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Part 2A

$5 Valued differential fields

§ 5-1 The valuation V We shall keep the notations and assumptior

of $1-1. Suppose now that we are given:

v a discrete valuation of k, additive and normalized;

V: a discrete valuation of K extending v, assumed to have

the same value group as v;

*— K the reduction map modulo V.
We assume that K and K have unequal characteristics, i.e.,
ch(K) = 0, ch(K) = p>0;

and that the differentiation d: K—>D(K) is V-continuous, i.e.,

continuous with respect to the V-adic topology of K and that induce
on D(K).
Since d is V-continuous, the constant field k is closed in K

not only algebraically, but also topologically.
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Let @ be the valuation ring of V, and ‘P, the maximal
ideal. Let D(®) denote the (& -submodule of D(K) generated by
all elements of D(K) of the form dx with xe& . Then D(O)
is a free C)-module of rank one. In fact, since every () -submodule
of D(K), other than {0} and D(K) itself, is a free (S-module of
rank one (because D(K) is one dimensional over K, and G} is the
valuation ring of a discrete valuation of K), it suffices to check
D(@) # 40} , # D(K). First, since d # 0, there is some zeK"
with dz # 0. But since V(KX) = v(k*), there is some c ¢k with
cze ®, and d(cz) = c.dz # 0; hence D(&) # {0}. Secondly,
take any £ € D(KY‘. Then since d 1is V-continuous and V(XY =
v(kX), there is some c ek’ such that vV(dz) e O-% for all
z € c. . But then, dx ¢ c-lCD'g for all xe© ; hence
D(O) # D(K), and accordingly, D(E) 1is a free (O -module of rank
one.

An element x ¢ © 1is called regular if dx generates
D(Q), i.e., if D(@) = ©.dx. Put D°(Q) = O , and for
each h>1, DME) =D(B)® ...® D(S) ( h copies, over @ ).
Then each Dh(GB) is a free © -module of rank one. 1In fact,

if x is a regular element, then Dh(Eé) = G}.(dx)h. A differential



¥ e Dh(K) will be called V-integral if it belongs to Dh(EV).
We shall extend the valuation V of K = DO(K) to a Zsu(ao)—
valued function on &;éDh(K), by imposing the condition:
V(E@Tl)=V(§)+V(7l) (foranyg,nehLZJODh(K)
together with the normalization:
V(dx) = 0 (for x: regular).
It is clear that ge;Dh(K) is V-integral if and only if V(g )>0.
Note that V(dx) > V(x) holds for any x €K. Indeed, since V(K’< =
v(k*), we may assume V(x) = 0. But then, V(dx)>0, since dx is
V-integral. It is also clear that xe€¢ K is regular if and only if
V(x) = V(dx) = 0.
Put Dh(‘p) = ‘B-Dh(g) (h>0). Then Dh((9’)/Dh(Y3) is a one-
dimensional vector space over K = é>/¢,. Call it Dh(E), and put
D(K) = Di(i). Then DO(E) = E; and Dh(i) ( h=1l) can be identified
naturally with D(E)éb...QQD(E) (h copies, over K). For each
g eDh(&), let g denote its residue class modulo Dh(ﬁ). Then
X —>dx (x ¢ ©) defines a differentiation ‘I-(—'———>D(-IZ), which will be
denoted by d. The constant field of d contains i-ip, and is strictly

smaller than‘i, since 5;-# 0 for x: regular.

& 5-2 Field extensions (I) Effect of completion Let KV be the

completion of K with regpect to V. Then the differentials and the



differentiation of K can be extended to those of KV in a natural
manner. First, define D(Ky) by D(K) ? Ky. Then, d; is defined

to be the unique V-continuous differentiation KV-—e-D(KV) that
extends d. Clearly, a regular element of K is also regular in KV.
Hence Dh(@V) = Dh(@') g ©,, G(V being the valuation ring of V in
Ky. The constant field kv of Kv contains the V-adic closure of k
in Ky. But they do not coincide in general. In any case, it is

obvious that V(K;) = V(ké), since kv contains k.

(I1) Effect of unramified extensions Let L be a separably

algebraic extension of K. Then we know that d can be uniquely
extended to dy : L —>D(L) = D(K)‘%’L, and that the .constant field
of dp is the algebraic closure of k in L, denoted by & ( § 1-4).

Now, let VL be a valuation of L extending V. By definition, VL/V

is unramified if VL(LX) = V(Kx) and if the residue field extension
EVE is also separable. Suppose that VL/V is unramified. Then, it
is clear that VL(LX) = VL(lf), i.e., the condition of % 5-1 on the
value groups is preserved. We shall show that:

Proposition 8 The differential d. 1is V;-continuous, and

L
regular elements of K are also regular in L; hence
4

Ga‘being the valuation ring of VL'

Proof It is enough to check (the two assertions) when [L:K]

is finite. Let (}l be the integral closure of (J in L. Then C}i is



the intersection of all valuation rings of L containing (9 (hence
@'LD@i). Let y € GL‘ Take such « € L that satisfy VL(O() =0

and also V{ (&), Vi(b«y).Z:O, for all other extensions V] of V to L.
This is possible by the approximation theorem on distinct discrete
valuations. Put y = ﬁ/o( . Then &, (6 e @i, and VL(O() = 0. Now,
since L/K is a finite separable extension, C%i is a finite € -module;
Cﬁi = %§3E3zi. Therefore, if x is a regular element of K and

z e-C}i, we have VL(sz/dx);z M%nV(szi/dx);'hence the set
{VL(sz/dx) I z e(9i} is bounded from below. By using the above
expression y = ﬁ?/d for y ¢ @E, we se§>immediately that the set

L

is Vy-continuous. Now we shall check that x is also regular in L.

{VL(dLy/dx) l yezéﬁl is also bounded from below. Therefore, d

Suppose it were not. Then, the restriction of E; to K must vanish

identically, which is impossible since.i/ﬁ-isbseparable and E; £ 0.

Q.E.D.

Corollary The notations and assumptions being as above, if

there is a V-preserving isomorphism Y of L into the completion

KV of K, which is identical on K, then,
Juedy, = dyof
holds, where Y4 is the canonical embedding D(L) G D(KV) induced

by f’:IJC;KV.
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§ 6 The Frobenius map ¢ and the associated differential (o

§ 6-1 The q-th Frobenius mapog’. As assumed in § 5-1, let
f

p = ch(E);?O, and let q = p- be a fixed positive power of p. Let
KV be the completion of K with respect to V. We shall always
consider K as a subfield of Ky, identifying in particular the residue
field of KV with that of K. Now, an imjective isomorphism

g: K r—> Kv
will be called a q-th Frobenius map of K, if the following two

conditions are satisfied:

(0¢l) o is V-preserving, and induces the g-th power map

x —> %9 of the residue field.

(02) o commutes with the differentiation, i.e., K k,

K - k)9 K - k, and

g o’
(2 = 55

holds for all x, y € K with x¢ k. (Here, as in § 5-2(I), dy is the

canonical extension of d to KV.)

For each h >0, Dh(K) is canonically embedded into Dh(KV).
On the other hand, ¢’ induces a map Dh(K)F—9>Dh(KV), which maps
y(dx)h to yGIdV(xqﬁjh. This is well-defined by (¢°2). 1In the
following, we shall write d instead of dv, for the simplicity of
notations.

Proposition 9 Let o be a q-th Frobenius map of K. Then there




is a positive integer < = V(¢”) such that

V(E7) = V(%) + hv

holds for all ¥ e DP(K), § % 0, h20.

Proof Let x be a regular element of K, and put V = V(dx?).
Let § = y(dax)P (y€K™). Then V(}7) - V(E) = V(+*7y) + h-v(dx"/dx)
= h'V(dx®) = hv. On the other hand, let T be a prime element of

“=x%4+ 7wz (ze®). Then we have dx“ = qxq—ldx

v, and put x
+ Ttdz; hence VvV >0. Q.E.D.

Corollary Let 7]6'Dh(K), with h=> 1. Then the equation

n = §- EO- has at most a unique solution ge;Dh(K). If K is

complete, then such a solution exists.

Proof The uniqueness follows immediately from the Proposition.
oo ™
The solution g for the complete case is given by g = :E%‘nw
n=

(which is convergent by the Proposition). LE.D.

§ 6-2 The associated differential (. Let O be a q-th Frobenius

map of K. A differential weD(K)X will be called a differential

associated with o7, if

w/w e K

holds.

Theorem 2 Let 0 be a q-th Frobenius map of K. Then (i) the




. . . . . X .
associated differential w is at most unique up to k” -multiples,

(ii) w exists if K is complete and K is separably closed.

Proof (i) If w and zw (ze—KX) are two associated differen-

. - x . . . . s
tials, then 2" 1 € k. Hence dz/z is ¢ -invariant, contradicting

Proposition 9 unless dz = 0. (ii) Let ¢ be any element of k™ with
v(c) = V (see Proposition 9 for the symbol V ). We shall show
that there exists () = y-dx € D(K)x with a57&> =c¢c. Put U =

g -1 . . co s .
c-(dx”/dx) ~, which is a V-unit in K. It is enough to show that

the equation yf_l = U has a solution y in K=, This can be shown

by a standard type argument, as follows. First, since K is separably

closed, U has a (q - 1)-th root ﬁl in E’( U; € K). Replacing

—

y by fyUl, we may assume from the beginning that U = 1. Let 7T be

a prime element of v. It is enough to find a sequence {yn}ijof

V-units of K, such that y,.; = Yn (mod 7t™) and that yz-l =U

(mod qtn). Put v, = 1, and suppose that yys» -+ ¥ are already
found. Put ¥l = U+ %, and y_ . =y, (1 + %"B)) (4,, By€ ).

Then,

1

- ’ n+
e = (U + TtlnAn) {1 + ﬁn(Bg - Bn):} (mod 7T );

yn+l
hence it is enough to solve the Artin-Schreier equation'ih-— B -=

n
—:ﬁ-lxh in K, which is possible since K is assumed to be separably

closed. Q.E.D.
The following Proposition will be needed later.

~
,‘\/,
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Proposition 10 Let d’ be a q-th Frobenius map of K, and

. X .
suppose that an associated differential we&D(K) exists. Assume

1/p

that k f\iﬁ = k. Then w 1s non-exact in K.

Proof Suppose that w were exact; w = dy (y€K). Since
w % 0, we have y¢ k. Hence y cannot be approximated by elements
of k. Among all elements of k, let a be one of the nearest to y.
Choose b€ k™ in such a way that Y, = b(y - a) is a V-unit. Then

§l¢ k. Since w’ = cw with cek', we have yo; = ey, + e (ee k).

[

But v(c)

- - X -1
hence y% e € k . But since it is assumed that k

YV > 0; hence e is also a v-unit, and yi)s e (mod B );
/p

(W.K = E} we

deduce that y € k , which is a contradiction. Therefore, w) must
¥

be non-exact. Q.E.D.

§ 6-3 Extending K to the field of w (I) Extending o to Ky -

In general, an associated differential w may not exist in the given
field K. But Theorem 2 (ii) suggests that such an w should exist
in .the completion of a certain unramified extension of K. To fix
this, it is necessary to study the extensions of a Frobenius map o
to the completion and unramified extensions of K. To begin with,

we see that a q-th Frobenius map. g of K can be uniquely extended

to that of the completion Ky. Indeed, it can be extended uniquely

to an injective isomorphism (TV of Ky into itself that satisfies



(o*l) of §$6-1. The only point to be checked is that if x € K,

Ty
then dv(x) = 0 and dy(x ")

= 0 are equivalent. To check this,
oo . . . o
let {xn}l be a sequence in K converging to x. Then since V(dxn)
= V(dx,) + ¥ (Proposition 9), (dXHYT is a null sequence if and only

G—-w
if {dxn}l is so; hence our assertion.

(I1) Complete unramified extension L, Now we assume that K

is complete. Then, unramified extensions of K and separable
extensions of K correspond in a one-to-one manner (by L—>1).

By a complete unramified extension of K, we mean the completion

of a (possibly infinite) unramified extension L of K. Let L be an
unramified normal extension of K, and let G = AutgL be the Krull's
Galois group. Let g € G. Then g can be extended uniquely to a
V-continuous automorphism &y of LV' The group Gy = {gv }g € G}
consists of all V-continuous automorphisms of Ly over K. We shall
call Gy the Galois group of Ly over K. Sometimes, the two groups
Gy and G will be identified with each other. The completion of a

normal (unramified) extension will also be called normal. We note

that the fixed field of Gy in Ly is K. Let us briefly recall the

proof. Let G}L be the ring of intégerS'in L, and put .?L = ‘ﬁ' én;

It is enough to construct a G-invariant complete set of representative
My of GL mod”qu In fact, our assertion then follows. immediately
by using V-adic expansions with.coefficients in ;. Let M=>0,1

be a complete set of répresentatives of 6}'mod'ﬁ . Let £ € L,

-]



and let x" + Elxn“l + ... + ap = 0 be the monic irreducible equation

for « over K. For each i, let a; be the unique lifting of a; inm
. Then there exists a unique lifting &« € L of X satisfying
o+ aloin-l + ... +a, =0. The set &y = [ IEZ € i} is a
required G-invariant complete set of representatives.

By this (applied to any complete intermediate fields in place
of K), we see that the Galois theory holds between closed subgroups
H of Gy and complete intermediate fields My of LV/K. If M is the
fixed field of H in L, then M; coincides with its completiom. By

§§ 1-4, 5-2, the space of differentials, the differentiation d, and
the valuation V can be extended uniquely to any complete unramified
extension L of K. They preserve the conditions of § 5-1, and also
D'k G = Dh(@')g@L. Let «weDP(L), and put w = y-§ with yeL,

g é.Dh(K), ¢ # 0. Then the smallest complete field containing K
and y is independent of the above expression of & . We shall call

this field the field obtained by adjoining w to K, and denote it

by K(w).

(II1) Extending ¢ to L.

Proposition 11 Let o be a q-th Frobenius map of a complete

field K, and let L be either an unramified extension of K, or the

completion of an unramified extension of K. Then ¢ can be extended

uniquely to a q-th Frobenius map ¢’y of L into itself. Moreover,

if L/K is normal, then CTL commutes with each element of the Galois

l A



group AutKL.

Proof We may assume that L/K is finite and normal. Take
x € L such that L = K(X). Then L = K(x). Let f(X) = fg%aixi =0
be the monic irreducible equation for x over K, and let x = X1se+05%Xp
be the zeros of f(X). Choose the subscripts of the zeros y = yi,...,¥,

of £7(X) in such a way that y; = %{ holds for all i. If o is
i i L

any extension of ¢ to an isomorphism of L, theq GL(X) must be

one of the y;. Since'ii (1£i<n), and hence also §i (lsziﬁ;n),\
are all mutually distinct, Gi cannot be a g-th Frobenius map unless
GiL(x) = y; hence the uniqueness. Now let oL be the isomorphism of

L that extends ¢~ and that maps x to y. The Gi‘preserves the

valuation V, and the reduced map o. coincides with the g-th power

L

map on K and also on X; hence on L. Since L = K(x) and L/K is
separable, we have L =-ﬁ(§). Therefore, if we put L' = K(y), then

n=[L':K]=I[L': E]z[ﬁ(}): K] = n; hence [L': K] = [L': K] = n, and

L' = L. Therefore, L'/K is unramified, and L' ='i; hence L' = L;

i.e., L = K(y). Therefore, GL(L) < L. That o commutes with the
-1

differentiation follows immediately. If &£ € AutgL, then 2:01‘8

is also a q-th Frobenius map of L extending o ; hence it coincides

with U&f Q.E.D.

(IV) The differential & in the general case Let o be a

q-th Frobenius map of K. In general, K may or may not contain the

associated differential w . We shall extend the definition of ¢y to

.:}
_
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the general cases simply by considering the differentials in the
bigger fields. Namely, in such cases, we take the maximum complete
unramified extension L of the completion of K. - Then g is uniquely
extended to a q-th Frobenius map L of L, and L satisfies the
assumption of Theorem 2A(ii). Hence D(L)X contains a differential
w associated with Gi. We call ., also the differential associated
with ¢ . Then w is a differential of L determined up to the non-
zero multiples of elements of the constant field L of L. On the
other hand, the proof of Theorem 2A(ii) shows that &%/ w = c has
a solution w for any ceaﬁx with v(c) = ¥ . So, there exists some
& such that Lwcya>62 K. To give a finer definition of &« , we shall
impose the conditions that Wi/ e K ( and not merely e.lx). Then,
) is determined up to such constant multiples aegﬁf that aqiae ke,

We note that the iterates o= of o (defined in an obvious
sense) associate the same differential ¢« as ¢ .

(V) The field K(w) Suppose that K is complete. Let ¢~ be
a q-th Frobenius map of K, and let c be an element of KX with v(c) = V
Let (v be an associated differential, normalized by w/w = ¢, in
the completion L of the maximum unramified extension of K. Let K(w)
be the complete field obtained by adjoining w to K (see (II)).

Then we have the following:



Theorem 3 Assume that k is so large as to contain the fixed

field of G!L , I being the constant field of L. Then K(W) is a

complete unramified extension of K whose Galois group is abelian

and topologically isomorphic to a subgroup of the Vv-unit group

of k. The field K(w) depends only on the Frobenius map o  and

the normalizing constant c.

Proof Let ¢ ¢ G(L/K). Then €9 = J0& (Proposition 11);
hence (W¥&)” = c ¥t Therefore, by the uniqueness of ¢ , aﬁ/ub
belongs to jf<, and moreover is invariant by O . Hence CUS/&)EE kx.
Put () = wi/w‘. Then ¥_ is a continuous homomorphism of G(L/K)
into Yt , the v-unit group of k. But K(w) is the fixed field of the
kernel of X. (In fact, if we put w=wi ( ge-D(K)x), then
CQE = (0 if and only if w® = w, and K(®@) is the complete field
generated by K and w.j Therefore, K(w )/K is a Galois extension,
its Galois group being isomorphic to AutKL/KeﬂX. Since AutKL is
compact, the induced map AutKL/KeﬁK~4> Image(X) is a topological
isomorphism. The last assertion follows immediately, since the

fixed field of crLL is contained in k. Q.E.D.

(VI) The fields K(w),. Assumptions being as in (V), put

G = AutgK(®). Then X:6 —> H(G)Cc V. 1is a topological isomorphism.
For each n> 1, put Uz,n = {ueUL‘ u=1 (mod 7‘Cn)} (7c:a prime

element of v), and G, =‘Xfl(lhn). Then since G, is open, G/G, is



finite. Let K(CO)n be the fixed field of G, so that K(w ),/K
is finite and abelian. Then it is easy to prove, by using the
V-adic expansions with respect to the representatives hQL of (1II),

the following:

Proposition 12 Let the assumptions be as in (V) and as

immediately above. Then K(W )n is the smallest unramified extension

of K containing a differential @, satisfying V(W ) = 0 and

c_lwg-awn (mod j‘[n). Such C«)n is unique up to ‘Vl-{l + ’Itn@L}

multiples.

6-4 The reduced differential . Here, K is not assumed to be

complete. Let g be a q-th Frobenius map of K. Fix ce;kx with
v(ic) =V ; V= V (o) being as in §6-1. Take any % eD(K)X with
V(%) = 0, and put

W, = ctgq/zéf (§q=§®...®§ ; q copies)

Then ES;, which is a non-zero differential of?of degree q-1, is

independent of § . 1Indeed, let z be any V-unit of K, and replace

¥ by z-§ . Then W, is simply multiplied by z9/z ; but since O~

is a q-th Frobenius map, we have (zq/zc') = 1. Therefore, ZJ;
remains unchanged.
On the other hand, we have defined a differential () associated

4

(=
with 0. Normalize ) by the two conditions ® /0 = ¢ and



V@ ) = 0. Then, with the notations of é’6-3 (IV), & is determined
up to multiples of such element ae,Q,X that a(r_l = 1 and V(a) = 0.
Therefore, the reduction @ of W is ldetermin.ed up to multiples

of elements of H:‘C:.( Hence its (q-1)-th power 29! is a (non-

zero) differential of L of degree q-1, which is determined uniquely.

Now we claim that
Theorem 4 e = 5*.

(This shows in particular that (I)q—l belongs to K.)

The .proof is immediate. In fact, put W= v% (ye L,><

pe—

T €D, V(y) = V(§) = 0. Then @, = c-g¥go = c-Vn”

-1 -
- wq _ o-:)q l‘,

Thus, Eﬁq-l is directly defined by Theorem 4, without looking

at big extensions of K, and W is obtained by taking its (q-1)-th

root in a finite separable extension of K. As can be checked immedi-

ately, the field f(—(&_)) is nothing but the residue field of K(w)l.

Of course, ® depends on the choice of the normalizing constant

= —q-1
c. If c is unfixed, then W (resp. W d ) is determined up_to

—x1/q-1 . —X .
k -multiples (resp. k -multiples).




§Z The O -invariant S-operator and the differential .

§7—l V-integral S-operators We shall now consider some V-adic

properties of S-operators of K. (See {sl for the definition and
basic properties of the symbol < R > and the S-operators.)

X
Proposition 13 <”Z , £> 1is V-integral for any §,r( e D(K) .

Proof By Proposition 2 ( §>l-2), <”z , 3> remains unaltered
if we replace 71 or ;—’ by their kx-multiples. So, we can assume
V(%) = V(%) = 0. But then, V(%/%) = 0. Since V(dx)= V(x)
for any x € K, our assertion follows immediately from the definition

of <7z, §> Q.E.D.

Corollary 1 Let S be an S-operator of K. Then S<§'> is

V-integral for all %t if and only if it is so for one &.

Proof S<7z> - s{® = <"Z , §’> , and Proposition 13. Q.E.D.
An S-operator S will be called V-integral if S{§&)> is so. All
inner S-operators are V-integral.

Corollary 2 Let S be a V-integral S-operator of K, and let

i3 ’)Z be V-integral differentials of K, with ?= 7 4 0. Then
S(ey =50y
Proof Immediate, since (7% ,&) = <7,§> = 0. Q.E.D.

Let S be a V-integral S-operator of K. Then its reduction S,

which is an S-operator of .I-(—, will be defined by s(E) = S<%¥> (for

any geD(K) with V(g) = 0).



§7-~2 The 9 -invariant S-operator (I) Let O be a q-th Frobenius

map of K. An S-operator S of K is said to be J-invariant if

-
S(x¥y = S(§T> holds for all (or equivalently, one) ¥ & D(K)x-

Theorem 5 Let O be a gq-th Frobenius map of K. Then,

(1)_a o -invariant S-operator S of K is at most unique, (ii) S is

V-integral, (iii) S exists if K is complete.

Proof Take any ge D(K)X. " Then, the S-op'eratorshof K are of
the form S{%¥>= (%,¥ ) + C, C being an arbitrary constant of D2(K).
With this expression, S is @ -invariant if and only if {¥¢, §g> =
c - Co_. . Hénc:e.;s.(i:)._}an@::(i.’j'_i;) are immediate consequences of the
Corollary of Proposition 9 (§~6—l). To check (ii), let x be a.
regular element of K, and put S {dx) = y(dx)2 (yex). Ify =0,
then theré is no problem; so assume y 74 0. We have S (dx>°— — S<dx>
=S <dx°—> — s {dx> = <dx°, dx> ; hence by Proposition 13, this
differential is V-integral; hence ya'(dxc'—/dx)2 - y is V-integral.

But V(y7) = V(y) and V(dx“/dx) =V > 0 (Proposition 9); hence y

‘must be V-integral. This settles (ii). . : Q.E.D.



(II) Here, we note that an S-operator of K can be extended

uniquely to that of L, where L is either a separable extension

or the completion of K. The first case is already explained in

él—&, and the same argument applies to the second case. Indeed,
let S be an S operator of K, and take any % Q.D(Lf< and g G;D(Kf<.
Then, the formula SL<E> = <§ , O + S<§> defines an S operator

S .

L of L (independently of g ). It is clear that Sy, is the

unique S operator of L which extends S.

So, an S-operator of K can be'extended uniquely to that
of the completion of K, an unramified extension of K, or the
towers of such extensions (e.g., a complete unramified extension
of the completion of K). Since each such extension of S is unique,
we shall always identify it with S, and denote it also by S
(instead of S;). Note that the V-integrality and the g -invariance

properties of S are preserved by each of such extensions.

(I1I1) If K contains an associated differential O , then

the S-operator of K defined by

Slw> =0



is the (unique) O -invariant S-operator of K. Indeed, S <§>>= <§',U§>
(£ DY), so that §<EY - 5§ = (W7, wd= (ew,w) = 0.
Let us look at this very simple fact from the reverse side, since
we are often given a ¢ -invariant S-operator without knowing & .

Thus, it is somewhat useful to state the following theorem.

Theorem 6 Let o be a q-th Frobenius map of a complete field

K, and let S be the unique o -invariant S-operator of K. Then the

equation S{®w> = 0 has a solution & in a certain complete unramified

extension K(w) of K. Let L be the maximum complete unramified

extension of K and let X be the algebraic closure of k in L. Then

—

X
if k is perfect, () is a unique solution of sy =0 in D(L) ,

X .
up to {’-multiples.

Proof It is enough to take the associated differential @ in
L (see 66—3(IV)). The uniqueness i1s a direct consequence of
Propostion 2 (ii) (§ 1-2) and Proposition 10 ( §6-2). Q.E.D.

Remark The V-integrality of a J-invariant S-operator S
(Theqrem 5(ii)) can also be deduced immediately from the fact that
S is inner with respect to W, But then, we must use big field
extensions, This is why an alternative proof is given.

Remark Let S be a g -invariant S-operator. Then the solution
of S <g£>==0 generally exists only in a big extension of K. On the

other hand, the equation S <§’£> = 0 (mod ™) has a solution



g o€ D(KT for any n.. Indeed, take any £ € D(K)>< and put

o= ant® (aqe K). Then s (€. = XX =0 (mod 7 2™
by Proposition 9 (and by the V-integrality of S). Note that one
may choose a, in such a way that V( fn) = 0. The point is that,
in general, such 'partial solutions" fn cannot be chosen to be
convergent (even if K is complete). In any case, S must always be
an inner S-operator of -I_(-, which, as a necessary condition for the

0 -invariance of S, is not totally useless.

7-3 Digression; the Cartier operator 3} . In §7-3, and only
in this section, we are released from the previous notations and
assumptions. Here, k will denote any perfect field of character-
istic p > 0, and K will denote any (finitely or infinitely. generated)

—

dimensional regular extension of k, i.e., such an extension as
that satisfying dimr{—(-li-) =1, k : algebraically closed in T{, and
.K’/lzf: separably generated. Let D(-I-(.) be a one-dimensional vector

space over K. A differentiation d : K —> D(K) (see §l-l) will

be called a differentiation of K/k, if it is trivial on K, i.e

*

if its constant field {oke—fl EO(}‘= 0 contains k. It follows

easily from our assumptions that the differentiations d of K/k

form a one dimensional vector space over -'I_(—, and that if E% 0,

then its constant field coincides with _Kp.



Now, fix any non-zero differentiation d of K/k. Then the

Cartier operator of _IZ/E with respect to d is the unique map ¥

of D(E) into itself, satisfying the following conditions ( §1)~

(¥3):

( ¥1) §is semi-linear, i.e.,
§CE +7 ) = £C3) + ¥ ()
and
§ (o(P-5 ) = oL- ¥(E)

for any E,"z € D(K), oLcK.

(82) §(%) =0 if § is exact, i.e., if {= dX with some

A € K.

(¥3) ¥(%§) =% if is logarithmically exact, i.e., if
g = o 3ot with some e R

The unique existence of ¥ is proved in P. Cartier.[ ]. It
is also proved there that the converses of (5).2) and (y 3) ‘are valid.
Note that for A& -IZX, the Cartier operator of K/k with respect to
&-d is given by oL Y- ot-l. Let L be any separable extension of
_IZ, let D(L) = D(-Ii) %f, and let :if : L — D(L) be the unique
extension of d to L (see §1—4). Let { be the algebraic closure
of k in L, so that ;Q— is perfect, and 1/:0: is also one-dimensional
and regular. Clearly, El_f is a differentiation of —l—./j . Let gf
be the Cartier operator of f/:é with respect to Ei. Then it can

be checked immediately that Yf coincides with b) on D(-IZ).



— X ‘
Lemma 2 Let o€ K, and r20. Then

r r-1
g ldy = & law L. 2,
=0 ee.. r = 0.
Proof Immediate, by (¥2), (¥3). ° Q.E.D.
Corollary Let <xl,‘-' » X g be elements of K not contained

G~4

in Rp, and let ry) - --:>>rn}:0. Then the differentials o(?"lad&

-—

are linearly independent over k.

Proof This follows immediately from the lemma, by using the

iterates of X . | .E.D.

’

%7—4 A characterization of @ by S and ¥ . (I) Now we come

back to the notations and assumptions of §§1-1, 5-1. But now,

we assume further; namely that K/k is one-dimensional, that k is

perfect, and that k is algebraically closed inuﬁl It follows from

our assumptions that-E/E is separably generated} In fact, let x be

a regular element of K (see é 5-1). Then E;-# 0; hence'icﬁﬁl which
implies that X is transcendental over-E} But then, K/k(x) is

algebraic. Since 3£'+ 0, we conclude that K/k(X) must be separable.
Therefore,.E/E is separably generated. Note that this is not a

consequence of the perfectness assumption of E, since'EYE.may be



infinitely generated. At any rate,'Eyg-satisfies the assumptions
of §7-3.

Let o€ K. Then dX = 0 if and only if ol <& EP. On the other
hand, K/k is separably generated. Therefore, any element XL eX
not contained in k can be expressed as d= @pr ( @e_K_, r>0) with
3(3 3‘: 0. Let Ky be the completion of K, and let y & Ky. Then y

has a V-adic expansion of the form

ri . .
* = = P 1 > Ced
() Y=ije1 Y1 Tt gy €37

where 4r is a prime element of v, I and J are disjoint sets of
integers (containing only finitely many negative ones), y; are
regular elements of K, ri;z 0, and Cj are v-units of k. The follow-

ing Proposition is somewhat noteworthy:

Proposition 14 The constant field of Ky coincides with the

V-adic closure of k in KV.

Proof Let ky and ky be the constant field of Ky and the
V-adic closure of k in Ky » respectively. The inclusion k&c: kv
being trivial, we shall prove kV(: k&. Let y € ky, and let (%)
(above) be its V-adic expansion. Suppose I # 46. Put e = v(p),

r = bl‘lé.?{l + eri} , and I0 ={ iel l i+er; = r}' . Then we obtain,

by differentiating (%),
ri_,
—=P TTi_— e
2 iyi . dyi=0 (a-ek))
iel,



which is a contradiction to the Corollary of Lemma 2 ( §7—3), since
E;l 74 0 for i ¢I. Therefore, I = Qg . But then ye—k\',. Q.E.D.

£

(I1) Now let g p-, and let O be a q-th Frobenius map of K.

]

Take c €k with v(c) =V (= V(5); see é6—l), and let ¢ be an

associated differential, normalized by the two conditions w/wa= ¢

and V(W) = 0. Let w be the reduction of .

Theorem 7 We have

y5(@) = 3.0,

where a = (qc—l)é k. If q = p and v(p) = 1, thena # 0.

Proof Let x be a regular element of K, and 7T be a prime
element of v. Then x = x9 (mod 7T ), and hence x has a following
V-adic expansion (see (I) above):

o ry . .
x = x% 4+ ;Z: xg T + :ZL .7ty
iel jey J
where I and J are disjoint sets of positive integers, x, are regular

elements of K, ri;Z 0, and cj are v-units of k. By differentiating

this, we obtain

T.
-1 i r: p t-1
dx? = qxq dx + = Klp lx?‘ dx

iel i



_ _ . . . _ . 3
Put e = v(p), r = 1*1'12? di+ er.l}' , and ry = Mind ef, r }. Take
any ¢, & k™ with v(ey) = ry, put £ = cildxc—, and let I, be the
finite subset of I consisting of all i €I such that i + er; = r,.
Then IO ;é qb if and only if r < ef, and we have

—
—_—

.
(o) = EdiE o+ 2 a R Tl
lélo 1 1 1

ith 3,c &k and 7 =(qc. )ek; hence T # 0 if and only if ef<

with a € an a—qcle,enceaf if and only if ef<r.

Since ‘d_:—(, a;i 74 0, we conclude by (**) with the use of the Corollary

of Lemma 2 ((97—3) that § % 0. Therefore, ry =) . On the other

hand, by operating Xf on both sides of (*%*), we obtain by Lemma 2:
f —_—
J7(E) =

Since rb =73) , we may now put c1

I
|
o
~

c. Then, © -1 = (a;)q/%z by
Theorem 4(§6-4)' hence & = (g/dx)q/ q 'g— Hence Xf(-c‘fn) =

E&YT i) - T (e /e

—

dx = ac. On the other hand,
= (qc 7). If q=0p and v(p) = 1, then ef = 1< r; hence a 74 0.

Q.E.D.

In the case where q = p and v(p) = 1, we have V(o) = ry = 1;

hence one may normalize ¢« further by imposing wr/(,o = p. Then

w 1is given by

=1
P-

— p-1 dR -—
*k% =
() 5= (TGP E



where R is a V-integer of K such that
o
x = xP + pR (mod pz).

Since q = ¢ = p, we have @ = 1 in this case; i.e.,

Y (@) =3 .

(I11) The proof of Theorem 7 tells us that (0 can be expressed
explicitly by means of X and rs for iE?IO. Hence if one has a
sufficient knowledge about the expansion of xcl then one is able
to compute ZB; for instance, by the above formula (¥**) in the case
of q = p and v(p) = 1. But in the theoretically interesting cases,

o

one does not have a sufficient knowledge about the expansion of x.

Instead, one is often provided with a good knowledge about the

¢ -invariant S-operator S. Recall that if S is a U -invariant

S-operator of K, then S<CQ>= 0, S is V-integral, and hence also
E&(aat=0 (see §7-2). Thus, the following characterization of

is useful for its explicit calculatioms.

Theorem 8 Suppose that p is a prime element of v, and let

g be a p-th Frobenius map of K. Let S be the 0 -invariant

S-operator of the completion KV of K, so that S is V-integral

and S is an S-operator of.E-(§§7-l,2). Let (0 be an associated

differential (§ 6-3(IV)), normalized by the two conditions <0°7u>

vViw) = 0. let @ be the reduction of (), so that () is a

P,



differential of a separable extension of K, which is intrinsic up

to H:\:—multiples. Then « satisfies
(1) 5<&y = 0,
and
1) (@) =,

g/ being the Cartier operator.

Conversely, if L is the separable closure of ’K‘, then the two

equations (i) and (ii) for the differentials w € D(f)x determine

— <
uniquely up to -multiples, and thus characterize the reduced
w » P

associated differential.

Remark The condition (ii) is equivalent to the logarithmical
exactness of & (in _IZ( w), and also in T.; see é7-3).

Proof It remains to prove the converse. Take any ESe;D(i)x
satisfying S{®H'Y =0 and ¥(R') = w'. Put ' =cdw (oLeD.
Wenshall show that N.G'E;% First, since Y(w) % 0, @ is non—
exact in L. On the other hand, <Zf)',a3>= S(!) - sd= 0.
Therefore, by Proposition 2 (‘§l-l), we conclude @'/ % € Ker (d) = 1F
Therefore, oL =/§ P (ﬁef). But then, 1 = X(_&)')/ W =

1-p = _ ~l-p. p-1 _ x
B . &/(w)/w- B p’ hence /3 = 1. Therefore, o = BPGHTP.

Q.E.D.



%§ Theory of () under the weak congruence relation

§8-l The weak congruence relation (I) Let k be a field with

a non-trivial discrete valuation v, additive and normalized. Let
k be the residue field. We assume that ch(k) = 0, ch(E) = p >0,
and that k is algebraic over the prime field E%.

Let [ be a complete non-singular irreducible algebraic curve,
and‘EE,be a closed irreducible algebraic curve on EXE considered
as an algebraic correspondence of éf, both defined over k. Let

q = pf be a positive power of p. We shall assume that:

—

(i) { is a good reduction of Z;

(ii) (. the weak congruence relation):: Efq =§€ , and §€'contai

the q-th power correspondence

M= {txt?] veE}

as a simple component.

Here, in general, * denotes the reduction mod v of *. We say that
C 1s a good reduction of U, if ¢ has a structure of a v-variety

and is v-simple in the sense of Shimura [ ].

(I1) Here, we shall discuss some immediate consequences of
our assumptions. Let K be the field of k-rational functions on C.
We shall show that the above assumptions give rise to a discrete

valuation V of K satisfying the assumptions of §5—l, and a q-th



Frobenius map O of K. Let P and P be generic points of & and

E? over k and k, respectively. Take Qe {Y such that PxXQe€ X .

(By the weak congruence relation, X cannot be of the form PO><E’
(nor of Fx QO); hence this is possible.) Then PXQ is a generic
point of [/ over k. Let P9 denote the image of P under the g-th
power correspondence TT, so that PxPY is a generic point of 77'
over k. Put L = k(P, Q) , and identify K with k(P). Let G'L be

the specialization ring of PXQ —9'§><§q. Then, since Tr is a
simple component of 55, we conclude that C}L is a discrete valuation
ring in L, and that the corresponding discrete valuation VL has

the same group as v = VL K These are immediate consequences of

[ 1 (Th. 15, its Coroll. 2, and Prop. 5). Accordingly, the
restriction V of VL to K satisfies the assumption of éS—l on the
value groups (i.e., V(Kx) = v(kx)). Let D(K) be the space of
differentials of K/k, and let d : K — D(K) be the usual differen-
tiation. Then, since (i-e>.E§ is a good reduction, d is V-conti-
nuous. Hence the assumptions of §5~l are satisfied for K, V and d.
Now; the residue fields of K and L coincide; indeed,‘ﬁ_=—f_='E(_).
Since V and Vi have the same value groups, this implies that K is
Vi -adically dense in L. Accordingly, L may be considered as a sub-
field of the V-adic completion Ky of K. Since 3¢ cannot be of the

form ZfXIQO, Q is also a generic point of Cf over k; hence there is

a unique isomorphism of K into L (over k) that maps P to Q. Call



it ¢ . Then g maps the specialization ring of P> P to that of
Q —> §q, and hence leaves 3 invariant, and moreover induces the
q-th power isomorphism of the residue field K. On the other hand,
G- commutes with the differentiation d. Therefore, O is a gq-th

Frobenius map of K.

k(P QCK .IIT-
K—k(P) X
\/K =k (Q) %q
K

—

Note that k is algebraically closed inliz since ¢ is a good

reduction of [ .

é8-2 The ramification conditions, (I) In addition to (i))(ii)

( §8—l), we shall assume the following condition (iii). It is in
essence a condition on the ramifications of some covering maps
related to (f and ¢ (see (II) below), but it can be formulated more

simply by using fuchsian groups, as:

(iii) (¢, ¥ are those obtained in §3-1 (11).
Namely, we assume that k is embedded into ., and that there

is a fuchsian group of the first kind A and an element



£ €G- PSLo(R) with the following properties: /\ and E;”iﬂ}g
are commensurable and generate a dense subgroup of Gﬁi’ and Cf,:gf
are algebraico-geometric models of 2§fﬁ éﬁ(j;_l\iﬂ respectively.
The embedding of % into (X { is the one defined by the embedding
T— TX &T of Aﬂ{lA%_H into Ztﬂ % é_\\Hl'

The condition (iii) is for the existence of a natural and
sometimes calculable & -invariant S-operator of K. Indeed, let
S‘be the canonical S-operator of (i with respect to A. Then S is
k-rational by the Corollary of Theorem 1A (_}3—1). Hence it can
be cbnsidered as an S-operator of K. Let g‘é D(Kf‘. Then
S(E?m— s<{¥y = <d75, dTE = 0, since % is a linear fractional
function of T (see Proposition 2, é 1-2). Therefore, S is ¢ -invari
ant (in thé sense of @7-2).

We note here that the density condition for the subgroup of
GTR generated by A and Ef%gg is actually superfluous. 1In fact,
it follows automatically from the weak congruence relation. But

we will not stop here for the verification.

kII) We shall give another formulation of (iii). Let (%b be
a complete non-singular model of 2F over k. For each i = 1, 2, let
pry : C%O — [ be the covering map corresponding to the projection
of ¥ to the i-th component of XY, . Let g be the genus of C%,

and let P run over all points of é?. For each Réé(fo, let ?}(R)



denote the ramification index of the covering map pr; at R (i =1, 2)
Then, (iii) is equivalent to:

(iii)"' there is a 2%+\J(oo)—valued function e on (° such

that e(P) = 1 for almost all P, that

(#) 26 - 2 + %(1 - 1/e(P))>0,
and that the quotients

(b) e(pr; (R))/ € (R) i=1,2

are independent of i, and are integral (if finite). Moreover, the

two coverings pr,, Pr, are "essentially different,'" in the sense

2
that there is no algebraic curve (f/and rational maps fi : Z?4>tf/

(1 =1, 2) such that fyopr; = fyopry.

This last condition corresponds to the density condition
(in (iii)) of the subgroup of Gp generated by A and g_ﬁéxg .
We shall leave the verification of the equivalence of (iii) and
(iii)' to the readers. See § 2-2 for the one-to-one correspondence
A 4991{53 et}, and note that the assumptions of §'8-2 on the field
k implies i/z_}{ , and hence that k can be embedded into C.

Finally, we note that the function e in (iii)' is actually
unique. But this will not be used, and the proof will be omitted.
It is reduced to some properties of a certain family of subgroups

of a fuchsian group.



8-3 The Main Theorem 1. By applying our results of éé6ﬂﬂ to

the present case, we obtain the following Main Theorem 1. QOur

assumptions in this theorem are (i) (ii) ( §8—1 (1)), and (iii)

(§ 8-2 (I)). Before stating the theorem, we récall the following
natations:
K : the field of k-rational functions on (7;
V : the (additive) discrete valuation of K whose valuation
ring is the specialization ring of the reduction = E? 4
Kv (resp. kv) : the V-adic completion of K (resp. the v-adic
completion of k);
KS?(resp. Eﬁ) : the completion of the maximum unramified
extensioﬁ of K, (resp. ky);
*—>% : the reduction mod V;
D(*)>< : the set of non-zero differentials of the field *;
X : the Cartier operator;

S : the canonical S-operator of (¢ w.r.t. A .

Recall that S is by definition the unique S-operator of {3 such

that ${dT> = 0, where ‘T is the inverse of the covering map

H_;EH G & (see §2).



Main Theorem 1 (i) The canonical S-operator S is k-rational.

So, S will henceforth be considered as an S-operator of K.

(ii) S is moreover V-integral.

So, we can consider its reduction mod V, denoted by'§-(see §7—l).

(iii) The equation S{w)y = 0 has a V-adic solution  in

D(K?Y‘, which is unique up to (Eﬁ)x—multiples. This differential

[« <]
is non-exact in KV.

(iv) If @ is suitably normalized and k is so taken that

k :)lﬁq, then the Galois group of Kv(u))/Kv, in the sense of §6-3,

is abelian and is isomorphic to a closed subgroup of the v-unit

group of kv.

(v) Normalize (o to be a V-unit. Then, a}q’l is a non-zero

— —x%
differential (of degree q-1) of K, intrinsic up to k -multiples;

and G satisfies the two equations: .

SE> = 0, yi(o) =z (@ek).

(vi) If £ =1 (i.e., q = p) and v(p) = 1, we can normalize

(o further in a certain manner ( §7-4 (I1)). This normalization

. . —p-l . — - x
determines » uniquely, and hence ¢ up to be-

differential > satisfies the above two equations with £ = 1, a = 1,

multiples. The

and is moreover characterized by these two equationms.




Proof We have checked (i) and the & -invariance of S
( §8—2(I)). Since g is a gq-th Frobenius map ( §8-l (I1)) of K,
(ii) is a special case of Theorem 5 (ii) ( é7-2). After extending
the differentials, the differentiation d, the Frobenius map o,
and the S-operator S of K to Ky, and further to Kéo(see ééS—Z, 6-3,
7-2 (I1)), apply Theorem 6 ( §7—2) to conclude (iii), and Theorem 3
( %6-3(V)) to conclude (iv). Here, note the following. By Proposi-
tion 14 ( $7-4), the constant field of Ky is k,, and that of K{ is
kgb. On the other hand, if kD qu, then the Galois group of
kzykv is contained in the group topologically generated by O"lksq
Therefore, the ¢ -invariant elements of ktomust belong to k,, (cf. the
argument of §6—3(II)), and hence the assumptiions of Theorem 3 are

satisfied. The assertions (v), (vi) follow immediately from

Theorems 7, 8 ( @7-4). .E.D.

§8-4 V-integrality of S for the Morita's models. We shall keep

the notations of 63-3 including those used in the proof of Theorem 1C
The Shimura models éf for ‘&iﬂ are unique up to biregular morphisms
over k ([ ]). It is probable that among the Shimura models C?,

there exists such a nice model Zj* as would satisfy the following

conditions.



(C*l) 6* has a good reduction E* at every prime divisor 7}

of k = C(F,} ) not dividing [-D(B/F).

(5*2) For each such TS’, let gg be its restriction to F, and

let. £ be an element of A(p such that ’L;(g )%GLZ(@}’)' Let €

* . . .
be the algebraic correspondence of & defined with respect to this

T ( §3-l(II), §>8—2(I)). Then the reduction ¥ of =¥ modulo fig
d

— % i
contains a q--th power correspondence of £ as a simple component,

where q = kl}dém and d>0. .

Y. Morita [ ] constructed such a nice model ¢ , when F = .
Therefore, by the Main Theorem 1 (ii), we conclude, for instance,
that if ﬁ: =@ and ¢ = 1, then the canonical S-operator of é*
is '"p-integral" for all p*D(B/@), i.e., ${%) is finite with
respect to the reduction t*_% % * mod p, for any @-rational

differential ‘g+ 0 of 6*.

§8—5 Calculation of W in certain triangular cases (I) The
Main Theorem 1 (vi) provides us with a principle of explicit ;:alcu-
lations of @ in the following special cases, where in addition to
(1), (ii) (§>8—1(I)) and (iii) (§8-2(I)), the following assumptions
are fulfilled:

(iv) A is commensurable with a triangular fuchsian group

(see §2-4);




(v) q=p, and v(p) = 1.

First, in view of the assumption (iv), we can compute the
canonical S-operator S of ti explicitly by combining the Corollary
of Proposition 7 ( §2-4) with Proposition 5' ( é2"2). By the Main
Theorem 1, S is k-rational, V-integral, and G satisfies S<{&>= 0.
Solve the equation §< fﬁ>= 0 in the separable closure L of field K.
It is equivalent to solving the corresponding linear differential
equation of degree two (see §l—5)*). But L is a p-dimensional
vector space over the constant field E.=-ip, and the corresponding
differential operator is an.gz-linear map of L. Hence it is the
question of calculating some pX p matrices over‘ZT(cf. the example
of él—é). Now let € € D(L)>< be any solution of §<§>= 0, and
put @'= (K §)/§)§€T.§. Then @' is another solution, and

satisfies X(D') =_(;J/; hence. ! = w (by the Main Theorem 1 (vi)).

(II) We shall put in practice the calculations of @ assuming
(in addition to (i) (ii) (iii)) the following conditions (iv)*,
(iv)**’and (v)*. The conditions (iv)* and (v)* are stronger than
(iv) and (v) of (I).

. * . .
(iv)" A is triangular.




Let (éggr)* denote the compactification of QEH. Then (iv)* implies
that (Zigg)* is of genus 0 and that there are exactly three points P
on (Z§§')* with e(P) > 1. Here, as in é2~2, e(P) is the ramifica-
tion index of the covering map H — 2§WC;(2§ﬁI)* at P. Hence there
is a biholomorphic map x : (éigl)*~4> q:\J(oo) such that x(P) = 0,1,00
for the above three points P of (Z&QI)*. As is well-known, there
are six different choices of x; namely, if x is one of them, the
others are given by x"l, 1-x, l—x'l, (l—x)'l, (l—x“l)'l. Fix any
one x, and regard Qj\/ () as a rational algebraic curve. Put
e(P) = eps el; e,,» accordingly to x(P) = 0, 1, co, respectively.

*k *
(iv) Cf is a rational curve, identified with (;§§’) in

the above manner.

This condition will be abbreviated as ”(f is a rational x-curve."

*
(v) q=7p % 2, v(p) = 1, and the following two congruences

hold for some suitable choice of €; = £1 (i =0, 1,00):

P = Ei (mod.ei) .- i=0, 1,00,
2 E5 20 (mod 2).
e.
i

im0,

(E.g., p =1 (mod 2e;) for i = 0, 1, ©0.) In particular, ej are

not divisible by p.

Now we shall calculate (. By the Corollary of Proposition 7
(§$2—4), the canonical S-operator S of Cﬁ with respect to A is

given by the formula



2
S <dx>> _ ax + bx + ; (dx)z ’

2
x (1 - %)
with
*
a - L 1, a+b+c =-}§ -1, c =-&§ - l.)
e, e] ey
Therefore, if we put
€
J; === (i=0,1,00)
i
and consider ¢ ; as elements of F,, then
- ot? +Bt +¥ . \2
s{dty = (dt)”~, _
2 2
t(l - t)

with

o(+1=Qoo?', o¢+(3+5)+1=qi, Y+ 1

I
YO
oN

Hence we can apply the results of §1-6. Put

Then, A’, B, C of §l—6 are given by

1 1 |
2 +p+gytg tee) F(L+p+gyta - gy, 1 +g,s

1

respectively. Since-e{)l + ei + e;}‘<.l ((e2) of §2-2), it follows

*) Recall that we used the condition " A and g‘&gg generate
a dense subgroup of Gg," only to deduce the k-rationality of S (by the
Corollary of Theorem 1A). But here, the k-rationality is obvious by
this explicit formula. Hence we need not check the density assumption
in the triangular case. See also the remark at the end of §8~2(I).



easily that 1<C<B<A<p and —%—(p + 1)< AT Therefore, by &1 6, the
solutions of (£1) are 1 dimensional, and one of them is given by

u(t) = £(&", B C; t).

Put
5y = 3 —1—g) (i =0, 1, 20).
Theorem 9 The notations and the assumptions being as above,
we have
— E(p-1 u(t) L (p-
(*) (o) 2P (@)1

The degree of the polynomial u(t) is p - A% and the roots of u(t)

are simple and are neither O nor 1.

Proof First, we shall check our assertions on the polynomial
u(t). Since u(t) = £(4° B; C; t) and 1< C< B< A< p, the degree
of u(t) is p - A. It is clear that u(0) % 0. That u(l) ¥'O
follows immediately by changing the variable t —> 1 - t. That u(t)
has no multiple roots follows by an argument of Iguéa (F 1).
Namely, if u(t) has a multiple root A, then u(AA) = g%(;\) = 0;
hence gE}Zl()\) = 0 by (61) (since A\ # 0, 1). By differentiating

(lq), we obtain successively g—g()\) = +-- = 0, which is a contra-
dt

diction since u(t) is a non-zero polynomial of a degree less than p.



Now let us define by the formula (*), and complete the
proof by showing that () satisfies the two equations §<d5> =0

and Y(&) = @ . Put

u(t)

A T

Then v(t) concides with t%(l_?O)(l - t)%(l“gi) u(t), up to (T5)P-

I

multiples, L being the separable closure of K Fp(t). Hence v(t)
satisfies the equation (b ) of §l—6. But @ = v(t)ﬁgIat; hence
(o coincides with v(t)—zdt up to (fx)p-multiplesﬁ Therefore, &
satisfies (#f); i.e., §<ﬁ5> = 0. On the other hand, the ¥ —invari-
ance of @ 1is equivalent to the following:

Lemma 3 X(v(t)-zdt) = ¢ dt (ce}F;).

To check this, put y(t) = u(t:)pv(t)"2 = tza%l - t)Z&h(t)p‘z.
Put H = deg u(t) = p - A. Then y(t) is a polynomial of degree
p(H+ 1) + g, - 1, which is strictly smaller than p(H + 2) - 1.
Therefore, y(y(t)dt) = z(t)dt with some polynomial z(t) of degree
at most H. But since 8)(v(t)'2dt) = u(t)”lz(t)dt, it suffices to
show that z(t) is divisible by u(t). Therefore, it suffices to show
that y(v(t)-zdt) has no poles at the roots )X\ of u(t). Let A be
a root of u(t). Since it is a simple root, the pole of v(t)-zdt

at X\ is of order 2. Hence it is enough to show that the residue

of v(t)-2dt at )\ is zero, or equivalently, that



Qd—i—‘?ﬁ{tz%(l - t)z&u(t)-z(t —>\)2 fex 0.

This 1s equivalent to
-1 -1 ST -1
+ - nlo —x) =,
SoXTHH SN - D= 2 (A=)
where M runs over all roots # X of u(t). But
ZEA A ) = ay/ay,
where

2

u(t + X ) = ajt + aytt +eov;

d - 1 d
hence a, = E%(/K), a, =5

2, ‘
5 2()\). But by (LI)’ we obtain

dt

—(>\)
A(L - )) + (= + B+ D) =
da ()
dt
whence

7 vl B+ DA
P\ 2 0( n-1)

= g0>\_l + (gl( A - l)_];

which Proves‘Lemma 3 and hence also Theorem 9.

%8-6 The differential v in the elliptic modular case(?DThis is

the case of A= PSLZ(Z). Put H* = H\JQL/(cXO, so that Zigr compacti

fies Zgﬂ . Put i = -1, Q= %(-1+ [73), and let P*, PQ, P



* ot
respectively denote the points of Ziﬂ represented by i, §¥ ,00e H".

. 0 oo
Then, e(P) = 2, 3, co, or 1, according to P = Pl, P, P , or

others. Since the genus of ;gﬁﬁ is 0, this shows that A\ is tri-
angular. Let j(7°) be the "analyst's modular function,'" i.e., the

ko .
unique biholomorphic isomorphism j : éim —> L/(Cuo that maps P!,

PQ, P” to 1, 0,c0 respectively. Put J(7T) = 123j(”t) ("arithme-

tist's modular function'"), and first, take éf to be the rational

curve with the coordinate variable J(T).

Let p be any prime number, and let 8* be/ the element of Gg,
which is represented by the matrix 8 ?) modulo scalar multiples.
Let ¢ Dbe any element of the double coset [&E?Z&. Then gm&lg
is conjugate, by some element of[&, to the group

M/ P‘lb> (a b)e A} .

o\—\pc d / c d ’
hence (A : A A Ef%}E, ) = ( gﬁaﬂ AT gf%ﬁ&i ) =p + 1. The
correspondence Effdefinéd by €& (as in }8—2) consists of all points
on ExC of the form (J(%), J(€T)) ( TeH'). Let P(X,¥) = 0
be the irreducible equation defining ¥ . The polynomial §> is deter
mined only up to constant multiples, but we know that if the constan
is suitably chosen, then: @(X, Y)e z[X, Y], and morecver that the

Kronecker congruence relation is satisfied, i.e.,

X, Y) = (¥ —xP)(¥P - x) mod (pz[X, Y1);



(cf. e.g., Deuring [ 1). In other words, ~ and 3 are defined

over{), and

holds, where TT is the p th power correspondence of éf, andﬁﬂﬂis
the transpose of [[. Therefore, the conditions (i) (ii) (iii)
(§§ 8-1, 2) are satisfied with k ={) and q = p.

First, we shall specialize the notations of %8»1(11) to this
case. Let J be a generic point of & over () , and let (J, JNe X .

. . \ a

Then, with the notations of %8-2, we have K ='$1(J), J =J' and
L=_(J, J'). The valuation V of K is defined by

¢ EDY _ ; .
V'(p g(J)) c, or f(J),g(J)C’Z[J}é pZ[J]

By the Kronecker congruence relation and Hensel's lemma, there is
a unique solution * of the equation @%J, *) = 0 in the completion
Ky of K, and it satisfies * = JP(mod p). Hence there is a unique
K-isomorphism of L into Ky > and if L is considered as a subfield
of Ky by this embedding, then J' = Jp(mod p); hence o induces a
p-th Frobenius map K — Ki;.KV.

Now let & be the differential associated with o ( in the
sense of ?6—3(IV)), normalized by the two conditions 0?7u) =p
and V(&) = 0. We shall’calculate w by applying Theorem 9 ( §8-5).

First, let p f 2, 3, and now take éj to be the j(T)~curve (instead




*
of the J(T:)»curve)%) Then, the conditions (iv)*, (iv)** and (V)

= 3, 2, c0,

of $8-5(II) are satisfied for x = j (hence eps> €15 €.

respectively). The signs of £o» El are determined by the congru-
ences p = Eo(mod 3), = %l(mod 4), whereas ¢_., can be either of *1.
Therefore, Theorem 9 gives the following explicit formula for .

1

3(p-1)

(Note that w is determined up to Fg~multiples, and hence (&

up to the signs.)

() 53D _ 4 B (4py3Ee-1) (T =Ty,
Q(T) /
where
P(T) = T%(l_go)(T —-123)%(l_€1)u(T),
1 - 1 -
Q(T) = TS(p 0) (T _ 123)4(17 El)’
u(T) = £(p - H, p - H; 22 4+ 1; 12737,
H = P-6,.¢ .9
12 6 4

u(T) is a polynomial of degree H such that u(O)u(iﬁB% 0, and has
no multiple roots.

In the cases of p = 2, 3, the difference between j(z) and
J(T) is of essential naﬁure, and replacing J(T) by j(T) would

break down the congruence relation. Thus, we cannot apply the

*) This change (for p # 2, 3) will not affect o, nor conse-
quently w .



result of our calculations of éS—S to the cases of p = 2, 3. But
we can apply the same method. The calculations are easy, and we

obtain

Remarks We obtain the same differential «*, but in different
forms of expression when we replace A by the congruence subgroups
(see§ ). For instance, if we replace A and J(T) by the
principal congruence subgroup of level 2 and the A_-function, we

obtain the following simpler expression of w for p # 2:

- 5(p-1) u, (A) 5 3(p-1)
*%k \ =%t 2 d)
(%) w {;\(—7\ _ 1)}%(13—1)( A)

p-1

_ -1 p -1 _ X
where uz()\) = f( 2 s E ;s 1 X)) = Zl: /
2 2 =0 \ 1 /

P-1y2 .
)75

Of course

—

the formula should also be obtained by substituting the equality

in (%).

Another point to note is that we shall still obtain the same
differential w, 1f we téke ¢ from the double coset [ggfix
(£Z21) and normalize « by u?Vco = pf. Indeed, the Frobenius map
for this case is nothing but ﬁhe f-th iterate of the former . Seef

— 45— |



