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§1 The “second basement” of the tower

We shall give some remarks related to the tower of function fields constructed by
Bezerra, Garcia and Stichtenoth [1] (see also [2]).

Let k = Fq be any finite field, and x1, x2 be variables over k subject to the relation
(the equation (0.7) of [1] for i = 1)

(1) y1 :=
xq

1 + x1 − 1

x1

=
1− x2

xq
2

.

Put

(2) y2 =
xq

2 + x2 − 1

x2

.

We choose a separable closure k(x1)
sep of k(x1), and any automorphism σ of k(x1)

sep(=
k(x2)

sep) over ksep that maps x1 to x2. Note that σ maps y1 to y2. We go down further
to “the basement B2” of the BGS-tower. To “switch on the light for the floor B2”, just
note that k(y1) ∩ k(y2) is generated over k by the following element z1.

(3) z1 :=
−yq

1

(1− y1)q+1
=

y2 − 1

yq+1
2

.

(The proof will be indicated later.) Put

(4) z2 = σ(z1) =
−yq

2

(1− y2)q+1
.

We have the following inclusion relations among these function fields.
k(x1) k(x2)

\ / \ (extension degree q)
k(y1) k(y2)

\ / \ (extension degree q + 1)
k(z1) k(z2)
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Since x2 = (1− y1)/(1− y1 + y1y2) and y2 = (1− z−1
2 )/(1− z1), k(y1, y2) = k(x2) and

k(z1, z2) = k(y2) hold; hence the field generated over k by σi(z1)(i ∈ Z) is the same as
that generated over k by σi(x1)(i ∈ Z).

That z1 generates k(y1)∩ k(y2) follows from the fact that the (degree q + 1) extension
k(y2)/k(z1) has a point with ramification index q (see below §3) and hence cannot have
any proper intermediate fields.

There are some advantages of going down to the second basement, the fields k(z1), k(z2)
⊂ k(y2). One is related to a group theoretic way of looking at the tower and the rational
points over the cubic extension of k. The second is to show the existence of an invariant
differential in the tower which shows up with a simple expression in terms of zi.

§2 A group-theoretic way to see why the tower has many rational points
over Fq3

Let T denote the field automorphism of K = k(y2) over k defined by

(5) T (y2) = 1− y−1
2 .

Then (3)(4) can be rewritten respectively as

(6) z1 = T (y2)/y
q
2,

(7) z2 = T (z1).

Put K1 = k(z1), K2 = k(z2), and let KT denote the fixed field of T in K. Let M
be the smallest Galois extension of K which is Galois both over K1 and KT . It is the
composite of the tower of extensions of K obtained by first taking the Galois closure of
K over K1, then its Galois closure over KT , then over K1, and so on.

The key properties of the extension M/K comes from the following two key properties
of the extension K/K1 which is separable with degree q+1.

(I) Ramifications in K/K1. The only ramifications are:
Above z1 = 0; y2 = 1,∞ with ramification indices 1, q, respectively;
Above z1 = ∞; y2 = 0 with ramification index q + 1.
The set of ramified points upstairs in K is thus 0, 1,∞ which is stable under T .

(II) Decomposition in K/K1. All points of K above z1 = 1 are Fq3-rational. Note
that,in view of (6), this is an immediate consequence of the fact T 3 = 1.

Moreover, the set of all points of K above z1 = 1 is stable under the action of T
(because of (6) for z1 = 1, and because T commutes with the q-th power Frobenius
morphism of K).

The set of points of k(x1) lying above z1 = 1 coincides with that defined in [1](§3) by
x1 = ω ∈ Ω.
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Proposition 1 The Galois extension M/K has the following properties.
(i) It is unramified outside y2 = 0, 1,∞, and ramified above 0, 1,∞ with infinite ram-

ification indices.
(ii) All points above the point z1 = 1 of K1 are rational over Fq3.
(iii) Mσ = M ,and hence M contains xi = σi(x1) (and also yi = σi(y1), zi = σi(z1))

for all i ∈ Z.

Thus, M contains the BGS tower. It is Galois also over K2.

Proof (i) Let ei(i = 0, 1,∞) be the ramification index of y2 = i in M/K. Then, as
M/KT is Galois, e0 = e1 = e∞, and as M/K1 is Galois, e1 = q.e∞ (if finite); hence
they must be infinite. The rest of (i)(ii) is clear from the above (I)(II). (iii) By (7),
σ = T ◦ g with some g ∈ Gal(Ksep/K1). As M is Galois over K1, M is g-invariant, and
as M is Galois over KT , it is T -invariant. Therefore, M is σ-invariant. The rest follows
immediately.

Corollary 1 M/K is an infinite Galois extension. Accordingly, K1 ∩KT = k.

Remark One can probably show that k(z1) ∩ k(z2) = k, so that there is no lower
basement “B3”.

Let G denote the subgroup of the field automorphism group of M over k generated
by U1 = Gal(M/K1) and UT = Gal(M/KT ), or what amounts to the same, generated by
U1 and σ. The group G is locally compact and non-compact with respect to the natural
Krull topology.

[Problems] Find the explicit structure of G, the inertia groups in G, and decide whether
G is the free product of U1 and UT with amalgamated subgroup U = Gal(M/K), or some
non-trivial quotient of it.

Note that the decomposition group over z1 = 1 is generated by an element of order 3.

One may replace T by a more general element of PGL(2, k), consider y2 as a new
variable, and use the equations (6)(7) as the starting point. Then the points above z1 = 1
are all rational over Fqn , where n is the order of T in PGL(2, k), and this point set is
stable under the action of T . But the trouble in the general case is with ramifications.
In general, the set of points of K above the ramification locus (below) of K/K1 does not
seem to be stable under T , so the ramification in M/K does not seem to be so easily
controllable.
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§3 The invariant differential ω

By a differential of order d (d ∈ N) of a function field K, we simply mean an element
of the d-th tensor power of the module of rational differentials of K (tensored over K).
It turns out that the following differential of order q2 − 1 of our function field k(z1) is
σ-invariant and hence belongs to k(zi) for any i ∈ Z (!).

Theorem 1 Put

(8) ω =
(1− z1)

q+2

z
q(q+1)
1

(dz1)
⊗(q2−1).

Then as a differential of M of order q2 − 1, it is G-invariant, in particular, σ-invariant;

(9) ω =
(1− zi)

q+2

z
q(q+1)
i

(dzi)
⊗(q2−1) (i ∈ Z).

If L is any subfield of M containing any one of zi , ω can be regarded as a differential of
order q2 − 1 of L. Let SL (resp. TL) denote the set of all geometric points of L obtained
as the restriction to L of any extension of the point z1 = 1 (resp. z1 = 0,∞) to M . Then
the divisor (ω)L of ω has support in SL ∪ TL, and ordP (ω)L = q + 2 when P ∈ SL; hence

(10) (ω)L = (q + 2)
∑

P∈SL

P +
∑

P∈TL

b(P )P

with some integers b(P ). In particular, whenever L satisfies

(11)
∑

P∈TL

b(P ) ≤ 0,

one has an ”individual” (Zink and) BGS-inequality

(12) |SL| ≥ q2 − 1

q + 2
(2gL − 2),

for L, where gL is the genus of L.

Proof Simple direct calculations. In fact, we have

(13) ω = σ(ω) =
(yq+1

2 − y2 + 1)q+2

(y2(1− y2))q(q+1)
(dy2)

⊗(q2−1).
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Note also that

(14) deg(ω)L = (q2 − 1)(2gL − 2),

and that if L′/L is a finite extension in M , and Q is a point of L′ above a point P of L,
then for any differential ω of order d on L,

(15) ordQω = e(Q/P )ordP ω + d.δ(Q/P ),

where e(Q/P ) (resp. δ(Q/P )) denote the ramification index (resp. the different exponent)
of Q/P .

Recall that in the case of modular or Shimura curves over Fq2 , the tower has an
invariant differential ω of order q− 1 having zeros of order 2 at every special Fq2-rational
point, and that the existence of this differential is related to the liftability of the curve
over Fq2 together with the sum of the graphs of the Frobenius correspondence and its
transpose, to characteristic 0 (the first infinitesimal step for this) (cf. [3],[4],[5]). It seems
also interesting to find out what the existence of ω in this case implies with regard to
liftings especially to the original Zink’s construction [6].
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