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Introduction

Let K be a global field, i.e., either an algebraic number field of finite degree (abbreviated
NF), or an algebraic function field of one variable over a finite field (abbreviated FF). Let
ζK(s) be the Dedekind zeta function of K. As in our previous article [E-K], we denote by
γK (∈ R) the quotient, the constant term divided by the residue, in the Laurent expansion
of ζK(s) at s = 1. In other words,

(0.0.1) γK = lim
s→1

(
ζ ′K(s)

ζK(s)
+

1

s− 1

)
.

We consider γK as an invariant of K, and for various families K of global fields, shall
study the behaviour of the distribution of values of γK for K ∈ K.

As for the main motivation of this study, some basic results, and for connections with
other arithmetic problems, see [E-K]. Here, we only recall that the value of γK becomes
”very negative” when K has many primes with small norms (e.g. has many rational points
in the FF-case), while it becomes (small and) positive when K has only few primes with
small norms.

In this article, after some preliminaries (§1), we shall show an elementary treatment
for the FF-case (§2), and in §3, shall exhibit some pictures showing the distribution of
the point

(0.0.2) PK = (2 log log
√
|dK |+ 2, γK + 1)

on R2, where K runs over some given family K of number fields (dK : the discriminant of
K). The set of families K that we shall consider includes the family of real or imaginary
quadratic fields, that of real biquadratic fields, the full cyclotomic fields, their maximal
real subfields, and that of the first layer Kp of the (unique) Zp-extension over Q, where
p runs over the odd prime numbers. We shall see how different the pictures look like
depending on K, and shall discuss some related new problems.
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§1 Preliminaries

1.1. The invariant γ∗K

Instead of γK itself, we prefer to use the normalized invariant

γ∗K = γK + 1 (NF ),(1.1.1)

= γK + cq (FF ),

where

(1.1.2) cq =
q + 1

2(q − 1)
log q,

q being the number of elements of the constant field of K. (Note that cq > 1 and that
limq→1cq = 1.) As noted in [E-K], this makes several basic formulas simpler. For example,
γ∗K = log q when K is the rational function field over Fq.

In terms of ζK(s), this γ∗K can be expressed as

γ∗K = lim
s→1

(
ζ ′K(s)

ζK(s)
+

1

s
+

1

s− 1

)
(NF ),(1.1.3)

= lim
s→1


ζ ′K(s)

ζK(s)
+

∑

qθ=1,q

1

s− θ


 (FF ),

where the sum in the formula for the FF-case means the limit, as T → ∞, of the sum
over all poles θ of ζK(s) with |θ| < T . As in [E-K], put

αK = log
√
|dK | (NF ),(1.1.4)

= (gK − 1) log q (FF ),

where dK is the discriminant and gK is the genus. Also, put

βK = −r1

2
(γQ + log 4π)− r2(γQ + log 2π) (NF ),(1.1.5)

= 0 (FF ),

where r1 (resp. r2) is the number of real (resp. complex) places of K, and let ΛK(s) =
ΓR(s)

r1ΓC(s)
r2ζK(s) be the ”completed zeta function”, where ΓR(s) = π−s/2Γ(s/2), ΓC(s) =

(2π)−sΓ(s). Then ([E-K]§1.3-1.4)

(1.1.6) γ∗K + βK = lim
s→1

(
Λ′K(s)

ΛK(s)
+

1

s
+

1

s− 1

)
(NF ),
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and in terms of the non-trivial zeros of ζK(s),

(1.1.7) γ∗K + αK + βK =
∑

ρ

1

ρ
(NF and FF ),

where ρ runs over all non-trivial zeros of ζK(s) (counted with multiplicities), and the
summation over ρ means the limit, as T → ∞ , of the sum of all those ρ with |ρ| < T .
Note that this sum is positive unless gK = 0; hence

(1.1.8) γ∗K > −(αK + βK) (NF, and FF with gK > 0).

Remark Why not choose, instead of γ∗K , the quantities γ∗K + βK , or γ∗K + αK + βK?
(The latter is connected directly with the symmetric form of the functional equation.)
The main reason is that, in general |γ∗K | is much smaller than |βK | or |αK |. For example,
when K is a cyclotomic field Q(µm), the order of expected magnitude of γ∗K is log m, while
−βK , αK are of orders m, m log m, respectively. At least in studying anything related to
the size of the invariant, such as upper or lower bounds, we do not want that any delicate
property related to the size of γ∗K be absorbed into that of |βK | etc.

Note also that in most of the known formulas for γ∗K (cf. [E-K]), γ∗K is expressed as
the difference of two (larger) quantities (or as the limit of such differences). Roughly
speaking, the invariant γ∗K is not the main term but appears as the ”second term”. (One
exception is the expression (II) for the FF-case (§2.1).)

1.2. The additivity

Let K/k be any finite Galois extension of global fields with Galois group G. For each
irreducible character χ of G, let L(χ, s) denote the associated Artin L-function. Then
from the multiplicative relation

(1.2.1) ζK(s) = ζk(s)
∏

χ6=χ0

L(χ, s)χ(1)

among the zeta and the L-functions follows the additive relation among the constants

(1.2.2) γK = γk +
∑

χ6=χ0

χ(1)
L′(χ, 1)

L(χ, 1)
.

(χ0 denotes the trivial character.) For each subgroup H of G, let kH denote the corre-
sponding fixed subfield of K, and ψG/H denote the character of G induced from the trivial
character of H. Then it follows easily that whenever

(1.2.3)
∑
H

aHψG/H = 0
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holds for some system (aH)H of rational numbers aH , we have (
∑

H aH = 0 and)

(1.2.4)
∑
H

aHγkH
= 0.

In the NF-case, and in the FF-case where k and K have the same constant field, the
difference γ∗kH

− γkH
is independent of H ; hence

(1.2.5)
∑
H

aHγ∗kH
= 0

holds also for the γ∗-invariants.
The distribution of values of the additive factors L′(χ, 1)/L(χ, 1) of (1.2.2) on the

complex plane will be discussed in our future articles.

Examples (i) G = (Z/p)2 (p : a prime). Then

(1.2.6) γK =

p+1∑
i=1

γki
− pγk,

where ki (1 ≤ i ≤ p + 1) are the subextensions of degree p.

In what follows, Sn will denote the symmetric group of degree n, and ki will denote
a subextension of K/k of degree i, determined uniquely up to conjugacy in each of the
following cases, except for k6 in (iii) which will mean the unique non-Galois one.

(ii) G = S3

(1.2.7) γK = 2γk3 + γk2 − 2γk,

(iii) G = S4

γK = 3γk6 + 3γk4 − γk3 + γk2 − 5γk(1.2.8)

= 3γk8 + 2γk3 − 2γk2 − 2γk,

(iv) G cyclic. Then, no general relations of this type follow from such a group theoretic
argument.

In the FF-case, there are (of course) many multiplicative relations among the zeta and
the L-functions that do not follow from such a group theoretic argument. For example,
if gK = gk = 0, then ζK(s) = ζk(s) (and L(χ, s) = 1 for all χ 6= χ0). There are also some
relations which hold only after specialization to s = 1. For example, there is a quadratic
extension K of k = F2(t) with gK = 2 such that γ∗K = γ∗k = log 2 (see §2.3).
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§2 The function field case

2.1. Various expressions for γ∗K/ log q

Let K be a function field of genus g = gK with exact constant field Fq. Put u = q−s.
So,

(2.1.1) ζK(s) =
P (u)

(1− u)(1− qu)
,

with a polynomial P (u) with coefficients in Z of the form

(2.1.2) P (u) =

g∏
i=1

(1− πiu)(1− π̄iu) (πiπ̄i = q (1 ≤ i ≤ g)).

We shall exhibit here (in addition to (1.1.7)) 4 different expressions (I)∼(IV) of γ∗K/ log q.
They are all essentially the same, and can be derived from one another trivially ([E-K]
(1.4.3)), but one can observe from each expression some different features of the quantity
γ∗K/ log q. In what follows, P ′(u) = d

du
P (u), FrobK is the q-th power Frobenius endo-

morphism acting on the Jacobian JK of the complete smooth curve CK corresponding
to K, and Nm (m = 1, 2, · · · ) is the number of Fqm-rational points of CK . Note that
P (1) = hK = |JK(Fq)| is the class number of K, and recall that

(2.1.3) γ∗K/ log q > −(g − 1) (g > 0)

by (1.1.8).

(I) γ∗K/ log q =
(

P ′(1)
P (1)

− g
)
− (g − 1)

(II) = 1 +
∑g

i=1

(
1

πi−1
+ 1

π̄i−1

)
= 1 + trace((FrobK − 1)−1)

(III) = (q − 1)
∑g

i=1
1

(πi−1)(π̄i−1)
− (g − 1)

(IV) = 1 +
∑∞

m=1
qm+1−Nm

qm .

The first expression (I) shows that γ∗K/ log q is a rational number, and that the de-
nominator divides the class number hK . It also shows that

(2.1.4) γ∗K/ log q ≡ 1− 2g (mod p) (p = char(K)),

when the p-rank of CK is 0.
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(II) shows a slightly stronger conclusion that the denominator of γ∗K/ log q divides the
exponent of the finite abelian group JK(Fq). This expression also shows (by the Weil’s
Riemann Hypothesis for curves) that γ∗K/ log q belongs to the closed interval

[1− 2g√
q+1

, 1 + 2g√
q−1

].

This gives a good upper and a lower bound when q À g. In particular, when g is fixed
and q →∞, γ∗K/ log q tends to 1.

(III) shows that γ∗K/ log q is related to the harmonic mean (the inverse of the arithmetic
mean of the inverses) of g positive real numbers (πi − 1)(π̄i − 1) (1 ≤ i ≤ g). In fact,
their arithmetic, geometric, and harmonic means are given respectively by





a.m. = N1g
−1 + (q + 1)(1− g−1),

g.m. = h
(1/g)
K ,

h.m. = (q−1)g
(γ∗K/ log q)+g−1

(2.1.5)

([E-K](1.4.5)). Thus, in a sense, γ∗K/ log q is the ”third daughter” having N1 and hK as
”elder sisters”. The well-known general inequalities assert that h.m. ≤ g.m. ≤ a.m.. Note
here that the denominator in the above formula for h.m. is always positive and hence h.m.
can become as large as possible only when γ∗K/ log q is as close as possible to 1− g (hence
in particular, negative). It is a new invariant; it cannot be expressed only by (q, g), N1

and hK , unless g ≤ 2. There have been a lot of work done by many authors to find K
having large N1, and also towards the other direction, to find K having small hK . Here,
we shall be interested in finding K having negative minimal and positive maximal γ∗K
for some given (q, g), at the moment mainly for curiosity, but also keeping in mind the
possibility of further interesting comparison with the NF-case.

Remark A word on a negative aspect. A characteristic property of harmonic means is
that if one of the members is very close to 0, then the harmonic mean will also be close to
0, no matter how large all other members are. In our case, however, each of (πi−1)(π̄i−1)
is separated from 0 by at least (

√
q − 1)2. So, the present environment is not so suitable

for ”her” to make full use of this general property.

Examples (i) K = Fp(x, y); yp − y = x2, with p ≡ 1 (mod 4). Then

g = (p− 1)/2, P (u) = (1− pu2)g,
N1 = p + 1, h = (p− 1)g, γ∗K/ log p = 2;

a.m. = p + 1, g.m. = p− 1, h.m. = (p− 1)2/(p + 1);

(ii) K = F8(x, y); x7 + y7 = 1. Then g = 15, and

N1 = 21, h = 26.715, γ∗K/ log 8 = −2;
a.m. = 9.8, g.m. = 9.236, h.m. = 8.75.
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The fourth expression (IV) is an infinite one, but this shows first that γ∗K/ log q tends
to be negative when Nm for small m’s (esp. N1) are big. See [E-K] (and [Ts2]) for the
extreme negative case. Secondly, from (IV), we easily obtain a nice upper bound for
γ∗K/ log q when g À q. To see this, let g ≥ 1 and denote by M the smallest positive
integer satisfying

(2.1.6) qM/2 + q−M/2 ≥ 2g,

or equivalently,

(2.1.7) M ≥ 2 log(g +
√

g2 − 1)/ log q.

Proposition 1

γ∗K/ log q ≤ M +
1− q1−M

q − 1
+ 2gq−M/2(1− q−1/2)−1(2.1.8)

≤ M +
1− q1−M

q − 1
+

1 + q−M

1− q−1/2
.(2.1.9)

The second bound is weaker but its approximate size (below) is more apparent.

2 log g/ log q + O(1) (O: absolute).

Proof The simplest combination of the obvious inequalities Nm ≥ 0 and the Weil’s
Riemann Hypothesis for curves, in (IV). Namely, use

(2.1.10) qm + 1−Nm ≤ qm + 1

for m < M and

(2.1.11) qm + 1−Nm ≤ 2gqm/2

for m ≥ M . 2

Remarks (i) If we use Nm ≥ N1 instead of Nm ≥ 0, then we obtain, similarly,

(2.1.12) γ∗K/ log q ≤ M ′ + (1−N1)
1− q1−M ′

q − 1
+ 2gq−M ′/2(1− q−1/2)−1,

where M ′ is the smallest positive integer satisfying

(2.1.13) M ′ ≥ 2 log(g +
√

g2 + N1 − 1)/ log q.

This is useful when N1 is large.
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(ii) Let us compare the upper bound given by [E-K] (Th.1(FF)) and the above Proposition 1. First,
we note that by changing the proof of the former slightly (instead of using cq just as a number > 1, use
this as the difference between γ∗K and γK), we obtain

(2.1.14) γ∗K/ log q <

((
αK + 1
αK − 1

)
(2 log αK + 1 + log q) + 1

)
/ log q,

under the restriction g > 2, or g = 2 and q > 2. Call UB0 (resp. UB1) the right hand side of (2.1.14)
(resp. (2.1.8)). Then they are both 2 log g/ log q + O(1), but for q ≥ 7, UB1 is slightly smaller and hence
gives a better bound. (On the other hand, for smaller q , UB0 is better when g is large enough; e.g.,
UB0 < UB1 holds for q = 2, g > 7.)

Thus, for each fixed q, lim sup((γ∗K/ log q)/ log g) ≤ 2. The author has not succeeded
in deciding whether lim sup(γ∗K/ log q) = ∞ or not. As for the lower bound, we know
([E-K]) that lim inf((γ∗K/ log q)/(g − 1)) is (finite and) negative for each q and is equal to
−(
√

q + 1)−1 when q is a square.

For each m ≥ 1, denote by Bm the number of prime divisors of K with degree m, so
that

(2.1.15) Nm =
∑

d|m
dBd.

Then (IV) can be rewritten in terms of Bm as

(V) γ∗K/ log q = 1 +
∑∞

m=1
m(B0

m−Bm)
qm−1

,

where B0
m is ”Bm for the genus 0 case”, i.e., the number of conjugacy classes of elements

of degree m over Fq for m > 1 , and this added by one when m = 1. If one tries to
use this to improve Proposition 1 (because Bm ≥ 0 is slightly stronger than Nm ≥ 0),
some complications arise in the evaluations of m(B0

m − Bm) using the Weil’s Riemann
Hypothesis.

We end this § by giving a general formula for γ∗K/ log q in terms of (B1, ..., Bg), for
some small g.

(g = 0) γ∗K/ log q = 1,

(g = 1) = q−1
B1

,

(g = 2) = −1 + 2(q − 1) B1+q+1
B2

1+B1+2B2−2q
,

(g = 3) = −2 + 3(q − 1)
B2

1+(2q+3)B1+2(B2+q2+1)

B3
1+3B2

1+6B3+B1(6B2−6q+2)
,
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and so on. In each case of g > 0, the denominator is g! hK .

2.2. QuasiCurve data (QC data)

Fix a prime power q and a non-negative integer g. Let P (u) be any polynomial
of degree 2g with rational integral coefficients. Consider the following conditions to be
imposed upon P (u);

(O) P (0) = 1,

(FE) qgu2gP ((qu)−1) = P (u).

The polynomials P (u) =
∑2g

i=0 aiu
i (ai ∈ Z (0 ≤ i ≤ 2g)) satisfying (O) and (FE) (i.e.,

a0 = 1, a2g−i = qg−iai (0 ≤ i ≤ g−1)), and the ordered sets BT = (B1, · · ·Bg) of g integers
B1, · · ·Bg ∈ Z, are in a one-to-one correspondence with each other via the congruence

(2.2.1)
P (u)

(1− u)(1− qu)
≡

g∏
i=1

(1− ui)−Bi (mod ug+1).

Extend BT to an infinite sequence (Bm)∞m=1 of integers Bm by the identity

(2.2.2)
P (u)

(1− u)(1− qu)
=

∞∏
m=1

(1− um)−Bm

in the formal power series algebra over Z. Note that the comparison of coefficients of
u, u2, · · · inductively determines B1, B2, · · · .

In addition to (O) and (FE), consider also the following ”Weil Riemann Hypothesis”;

(RH) all reciprocal roots of P (u) have (complex) absolute values q1/2.

Note that P (u) satisfies all these conditions (O),(FE) and (RH) if and only if it is of the
form

(2.2.3) P (u) =

g∏
i=1

(1− πiu)(1− π̄iu) (πiπ̄i = q (1 ≤ i ≤ g)).

By Honda-Tate theorem, such P (u) correspond bijectively with the Fq-isogeny classes of
g-dimensional abelian varieties over Fq (the characteristic polynomial of the Frobenius
action on the Tate modules). When BT corresponds to such P (u), we call BT an abelian
datum.

When (2.2.2) is equal to the zeta function of some function field K over Fq, then Bm

is the number of prime divisors of K of degree m; hence, necessarily,
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(Non-Neg) Bm ≥ 0 (m ≥ 1).

When BT satisfies (Non-Neg) (in addition to (O),(FE) and (RH)), we call BT a quasi-
curve datum (abbrev. QC-datum). And when BT does correspond to an actual curve, it
will be called a curve datum (abbrev. C-datum).

Note that when g = 1, abelian implies curve and hence quasi-curve. In general, the
necessary condition (NonNeg) for an abelian datum BT to correspond to a curve is non-
trivial but far from being sufficient. For example, when (q, g) = (2, 2), the numbers of
abelian,quasi-curve,curve data are 35,23,20, respectively.

Remark The following consequence of the Riemann-Roch theorem satisfied by every C-datum BT is
also satisfied by any datum BT (corresponding to conditions (O) and (FE) for P (u)). Define, for each
BT , the sequence of integers {Dm} (m ≥ 0) by the equality

(2.2.4)
P (u)

(1− u)(1− qu)
=

∞∏
m=1

(1− um)−Bm =
∞∑

m=0

Dmum.

When Bm is non-negative for all m, Dm is also, and when BT corresponds to a curve, Dm is the number
of effective divisors of degree m. The Riemann-Roch theorem, averaged over the ideal classes, gives (cf.
[Ts1])

(2.2.5) Dm = qm−g+1D2g−2−m + P (1)
qm+1−g − 1

q − 1
(m ∈ Z),

where we put Dm = 0 when m < 0. As is well-known, the functional equation is a consequence of the
Riemann-Roch theorem, but also conversely, the Riemann-Roch theorem in this form is a consequence
of (FE). Indeed, assume (FE) and let am denote the coefficient of um in P (u). Then am = Dm − (q +
1)Dm−1 + qDm−2 and a2g−m = qg−mam (m ∈ Z). So if we put δm = Dm − qm−g+1D2g−2−m, then
δg−1 = 0 and δm − (q + 1)δm−1 + qδm−2 = 0 (m ∈ Z). Therefore, δm = C qm−g+1−1

q−1 with some constant
C. But P (1) =

∑2g
m=0 am = D2g − qD2g−1 = δ2g − qδ2g−1; hence P (1) = C.

Reduction of the condition (Non-Neg) to finitely many m

Proposition 2 (Lemma 2.1(i) of [EHKPWZ]) Let BT = (B1, · · ·Bg) be an abelian
datum over Fq with g ≥ 2. If m is so large that qm/2 ≥ 6g + 3, then Bm ≥ 0.

In fact, the proof in [EHKPWZ] uses only the formula
∑

d|m dBd = qm+1−∑g
i=1(π

m
i +π̄m

i )

and (RH).

Corollary 1 At least when g ≥ gq is satisfied, then the non-negativity of Bm for m ≤ g
implies that for all m. Here, gq is the smallest integer g such that q(g+1)/2 ≥ 6g + 3;
explicitly, gq = 2 for all q ≥ 7, and g2 = 12, g3 = 6, g4 = 4, g5 = 3. In particular, if either
g ≥ 12 or q ≥ 7, then the non-negativity of Bm for all m ≤ g implies that for all m.

Let us define the invariant γ∗BT for any QC-datum BT = (B1, · · ·Bg) by the same
formula §2.1 (I). Then, as the proofs show, the upper bounds for γ∗K , given by Theorem 1
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of [E-K], and that given by Proposition 1 above, are both valid for γ∗BT . The asymptotic
lower bound, Theorem 2 of [E-K], holds also for γ∗BT . On the other hand, Theorem 3 of
[E-K] uses the gonalty of curves, and cannot be applied directly to γ∗BT .

2.3. Examples for q = 2

(i) (q, g) = (2, 2). There are 23 QC-data BT , among which 20 correspond to curves
and 3 not. In fact, there are exactly 20 isomorphism classes over F2 of hyperelliptic curves
of genus 2, and they give 20 distinct BT ’s (their Jacobians are not isogenous to each
other over F2). The 3 exceptional BT are (0, 4), (1, 5), (3, 4), all with reducible P (u) given
respectively by

(1− u + 2u2)(1− 2u + 2u2), (1− u + 2u2)2, (1− u + 2u2)(1 + u + 2u2).

The maximal and the minimal values of γ∗BT / log q among these 23 BT are attained
by the case of curves, and they are, respectively,

γ∗BT / log 2 = 3 BT = (1, 2),

= −10/19 BT = (6, 0).

(Affine equations : y2 + y = x5 + x3 + 1, resp. y2 + y = (x2 + x)/(x3 + x + 1).)
The integers 0, 1 and 2 also appear as γ∗K/ log 2-values. For example, γ∗K/ log 2 = 1 for
BT = (1, 3) (defined by y2 + y = (x3 + x + 1)/(x2 + x + 1)−1 and P (u) = 1− 2u + 3u2−
4u3 + 4u4).

(ii) (q, g) = (2, 3). In this case, there are 147 QC-data. The maximal and the minimal
values of γ∗BT / log q are

γ∗BT / log 2 = 4 BT = (0, 1, 1), (1, 3, 0)

= −88/71 BT = (7, 0, 1),

respectively. Each of these 3 corresponds to a curve;

(0, 1, 1): plane quartic: X4 + Y 4 + XY 3 + X3Z + XY 2Z + Y 3Z + Z4 = 0,
(1, 3, 0): hyperelliptic: y2 + y = (x5 + x2 + 1)/(x2 + x + 1),
(7, 0, 1): plane quartic: X2Y 2 + X3Y + X3Z + Y 3Z + Y 2Z2 + XZ3 = 0.

The last plane quartic is the one that passes through all 7 rational points of the projective
2-space.

The author is not sure about the exact number of BT that correspond to curves. The
number of BT that correspond to some hyperelliptic curve is, according to his calculation,
59. That corresponding to some plane quartic seems to be around 57 (from 78 isomorphism
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classes). Here, the author is indebted to a precious table made in 1975 by Kazuhisa Kato
(Master’s thesis, Univ. Tokyo), but unfortunately, it is not mistake-free. There are non-
isomophic curves having the same BT , even one hyperelliptic and the other not. It seems
that the total number of BT corresponding to some curves is etwa 90-100. The famous
PGL(3, 2)-stable plane quartic (the Klein curve)

(X + Y + Z)4 + (XY + Y Z + ZX)2 + XY Z(X + Y + Z) = 0

corresponds to BT = (0, 7, 8), P (u) = (1−u+2u2)3 and γ∗K/ log 2 = −1/2. (Incidentally,
the more ”famous (0,0,7)” is QC but does not correspond to any curve.) To BT = (1, 2, 3)
correspond two non-isomorphic curves,

{
Y 4 + XY 3 + Y 2Z2 + Y Z3 + X4 + X3Z + X2Z2 = 0,

y2 + y = (x4 + x + 1)/(x3 + x + 1).
(2.3.1)

(iii) (q, g) = (2, 4) There are 1035 QC-data. The maximal and the minimal values of
γ∗BT / log q are, respectively,

γ∗BT / log 2 = 6 BT = (0, 0, 0, 1),

= −260/133 BT = (8, 0, 1, 0).

But neither of them corresponds to any curve, as M.Tsfasman and R.Schoof kindly let
me know in response to my questions. First, as for the datum attaining the maximal
value 6, [LMQ] contains a proof that (0, 0, 0, 1) does not correspond to any curve. The
second largest value for γ∗BT / log q among all 1035 QC-data is considerably smaller, i.e.,
9/2, attained by three distinct BT ; (0,0,6,2),(0,1,3,3),(0,2,0,3). I do not know at present
whether at least one of these corresponds to a curve. As for the minimal value, Schoof
has shown me how to prove the non-existence of a curve corresponding to (8, 0, 1, 0). This
uses the decomposition of P (u) as a function of u+2/u over Z, and the decomposition of
the corresponding Jacobian variety as a polarized abelian variety (the argument used by
Serre). On the other hand, since 8 is the maximal number of rational points of a curve
of genus 4 over F2, and since BT = (8, 0, 0, 2) is the only other QC-datum with B1 = 8,
(8, 0, 0, 2) must be a C-datum. This (8, 0, 0, 2) gives the second minimal value −503/260
for γ∗BT / log 2; hence the minimal value for curves.

If we restrict ourselves to hyperelliptic curves of genus 4, then the maximal (resp.
minimal) value for γ∗BT / log 2 is 15/4 (resp. −239/139), each being attained by a unique
isomorphism class of hyperelliptic curves. Their BT are (1, 2, 1, 3) (resp.(6, 2, 2, 2)).
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§3 Pictures of ”pebble streams” of the Euler-Kronecker invariants for
various families of number fields

3.1. Plotting points PK , the GRH-bounds

For each number field K with N = [K : Q] > 1, we plot the point

PK = (xK , yK) ∈ R2

on the 2-dimensional Euclidean space R2, where

(3.1.1)

{
xK = 2 log αK + 2 = 2 log log

√
|dK |+ 2,

yK = γ∗K = γK + 1.

This coordinate system is chosen in view of Theorems 1 and 3 of [E-K] giving, respec-
tively, an upper and a lower bound for γK under the Generalized Riemann Hypothesis
(abbreviated GRH). Let K run over some given family of number fields, and let us see
how the stream of these ”pebbles” PK looks like.

Theorem 1 of [E-K] asserts, under (GRH), that PK with αK > 1.16 (i.e., xK > 2.297)
must lie below the curve

(3.1.2) y = u(x) =
e

x
2
−1 + 1

e
x
2
−1 − 1

x− 2

e
x
2
−1 − 1

,

which has the asymptote line u∞(x) = x. Theorem 3 (loc.cit) asserts, under (GRH), that
when N is fixed, PK with αK > N − 1 must lie above the curve

(3.1.3) y = l(N, x) = −
(

e
x
2
−1 −N + 1

e
x
2
−1 + N − 1

)
(N − 1)(x− 2 log(N − 1)),

which has the asymptote line l∞(N, x) = −(N − 1)(x− 2 log(N − 1)).

Method for computations As in [E-K], let

(3.1.4) ΦK(t) =
1

t− 1

∑

N(P )k<t

(
t

N(P )k
− 1

)
log N(P ) (t > 1),

where (P, k) runs over the pairs of a non-archimedean prime P of K and a positive integer
k such that N(P )k < t. Put

(3.1.5) A∗
K(t) = log t− ΦK(t) (t > 1).

Then

(3.1.6) γ∗K = lim
t→∞

A∗
K(t) (unconditionally),

13



(3.1.7) |γ∗K − A∗
K(t)| < 2

αK + 1

αK − 1
(αK + 2 log αK)

1√
t− 1

+ N
log t + 1

t− 1
(under GRH)

when αK > 1.16 (cf. [E-K]; the arguments in §1.5-1.6). Roughly speaking, the error in
(3.1.7) is about 2αK/

√
t. We shall compute the ”t-approximation” A∗

K(t) of γ∗K for each
K for a suitable choice of t depending on K.

3.2. Quadratic Fields

Figure 1 (resp. Figure 2) plots PK for all real (resp. imaginary) quadratic fields K
with |dK | < 5 × 103 , computed using the t-approximation A∗

K(t) of γ∗K for t = 104.
The right vertical lines merely indicate the limit of the range of our present calculations.
Observe that while the points going up are rather sporadic, the points going down towards
right draw such a clean curve in each case. More careful examinations show that these
down-slope curves in the imaginary and the real cases are similar but different, and the
difference will not disappear under any vertical translations (i.e., they will not coincide
even if we use e.g. γ∗K + βK instead of γ∗K for the y-coordinate.)

1 2 3 4 5

1

2

3

4

Figure 1: Real Quadratic Fields

1 2 3 4 5

1

2

3

Figure 2: Imaginary Quadratic Fields

Let us now restrict ourselves to the imaginary quadratic case and try to construct
point sequences near the lower and the higher actual boundaries of Figure 2.

(Construction of a point sequence going down)
For each M < 18, we take the imaginary quadratic field K with minimal |dK | in which the
first M primes starting from 2 decompose completely. Figure 3 is the set of points PK for
these fields K. Their discriminant starts with −23, and ends with −2155919, −6077111.

(Construction of a point sequence flying up)
We simply replace ”decompose completely” by ”remain prime” in the above construction.
Their discriminants include −19,−43,−67, notably −163 (the most conspicuous one with
the coordinates (3.870.., 3.767..)), and −1333963,−2404147. (Figure 4.)
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Figure 3: Low Points

1 2 3 4 5 6

1

2

3

4

Figure 4: High Points

(Joint graph with all other points)
The low point sequence going down constructed above fits very well with the actual lower
boundary of plotted points; see Figure 5. On the other hand, the high points constructed
above do not seem to constitute the highest flying up sequence.

1 2 3 4 5 6

-1

1

2

3

4

Figure 5: Joint graph with other points

1 2 3 4 5 6

-6

-4

-2

2

4

6

8

Figure 6: Together with GRH-
bounds and Asymptotes

Figure 6 shows the joint graph with our GRH-upper (resp. lower) bound y = u(x)
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(resp. y = l(2, x)) and their asymptote lines y = x (resp. y = −x). Are these GRH-
embarkments really safe ?

3.3. Real BiQuadratic Fields

We consider biquadratic fields K = Q(
√

d1,
√

d2), where d1,d2 are distinct discrimi-
nants of quadratic fields. Put d?

3 = (d1d2)/(gcd(d1, d2))
2. Then the discriminant of the

third quadratic subfield is d3 = d?
3 × ε, where ε = 1 when d?

3 is a discriminant of a
quadratic field and ε = 4 otherwise. The discriminant of K is d1d2d3. The invariant γ∗K
is given by the formula (1.2.6) for p = 2, i.e., the sum of γ∗ki

for three quadratic subfields
ki (i = 1, 2, 3) minus twice the γ∗Q. Figure 7 plots PK for real biquadratic fields of dis-
criminant up to 4003 = 6.4× 107 (there are 2729 such K), using the t-approximation for
each quadratic subfield at t = 4 × 103. Figure 8 is the joint graph with our GRH-upper
(resp. lower) bound y = u(x) (resp. y = l(4, x)) and their asymptote lines y = x (resp.
y = −3(x− 2 log 3)).

1 2 3 4 5 6

1

2

3

4

Figure 7: Real BiQuadratic Fields

1234567

-10

-5

5

Figure 8: Together with
the GRH-bounds and their
Asymptote lines

Note that the actual lower boundary curve seems to have the slope tending towards
that of l∞(x), i.e., −3, giving an evidence that our GRH-lower bound, Theorem 3 of [E-K],
for a fixed N , is quite sharp.
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3.4. Full Cyclotomic Fields and their Maximal Real Subfields

We consider the full cyclotomic field Km = Q(µm) and its maximal real subfield
K+

m = Q(cos(2π/m)). We may and shall assume that m is either odd or divisible by 4.
Recall that αK = log

√
|dK | for these K are given by

αKm = φ(m)
2

(log m−∑
p|m(log p)/(p− 1)),

αK+
m

=
αKm

2
− ε(m),

where φ(m) is the Euler function, and ε(m) = 0, (log p)/4, (log 2)/2, according to whether
m is not a prime power, a power of an odd prime p, or a power of 2, respectively.

Figure 9 plots the 106-approximation of PKm for all such m that αKm < 1909. (As
for the range of calculations, the limit is chosen in terms of x-coordinate instead of m.
But we have first chosen the limit 600 for m, and then appended all other points whose
x-coordinates lie within the range. This contains all m ≤ 600, no prime m > 600, and
the maximal value of m included is 2520(= 7!/2).)

Figure 10 plots 106-approximations of PK+
m

for all such m that αK+
m

< 952.9. (The
procedure starting with m ≤ 600 is the same.)

2.5 5 7.5 10 12.5 15 17.5

2

4

6

8

10

Figure 9: Full Cyclotomic Fields

2.5 5 7.5 10 12.5 15

2

4

6

8

10

Figure 10: Maximal Real Subfields

We have three things to discuss; (I) positivity and growing tendency of γ∗Km
and

γ∗
K+

m
, (II) signs of the relative invariant γ∗Km

− γ∗
K+

m
, and (III) range and accuracy of

computations.

(I) Positivity and Growing tendency of γ∗Km
and γ∗

K+
m
.

The fields Km and K+
m have only few primes with small norms. In particular, when m is a

prime number, Km has no primes with norm < m. In other words, the m-approximation
of their γ∗-invariant is log m. So, it is natural to expect that the γ∗-invariants of these
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fields are ”more positive” than in other previous cases. Theoretically, the question of
positivity is directly related to the non-existence of too many primes with norm < m2 or
m2+ε. The sieve method gives us some estimate from below, but still not the positivity.
Experimentally, though limited both in range and accuracy, our numerical tests suggest
that one may expect the positivity for all γKm and γK+

m
. Among them, the case of K+

m looks
more convincing. The numerical tests include Mahoro Shimura’s extended computations
of γKm (for m ≤ 3× 104, though t is not really large enough), and special cares for some
”dangerous low points” (see (III) below). Being supported by these evidences, I raise :

Conjecture 1 (i) γKm and γK+
m

are positive (even for the γ-invariants),
(ii) there exist positive constants c1, c2, c

+
1 , c+

2 , all ≤ 2, such that for any ε > 0,

(3.4.1) (c1 − ε) log m < γ∗Km
< (c2 + ε) log m,

(3.4.2) (c+
1 − ε) log m < γ∗

K+
m

< (c+
2 + ε) log m,

hold for all sufficiently large m;
(iii) when m is restricted to primes, one can choose c1 = 1/2 , c+

1 = 1 and c2 = c+
2 = 3/2.

(Since xK = 2 log αK +2 ∼ 2 log m, the slopes in Figures 9,10 correspond to 1/2 of these.)

The reason for c2, c
+
2 ≤ 2 is Theorem 1 of [E-K], which, under (GRH), gives

(3.4.3) γ∗Km
, γ∗

K+
m

< (2 + ε) log m

for all sufficiently large m.
As for (iii), take, for example, all 50 primes m between 701 and 1039. Then the

maximal values of γ∗Km
/ log m (resp. γ∗

K+
m
/ log m) for these m are 1.533 (resp. 1.512),

while the minimal values are 0.589 (resp. 0.899).
There is a close connection between Conjecture 1 (iii) and ”uniformity” of distribution,

mod (2π/ log m), of the imaginary part of the non-trivial zeros of ζKm(s). Assume (GRH)
for Km, and for each m, consider the ”weighted average”
(3.4.4)

c(m) =

(∑
ρ

mρ−1/2

ρ(1− ρ)

)
/

(∑
ρ

1

ρ(1− ρ)

)
=

(∑
ρ

cos(γ log m)

1/4 + γ2

)
/

(∑
ρ

1

1/4 + γ2

)

of cos(γ log m), where ρ = 1/2 + γi runs over all non-trivial zeros of ζKm(s) counted with
multiplicities. Note that |c(m)| ≤ 1. Now, since

(3.4.5)

(∫ ∞

−∞

cos(t log m)

1/4 + t2
dt

)
/

(∫ ∞

−∞

1

1/4 + t2
dt

)
=

1√
m

(m > 1),
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the quantity

(3.4.6)
√

mc(m)− 1

in a sense measures how non-uniform the distribution of γ mod (2π/ log m) for small
|γ| is. Experimentally, for large m, (3.4.6) remains small in absolute value, and it seems
that they (gradually) get into the interval (1 − ε, ε). Define c+(m) similarly for K+

m.
The following assertion may explain why the lower boundary slope for the maximal real
subfield case is steeper.

Proposition 3 (Under GRH) Let M be any given infinite set of prime numbers, and
let m run over M . Then, |γ∗Km

/ log m| (resp. |γ∗
K+

m
/ log m|) is bounded if and only if

|√mc(m) − 1| (resp. |√mc+(m) − 1|) is so, and when these conditions are satisfied, we
have

(3.4.7) γ∗Km
/ log m =

3

2
+ (
√

mc(m)− 1) + O

(
1

log m

)
(m ∈ M),

(3.4.8) γ∗
K+

m
/ log m =

3

2
+

1

2
(
√

mc+(m)− 1) + O

(
1

log m

)
(m ∈ M),

respectively. In particular, the above Conjecture 1 (iii) is equivalent to that
√

mc(m)− 1
(resp.

√
mc+(m)− 1 ) belongs to the interval (−1− ε, ε) when m is sufficiently large.

(Proof) By [E-K](1.2.1)(1.4.1), we have, for any number field K and t > 1,
(3.4.9)

γ∗K = log t−ΦK(t)+
1

t− 1

∑
ρ

tρ − 1

ρ(1− ρ)
+

r1

2

(
log

t + 1

t− 1
+

2

t− 1
log

t + 1

2

)
+r2

(
log

t

t− 1
+

log t

t− 1

)
,

(3.4.10)
1

2

∑
ρ

1

ρ(1− ρ)
= γ∗K + αK + βK ,

where ρ runs over all non-trivial zeros of ζK(s) (counted with multiplicities). Now let
K = Km, with m a prime, and put t = m. Then since ΦK(m) = 0, we obtain directly
from (3.4.9) that

(3.4.11) γ∗Km
=

3

2
log m +

√
mc(m)− 1

m− 1

∑
ρ

1

ρ(1− ρ)
+

m− 1

2
log

m

m− 1
.
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(The last term on the right hand side of (3.4.9) gives (log m)/2.) Since αK = ((m −
2)/2) log m and βK = −(m− 1)(γQ + log 2π)/2, we obtain from (3.4.10),(3.4.11),

(3.4.12)

(
1− 2

√
mc(m)− 1

m− 1

)
γ∗Km

log m
=

3

2
+ (
√

mc(m)− 1)(1− am) + bm,

where

am =
1

m− 1
+

γQ + log 2π

log m
,(3.4.13)

bm =
log((1 + 1

m−1
)m−1)

2 log m
.(3.4.14)

Note that am, bm are O(1/ log m). But since γ∗Km
= O(m) (see below), our assertions

related to Km follow directly. The case of the maximal real subfield is almost similar.
The coefficient 1/2 of

√
mc+(m)−1 comes from the difference between αK+

m
and αKm . 2

Remark As for γ∗Km
and γ∗

K+
m
, we have a (GRH)-upper bound (3.4.3), and Conjecture

1 for their positivity. But the (GRH)-lower bounds that we have been able to establish
so far are (unfortunately) much weaker; namely, |γ∗Km

| and |γ∗
K+

m
| are (i) O(m log m) (by

(1.1.8)), (ii) O(m log log m) (by Theorem 3 [E-K]), (iii) O(
√

m log m) (by [Ih-Sh]§4), and
(iv) O((log m)2) (by a sieve method). Among them, (i) is unconditional.

(II) Signs of the relative invariants γ∗Km
− γ∗

K+
m
.

This relative invariant seems to take both signs. Here, I only present a table for comparison
of γ∗Km

and γ∗
K+

m
for some small ranges of m (107-approximations).

m γ∗Km
/ log m γ∗

K+
m

/ log m

67 1.497 1.545
68 1.274 1.079
69 1.077 1.221
71 1.467 1.413
72 1.030 1.018
600 0.782 0.937
601 1.084 1.056
603 1.402 1.303
604 1.296 1.140
605 1.312 1.382
607 1.348 1.166
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(III) Range and accuracy of computations.
In order to widen the range of m, or that of the x-coordinate, we must take t larger and
larger to make the t-approximation A∗

Km
(t) of γ∗Km

and γ∗
K+

m
sufficiently accurate. First

of all, if we fix t = t0 and let m grow, then the graph will be stopped by the ”roof”
y = log t0. The GRH error estimate (3.1.7) suggests that a reasonable choice of t is
such that αKm/

√
t is acceptably small. But this estimate does not take into account any

cancellations among the ρ-terms (in the explicit formula for ΦK(t) (cf. [E-K] §1.1)), and
in fact, in actuality, the convergence of AK(t) to γ∗K seems faster. For the above range of
computations (Figures 9, 10), the choice t = 106 seems fairly appropriate. The pictures
do not visibly change when we replace 106 by e.g. 3 × 106 or even by 105, except that
for the latter, the slope of the upper border near the right summit is slightly more flat
(an alarm that t is not big enough!). Also, for some individual m, I computed further
approximations up to 108, but the errors seem to be within an acceptable range.

(For example, let us take a ”low point” PKm
for m = 112, which is conspicuous in Figure 9. Then the

x-coordinate is 10.97.., and the y-coordinate for t = 106, 107, 108 are 3.114, 3.1162, 3.1166, respectively.
For m = 443, x = 16.406.., and the y-coordinate for these t are 4.153, 4.118, 4.146 respectively. Outside
the above range, m = 7439 = 43× 173 gives a low point.)

3.5. Other Families of Fields

Cubic Fields Figure 11 plots PK for cyclic cubic extensions K/Q ramified at one
prime, i.e., those cubic extensions having discriminant m2, where m is either 9 or a prime
≡ 1(mod 3). The range is m < 2000, and t = 5 × 104. Note that the graph is quite
similar to quadratic or biquadratic cases. The lower boundary slope here seems to tend
to −(N − 1) = −2. The most conspicuous high point (5.19.., 4.62..) corresponds to
m = 139. It is interesting to observe that in this case, too, there appears some point-
sequence which rises up steeply and parabolically, as if going to violate the GRH, and
also that it seems to stop and start again from a lower base. Can this be explained?

All fields treated so far are abelian. For non-Galois fields, our computations have been
rather fragmentary. Among them is a (small) family of totally real non-Galois cubic fields
listed in the table of [D-F] (copied in [C-R]). It consists of 28 fields with discriminant up
to 1257 (the point corresponding to the last one has the x-coordinate 4.544). The plot
graph of these 28 points PK (also t = 5 × 104) fits in very well with this part (5 points
on the extreme left) of Figure 11. This is shown in Figure 12. The shape of the lower
boundary curve is affected by the data (r1, r2), but does not seem to be affected by Galois
theoretic structures (at least within the range of small discriminants).

We also treat another family of cubic fields defined by the equation of the form

(3.5.1) X3 −X + 24m = 0.

This equation has discriminant 4(1− 3888m2), but 2 is unramified. In fact, primes 2 and
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Figure 11: Cubic Cyclic; one-point-ramified
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Figure 12: Few non-Galois appended

3 split completely, pulling down the y-coordinates to some extent. Note that r1 = r2 = 1.
The graphs are shown in Figures 13, 14, where the latter is together with the GRH-
bounds and their asymptotes. Here, m runs over those positive integers up to 200 such
that (3.5.1) is irreducible and that 3888m2− 1 is square free, and 2× 104 is chosen for t.
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Figure 13: Some Special Cubics
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Figure 14: Joint with GRH-bounds
and Asymptotes

Some other Quartic Fields
In [C-R], there is also a table of totally real quartic fields with small discriminant

whose Galois closure has the symmetric Galois group S4. This consists of 9 fields and
the maximal discriminant is 8069. The plot graph of the corresponding 9 points also fits
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very well with this part of Figure 7 for real biquadratic fields, i.e., with the sequence of 6
leftmost points in Figure 7.

The Fields Kp

Finally, let us take up the fields Kp studied in [E-K], i.e., for each odd prime p, Kp is
the unique cyclic extension of degree p contained in the field of p2-th roots of unity. It is
totally real, and the discriminant is p2p−2. A rational prime l splits in Kp completely if
and only if

(3.5.2) lp−1 ≡ 1 (mod p2).

Thus, when there exists small l satisfying this congruence, Kp contains many primes with
small norms, and accordingly, γ∗Kp

can become very negative. Figure 15 plots PKp for

p ≤ 1223, where t = 105 (sometimes 106, depending on necessity), together with the
upper and the lower bounds given by [E-K](Theorems 1, resp. 3), except for two points
”far too low” to be included; they are

(3.5.3) (19.34,−174.13), (19.88,−747.14),

which correspond to p = 863, 1093, respectively. The smallest splitting primes in these
cases are l = 13, l = 2, respectively.

5 10 15 20

-30

-20

-10

10

Figure 15: Kp without two very low points (3.5.3)
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A crucial quantity for the study of extreme negative values of γ∗Kp
is

(3.5.4) lim inf
γKp

p
(= lim inf

γ∗Kp

p
).

As is shown in [E-K](§2.3 Cor 3), whether (3.5.4) is 0, finite negative, or −∞, is closely
related to how small or large the set of primes p satisfying the congruence (3.5.2) (for
fixed l) is. Consider now the decomposition (1.2.2) for this case, i.e.,

(3.5.5) γKp = γQ +
∑

χ

L′(χ, 1)

L(χ, 1)
,

where χ runs over all non-trivial characters mod p2 satisfying χp = 1. Put

Sp =
γKp

p
=

1

p

(
γQ +

∑
χ

L′(χ, 1)

L(χ, 1)

)
,(3.5.6)

Tp =
1

p

(
(γQ)2 +

∑
χ

|L
′(χ, 1)

L(χ, 1)
|2

)
,(3.5.7)

so that S2
p ≤ Tp. Some intuitive argument, and the following table (which contains two

extreme negative cases p = 1093, 3511 for γ∗Kp
) suggest that the fluctuation of values of

Tp is much smaller than that for Sp, and even that Tp might have a limit

(3.5.8) τ = lim Tp =
∞∑

n=1

Λ(n)2/n2 =
∑

p

(log p)2/(p2 − 1) = 0.80521...

This would imply that (3.5.4) must lie in the interval [-
√

τ , 0], and hence (under GRH; cf.
[E-K] §2.3) that if li, (1 ≤ i ≤ N) are distinct primes such that

∑
i(log li)/(li − 1) >

√
τ ,

(e.g. l1 = 2, l2 = 3), then the simultaneous congruence (3.5.2) for l = l1, · · · , lN can have
at most finitely many solutions p.

p Sp Tp p Sp Tp

67 0.09 0.81 1091 −0.003 0.82
71 −0.18 0.70 1093 −0.68 1.11
73 0.08 0.74 1097 0.003 0.79
79 −0.05 0.84 3499 0.003 0.79
83 0.02 0.83 3511 −0.69 1.12
89 0.09 0.90 3517 0.003 0.79

Remark If we replace | |2 by (Re( ))2 in the definition of Tp, then S2
p ≤ Tp remains
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valid, but the fluctuation for this seems too big, and its convergence (e.g. to τ/2) is less
convincing.
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