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1 Introduction

1.1 – Let K be a function field of one variable over a finite field Fq. For a non-principal
Dirichlet character χ on K, consider the L-function L(s, χ) and the partial L-function
LP (s, χ) associated to each finite set P of primes of K. Consider the differences{

fP (s, χ) = logL(s, χ) − logLP (s, χ) (log : a suitable branch)

f ′
P (s, χ) = L′

L
(s, χ) − L′

P

LP
(s, χ) (L′

L
(s, χ) := L′(s,χ)

L(s,χ)
, etc.)

(1.1.1)

on Re(s) > 1/2. If P = Py = {p; N(p) ≤ y} and y 7→ ∞, we know that each of
fP (s, χ), f ′

P (s, χ) tends to 0. But unless Re(s) > 1, the convergence (say, for each fixed s)
cannot be expected to be uniform in χ. The speed of convergence should depend on the
size of the norm of the conductor of χ. We shall prove that, nevertheless, for each case of

(1.1.2) gP (s, χ) = fP (s, χ), or = f ′
P (s, χ),

and for each positive integer k, the average

(1.1.3) Avgχ (mod f)|gPy(s, χ)|2k

tends to 0 as y 7→ ∞ uniformly with respect to integral ideals f and to s ∈ C such
that Re(s) ≥ 1/2 + ϵ (Theorem A, §2.2). Here, χ runs over the (suitably normalized)
non-principal characters mod f . The proof is based on the ideas and techniques used in
[3] applied to the situation of the function field case.

As an application (of the case of f ′
P (s, χ)), we shall give a sharpened version of Theorem

7 of [1], to the effect that the function Mσ(z) constructed there is, in fact, the density
function for the distribution of values of {L′(s, χ)/L(s, χ)}χ in a strong sense. Here,
s ∈ C is fixed with σ = Re(s), and χ runs over a suitably normalized family of Dirichlet
characters on K with prime conductors. The only conditions for σ is, now, σ > 1/2
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(instead of σ > 3/4 as was in [1]). Also, the ”too narrow” assumption in [1]Theorem 7
(i) for the test functions Φ is now considerably loosened (Theorem B in §2.3).

An application of the case of fP (s, χ) to the study of distribution of values of {logL(s, χ)}χ

(including some number field cases) is left to the future publication.
In the Appendix (§5), for the sake of completeness and self-containedness, we shall

provide proofs of function-field analogues of estimations of some basic arithmetic functions
that are well-known in the number field case.

2 The main results

2.1 – Preliminaries. The basic notations are as follows.

K : a function field of one variable over a finite field Fq,
p∞ : a prime divisor of K.

These are fixed once and for all. The Landau and the Vinogradov symbols O and ≪
will usually depend on K and p∞, but these dependences will be suppressed from the
notations.

f : an integral divisor ̸= (1) on K which is coprime with p∞,
If : the group of divisors of K coprime with f ,
Gf = If/⟨p∞⟩{(α);α ≡ 1(mod f)},

where ⟨p∞⟩ denotes the subgroup of If generated by p∞, and (α) for each α ∈ K× denotes
the principal divisor generated by α.

if : If 7→ Gf : the projection,

Ĝf : the character group of Gf , with the unit element χ0.

A word about the role of the “infinite prime divisor” p∞. Recall that the principal
divisors are all contained in the kernel of the degree-homomorphism If 7→ Z which is
surjective; hence we must divide If , not only by {(α)} but also by a cyclic subgroup
generated by an element of degree > 0 such as p∞, to make the quotient finite. In
terms of classfield theory, this corresponds to that the maximal abelian extension of K
with conductor f is infinite because it contains all the constant field extensions but if we
impose that a given prime p∞ should decompose completely, then the extension will be
finite, with the Galois group Gf .

For each χ ∈ Ĝf and an integral divisor D on K, we define χ(D) = χ(if (D)) if
(D, f) = 1, and χ(D) = 0 otherwise. In particular, we have χ(p∞) = 1, and χ(p) = 0 for
all p| f . We shall consider Dirichlet L-functions associated with each χ ∈ Ĝf . A few words
to explain our choice of notations. First, since L-functions with imprimitive characters
will also be treated, we shall include f inside the symbols in order to indicate the precise
modulus. Secondly, mainly for the sake of compatibility of notations with those of [1]
(related to Theorem B), we shall use the basic L-symbols for L-functions without the p∞-
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factor (1−N(p∞)−s)−1. (As regards Theorem A, our concern is solely on the “difference”
between the local and the global L-functions, so it does not matter whether we include
or exclude one particular Euler factor from local or global L-functions, as long as we do
it simultaneously. We shall exclude the p∞-factor from both.) Thus, we define, for each
χ ∈ Ĝf :

(2.1.1) L(s, χ, f) =
∏
p̸=p∞

(1 − χ(p)N(p)−s)−1,

which converges absolutely on Re(s) > 1 and extends to a meromorphic function on
C. Let fχ denote the conductor of χ, and χ∗ the primitive character mod fχ associated
with χ. Then L(s, χ, f) is obtained from L(s, χ∗, fχ) by multiplying the product of (1 −
χ∗(p)N(p)−s) over those prime factors p of f that do not divide fχ. And by A. Weil [5],
if χ is primitive and χ ̸= χ0, then L(s, χ, fχ)(1 −N(p∞)−s)−1 is a polynomial of u = q−s

of degree 2g− 2 + deg fχ (g: the genus of K), whose reciprocal roots have absolute values

q1/2. From these, it is clear that our L(s, χ, f) (χ ∈ Ĝf \ {χ0}) is an entire function of
s having zeros only on the vertical lines Re(s) = 1/2 and Re(s) = 0. In any case, it
is holomorphic and non-vanishing on Re(s) > 1/2. Finally, our choice of the branch of
logL(s, χ, f) on Re(s) > 1/2 will be the unique holomorphic branch that tends to 0 when
Re(s) → +∞.

For any positive integral power y of q, set

(2.1.2) P = Py = {p : prime divisors ̸= p∞ onK, N(p) ≤ y},

and for each χ ∈ Ĝf , define the local L-function by

(2.1.3) LP (s, χ, f) =
∏
p∈P

(1 − χ(p)N(p)−s)−1.

This is holomorphic and non-vanishing on Re(s) > 0, and we define its logarithm by

(2.1.4) logLP (s, χ, f) = −
∑
p∈P

log(1 − χ(p)N(p)−s),

where the branch of log in each summand is chosen to be the principal branch.

We shall consider the differences between the global and the local functions{
f(s, χ, f , y) = logL(s, χ, f) − logLPy(s, χ, f),

f ′(s, χ, f , y) = L′

L
(s, χ, f) −

L′
Py

LPy
(s, χ, f),

(2.1.5)

for Re(s) > 1/2, and write as

g(s, χ, f , y) =

{
f ′(s, χ, f , y) (Case 1),

f(s, χ, f , y) =
∫ s

∞ f ′(s, χ, f , y)ds (Case 2),
(2.1.6)
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where the last integral is along the horizontal line from +∞ to s (the initial point is +∞,
because of our choice of the branches of logL(s, χ, f) and logLPy(s, χ, f)). In each case,
g(s, χ, f , y) is a holomorphic function of s on Re(s) > 1/2. First let us pay attention to
the following elementary estimations.

Proposition 2.1.7 Let ϵ > 0. Then

(i) For σ = Re(s) ≥ 1/2 + ϵ,

|g(s, χ, f , y)| ≪ϵ

{
(logN(f))y1/2−σ (Case 1),

(logN(f))y1/2−σ/ log y (Case 2).

(ii) For σ = Re(s) ≥ 1 + ϵ,

|g(s, χ, f , y)| ≪ϵ

{
y1−σ (Case 1),

y1−σ/ log y (Case 2),

independently of f and χ.

The proof will be given in §3.2. Thus, limy→∞ g(s, χ, f , y) = 0 holds in each case, but
the uniformity of convergence with respect to the conductor f is known only for σ > 1.
(In fact, as an application of our second main result Theorem B, we can actually prove in
Case 1 that the convergence is not uniform in χ when σ ≤ 1; see Corollary 2.3.4 below.)
Our first main result asserts that the average of powers of |g(s, χ, f , y)| over non-trivial
characters modulo f converges to 0 uniformly, i.e., independently of f , and also of those
s with σ = Re(s) ≥ 1/2 + ϵ.

2.2 – The first main result.

We shall fix 0 < ϵ < 1/2, and a positive integer k ∈ N. Consider only such s ∈ C that
satisfies

(2.2.1)
1

2
+ ϵ ≤ σ = Re(s).

Hereafter, the symbols ≪ and O will depend only on ϵ and k (in addition to K, p∞).
Note that

(2.2.2)
1 + ϵ

2
− σ ≤ − ϵ

2
< 0.
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Theorem A For any integral divisor f ̸= (1) of K with (f , p∞) = 1, any y which is a
positive integral power of q, and for any s ∈ C with σ = Re(s) ≥ 1/2 + ϵ, we have(

Avgχ∈Ĝf
χ̸=χ0

|g(s, χ, f , y)|2k

) 1
2k

≪ y
1+ϵ
2

−σ ×

{
log y (Case 1),

1 (Case 2),
(2.2.3)

where Avg denotes the average over χ ∈ Ĝf \ {χ0}, and ≪ depends only on k, ϵ. In
particular, this average tends to 0 as y → ∞ uniformly in f on Re(s) ≥ 1/2 + ϵ.

Remarks 2.2.4 (i) Since(
aq

1 + · · · + aq
n

n

)1/q

≤
(
ap

1 + · · · + ap
n

n

)1/p

holds for any a1, · · · an ≥ 0 and p > q > 0, it follows that the exponent k in the above
theorem may be replaced by any positive real number.

(ii) It is unlikely that the implicit constant in (2.2.3) can be chosen to be independent
of k. If it were so, then (since the left hand side of (2.2.3) tends to

Maxχ∈Ĝf
χ̸=χ0

|g(s, χ, f , y)|

as k 7→ ∞), one would obtain the uniformity of convergence g(s, χ, f , y) → 0 without
averaging over χ.

(iii) When f is a prime divisor, we may replace χ ∈ Ĝf , χ ̸= χ0 in Theorem A by
χ ∈ Ĝf , fχ = f . This can be checked easily by using the arguments in §3.5.

2.3 – The second main result.

By applying Theorem A for Case 1, we shall give a substantial improvement of The-
orem 7 of [1]§6.1. Namely, let K and p∞ be as above, with an additional assumption
deg(p∞) = 1. Let Mσ(z), M̃σ(z) (σ > 1/2, z ∈ C) be the associated ”M-function” and its
Fourier dual, constructed in [1]. Let f run over the prime divisors ̸= p∞ of K, and for each
f , let χ run over the Dirichlet characters on K with conductor f satisfying χ(p∞) = 1.
In other words, χ runs over Ĝf \ Ĝ(1). (In [1], such a family of characters was called the
“Case A family” in the function field case.) For each such χ, we write L(s, χ) = L(s, χ, f)
(and later, also LP (s, χ) = LP (s, χ, f) for P = Py)

2. Define the weighted average Avgχ,
as in [1]§4.1. In this paper, we shall prove the following:

2In [1], we used a less traditional notation and wrote as L(χ, s), LP (χ, s).
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Theorem B The notations being as above, let s ∈ C be such that σ = Re(s) > 1/2.
Then the equality

(2.3.1) AvgχΦ

(
L′

L
(s, χ)

)
=

∫
C

Mσ(w)Φ(w)|dw|

holds for any continuous function Φ on C with at most polynomial growth. In particular,
the case Φ(w) = ψz(w) = exp(iRe(z̄w)) gives

(2.3.2) Avgχψz

(
L′

L
(s, χ)

)
= M̃σ(z)

for any σ > 1/2 and z ∈ C. Finally, the equality (2.3.1) holds also when Φ is the
characteristic function of either a compact subset of C or the complement of such a
subset.

Remarks 2.3.3 (i) In [1]§6 Theorem 7, our assumptions on σ and Φ were both more
restrictive. The present improvement is in a sense along the line suggested in loc.cit.
Remark 6.5.20. But it went beyond this; we shall not even need Fourier analysis developed
in loc.cit. Chap. 5. With Theorem A at hand, it suffices to continue the naive argument
of loc.cit. Chap. 4. We should add, however, that this stronger argument works only
in the function field case where we can use the Weil Riemann Hypothesis for function
fields. Another point to be added is that the result of [1]Theorem 7(iii), which dealt with
a special case Φ(z) = z̄azb (for σ > 1/2), will be needed as a basis of the proof of the
present Theorem B.

(ii) Theorem B does not hold when Φ is the characteristic function of an arbitrary
measurable subset A of C. Indeed, for each fixed s, the set {L′/L(s, χ)}χ is countable,
and if we take as Φ the characteristic function of this set, then the left hand side of (2.3.1)
is 1 while the right hand side is 0.

Corollary 2.3.4 Fix s ∈ C such that 1/2 < Re(s) ≤ 1. Then (i) the point set

(2.3.5) {L
′

L
(s, χ)}χ

is everywhere dense in C; (ii) the convergence

(2.3.6)
L′

Py

LPy

(s, χ) → L′

L
(s, χ) (y → ∞)

is not uniform in χ.
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Proof (i) By Theorem B, it suffices to show that when 1/2 < σ = Re(s) ≤ 1,

(2.3.7)

∫
|z−z0|≤r

Mσ(z)|dz| > 0

holds for any z0 ∈ C and r > 0, or equivalently, that the spectrum of the measure
Mσ(z)|dz| is the whole complex plane.3 Now, with the notations of [1]§2, Mσ,Py(z) con-
verges uniformly toMσ(z) (ibid. Theorem 2); hence the general argument in [2] Theorem 3
shows that this spectrum is equal to the set-theoretic limit of the spectrum ofMσ,Py(z)|dz|.
By [1]§2.1, the latter consists of all those points of C that can be expressed as a sum over
p ∈ Py of points on the circle |z− cσ,p| = rσ,p, where cσ,p = −(logN(p))/(N(p)2σ − 1) and
rσ,p = N(p)σ|cσ,p|. Since

∑
p rσ,p = ∞ for σ ≤ 1 (and

∑
p cσ,p <∞ for σ > 1/2), this limit

set must be the whole complex plane. This settles the proof of (i).
(ii) In particular, |L′/L(s, χ)| is unbounded. But since |L′

Py
/LPy(s, χ)| for each fixed

y (and s) is bounded, the difference

|
L′

Py

LPy

(s, χ) − L′

L
(s, χ)|

is unbounded. In particular, the convergence (2.3.6) cannot be uniform in χ. 2

To establish the validity of the log-case analogues of Theorem B and Corollary 2.3.4,
it “only” remains to carry out constructions and establish main properties of the “M -
functions” for the log-case, which will be done in a forthcoming paper.

3 Proof of Theorem A

3.1 – The integral expression. Let χ ∈ Ĝf \ {χ0} and y = qm (m ∈ N). Recall
that g(s, χ, f , y) denotes either one of

(3.1.1) f ′(s, χ, f , y) =
L′

L
(s, χ, f) −

L′
Py

LPy

(s, χ, f) (Case 1),

(3.1.2) f(s, χ, f , y) = logL(s, χ, f) − logLPy(s, χ, f) (Case 2).

In each case, g(s, χ, f , y) is a holomorphic function on Re(s) > 1/2. And being a function
of q−s, it is vertically periodic.

Now, when Re(s) > 1, we obtain directly from the absolutely convergent Euler prod-
uct expansions (2.1.1) for L(s, χ, f) and (2.1.3) for LPy(s, χ, f) (and from our choice of

3We can actually show, by the same argument as in [2](Remark after Theorem 9), a slightly stronger
result that when 1/2 < σ ≤ 1, the support of Mσ(z) is also the whole complex plane. But this is not
needed here.
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the branches of their logarithms), the following absolutely convergent Dirichlet series
expansions; first,

f(s, χ, f , y) =
∑

N(p)>y, p̸=p∞
r≥1

χ(pr)

rN(pr)s
,

and then, by differentiation,

f ′(s, χ, f , y) =
∑

N(p)>y, p ̸=p∞
r≥1

−χ(pr) logN(p)

N(pr)s
.

Rewrite these expansions in the form

(3.1.3) g(s, χ, f , y) =
∑
D

χ(D)α(D, y)N(D)−s (Re(s) > 1),

where D runs only over the integral divisors ̸= (1) of K such that (D, f) = 1, and

(3.1.4) α(D, y) =

{
− logN(p) (Case 1),

1/r (Case 2),

when D is of the form D = pr (p ̸= p∞, N(p) > y, r ≥ 1), and α(D, y) = 0 otherwise.
Note that

(3.1.5) α(D, y) = 0 (if N(D) ≤ y).

Note also that the series (3.1.3) is absolutely convergent on Re(s) > 1, while if we collect
all terms with the same norm N(D), the series thus obtained, which is a power series of
q−s, is absolutely convergent on Re(s) > 1/2, being holomorphic on |q−s| < q−1/2.

Now let X ≥ 1 be a real parameter to be fixed later.

Proposition 3.1.6 (i) On the domain Re(s) ≥ 1/2 + ϵ, one can express g(s, χ, f , y) as
the difference

(3.1.7) g(s, χ, f , y) = Int+ − Int−

of two holomorphic functions

(3.1.8) Int+ = Int+(s, χ, f , y,X) =
1

2πi

∫
Re(w)=c

Γ(w)g(s+ w, χ, f , y)Xwdw,
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where c is any positive real number satisfying c > Max(0, 1 − σ), and

(3.1.9) Int− = Int−(s, χ, f , y,X) =
1

2πi

∫
Re(w)=−ϵ/2

Γ(w)g(s+ w, χ, f , y)Xwdw.

(ii) Int+ has a Dirichlet series expansion

(3.1.10) Int+ =
∑
D

χ(D)α(D, y) exp(−N(D)

X
)N(D)−s

over the integral ideals D, which is absolutely convergent for any χ ∈ Ĝf and any s ∈ C.

Proof First, we claim that

(3.1.11) g(s, χ, f , y) =
1

2πi

∫
B

Γ(w)g(s+ w, χ, f , y)Xwdw,

where B is the positively oriented rectangle bordering

(3.1.12) −ϵ/2 ≤ Re(w) ≤ c, |Im(w)| ≤ T

(T > 0). This is clear, because the integrand is holomorphic in w on (3.1.12) except for
a simple pole at w = 0 with the residue g(s, χ, f , y). (In fact, since ϵ < 1/2, the only pole
of Γ(w) on (3.1.12) is w = 0, and since Re(s + w) ≥ Re(s) − ϵ/2 ≥ 1/2 + ϵ/2 > 1/2,
g(s+ w, χ, f , y) is holomorphic on (3.1.12).)

To prove (i), let us estimate the integrand on −ϵ/2 ≤ Re(w) ≤ c; |Im(w)| ≥ T . First,
|Xw| ≤ Xc (because X ≥ 1); secondly, g(s + w, χ, f , y) is holomorphic and vertically
periodic, hence bounded; thirdly,

|Γ(w)| ≪ |Im(w)|c−1/2 exp(−π
2
|Im(w)|)

for |Im(w)| ≥ 1 . Now (i) follows directly from these by letting T → ∞ in (3.1.11).

(ii) By (3.1.3), the Dirichlet series expansion

(3.1.13) g(s+ w, χ, f , y) =
∑
D

χ(D)α(D, y)N(D)−s−w

is absolutely convergent on Re(w) = c, and the convergence is uniform with respect to
Im(w) (note here that σ + c > 1). Therefore,

Int+ =
1

2πi

∫
Re(w)=c

Γ(w)

(∑
D

χ(D)α(D, y)N(D)−s−w

)
Xwdw(3.1.14)

=
∑
D

χ(D)α(D, y)N(D)−s

(
1

2πi

∫
Re(w)=c

Γ(w)N(D)−wXwdw

)
.
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But since

(3.1.15)
1

2πi

∫
Re(u)=c

Γ(u)a−udu = e−a (a, c > 0),

we obtain the desired Dirichlet series expansion (3.1.10). Because of the exponential
factor, this converges absolutely for any s ∈ C and any χ ∈ Ĝf . This can be seen easily
by noting that α(D, y) ≪ logN(D), and that the number of D with N(D) = qn is ≪ qn

(cf. §3.7). 2

We are going to estimate
Avgχ∈Ĝf

χ̸=χ0

|g(s, χ, f , y)|2k

by estimating each of

Avgχ∈Ĝf
χ̸=χ0

|Int−|2k, Avgχ∈Ĝf
χ̸=χ0

|Int+|2k.

As for the former, in our function field case where the Weil Riemann Hypothesis is valid,
we do not need to average over χ but a direct estimation of |Int−| for each χ by using
Proposition 2.1.7(i) will suffice. As for the latter, we shall use Proposition 3.1.6(ii) and
the orthogonality relation for characters.

As for the choice of the parameter X, the larger (resp. smaller) the better as regards
the estimation of the former (resp. the latter). The choice X = N(f)β, with β > 0 will
suffice for the former, and with β < 1/2k for the latter, as we shall see.

3.2 – Estimation of |Int−|. In what follows, we shall write

(3.2.1) ℓ(y) =

{
log y (Case 1),

1 (Case 2).

Lemma 3.2.2 Let σ = Re(s) ≥ 1/2 + ϵ. Then

(3.2.3) |Int−| ≪ X−ϵ/2(logN(f))y
1+ϵ
2

−σ(log y)−1ℓ(y).

Proof By definition,

(3.2.4) Int− =
1

2πi

∫
Re(w)=−ϵ/2

Γ(w)g(s+ w, χ, f , y)Xwdw.

10



But when Re(w) = −ϵ/2,

Γ(w) ≪

{
exp(−π

2
|Im(w)|) (|Im(w)| ≥ 1),

1 (|Im(w)| ≤ 1).
(3.2.5)

Hence

(3.2.6)

∫
Re(w)=−ϵ/2

|Γ(w)|dw ≪ 1.

As for g(s+ w, χ, f , y), since Re(s+ w) = σ − ϵ/2 (≥ (1 + ϵ)/2), by Proposition 2.1.7 (i)
(to be proved below) we have

(3.2.7) |g(s+ w, χ, f , y)| ≪ (logN(f))y
1+ϵ
2

−σ(log y)−1ℓ(y).

So, Lemma 3.2.2 is reduced to Proposition 2.1.7 (i).

Proof of Proposition 2.1.7 (i) (Case 1) Let χ∗ ∈ Ĝfχ be the primitive character
associated with χ. By [1] Lemma 6.5.2, we have

(3.2.8) |f ′(s, χ∗, fχ, y)| ≪ϵ (logN(fχ) + 1)y1/2−σ ≪ (logN(f))y1/2−σ.

(In fact, when N(p∞) ≤ y, the left hand side of [1](6.5.4) is equal to that of (3.2.8).
When N(p∞) > y, their difference is ≪ (logN(p∞))N(p∞)−σ ≪ N(p∞)−σ ≪ y−σ.) So, it
suffices to prove that the difference |f ′(s, χ, f , y) − f ′(s, χ∗, fχ, y)| is also bounded by the
quantity on the right most side of (3.2.8). But by definition,

(3.2.9) f ′(s, χ, f , y) − f ′(s, χ∗, fχ, y) =
∑
p|f , -fχ
N(p)>y

χ∗(p) logN(p)

N(p)s − χ∗(p)
.

(Primarily, this equality is for Re(s) > 1, but the right hand side being a finite sum and
hence holomorphic on Re(s) > 0, this must hold on Re(s) > 1/2.) Therefore,

|f ′(s, χ, f , y) − f ′(s, χ∗, fχ, y)| ≤
∑
p|f , -fχ
N(p)>y

logN(p)

N(p)σ − 1
≪

∑
p|f ,N(p)>y

N(p)1/2−σ

≪ y1/2−σ
∑
p|f

1 ≪ (logN(f))y1/2−σ,

the last ≪ being by e.g. [1] Sublemma 3.10.5. This settles Case 1.

(Case 2)This case follows directly from Case 1 by integration. In fact,

(3.2.10) f(s, χ, f , y) =

∫ s

∞
f ′(s, χ, f , y)ds = −

∫ ∞

0

f ′(s+ u, χ, f , y)du;

11



hence

|f(s, χ, f , y)| ≤
∫ ∞

0

|f ′(s+u, χ, f , y)|du≪ (logN(f))y1/2−σ

∫ ∞

0

y−udu =
(logN(f))y1/2−σ

log y
,

as desired.

(ii)(Case 1) For σ ≥ 1 + ϵ,

|f ′(s, χ, f , y)| ≤
∑

N(p)>y

logN(p)

N(p)σ − 1
≪
∫ ∞

y

y−σdy =
y1−σ

σ − 1
≪ϵ y

1−σ,

as desired. (As for the justification of the estimation using the integral, which is standard
in the number field case but may not be so in the function field case, use §5.2(5.2.7).)

(Case 2) This follows from Case 1 in the same manner as in (i). 2

3.3 – Estimation of Avg |Int+|2k.

We are going to prove the following

Lemma 3.3.1 Let σ = Re(s) ≥ 1/2 + ϵ. Then

(3.3.2) Avgχ∈Ĝf
χ̸=χ0

|Int+|2k ≪
(
(qy)(1−2σ)k + (logN(f))N(f)−1y−2kσX2k

)
ℓ(y)2k.

This proof will be carried through in §3.3-3.5. First, recall (Proposition 3.1.6 (ii)):

(3.3.3) Int+ = Int+(s, χ, f , y,X) =
∑
D

χ(D)α(D, y) exp(−N(D)

X
)N(D)−s,

which is absolutely convergent for any χ ∈ Ĝf and any s ∈ C. Define Int+(s, χ, f , y,X)
also for χ = χ0 by this series. First, let us consider the average over all χ ∈ Ĝf including
χ0. Then the orthogonality relation for characters gives directly:

(3.3.4) S := Avgχ∈Ĝf
|Int+(s, χ, f , y,X)|2k =

∑
c∈Gf

|
∑

(D,f)=1
if (D)=c

Ak(D, y)N(D)−s|2,

where

(3.3.5) Ak(D, y) =
∑

D=D1···Dk

α(D1, y) · · ·α(Dk, y) exp

(
−N(D1) + · · · +N(Dk)

X

)
.
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Sublemma 3.3.6 Put

(3.3.7) αk(D, y) =
∑

D=D1···Dk

|α(D1, y) · · ·α(Dk, y)|.

Then
(i)

(3.3.8) |Ak(D, y)| ≤ αk(D, y) exp

(
−kN(D)1/k

X

)
.

(ii) αk(D, y) = 0 if N(D) < (qy)k, and for general D,

(3.3.9) αk(D, y) ≪

{
(logN(D))k (Case 1),

1 (Case 2).

Proof (i) Since the arithmetic mean is no less than the geometric mean, we have∑k
i=1N(Di) ≥ kN(D)1/k; hence (i) is obvious.
(ii) The first statement is because if N(D) < (qy)k and D = D1...Dk then N(Di) < qy

for at least one i, but since y is an integral power of q this means N(Di) ≤ y; hence
α(Di, y) = 0 by (3.1.5). The inequality (3.3.9) for Case 1 is given in [1] §3.8. In Case
2, let D =

∏h
i=1 pni

i be the prime factorization. We may assume that h ≤ k and that
N(pi) > y for all i, for otherwise αk(D, y) = 0. Then, by definition, αk(D, y) is nothing
but the coefficient of

∏h
i=1 x

ni
i in the power series

(3.3.10) (−
h∑

i=1

log(1 − xi))
k

on h independent variables x1, ..., xh. Since k is fixed, the number of possible values of h
is limited. So, it suffices to see that for each k ≥ 1 the coefficients in the power series

(3.3.11) (
∞∑

n=1

xn

n
)k

are bounded. But since ∑
µ,ν≥1
µ+ν=n

(µν)−1 =
2

n

n−1∑
µ=1

µ−1 <
2

n
(log n+ 1),

(as is shown in [4]4) it follows directly by induction on k ≥ 1 that the coefficient of xn in
(3.3.11) is ≤ (2 log n+ 2)k−1/n≪k 1. 2

4Incidentally, or rather, accidentally, the same inequality was used in [4] for a different purpose.
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Now rewrite (3.3.4) as

(3.3.12) S =
∑
c∈Gf

∣∣∣∣ ∑
if (D)=c

N(D)<N(f)

Ak(D, y)N(D)−s +
∑

if (D)=c
N(D)≥N(f)

Ak(D, y)N(D)−s

∣∣∣∣2.
Here and in what follows, in order to simplify indications under the summation sign,
we shall omit writing (D, f) = 1 when the other conditions include “if (D) = c”. The
former is considered automatic under the latter. Now, in (3.3.12), the first inner sum over
{D; if (D) = c,N(D) < N(f)} has at most one term Ak(Dc, y)N(Dc)

−s by Proposition
3.3.16(iii) below. Here, when such a term exists for a given class c (c: small in the sense of
[1]§6.8), Dc denotes the unique integral divisor satisfying if (Dc) = c and N(Dc) < N(f).
This gives

(3.3.13) S ≤ 2(S1 + S2),

with

(3.3.14) S1 =
∑

c: small

|Ak(Dc, y)|2N(Dc)
−2σ =

∑
N(D)<N(f)

|Ak(D, y)|2N(D)−2σ,

(3.3.15) S2 =
∑
c∈Gf

(
∑

if (D)=c
N(D)≥N(f)

|Ak(D, y)|N(D)−σ )2.

We shall estimate S1, S2 separately, using Sublemma 3.3.6 and the following

Proposition 3.3.16 Let n be any positive integer. Then:
(i) The number of integral divisors D of K with N(D) ≤ qn is OK(qn).
(ii) Let c be any fixed element of Gf . Then the number of integral divisors D satisfying
N(D) = qn and if (D) = c cannot exceed Max(1, qn+1/N(f)).
(iii) There is at most one integral divisor D coprime with p∞ satisfying if (D) = c and
N(D) < N(f).

The proof will be given in the Appendix. We shall also need the formula for the
cardinality of Gf :

(3.3.17) |Gf | = deg(p∞)hK
N(f)

q − 1

∏
p|f

(
1 − 1

N(p)

)
(hK : the class number of K), and its consequence

(3.3.18)
N(f)

logN(f)
≪ |Gf | ≪ N(f).
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(As regards (3.3.17), the product of the first two factors on the right hand side gives the
index of the subgroup of Gf represented by principal divisors, and the rest gives the index
of the multiplicative group F×

q ⟨α ≡ 1(mod f)⟩ in the group of all elements of K× that
are coprime with f . As for the estimations (3.3.18), the second ≪ is obvious, because we
have fixed K and p∞; the first follows from the estimation

(3.3.19)
∏

N(p)≤y

(
1 − 1

N(p)

)−1

≪ log y,

which is standard at least in the number field case (see (5.2.4) below)).

3.4 – Estimations of S1, S2.

Estimation of S1. By the definition of S1 and by Sublemma 3.3.6, we obtain a
simplified bound

(3.4.1) S1 ≤
∑
D

αk(D, y)
2N(D)−2σ,

irrelevant of N(f) and X. (This may look “too rough”, because what characterized the
partial sum S1 was the condition N(D) < N(f). But once we have used the strong “at
most one term” property mentioned above, what remains is only to drop the condition
N(D) < N(f) in order to obtain an estimation independent of f . Also, X is irrelevant
here. We only use exp(−kN(D)1/k/X) < 1 to derive |Ak(D, y)| ≤ αk(D, y).) Therefore,
by putting N(D) = qn and using Proposition 3.3.16(i) and Sublemma 3.3.6 (ii), we obtain

(3.4.2) S1 ≪k

∑
qn≥(qy)k

ℓ2k
n q

(1−2σ)n,

where ℓn = n (Case 1), = 1 (Case 2). From this follows easily that

(3.4.3) S1 ≪k,ϵ (qy)(1−2σ)kℓ(y)2k.

Indeed, if we write (qy)k = qN , the right hand side of (3.4.2) is

ℓ2k
N q

(1−2σ)N

∞∑
i=0

(ℓN+i/ℓN)2kq(1−2σ)i ≤ ℓ2k
N q

(1−2σ)N

∞∑
i=0

(1 + i)2kq−2ϵi ≪k,ϵ ℓ(y)
2k(qy)(1−2σ)k.

Estimation of S2. We shall first estimate the quantity

(3.4.4) S ′
c =

∑
if (D)=c

N(D)≥N(f)

|Ak(D, y)|N(D)−σ

15



for each c ∈ Gf . If we write N(D) = qn, then Ak(D, y) = 0 for qn < (qy)k, and
|Ak(D, y)| ≪ ℓkn exp(−kqn/k/X) for any n, by Sublemma 3.3.6. By Proposition 3.3.16(ii),
the number of D satisfying both N(D) = qn and if (D) = c is ≪ qn/N(f). Therefore,

(3.4.5) S ′
c ≪ N(f)−1S ′,

where

S ′ =
∑

qn≥(qy)k

qnℓkn exp(−kqn/k/X)q−nσ(3.4.6)

≪
∑

qn≥(qy)k

(qn − qn−1)q−nσ exp(−kqn/k/X)ℓkn

≪
∑

qn≥(qy)k

∫ qn

qn−1

t−σ exp(−kt1/k/X)ℓ(t)kdt

≤
∫ ∞

yk

t−σ exp(−kt1/k/X)ℓ(t)kdt,

where, as before, ℓ(t) = log t (Case 1), = 1 (Case 2). Now we shall show that

(3.4.7) t−σℓ(t)k ≪ y−kσℓ(y)k (t ≥ yk).

In Case 2 where ℓ(t) = 1, this is obvious. In Case 1 where ℓ(t) = log t, the derivative
of t−σℓ(t)k is (k − σ log t)(log t)k−1t−σ−1, and at the zero of this derivative, the value of
t−σℓ(t)k is e−k(k/σ)k. Therefore, when log(yσ) ≥ 1, t−σℓ(t)k is monotone decreasing on
t ≥ yk, and hence (3.4.7) holds. When log(yσ) < 1, then the maximal possible value of
t−σℓ(t)k is e−k(k/σ)k ≪ 1, while in this case y−kσℓ(y)k > e−kℓ(y)k ≥ (e−1 log q)k ≫ 1.
Therefore, (3.4.7) holds in all cases.

Therefore,

(3.4.8) S ′ ≪ y−kσℓ(y)k

∫ ∞

0

exp(−kt1/k/X)dt.

But since the integral in (3.4.8) is k1−kΓ(k)Xk ≪ Xk, we obtain

(3.4.9) S ′ ≪ y−kσℓ(y)kXk.

Therefore,

S2 =
∑
c∈Gf

(S ′
c)

2 ≤ |Gf |(N(f)−1S ′)2(3.4.10)

≪ N(f)−1S ′2 ≪ N(f)−1y−2kσX2kℓ(y)2k.
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3.5 – Proof of Lemma 3.3.1. Now by (3.3.13),(3.4.3),(3.4.10), we obtain

(3.5.1) S := Avgχ∈Ĝf
|Int+|2k ≪

(
(qy)(1−2σ)k +N(f)−1y−2kσX2k

)
ℓ(y)2k.

So, it remains to verify that

∆ := Avgχ∈Ĝf
χ̸=χ0

|Int+|2k − Avgχ∈Ĝf
|Int+|2k(3.5.2)

≪ (logN(f))N(f)−1y−2kσX2kℓ(y)2k.

This (logN(f))-factor comes from the possible difference between N(f) and |Gf | when f
contains many prime factors. To check (3.5.2), note first that

(3.5.3) ∆ ≪ |Gf |−1Maxχ∈Ĝf
|Int+|2k.

This and (3.3.18) give

(3.5.4) ∆ ≪ (logN(f))N(f)−1Maxχ∈Ĝf
|Int+|2k.

Hence it remains to prove

(3.5.5) |Int+| ≪ y−σX · ℓ(y).

But by Propositions 3.1.6(ii), 3.3.16(i) and by Sublemma 3.3.6 (for k = 1), we have

|Int+| ≤
∑
D

|α(D, y)| exp(−N(D)/X)N(D)−σ(3.5.6)

≪
∑

qn≥qy

ℓnq
n−nσ exp(−qn/X).

This last quantity is nothing but S ′ for k = 1; hence (3.4.9) gives (3.5.5). This settles the
proof of Lemma 3.3.1.

3.6 – The final stage. Finally, since |g(s, χ, f , y)|2k = |Int+−Int−|2k ≪k |Int+|2k+
|Int−|2k, we obtain from Lemmas 3.2.2, 3.3.1,

(3.6.1) Avgχ∈Ĝf
χ̸=χ0

|g(s, χ, f , y)|2k ≪ (I + II + III) × ℓ(y)2k,

where 
I = (X−ϵ(logN(f))2y1+ϵ−2σ(log y)−2)

k
;

II = (qy)(1−2σ)k;

III = (logN(f))N(f)−1y−2kσX2k.

(3.6.2)
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Now choose X by the equality

(3.6.3) X2k+ϵ = N(f).

Then, clearly, I, II ≪ y(1+ϵ−2σ)k, and

(3.6.4) III = (logN(f))N(f)−ϵ/(2k+ϵ)y−2kσ ≪ y−2kσ ≪ y(1+ϵ−2σ)k.

Therefore,

(3.6.5) Avgχ∈Ĝf
χ̸=χ0

|g(s, χ, f , y)|2k ≪ ℓ(y)2ky(1+ϵ−2σ)k.

This settles the proof of Theorem A.

4 Proof of Theorem B

4.1 – We shall apply Theorem A for Case 1 to prove Theorem B.
First, consider the case where the test function Φ on C belongs to class C1 (as a

function of two real variables) and has a compact support. Then clearly,

(4.1.1)

∫
|Φ(z)||dz| <∞,

(4.1.2) |Φ(z1) − Φ(z2)| ≪ |z1 − z2|.

(Here and in what follows, the integral will be over the whole complex plane C unless
otherwise specified.) Now, an alternative version of Theorem A given in Remarks 2.2.4
(iii), for Case 1 for k = 1, and the Schwarz inequality, give

(4.1.3) lim
y→∞

Avgχ∈Ĝf
fχ=f

∣∣∣∣L′
Py

LPy

(s, χ) − L′

L
(s, χ)

∣∣∣∣ = 0 (uniformly in f);

hence by (4.1.2),

(4.1.4) lim
y→∞

Avgχ∈Ĝf
fχ=f

Φ

(
L′

Py

LPy

(s, χ)

)
= Avgχ∈Ĝf

fχ=f

Φ

(
L′

L
(s, χ)

)
(uniformly in f).

Therefore, by the definition of AvgN(fχ)≤m ([1]§4.1), we also obtain immediately the uni-
form convergence in m; namely,
(4.1.5)

lim
y→∞

AvgN(fχ)≤mΦ

(
L′

Py

LPy

(s, χ)

)
= AvgN(fχ)≤mΦ

(
L′

L
(s, χ)

)
(uniformly in m).
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This is the first (and the main) point. Secondly, we already know ([1](4.4.3)) that

(4.1.6) lim
m→∞

AvgN(fχ)≤mΦ

(
L′

Py

LPy

(s, χ)

)
=

∫
Mσ,Py(w)Φ(w)|dw|

holds for each y > 1, and thirdly, since limy→∞Mσ,Py(w) = Mσ(w) uniformly on C (ibid
Theorem 2 (i)), and since Φ satisfies (4.1.1), we have

(4.1.7) lim
y→∞

∫
Mσ,Py(w)Φ(w)|dw| =

∫
Mσ(w)Φ(w)|dw|.

Therefore,

lim
m→∞

AvgN(fχ)≤mΦ

(
L′

L
(s, χ)

)
= lim

m→∞
lim
y→∞

AvgN(fχ)≤mΦ

(
L′

Py

LPy

(s, χ)

)
(4.1.8)

= lim
y→∞

lim
m→∞

AvgN(fχ)≤mΦ

(
L′

Py

LPy

(s, χ)

)
=

∫
Mσ(w)Φ(w)|dw|,

which settles the proof of Theorem B for this case.

4.2 – Now we consider the case where Φ belongs to C1 and has at most polynomial
growth, i.e., when

(4.2.1) |Φ(z)| ≪ |z|k (|z| ≥ 1)

holds for some k ≥ 1. Let

(4.2.2) 1 =
∞∑

r=1

Er(z)

be a partition of unity by C1-functions Er(z) on C satisfying 0 ≤ Er(z) ≤ 1 and

(4.2.3) Supp(Er) ⊆ {r − 1 ≤ |z| ≤ r + 1},

for the support of Er(z). (A word of caution: this expression may give an impression that
the point z = 0 should lie on the boundary of Supp(E1), but it is not; the condition for
r = 1 is simply Supp(E1) ⊆ {|z| ≤ 2}.) For any R ∈ N, put

(4.2.4) E(R) =
R∑

r=1

Er (≤ 1),

(4.2.5) Φr = Φ · Er, Φ(R) =
R∑

r=1

Φr = Φ · E(R).
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Thus,

(4.2.6) Φ(z) =
∞∑

r=1

Φr(z) = lim
R→∞

Φ(R)(z).

Since each Φ(R)(z) belongs to C1 and is compactly supported, the result of §4.1 can be
applied which gives

(4.2.7) lim
m→∞

AvgN(fχ)≤mΦ(R)

(
L′

L
(s, χ)

)
=

∫
Mσ(z)Φ(R)(z)|dz|

for any σ = Re(s) > 1/2. We claim now that

(4.2.8) lim
R→∞

∫
Mσ(z)Φ(R)(z)|dz| =

∫
Mσ(z)Φ(z)|dz|.

To prove this, first note that |Φ(R)(z)| ≤ |Φ(z)|. Also,

(4.2.9) Supp(Φ − Φ(R)) ⊆ {z ∈ C; |z| ≥ R}.

Therefore,
(4.2.10)∣∣∣∣∫ Mσ(z)(Φ(z) − Φ(R)(z))|dz|

∣∣∣∣ ≤ 2

∫
|z|≥R

Mσ(z)|Φ(z)||dz| ≪
∫
|z|≥R

Mσ(z)|z|k|dz|

by our assumption (4.2.1). But since Mσ(z) = O(|z|−N) for any N ([1] Theorem 2 (iii)),
in particular for N = k + 3, this tends to 0 as R 7→ ∞. This proves (4.2.8).

Now we shall prove that
(4.2.11)

lim
R→∞

AvgN(fχ)≤mΦ(R)

(
L′

L
(s, χ)

)
= AvgN(fχ)≤mΦ

(
L′

L
(s, χ)

)
(uniformly in m),

which, together with (4.2.7)(4.2.8), proves

(4.2.12) lim
m→∞

AvgN(fχ)≤mΦ

(
L′

L
(s, χ)

)
=

∫
Mσ(z)Φ(z)|dz|

in the present case of Φ. (First apply limm→∞ to (4.2.11), note that the order of two
limits can be changed, then use (4.2.7), and then (4.2.8).)

To prove (4.2.11), observe first that (4.2.1) and (4.2.9) give

(4.2.13) |Φ(z) − Φ(R)(z)| ≪ ch(R)(z)|z|k,
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where ch(R) denotes the characteristic function of |z| ≥ R. Moreover, we have

(4.2.14) AvgN(fχ)≤mch(R)

(
L′

L
(s, χ)

)
≪ R−2k (uniformly in m).

In fact, since

(4.2.15) lim
m→∞

AvgN(fχ)≤m

∣∣∣∣L′

L
(s, χ)

∣∣∣∣2k

= µ(k,k)
σ ≪ 1

([1] Theorem 7(iii) for σ > 1/2 (fixed) and a = b = k), we have

(4.2.16) AvgN(fχ)≤m

∣∣∣∣L′

L
(s, χ)

∣∣∣∣2k

≪ 1; (uniformly in m).

On the other hand, we have the obvious inequality

(4.2.17) ch(R)

(
L′

L
(s, χ)

)
R2k ≤

∣∣∣∣L′

L
(s, χ)

∣∣∣∣2k

.

Therefore,

AvgN(fχ)≤mch(R)

(
L′

L
(s, χ)

)
R2k ≤ AvgN(fχ)≤m

∣∣∣∣L′

L
(s, χ)

∣∣∣∣2k

≪ 1 (uniformly in m),

whence (4.2.14).

Therefore, by (4.2.13)(4.2.14)(4.2.16) (noting also that ch2
R = chR) and the Schwarz

inequality we obtain∣∣∣∣AvgN(fχ)≤m

(
Φ

(
L′

L
(s, χ)

)
− Φ(R)

(
L′

L
(s, χ)

))∣∣∣∣≪ AvgN(fχ)≤m

(
ch(R)

(
L′

L
(s, χ)

)
×
∣∣∣∣L′

L
(s, χ)

∣∣∣∣k
)

≤

(
AvgN(fχ)≤mch(R)

(
L′

L
(s, χ)

)
× AvgN(fχ)≤m

∣∣∣∣L′

L
(s, χ)

∣∣∣∣2k
)1/2

≪ R−k.

Since this estimation is uniform in m, this settles the proof of (4.2.11), and hence also of
(4.2.12) in the present case of Φ.
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4.3 – The general case.

Now let Φ be any continuous function satisfying |Φ(z)| ≪ |z|k (|z| ≥ 1) with some
k ≥ 1. Then, for any ϵ > 0, there exists a C1-function Φ1 satisfying |Φ − Φ1| < ϵ
everywhere. For such Φ1, we have

(4.3.1)

∣∣∣∣AvgN(fχ)≤m

(
Φ

(
L′

L
(s, χ)

)
− Φ1

(
L′

L
(s, χ)

))∣∣∣∣ < ϵ (any m),

(4.3.2)

∫
Mσ(z)|Φ(z) − Φ1(z)||dz| < ϵ

∫
Mσ(z)|dz| = ϵ.

Hence ∣∣∣∣AvgN(fχ)≤mΦ

(
L′

L
(s, χ)

)
−
∫
Mσ(z)Φ(z)|dz|

∣∣∣∣(4.3.3)

< 2ϵ+

∣∣∣∣AvgN(fχ)≤mΦ1

(
L′

L
(s, χ)

)
−
∫
Mσ(z)Φ1(z)|dz|

∣∣∣∣ < 3ϵ

for m sufficiently large, by §4.2. Therefore, (4.3.3), which is independent of the choice of
Φ1, must be 0; hence Theorem B is proved also in this general case.

It remains to deal with the case where Φ is the characteristic function of either a
compact set or of its complement, and clearly it suffices to deal with the former. Let A be
any compact subset of C and chA denote its characteristic function. Then for any ϵ > 0,
there exist two continuous real valued functions ϕ1, ϕ2 on C with compact supports such
that

(4.3.4) 0 ≤ ϕ1 ≤ chA ≤ ϕ2 ≤ 1

and that the support of ϕ2 − ϕ1 has volume < ϵ. Put Cσ = Maxz∈CMσ(z) (< ∞). Then
clearly,∫

Mσ(w)(chA(w) − ϕ1(w))|dw| and

∫
Mσ(w)(ϕ2(w) − chA(w))|dw| < Cσϵ.

Therefore, by Theorem B for Φ = ϕ1, ϕ2 and (4.3.4) we obtain∫
A

Mσ(w)|dw| − Cσϵ ≤
∫
Mσ(w)ϕ1(w)|dw| = lim

m→∞
AvgN(fχ)≤mϕ1

(
L′

L
(s, χ)

)
≤ lim AvgN(fχ)≤mchA

(
L′

L
(s, χ)

)
≤ lim AvgN(fχ)≤mchA

(
L′

L
(s, χ)

)
≤ lim

m→∞
AvgN(fχ)≤mϕ2

(
L′

L
(s, χ)

)
=

∫
Mσ(w)ϕ2(w)|dw| ≤

∫
A

Mσ(w)|dw| + Cσϵ.
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Since ϵ > 0 is arbitrary, the equality

(4.3.5) lim
m7→∞

AvgN(fχ)≤mchA

(
L′

L
(s, χ)

)
=

∫
A

Mσ(w)|dw|

must hold.
This completes the proof of Theorem B.

5 Appendix: Function-field analogues of well-known estima-
tions of some basic arithmetic functions.

Here we shall supply proofs for the estimates of some relevant arithmetic functions that
are well-known in the number field case but not necessarily so in our function field case.
Very probably, each of them had been proved and used somewhere in some past literature,
but since we could not find suitable references, we shall provide their proofs. (Among
them, Proposition 5.3.1 is not used in this text but will be used in a forthcoming paper.)

5.1 – Number of integral divisors in a given class having a given norm.

We shall here give a proof of Proposition 3.3.16 (copied below with a new numbering):

Proposition 5.1.1 Let n be any positive integer. Then:
(i) The number of integral divisors D of K with N(D) ≤ qn is OK(qn).
(ii) Let c be any fixed element of Gf . Then the number of integral divisors D satisfying
N(D) = qn and if (D) = c cannot exceed Max(1, qn+1/N(f)).
(iii) There is at most one integral divisor D coprime with p∞ satisfying if (D) = c and
N(D) < N(f).

Proof (i) For any positive integer n, denote by An (resp. Bn) the number of integral
(resp. prime) divisors of K will degree n. Since the values of norms are restricted to
integral powers of q, the statement (i) is equivalent (only in the function field case!) to
that the number of integral divisors of K with norm = qn is O(qn), i.e., to

(5.1.2) An = O(qn).

This proof is very simple. Let ζK(s) be the (congruence) zeta function of K. Then, as a
formal power series of u = q−s over Z,

(5.1.3) ζK(s) =
∞∑

n=1

Anu
n =

∞∏
m=1

(1 − um)−Bm =
P (u)

(1 − u)(1 − qu)
,
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where P (u) is a polynomial. Since the coefficient of un in the power series expansion of
((1−u)(1− qu))−1 is ≪ qn, and the polynomial P (u) depends only on the field K, (5.1.2)
follows immediately.

(ii) Suppose that c contains at least one such divisor D0. Then any integral divisor
D satisfying N(D) = qn and if (D) = c must be of the form (α)D0, with some α ∈ K×

satisfying the congruence α ≡ 1 (mod f). (Since DD−1
0 has norm 1, its ⟨p∞⟩-component

is trivial.) Such an element α is uniquely determined by its divisor and hence by D,
because the group of units in K is F×

q and hence the only unit congruent to 1 (mod f)
is 1. Put β = α − 1, so that (β) ≽ f . The integrality condition for D in terms of α
is (α) ≽ D−1

0 , which is equivalent to (β) ≽ D−1
0 , because D0 is integral. Therefore, the

condition for D is (β) ≽ fD−1
0 . But such β form a linear space over Fq of dimension at

most Max(0, degD0 − deg f + 1) (cf. e.g. [5] p.7, Prop. 4).
(iii) Two integral divisors coprime with p∞ belonging to the same class c must have

the equal norm (because the norm of any principal divisor is 1). Therefore, (iii) is an
immediate consequence of (ii). 2

5.2 – Sums over prime divisors. Here, we list some basic estimates related to sums
over primes with restricted norms (in terms of restricted degrees) that are more or less
relevant. The Landau symbol O below depends on K, ∼ means that the limit of the ratio
as n 7→ ∞ tends to 1, and log is the natural logarithm (not the one with the base q).

n∑
i=1

iBi ∼ (1 − q−1)−1qn,(5.2.1)

n∑
i=1

Bi ∼ (1 − q−1)−1(qn/n),(5.2.2)

n∑
i=1

Bi/q
i = log n+ O(1),(5.2.3)

n∏
i=1

(1 − q−i)−Bi ≪ n.(5.2.4)

To prove these, we need to know more about the zeros of P (u). As in the number
field case where these 4 formulas correspond to the well-known estimates of ψ(x), π(x),∑

N(p)≤xN(p)−1 and
∏

N(p)≤x(1−N(p)−1)−1 respectively, we do not need as strong as the
Riemann hypothesis. But let us use the Weil Riemann Hypothesis for function fields to
make the arguments much simpler. It asserts that

(5.2.5) P (u) =

g∏
ν=1

(1 − πνu)(1 − π̄νu)
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(g: the genus), with

(5.2.6) |πν | = |π̄ν | = q1/2 (1 ≤ ν ≤ g).

The key basic formula for all the above estimates is

(5.2.7) Bm =
qm

m
+ O(qm/2).

To prove (5.2.7), put

(5.2.8) Nm =
∑
d|m

dBd = qm + 1 −
g∑

ν=1

(πm
ν + π̄m

ν ).

By the first defining equality, Nm gives the number of Fqm-rational points of the corre-
sponding curve, and the second equality is obtained from the last equality in (5.1.3) by
taking the logarithmic derivative with respect to u and by comparing the coefficients of
um−1 (cf. e.g. [5]). Now, (5.2.8) and (5.2.6) give

(5.2.9) Nm = qm + O(qm/2) = O(qm),

while the Möbius inversion formula gives

(5.2.10) mBm =
∑
d|m

µ(d)Nm/d;

hence

(5.2.11) |mBm −Nm| ≤
∑

d|m, d≥2

Nm/d ≪
m∑

d=2

qm/d ≤ mqm/2.

Hence by combining with (5.2.9), we obtain |mBm − qm| ≪ mqm/2, i.e., (5.2.7).

This decomposition (5.2.7) of Bm reduces the proof of each formula above to elemen-
tary calculus.

5.3 – The number of factors of D.
For each integral divisor D, let S(D) denote the number of distinct factors of D;

namely, S(D) =
∏
p(rp + 1) when D has the prime factorization D =

∏
p p

rp .

Proposition 5.3.1

(5.3.2) S(D) ≪ϵ′ N(D)ϵ′

holds for any ϵ′ > 0.
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Proof Write D =
∏s

i=1 pri
i (r1, ..., rs ≥ 1). Then by [1] Sublemma 3.10.5, we have

(5.3.3) s ≤ s⋆
0 := C0

logN(D)

log logN(D)

for some positive constant C0 for N(D) > 3. Since ri + 1 ≤ C1(logN(pi))ri (say, for
C1 = 2/ log 2), we have

(5.3.4)
s∑

i=1

(ri + 1) ≤ C1

s∑
i=1

ri logN(pi) = C1 logN(D).

But since

(5.3.5) S(D) =
s∏

i=1

(ri + 1) ≤

(
1

s

s∑
i=1

(ri + 1)

)s

,

we obtain

(5.3.6) logS(D) ≤ s(log logN(D) + logC1 − log s).

Now consider

(5.3.7) f(s) = s(log logN(D) + logC1 − log s)

as a function of a free real variable s and look for its maximal value on the region 1 ≤
s ≤ s⋆

0. Since its derivative is

(5.3.8) f ′(s) = log logN(D) + logC1 − log s− 1,

we see that f ′(1) > 0 if N(D) is sufficiently large, and that f ′(s) is monotone decreasing
with the limit −∞ at s → +∞. Its unique zero s0 > 0 is given by s0 = C1e

−1 logN(D),
which is greater than s⋆

0 if N(D) is sufficiently large. Therefore, f ′(s) > 0 for 1 ≤ s ≤ s⋆
0.

Therefore, on this region, we have

f(s) ≤ f(s⋆
0) = s⋆

0(log logN(D) + logC1 − log s⋆
0)(5.3.9)

= C0
logN(D)

log logN(D)
(logC1 − logC0 + log log logN(D)).

Therefore,

logS(D) ≤ C0
log log logN(D) + log(C1/C0)

log logN(D)
logN(D)(5.3.10)

≤ ϵ′ logN(D)

for N(D) ≫ϵ′ 1. This proves Proposition 5.3.1.
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