in the completion K_V of K, and it satisfies * $\equiv J^p \pmod{p}$. Hence there is a unique K-isomorphism of L into K_V , and if L is considered as a subfield of K_V by this embedding, then $J' \equiv J^p \pmod{p}$; hence σ induces a p-th Frobenius map $K \mapsto K \hookrightarrow K_V$.

of the J(τ)-curve).* Then, the conditions (iv)*, (iv)** and (v)* of $\S 8-5$ (II) are satisfied for x = j (hence e_0 , e_1 , e_∞ = 3, 2, ∞ , respectively). The signs of ε_0 , ε_1 are determined by the congruences $p \equiv \varepsilon_0 \pmod{3}$, $\equiv \varepsilon_1 \pmod{4}$, whereas ε_∞ can be either of ± 1 . Therefore, Theorem 9 gives the following explicit formula for $\overline{\omega}$. (Note that $\overline{\omega}$ is determined up to \mathbb{F}_p^* -multiples, and hence $\overline{\omega}^{\frac{1}{2}(p-1)}$, up to the signs.)

(*)
$$\overline{\omega}^{\frac{1}{2}(p-1)} = \pm \frac{P(T)}{Q(T)} (dT)^{\frac{1}{2}(p-1)}$$
 $(T = \overline{J}),$

where

$$P(T) = T^{\frac{1}{2}(1-\epsilon_0)}(T-12^3)^{\frac{1}{2}(1-\epsilon_1)}u(T),$$

$$Q(T) = T^{\frac{1}{3}(p-\epsilon_0)}(T-12^3)^{\frac{1}{4}(p-\epsilon_1)},$$

$$u(T) = f(p-H, p-H; \frac{p-\epsilon_0}{3}+1; 12^{-3}T),$$

$$H = \frac{p-6}{12} + \frac{\epsilon_0}{6} + \frac{\epsilon_1}{4}.$$

u(T) is a polynomial of degree H such that $u(0)u(12^3) \neq 0$, and has no multiple roots.

In the cases of p = 2, 3, the difference between $j(\tau)$ and $J(\tau)$ is of essential nature, and replacing $J(\tau)$ by $j(\tau)$ would break down the congruence relation. Thus, we cannot apply the

^{*)} This change (for p \neq 2, 3) will not affect σ , nor consequently ω .

result of our calculations of $\S 8-5$ to the cases of p = 2, 3. But we can apply the same method. The calculations are easy, and we obtain

$$\overline{\omega} = \frac{dT}{T}$$
 $(p = 2, 3; T = \overline{J}).$

Remarks We obtain the same differential ω , but in different forms of expression when we replace \triangle by the congruence subgroups (see \S). For instance, if we replace \triangle and $J(\mathcal{T})$ by the principal congruence subgroup of level 2 and the λ -function, we obtain the following simpler expression of $\overline{\omega}$ for p \neq 2:

where
$$u_2(\overline{\lambda}) = f(\frac{p-1}{2}, \frac{p-1}{2}; 1; \overline{\lambda}) = \sum_{i=0}^{\frac{p-1}{2}} {\frac{p-1}{2} \choose i}^2 \overline{\lambda}^i$$
. Of course

the formula should also be obtained by substituting the equality

$$J = 2^{8} \frac{(\overline{\lambda}^{2} - \overline{\lambda} + 1)^{3}}{(\overline{\lambda}(\overline{\lambda} - 1))^{2}}$$

in (*).

Another point to note is that we shall still obtain the same differential ω , if we take ε from the double coset $\Delta \varepsilon^{f}$ (f \geq 1) and normalize ω by $\omega^{f}/\omega = p^{f}$. Indeed, the Frobenius map for this case is nothing but the f-th iterate of the former σ . See