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Abstract

We study the value-distribution of Dirichlet L-functions L(s, χ) in
the half-plane σ = <s > 1/2. The main result is that a certain aver-
age of the logarithm of L(s, χ) with respect to χ, or of the Riemann
zeta-function ζ(s) with respect to =s, can be expressed as an integral
involving a density function, which depends only on σ and can be ex-
plicitly constructed. Several mean-value estimates on L-functions are
essentially used in the proof in the case 1/2 < σ ≤ 1.

1 Introduction

Let s = σ + iτ be a complex variable, and ζ(s) the Riemann zeta-function.
In the first half of the 20th century, Bohr (sometimes with Courant, Jessen
or Landau) studied the distribution of values of log ζ(s) and its derivative
(ζ ′/ζ)(s) extensively. For example it was shown that, for any fixed σ > 1,
the set of values (ζ ′/ζ)(σ + iτ) (τ ∈ R) is everywhere dense in a certain
region which is a circular area or an annulus on the complex plane C. As
for log ζ(σ+iτ), an analogous result holds for σ > 1, and if 1/2 < σ ≤ 1, the
set of values of log ζ(σ+ iτ) is, under a certain fixed choice of the branch of
the logarithm, everywhere dense in C (see Chapter XI of Titchmarsh [20]).
In [3], Bohr and Jessen proved the following limit theorem. Let R be an
arbitrary rectangle in C, with the edges parallel to the axes. For any T > 0,
let Vσ(T,R) be the Lebesgue measure of the set of all τ ∈ [−T, T ] for which
log ζ(σ + iτ) ∈ R holds. Then the theorem of Bohr and Jessen asserts the
existence of the limit

Wσ(R) = lim
T→∞

(2T )−1Vσ(T,R) (1.1)

for any σ > 1/2. Moreover they proved that this limit can be written as

Wσ(R) =

∫

R
Fσ(w)|dw|, (1.2)

where w = u + iv ∈ C, |dw| = (2π)−1dudv and Fσ is a continuous, every-
where non-negative function defined over C. The proof of Bohr and Jessen
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depends on their own geometric study [2] on certain “infinite sums” of planer
convex curves. Later, Jessen and Wintner [13], Borchsenius and Jessen [4]
developed alternative approaches to the Bohr-Jessen theorem, based on the
theory of Fourier transforms. A modern formulation of the Bohr-Jessen the-
orem, written in terms of weak convergence of probability measures, can be
found in Laurinčikas’ book [15]. Generalizations of the Bohr-Jessen theo-
rem to more general zeta and L-functions were studied by the second-named
author [16], [17], [18].

The behaviour of zeta or L-functions is, generally speaking, quite compli-
cated, so it is natural to consider various types of averages to obtain some
definite statements on the value-distribution of them. In the case of the
Bohr-Jessen theorem, an average with respect to τ = =s is taken.

Recently, under the motivation of studying Euler-Kronecker constants of
global fields (see [7], [8], [12]), averages with respect to characters have been
studied by the first-named author [9]. Let K be a global field, χ a character
on K, and L(s, χ) the associated L-function. The main aim of [9] is to prove
the existence of the density function Mσ(w) defined on C for which

AvgχΦ

(
L′(s, χ)

L(s, χ)

)
=

∫

C

Mσ(w)Φ(w)|dw| (1.3)

holds for a sufficiently wide class of test functions Φ, where s = σ + iτ is
fixed, and Avgχ means some average with respect to χ. In [9], the following
three cases are considered:

(A) K is either the rational number field Q, or an imaginary quadratic
field, or a function field over a finite field Fq, and χ are Dirichlet characters
on K.

(B) K is a number field having at least two archimedean primes, and χ
are normalized unramified Grössencharacters.

(C) K = Q and χ = χτ ′ , where τ ′ ∈ R, is defined by χτ ′(p) = p−iτ ′ for
each prime p.

Then in [9], among other things, formula (1.3) is established in the fol-
lowing situation:

(i) When σ = <s > 1, in each of case (A), (B), (C), formula (1.3) holds
for any continuous Φ.

(ii) Formula (1.3) for the function field case in case (A) further holds for
σ > 3/4 and Φ is any “character” ψz with z ∈ C defined by

ψz(w) = exp(i<(zw)); (1.4)

or σ > 1/2 and Φ is any polynomial in z, z (and furthermore, for σ > 3/4
if Φ ∈ L1 ∩L∞ and the Fourier transform of Φ has compact support, or for
σ > 5/6 if Φ is a standard function in the sense of Weil [21]).

The rigorous meaning of Avgχ will be given later, but the meaning in
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the case (C) is to be mentioned here. It is given by

Avgχφ(χτ ′) = lim
T→∞

1

2T

∫ T

−T
φ(χτ ′)dτ

′ (1.5)

for any integrable function φ(χτ ′) of τ ′. In case (C), the associated L-
function is

∏

p

(
1− χτ ′(p)p

−s)−1
=
∏

p

(
1− p−s−iτ ′

)−1
, (1.6)

which is nothing but the Riemann zeta-function ζ(s + iτ ′). Therefore, in
this case, the left-hand side of (1.3) is equal to

lim
T→∞

1

2T

∫ T

−T
Φ

(
ζ ′

ζ
(s+ iτ ′)

)
dτ ′. (1.7)

In particular, if we could choose Φ = 1R, the characteristic function of
the rectangle R, then the integral in (1.7) is the measure of the set of all
τ ′ ∈ [−T, T ] for which (ζ ′/ζ)(s+ iτ ′) ∈ R holds. Consequently (1.3) in this
case would give an analogue of (1.2) for ζ ′/ζ.

However, actually, formula (1.3) in case (C) has been shown only for
σ > 1 in [9]. One of the reasons is that, since the Riemann hypothesis (RH,
for brevity) has not been proved for the Riemann zeta-function, we cannot
exclude the possibility of the existence of zeros in the strip 1/2 < σ < 1,
which causes a trouble. In the function field case we know that the analogue
of RH is true, so we can go into the critical strip. But there exists another
difficulty; still in the function field case, what we have shown in [9] is a
partial answer ((ii) above). This is because some relevant estimates proved
in [9] is not sufficiently strong.

On the other hand, in the case of log ζ(s), Bohr and Jessen proved (1.1)
and (1.2) for any σ > 1/2, without assuming RH. A technical reason of their
success is that they used mean value estimates of certain related Dirichlet
series quite ingeniously.

Therefore, if we aim to obtain an analogue of (1.3) for the logL case, we
might go further. We search for some analogue of Mσ(w) in the logL case,
which we denote by Mσ(w), for which

AvgχΦ(logL(s, χ)) =

∫

C

Mσ(w)Φ(w)|dw| (1.8)

holds.
In the present paper we will mainly study the case when K = Q, but in

the former half of the paper we will work in a more general situation.
In Section 2 we will state our main theorem. The density function

Mσ(w) will be constructed and studied in Section 3. After discussing the
case σ > 1 briefly in Section 4, we will proceed to the study of the case
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1/2 < σ ≤ 1. In Section 5 we will prepare some auxiliary estimations of
relevant Fourier coefficients. The proof of the main thoerem for 1/2 < σ ≤ 1
will be described in Sections 6 to 9.

If we assume GRH (the generalized Riemann hypothesis for L-functions),
or restrict ourselves to the function field case, then we can even treat the
mean values of ψ(logL(s, χ)) for any quasi-characters ψ of C, and this leads
us to some stronger conclusions (cf. [11]).

In the following sections, ε denotes an arbitrarily small positive number,
not necessarily the same at each occurrence. The Vinogradov symbol f � g
means f = O(g). The symbol |A| means the cardinality of the set A.

2 Statement of the main result

In Section 1 we mentioned that cases (A), (B), and (C) are studied in [9].
In the present paper our main concern is the case K = Q, therefore we pick
up only the following two cases:

(C) K = Q and χ = χτ ′ . The meaning of Avgχ is (1.5), and the
associated L-function is ζ(s+ iτ ′) as was shown in (1.6).

(A,Q) K = Q and χ are Dirichlet characters with prime conductors.
The associated L-function is the Dirichlet L-function L(s, χ).

It is necessary to fix the branch of logL. When σ > 1, the L-function
has the Euler product expression

L(s, χ) =
∏

p

(1− χ(p)p−s)−1, (2.1)

and so in this half-plane we define

logL(s, χ) = −
∑

p

Log(1− χ(p)p−s), (2.2)

where Log means the principal branch.
In the strip D = {s ; 1/2 < σ ≤ 1}, there is the possibility of the

existence of zeros of L(s, χ), since we do not assume GRH. We remove all
segments Bj(χ) = {s = σ + iτj ; 1/2 < σ ≤ σj} from D, where σj + iτj are
possible zeros (and a possible pole) of L(s, χ) in D, and put

Gχ = D \
⋃

j

Bj(χ).

At any point s0 = σ0 + iτ0 ∈ Gχ, we define the value of logL(s0, χ) by the
analytic continuation along the horizontal path {s = σ + iτ0 ; σ ≥ σ0}. In
the case when χ is the trivial character 1, that is the case of ζ(s), we write
G = G1. When we consider case (C), we fix this G, while in case (A,Q), Gχ

varies when χ varies.
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In the case (A,Q), the meaning of Avgχ is as follows. For any prime f ,
let X(f) be the set of all primitive Dirichlet characters whose conductor is
f , and X ′(f) be a subset of X(f) for which

lim
f→∞

|X ′(f)|
|X(f)| = 1 (2.3)

holds. Consider any complex-valued function φ(χ) of χ which is defined for
each χ ∈ X ′(f) for each prime f . Let

AvgX′(f)φ(χ) =

∑
χ∈X′(f) φ(χ)

|X(f)| (2.4)

and

Avgf≤mφ(χ) =

∑
f≤m AvgX′(f)φ(χ)

∑
f≤m 1

, (2.5)

where m is a positive integer, and f runs over all prime numbers not larger
than m. Then, the meaning of Avgχ in this case is

Avgχφ(χ) = lim
m→∞

(
Avgf≤mφ(χ)

)
. (2.6)

Note that, if φ is bounded, this average will not change if we choose X ′(f)
smaller keeping condition (2.3). Note also the following. As long as φ is
bounded, the limit value (2.6) remains the same if the denominator of the
right-hand side of (2.4) is replaced by |X ′(f)| (which looks more natural but
is less convenient).

At the end of this section we will prove the following

Proposition 1 Fix any s with 1/2 < <s ≤ 1. Then

X ′(f) = X ′(f, s) := {χ ∈ X(f) ; s ∈ Gχ}

satisfies (2.3).

In view of this proposition, hereafter we fix X ′(f) as follows. When <s >
1, simply put X ′(f) = X(f). When 1/2 < <s ≤ 1, choose X ′(f) = X ′(f, s)
as that defined by this proposition, and define L(s, χ) for each χ ∈ X ′(f) as
above by the analytic continuation inside Gχ.

The main aim of the present paper is to prove the following theorem.

Theorem 1 Let s = σ + iτ ∈ C be fixed, with σ = <s > 1/2. There ex-

ists a density function Mσ(w), which is a continuous non-negative function

defined on C, for which

AvgχΦ(logL(s, χ)) =

∫

C

Mσ(w)Φ(w)|dw| (2.7)
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holds in both the cases (C) and (A,Q). The test function Φ is one of the

following (or any finite linear combination of them):
(i) Φ is any continuous bounded function ,

(ii) Φ is the characteristic function of either a compact subset of C or

the complement of such a subset. (Consequently we find that Mσ(w) is equal

to Fσ(w) in (1.2).)

In the above theorem, and also in what follows, when we state a formula
for Avgχ, it will always include the claim that the limit exists.

Note that, when σ > 1, Φ can be any continuous function; see Theorem
2 in Section 4.

In Case (A), the condition of Φ can be relaxed considerably if we assume
GRH ([11]). The main point of the present paper is that we can prove our
theorem unconditionally.

In Case (C), the meaning of Avgχ is given by (1.5), hence (2.7) is

lim
T→∞

1

2T

∫ T

−T
Φ(log ζ(s+ iτ ′))dτ ′ =

∫

C

Mσ(w)Φ(w)|dw|. (2.8)

On the left-hand side, log ζ(s+ iτ ′) is not defined when s+ iτ ′ is a zero
or the pole of ζ(s), but the integral is well-defined. Therefore in case (C) it
is not necessary to exclude such situation.

In Case (A,Q), the meaning of Avgχ is (2.6). Since |X(f)| = f − 2 for
any prime f and

∑
f≤m 1 = π(m), the number of primes not larger than m,

assertion (2.7) in this case is

lim
m→∞

1

π(m)

∑

2<f≤m

f :prime

1

f − 2

∑

χ∈X′(f)

Φ(logL(s, χ)) =

∫

C

Mσ(w)Φ(w)|dw|. (2.9)

We conclude this section with the proof of Proposition 1. It is an imme-
diate corollary of the following

Proposition 2 For any fixed T ≥ 2 and 1/2 < σ0 ≤ 1, let X ′′(f) be the set

of all χ ∈ Xf such that L(s, χ) has no zeros s with <s ≥ σ0 and |=s| ≤ T .

Then limf→∞ |X ′′(f)|/|X(f)| = 1.

Proof. Let N(σ0, T, χ) denote the number of zeros of L(s, χ) with <s ≥
σ0 and |=s| ≤ T . Then Theorem 12.1 of Montgomery [19] asserts

∑

χ∈X(f)

N(σ0, T, χ) � (fT )A(σ0)(log fT )14

with some A(σ0) < 1. (The choice given there is A(σ0) = 3(1−σ0)/(2−σ0)
(resp. 2(1 − σ0)/σ0) for 1/2 < σ0 ≤ 4/5 (resp. 4/5 ≤ σ0 ≤ 1).) Therefore

|X(f) \X ′′(f)|
|X(f)| ≤ 1

|X(f)|
∑

χ∈X(f)

N(σ0, T, χ)

� fA(σ0)−1TA(σ0)(log fT )14, (2.10)
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which tends to 0 as f tends to ∞. This proves the proposition.

3 The construction of the density function and its
Fourier dual

In the following three sections we assume that K is a global field, and χ is
a Dirichlet character on K. Though in the latter half of the present paper
we only need the case when K = Q, we work with a more general situation
because of our later purposes. The associated L-function is defined by

L(s, χ) =
∏

℘

(
1− χ(℘)N(℘)−s)−1

,

where ℘ runs over non-archimedean primes of K and N(℘) is the norm of
℘. Let σ > 0, and let P be a finite set of non-archimedean primes. Define

LP (s, χ) =
∏

℘∈P

(
1− χ(℘)N(℘)−s)−1

(3.1)

and

logLP (s, χ) = −
∑

℘∈P

Log
(
1− χ(℘)N(℘)−s) . (3.2)

Let
T = {t ∈ C ; |t| = 1}, TP =

∏

℘∈P

T,

and define gσ,P : TP → C by

gσ,P (tP ) =
∑

℘∈P

gσ,℘(t℘) (3.3)

with tP = (t℘)℘∈P ∈ TP and

gσ,℘(t℘) = −Log
(
1− t℘N(℘)−σ) . (3.4)

Then, if P is coprime with the modulus of χ, we can write

logLP (s, χ) = gσ,P

(
χPN(P )−iτ

)
, (3.5)

where χP = (χ(℘))℘∈P ∈ TP and N(P )−iτ = (N(℘)−iτ )℘∈P ∈ TP .
We first prove the existence of the density function Mσ,P which is char-

acterized by the following proposition.

Proposition 3 For any σ > 0, there exists a function (or Schwartz distri-

bution if |P | = 1) Mσ,P : C→ R, which satisfies

∫

C

Mσ,P (w)Φ(w)|dw| =
∫

TP

Φ(gσ,P (tP ))d∗tP (3.6)
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for any continuous function Φ on C, where d∗tP is the normalized Haar

measure on TP . The function Mσ,P is compactly supported, non-negative,

Mσ,P (w) = Mσ,P (w), and

∫

C

Mσ,P (w)|dw| = 1. (3.7)

This is the analogue of Theorem 1 of [9] in the L′/L case. A different
point is that, in the L′/L case the corresponding gσ,℘ function has the prop-
erty of sending the unit circle to another circle, but in the present case the
image of the gσ,℘ function is a certain convex curve, not a circle.

We first consider the case when P consists of only one element, P = {℘}.
In this case T℘ = T , t℘ = eiθ ∈ T℘, and d∗t℘ = (2π)−1dθ. Let z = reiθ ∈ C

(0 ≤ r < 1, 0 ≤ θ < 2π), and w = w(z) = −Log(1 − reiθ). Fix a number
ρσ,℘ satisfying N(℘)−σ < ρσ,℘ < 1, and denote by A(σ, ℘) the open region
surrounded by the curve w = −Log(1 − ρσ,℘e

iθ). Then w = w(z) gives a
one-to-one correspondence from the open disc {z ; |z| < ρσ,℘} to A(σ, ℘).
Since the Jacobian of this mapping is r/|1− reiθ|2, we have

∫

T℘

Φ(gσ,℘(t℘))d∗t℘ =
1

2π

∫ 2π

0
Φ
(
−Log(1−N(℘)−σeiθ)

)
dθ

=
1

2π

∫ ∫

A(σ,℘)
Φ(w)δ(r −N(℘)−σ)

|1 − reiθ|2
r

dudv, (3.8)

where δ(·) stands for the Dirac delta distribution and w = u+iv. Therefore,
if we define

Mσ,℘(w) =
|1− reiθ|2

r
δ(r −N(℘)−σ) (3.9)

for w ∈ A(σ, ℘) and Mσ,℘(w) = 0 otherwise, then the right-hand side of
(3.8) is equal to

∫

C

Mσ,℘(w)Φ(w)|dw|,

hence (3.6) for P = {℘} follows.
For general P , we can construct the Mσ,P satisfying (3.6) by the convo-

lution product, that is, if P = P ′ ∪ {℘}, defined by

Mσ,P (w) =

∫

C

Mσ,P ′(w′)Mσ,℘(w −w′)|dw′|. (3.10)

The other statements of Proposition 3 are clear from the construction.

Remark 1. Formula (3.6) in Proposition 3 is valid also if Φ is the charac-
teristic function of either a compact subset of C or the complement of such
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a subset. This can be shown by approximating the characteristic function
by suitable continuous functions. (cf. Section 4.3 of [10].)

Remark 2. Let U be a compact subset of C. By Remark 1 we can choose
Φ = 1U , the characteristic function of U . Then (3.6) implies

∫

U
Mσ,P (w)|dw| = Vol(g−1

σ,P (U)),

where the volume on the right-hand side is measured by d∗tP . Therefore
the support of Mσ,P is the image of the mapping gσ,P .

Next we consider the Fourier transform of Mσ,P . Let ψz(w) be as in
(1.4), and define

M̃σ,℘(z) =

∫

C

Mσ,℘(w)ψz(w)|dw|. (3.11)

By Proposition 3 we see that

M̃σ,℘(z) =

∫

T
ψz(gσ,℘(t℘))d∗t℘

=
1

2π

∫ 2π

0
exp

(
i<
{
z(−Log(1− eiθN(℘)−σ))

})
dθ. (3.12)

Applying Theorem 13 of Jessen-Wintner [13], we obtain

M̃σ,℘(z) = O((1 + |z|)−1/2) (3.13)

if N(℘) is sufficiently large, say, N(℘) > N ∗. Also it is clear from (3.12)
that

|M̃σ,℘(z)| ≤ 1 (3.14)

for any ℘. Therefore, if we define

M̃σ,P (z) =
∏

℘∈P

M̃σ,℘(z) (3.15)

for general P , we have

M̃σ,P (z) = O((1 + |z|)−|P ∗|/2), (3.16)

where P ∗ = {℘ ∈ P ; N(℘) > N ∗}, and

|M̃σ,P (z)| ≤ 1 (3.17)

for any P .
Let P0 be a finite set of non-archimedean primes with |P ∗

0 | > 4. Then
from (3.16) and (3.17) we have
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(a) M̃σ,P0 ∈ Lt for any t ∈ [1,+∞],

(b) |M̃σ,P (z)| ≤ |M̃σ,P0(z)| for any P ⊃ P0.
These (a), (b) correspond to (a), (b) in Section 3.11 of [9].

Let y > 0, and consider the case P = Py = {℘ ; N(℘) ≤ y}. Our next
aim is to prove the fact corresponding to Section 3.11 (c) (or Theorem 4 in
Section 3.6) of [9], that is, M̃σ,P (z) converges to a certain function M̃σ(z)
uniformly in any compact set when y →∞.

In the L′/L case, the corresponding statement was proved in [9] by using
an explicit infinite series expression of the Fourier transform of the density
function involving Bessel functions. In the present case we apply a different
method, similar to the argument developed in Section 3 of [18].

Let ζ = N(℘)−σeiθ. Then w = w(ζ) = −Log(1− ζ) is holomorphic in ζ
for |ζ| < 1. Hence <w, =w are harmonic in ζ, and so is

<(zw) = <z<w + =z=w.

By the mean value theorem for harmonic functions we have

1

2π

∫ 2π

0
<(zw)dθ = 0. (3.18)

From (3.12) and (3.18) we can write

M̃σ,℘(z)− 1 =
1

2π

∫ 2π

0
{exp(i<(zw)) − 1− i<(zw)} dθ. (3.19)

Since |eix − 1− ix| � x2 for any real x (by the Taylor expansion for small
|x|, and by the fact |eix| = 1 for large |x|), we have

|M̃σ,℘(z)− 1| �
∫ 2π

0
|<(zw)|2dθ

≤ |z|2
∫ 2π

0
|w|2dθ � |z|2N(℘)−2σ . (3.20)

Let P = Py, P
′ = Py′ , where y′ > y. Denote all the elements of the set

P ′ \ P by ℘1, . . . , ℘n, and put P (j) = P ∪ {℘1, . . . , ℘j}. Then

|M̃σ,P ′(z)− M̃σ,P (z)| ≤
n∑

j=1

|M̃σ,P (j)(z)− M̃σ,P (j−1)(z)|

=
n∑

j=1

|M̃σ,P (j−1)(z)| · |M̃σ,℘j
(z) − 1| � |z|2

n∑

j=1

N(℘j)
−2σ (3.21)

by (3.17) and (3.20).
Now we assume σ > 1/2. Then the sum on the right-hand side of the

above tends to 0 when y →∞. Therefore we can conclude:
(c) When y →∞, M̃σ,P (z) (P = Py) is convergent to a certain function

M̃σ(z) uniformly in {z ; |z| ≤ a} for any a > 0.
From (a), (b) and (c), similarly to Section 3.11 of [9], we can now obtain
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Proposition 4 When P = Py and y → ∞, M̃σ,P (z) converges to M̃σ(z)
uniformly in σ ≥ 1/2 + ε (for any ε > 0) and z ∈ C. The limit function

M̃σ(z) is hence continuous in σ and z. Moreover, for each σ > 1/2, the

function M̃σ(z) in z belongs to Lt (1 ≤ t ≤ +∞), and the above convergence

is also Lt-convergence.

Furthermore, from (3.17) we have

|M̃σ(z)| ≤ 1, (3.22)

while from (3.16) we have

M̃σ(z) = O((1 + |z|)−n) (3.23)

for any n ≥ 1.
From the definition (3.15) we see that M̃σ,P is the Fourier transform of

Mσ,P , and hence

Mσ,P (w) =

∫

C

M̃σ,P (z)ψ−w(z)|dz|. (3.24)

We now prove that, as y →∞, the function Mσ,P converges to

Mσ(w) =

∫

C

M̃σ(z)ψ−w(z)|dz|. (3.25)

The integral on the right-hand side converges absolutely because of (3.23).
From (3.24) and (3.25) we have

|Mσ,P (w) −Mσ(w)| ≤
∫

C

|M̃σ,P (z)− M̃σ(z)||dz|. (3.26)

Let ε > 0, and fix a P0 with |P ∗
0 | > 4. In view of (3.16), (b) and (3.23), we

can find a sufficiently large R = R(ε, σ, P0) > 0 for which

∫

|z|≥R
|M̃σ,P (z) − M̃σ(z)||dz| < ε (3.27)

holds for any P ⊃ P0. Furthermore Proposition 4 implies that there exists
a sufficiently large y = y(ε, σ,R) > 0 for which

|M̃σ,P (z) − M̃σ(z)| < ε

2πR2
(3.28)

holds for any z, where P = Py. From (3.26), (3.27) and (3.28) we have

|Mσ,P (w)−Mσ(w)| < ε

2πR2

∫

|z|<R
|dz| + ε = 2ε (3.29)

for P = Py. This implies the first assertion of the following proposition.
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Proposition 5 Let σ > 1/2. When P = Py and y → ∞, Mσ,P (w) con-

verges to Mσ(w) uniformly in w. The limit function Mσ(w) is continuous

in w, non-negative, tends to 0 when |w| → ∞, Mσ(w) = Mσ(w), and

∫

C

Mσ(w)|dw| = 1. (3.30)

The functions Mσ and M̃σ are Fourier duals of each other.

The remaining part of the proposition: Non-negativity and Mσ(w) =
Mσ(w) easily follow from Proposition 3. SinceMσ,P is compactly supported
for any finite P (Proposition 3), from (3.29) we see that Mσ(w) → 0 as
|w| → ∞. From (3.7) and the uniformity of convergence we have

∫

C

Mσ(w)|dw| ≤ 1. (3.31)

Hence Mσ ∈ L1, so its Fourier transform is continuous, to be identical with
M̃σ pointwisely. Therefore

M̃σ(z) =

∫

C

Mσ(w)ψz(w)|dw|. (3.32)

In particular,
∫

C

Mσ(w)|dw| = M̃σ(0). (3.33)

But M̃σ,℘(0) = 1 by (3.12), so M̃σ,P (0) = 1 for any P , and hence also

M̃σ(0) = 1. This completes the proof of Proposition 5.

Remark 3. The existence of the density function was already proved by
Theorem 19 of [13], at least in Case (C). Here we prefer, however, the above
more analytic way of construction. Some more properties of M̃σ(z) (and its
two-variable version) are studied in Section 4 of [11].

4 The value-distribution in the case <s > 1

In this section we consider the case when σ = <s > 1. Here we discuss all
the cases (A), (B), (C) stated in Section 1. The meaning of Avgχ in case
(A), when K is an imaginary quadratic field or a function field, is similar to
(2.6). In the function field case, we fix one prime divisor ℘∞ which is treated
as being archimedean. The character χ runs over all Dirichlet characters on
K, whose conductor is a prime divisor, and satisfying χ(℘∞) = 1. The
definition of characters in case (C) was given in Section 1. For the details
in case (B), see Section 4 of [9]. For any χ, by fχ we mean the conductor of
χ. We first quote the following lemma.
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Lemma 1 (Lemma 4.3.1 of [9]) Let χ runs over any one of the above

indicated families of characters on K, but in case (A), exclude finitely many

χ such that fχ ∈ P . Then we have

Avgχ(Ψ(χP )) =

∫

TP

Ψ(tP )d∗tP (4.1)

for any continuous function Ψ : TP → C.

Based on this lemma, we can prove the following theorem.

Theorem 2 For any s ∈ C with σ = <s > 1, in each of case (A), (B), (C),

AvgχΦ(logL(s, χ)) =

∫

C

Mσ(w)Φ(w)|dw| (4.2)

holds for any continuous function Φ on C.

This corresponds to Theorem 6 of [9]. Since the proof goes just analo-
gously, we sketch briefly.

Choosing Ψ = Φ ◦ gσ,P in Lemma 1 and combining with Proposition 3,
we obtain

Avgχ(Φ(logLP (s, χ)) =

∫

TP

Φ(gσ,P (tP ))d∗tP

=

∫

C

Mσ,P (w)Φ(w)|dw|. (4.3)

In Lemma 1 we excluded finitely many χ, but it does not affect the value of
Avgχ.

Since σ > 1, the image of gσ,P remains bounded when |P | → ∞. This
implies, by Remark 2, that the support of Mσ is also bounded. Therefore,
to prove Theorem 2, we may assume that Φ is compactly supported, hence
is uniformly continuous. Moreover, logLP (s, χ) tends to logL(s, χ) when
|P | → ∞ uniformly in any compact subset of the half-plane σ > 1. Therefore
letting |P | → ∞ on the both sides of (4.3), we obtain (4.2), because on the
right-hand side Mσ,P (w) tends to Mσ(w) by Proposition 5. This completes
the proof of Theorem 2.

Remark 4. Our definition of Avgχ in the case (A,Q) is, in the present
paper, given by (2.6). However it is possible to consider a simpler form of
average, that is

lim
N(f)→∞

1

|X(f)|
∑

χ∈X(f)

φ(χ) (4.4)

(whereN(f) is the norm of f andX(f) is the set of all characters of conductor
f). It is possible to prove the analogue of Theorem 2 for the average of form
(4.4). See Theorem 4 of [11].
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5 Some estimation of Fourier coefficients

Let z1, z2 ∈ C, and

ψz1,z2(w) = exp

(
i

2
(z1w + z2w)

)
. (5.1)

Note that ψz(w) = ψz,z(w). The purpose of this section is to study the
coefficients of the Fourier expansion of ψz1,z2(gσ,℘(t℘)). This is an analogue
of Section 5 of [9], where the same problem is discussed for

gσ,℘(t℘) =
t℘ logN(℘)

t℘ −N(℘)σ
(L′/L case), (5.2)

which is used for the study of (L′/L)(s, χ). We will prove estimates analo-
gous to Corollary 5.2.13 and Corollary 5.2.18 of [9]. In [9], those corollaries
are proved only in the case z2 = z1. Therefore in this section we treat the
logL case and the L′/L case in a parallel manner, in order to prove the
results for general z1 and z2 in both cases.

In this section we use the abbreviation q = N(℘)σ (σ > 0), λ = logN(℘),
t = t℘, g = gσ,℘. Then

g(t) =

{
− log (1− t/q) ( logL case),
λt/(t− q) (L′/L case).

Denote by g(t) =
∑∞

n=1 an(t/q)n the power series expansion of g(t) in the
region |t| < q. Then an = 1/n (logL case), or = −λ (L′/L case). Hence the
power series expansion of g(t)k (k ≥ 1) is given by

g(t)k =
∞∑

n=1

a(k)
n (t/q)n, (5.3)

where
a(k)

n =
∑

n=n1+···+nk
nν≥1

an1 · · · ank

is equal to

∑

n=n1+···+nk
nν≥1

1

n1 · · ·nk
( logL case); (−λ)k

∑

n=n1+···+nk
nν≥1

1 (L′/L case). (5.4)

In particular,

a(k)
n = 0 if k > n. (5.5)

Note that

|a(k)
n | ≤

∑

n=n1+···+nk
nν≥1

1 =

(
n− 1
k − 1

)
(5.6)
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in the logL case, while

|a(k)
n | ≤ λk

(
n− 1
k − 1

)
(5.7)

for the L′/L case.
For z ∈ C and |t| < q, we have

exp

(
i

2
zg(t)

)
= 1 +

∞∑

k=1

(iz/2)k

k!
g(t)k. (5.8)

Substituting (5.3), (5.4) and (5.5) into the right-hand side, we have

exp

(
i

2
zg(t)

)
=

∞∑

n=0

λn(z)(t/q)n, (5.9)

with

λn(z) =

{
G∗

n(iz/2) ( logL case),
Gn(−λiz/2) (L′/L case)

(5.10)

for n ≥ 0, where

Gn(x) =
n∑

k=1

1

k!

(
n− 1
k − 1

)
xk (n ≥ 1); G0(x) = 1, (5.11)

and

G∗
n(x) =

n∑

k=1

1

k!

(
∑

n=n1+···+nk
nν≥1

1

n1 · · ·nk

)
xk (n ≥ 1); G∗

0(x) = 1. (5.12)

Because of (5.6), we have

0 ≤ G∗
n(x) ≤ Gn(x) (x ≥ 0). (5.13)

When |t| = 1, from (5.9) we have

ψz1,z2(g(t)) =
∑

n∈Z

A(n; z1, z2)t
n, (5.14)

where

A(n; z1, z2) = Aσ,℘(n; z1, z2) =
∑

l,m≥0

l−m=n

λl(z2)λm(z1)

ql+m
. (5.15)

These are the Fourier coefficients of ψz1,z2(g(t)). Therefore

A(n; z1, z2) =

∫

T
ψz1,z2(g(t))t

−nd∗t. (5.16)
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Let Z = max{|z1|, |z2|}, and define

x0 =

{
Z/2 ( logL case),
λZ/2 (L′/L case).

(5.17)

We now prove the following estimate.

Proposition 6

|A(n; z1, z2)| ≤
1

q|n|
G|n|(x0) exp

(
2x0

q − 1

)
. (5.18)

Proof. First of all, since

A(−n; z1, z2) = A(n; z2, z1), (5.19)

we may assume that n ≥ 0. From (5.10), (5.13) and the facts |Gn(z)| ≤
Gn(|z|), |G∗

n(z)| ≤ G∗
n(|z|), we have |λn(zj)| ≤ Gn(x0) (j = 1, 2). Hence

from (5.15) we have

|A(n; z1, z2)| ≤
∑

l,m≥0

l−m=n

Gl(x0)Gm(x0)

ql+m
=

1

qn

∑

m≥0

Gm(x0)Gm+n(x0)

q2m
. (5.20)

Let

Lm(x) =
m∑

k=0

1

k!

(
m
k

)
xk. (5.21)

Then

Lm(x) = 1 +
m−1∑

k=1

1

k!

{(
m− 1
k

)
+

(
m− 1
k − 1

)}
xk +

1

m!
xm

=
m−1∑

k=0

1

k!

(
m− 1
k

)
xk +

m∑

k=1

1

k!

(
m− 1
k − 1

)
xk

= Lm−1(x) +Gm(x),

hence

Lm(x) =
m∑

µ=0

Gµ(x). (5.22)

Lemma 2 For non-negative integers m,n and x ≥ 0, we have

Gm+n(x) ≤ Gn(x)Lm(x). (5.23)
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The lemma is obvious when n = 0, so we assume n ≥ 1. The coefficient
of xk in Gm+n(x) is

1

k!

(
m+ n− 1
k − 1

)
=

1

k!

∑

0≤µ≤m,1≤ν≤n

µ+ν=k

(
m
µ

)(
n− 1
ν − 1

)
,

which is

≤
∑

0≤µ≤m,1≤ν≤n

µ+ν=k

1

µ!ν!

(
m
µ

)(
n− 1
ν − 1

)
.

But the latter is the coefficient of xk in the expansion of Gn(x)Lm(x), hence
the assertion of Lemma 2 follows.

Applying this lemma to (5.20), we obtain

|A(n; z1, z2)| ≤
Gn(x0)

qn

∑

m≥0

Gm(x0)

qm

Lm(x0)

qm
. (5.24)

Here we quote (3.8.16) of [9]:

∞∑

m=0

Gm(x)tm = exp

(
xt

1− t

)
(|t| < 1). (5.25)

Using this with t = 1/q, we have

∞∑

m=0

Gm(x0)

qm
= exp

(
x0

q − 1

)
, (5.26)

and also, combining with (5.22), we have

Lm(x0)

qm
=

1

qm

m∑

µ=0

Gµ(x0)

≤ G0(x0) +
G1(x0)

q
+ · · · + Gm(x0)

qm

≤
∞∑

µ=0

Gµ(x0)

qµ
= exp

(
x0

q − 1

)
. (5.27)

Substituting (5.27) into the right-hand side of (5.24), and then using (5.26),
we obtain the assertion of Proposition 6.

The following mean-value estimate of the Fourier coefficients is also use-
ful.

Proposition 7 If q = N(℘)σ >
√

2, we have

∑

n∈Z

|A(n; z1, z2)|(|n|+ 1) ≤ exp

(
Cx0

q − 1

)
(5.28)

with an absolute constant C > 0.
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Proof. Multiplying both sides of (5.25) by t and differentiating, we have

1 +
∑

m≥1

(m+ 1)Gm(x)tm =

(
1 +

tx

(1− t)2

)
exp

(
xt

1− t

)
. (5.29)

Using (5.19) and Proposition 6, we have

∑

n∈Z

|A(n; z1, z2)|(|n| + 1)

= |A(0; z1, z2)|+
∞∑

n=1

(n+ 1) (|A(n; z1, z2)|+ |A(n; z2, z1)|)

≤
(

1 + 2
∞∑

n=1

(n+ 1)Gn(x0)q
−n

)
exp

(
2x0

q − 1

)
. (5.30)

Here we apply (5.29) with t = q−1 to find that the right-hand side of (5.30)
is equal to

{
2

(
1 +

qx0

(q − 1)2

)
exp

(
x0

q − 1

)
− 1

}
exp

(
2x0

q − 1

)
. (5.31)

If q >
√

2, then

q

q − 1
= 1 +

1

q − 1
< 1 +

1√
2− 1

= 2 +
√

2 < 4,

so

1 +
qx0

(q − 1)2
< exp

(
qx0

(q − 1)2

)
= exp

(
q

q − 1
· x0

q − 1

)
< exp

(
4x0

q − 1

)
.

Using this inequality and the fact 2ea − 1 ≤ e2a (valid for any a ∈ R), we
see that (5.31) is

≤
{

2 exp

(
5x0

q − 1

)
− 1

}
exp

(
2x0

q − 1

)

≤ exp

(
10x0

q − 1

)
exp

(
2x0

q − 1

)
= exp

(
12x0

q − 1

)
,

which implies Proposition 7 with C = 12.

Remark 5. In the logL case, we used (5.13) to reduce the argument to
discussion on Gn(x). If we use G∗

n(x) itself, we can show

|A(n; z1, z2)| ≤
1

q|n|
G∗
|n|(x0) exp

(
−2x0 log(1− q−1)

)
( logL case) (5.32)

instead of Proposition 6, and can improve the value of the constant C in
Proposition 7.
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Let nP = (n℘)℘∈P , and define

Aσ,P (nP ; z1, z2) =
∏

℘∈P

Aσ,℘(n℘; z1, z2). (5.33)

Then, by (3.3) and (5.14),

ψz1,z2(gσ,P (tP )) =
∏

℘∈P


 ∑

n℘∈Z

Aσ,℘(n℘; z1, z2)t
n℘
℘




=
∑

nP∈ZP

Aσ,P (nP ; z1, z2)t
nP

P , (5.34)

where
t
nP

P =
∏

℘∈P

tn℘
℘ , ZP =

∏

℘∈P

Z.

Therefore Aσ,P (nP ; z1, z2) are the Fourier coefficients of ψz1,z2(gσ,P (tP )).
From (5.16) we have

Aσ,P (nP ; z1, z2) =

∫

TP

ψz1,z2(gσ,P (tP ))t−nP

P d∗tP . (5.35)

On the other hand, from (3.12) and (3.15) we have

M̃σ,P (z) =

∫

TP

ψz(gσ,P (tP ))d∗tP . (5.36)

Comparing this with (5.35), we find that

M̃σ,P (z) = Aσ,P (0; z, z), (5.37)

where 0 = (0)℘∈P .

6 Case (C) for Φ = ψz

Now we start the proof of our main theorem in the strip 1/2 < σ ≤ 1. We
first consider the case when Φ = ψz. Then the right-hand side of (2.7) is
M̃σ(z) by (3.32). Therefore our aim is to prove

Avgχψz(logL(s, χ)) = M̃σ(z). (6.1)

In this section we will prove (6.1) in case (C).
In Case (C), the left-hand side of (6.1) is

lim
T→∞

1

2T

∫ T

−T
ψz(log ζ(s+ iτ ′))dτ ′ (6.2)
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(see (2.8)). Write s = σ + iτ . Then (6.2) is equal to

lim
T→∞

1

2T

∫ T+τ

−T+τ
ψz(log ζ(σ + iτ ′))dτ ′.

Since |ψz(log ζ(σ+ iτ ′))| = 1, the contribution of the intervals [−T,−T + τ ],
[T, T + τ ] can be ignored; in other words, it is sufficient to prove

lim
T→∞

1

2T

∫ T

−T
ψz(log ζ(σ + iτ ′))dτ ′ = M̃σ(z). (6.3)

Let P = Py be the set of prime numbers not greater than y. Define

ζP (s) =
∏

p∈P

(1− p−s)−1 (6.4)

and

log ζP (s) = −
∑

p∈P

Log(1− p−s). (6.5)

The starting point of our proof is the inequality
∣∣∣∣∣

1

2T

∫ T

−T
ψz(log ζ(σ + iτ ′))dτ ′ − M̃σ(z)

∣∣∣∣∣

≤
∣∣∣∣∣

1

2T

∫ T

−T
ψz(log ζ(σ + iτ ′))dτ ′ − 1

2T

∫ T

−T
ψz(log ζP (σ + iτ ′))dτ ′

∣∣∣∣∣

+

∣∣∣∣∣
1

2T

∫ T

−T
ψz(log ζP (σ + iτ ′))dτ ′ − M̃σ,P (z)

∣∣∣∣∣

+
∣∣∣M̃σ,P (z)− M̃σ(z)

∣∣∣
= XP (z) + YP (z) + ZP (z), (6.6)

say. To prove (6.3), it suffices to show that, under a suitable choice of
y = y(T ), XP (z), YP (z) and ZP (z) tend to 0 when T →∞.

First we consider XP (z). Fix a number σ0 satisfying 1/2 < σ0 < 1. Let
ε1 be a fixed small positive number satisfying 0 < 3ε1 < σ0 − 1/2, and put
α1 = σ0 − 2ε1.

Proposition 8 The estimate

XP (z) � |z|
{
y1/2−α1+ε + T 1/2−α1+ε exp

(
C1

(
y

log y

)1/2
)}

+ T−1 (6.7)

holds uniformly in σ0 ≤ σ ≤ 1, where C1 is an absolute positive constant,

and the constant implied by the Vinogradov symbol depends only on σ0 and

ε.
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Proof. First, by using the fact |ψz| = 1 and the inequality

|ψz(w)− ψz(w
′)| ≤ |z| · |w − w′| (6.8)

((6.5.19) of [9]), we have

XP (z)

≤ 1

2T

∫ 2

−2
2dτ ′ +

1

2T

∫

I(T )
|ψz(log ζ(σ + iτ ′))− ψz(log ζP (σ + iτ ′))|dτ ′

≤ 4

T
+
|z|
2T

∫

I(T )
| log ζ(σ + iτ ′)− log ζP (σ + iτ ′)|dτ ′, (6.9)

where I(T ) = [−T,−2] ∪ [2, T ]. Let δ1 be a sufficiently small fixed positive
constant, and define

I1
P (T ) = {τ ′ ∈ I(T ) ; | log ζ(σ + iτ ′)− log ζP (σ + iτ ′)| ≥ δ1},
I2
P (T ) = {τ ′ ∈ I(T ) ; | log ζ(σ + iτ ′)− log ζP (σ + iτ ′)| < δ1}.

Then from (6.9) we have

XP (z) ≤ 4

T
+
|z|
2T

(X1 +X2), (6.10)

where

Xj =

∫

Ij
P

(T )
| log ζ(σ + iτ ′)− log ζP (σ + iτ ′)|dτ ′ (j = 1, 2).

Consider X2. Let

fP (σ + iτ ′) =
ζ(σ + iτ ′)

ζP (σ + iτ ′)
− 1.

When τ ′ ∈ I2
P (T ), |= log ζ(σ+ iτ ′)−= log ζP (σ+ iτ ′)| is small. On the other

hand, if |fP (σ + iτ ′)| < δ1, then the argument of ζ(σ + iτ ′)/ζP (σ + iτ ′) is
small. Therefore in this case

log ζ(σ + iτ ′)− log ζP (σ + iτ ′) = Log(1 + fP (σ + iτ ′)),

hence

| log ζ(σ + iτ ′)− log ζP (σ + iτ ′)| � |fP (σ + iτ ′)|. (6.11)

Since this inequality clearly holds in the case |fP (σ+ iτ ′)| ≥ δ1 also, we now
obtain

X2 �
∫

I2
P

(T )
|fP (σ + iτ ′)|dτ ′

≤
(∫

I(T )
1dτ ′

)1/2 (∫

I(T )
|fP (σ + iτ ′)|2dτ ′

)1/2

. (6.12)
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Now we quote (the second half of) Lemma 5 of [18], which asserts that

1

2T

∫

J(T )
|fP (σ + iτ ′)|2dτ ′

� y1−2α1+ε + T 1−2α1+ε exp

(
C1

(
y

log y

)1/2
)

(6.13)

holds uniformly in α1 ≤ σ ≤ 2 with an absolute constant C1 > 0, where
J(T ) = [−T,−1] ∪ [1, T ]. (Note that the notation N in [18] should be read
as π(y) ∼ y/ log y in our present notation, and (y/ log y)1−2α1+ε can be
estimated as � y1−2α1+ε.) Applying (6.13) to the right-hand side of (6.12),
we obtain

1

T
X2 � y1/2−α1+ε + T 1/2−α1+ε exp

(
C1

2

(
y

log y

)1/2
)
. (6.14)

Next consider the integral X1. For any non-negative integer l, define

H l
P (T ) = {τ ′ ∈ I(T ) ; 2lδ1 ≤ | log ζ(σ + iτ ′)− log ζP (σ + iτ ′)| < 2l+1δ1}

and denote by hl
P (T ) the (Lebesgue) measure of H l

P (T ). Then

X1 =
∞∑

l=0

∫

Hl
P

(T )
| log ζ(σ + iτ ′)− log ζP (σ + iτ ′)|dτ ′

≤ δ1

∞∑

l=0

2l+1hl
P (T ). (6.15)

For any η ≥ δ1, let

KP (T, η) = {τ ′ ∈ I(T ) ; | log ζ(σ + iτ ′)− log ζP (σ + iτ ′)| ≥ η}

and denote by kP (T, η) the (Lebesgue) measure of KP (T, η). Then

T−1kP (T, η) ≤ 32

πε21
η−2

∫ β1

α1

(
1

2T

∫

J(T )
|fP (σ + iτ ′)|2dτ ′

)
dσ, (6.16)

where β1 = 2(1 + C2η
−1) with a certain absolute constant C2. This is (4.9)

of [18]. On the right-hand side of (4.9) of [18] there is a term 3/T , but it
is not necessary to add that term to the right-hand side of (6.16), because
that term in [18] comes from the contribution of τ ′ ∈ [−2, 2]. The first half
of Lemma 5 of [18] asserts

1

2T

∫

J(T )
|fP (σ + iτ ′)|2dτ ′

� σ−1y1−2σ+ε + σ−1T−1y2−2σ+ε, (6.17)
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which is valid uniformly in 2 ≤ σ ≤ β1. Applying (6.13) and (6.17) to the
right-hand side of (6.16) for α1 ≤ σ ≤ 2 and 2 ≤ σ ≤ β1 respectively, we
have

T−1kP (T, η)

� η−2
{
y1−2α1+ε + T 1−2α1+ε exp

(
C1

(
y

log y

)1/2
)

+y−3+ε log β1 + T−1y−2+ε log β1

}
. (6.18)

Since η ≥ δ1, we have β1 ≤ 2(1 +C2δ
−1
1 ), and hence log β1 can be absorbed

in the implied constant because δ1 is fixed. Since hl
P (T ) ≤ kP (T, 2lδ1), from

(6.15) and (6.18) we have

1

T
X1 �

∞∑

l=0

2−l
{
y1−2α1+ε + T 1−2α1+ε exp

(
C1

(
y

log y

)1/2
)

+y−3+ε log β1 + T−1y−2+ε log β1

}

� y1−2α1+ε + T 1−2α1+ε exp

(
C1

(
y

log y

)1/2
)
. (6.19)

Combining (6.10), (6.14) and (6.19), we obtain Proposition 8.
Now we proceed to the study of YP (z). By using (5.34) we have

ψz(log ζP (σ + iτ ′)) = ψz(gσ,P (χP ))

=
∑

nP∈ZP

Aσ,P (nP ; z, z)χnP

P ,

where χP = (χ(p))p∈P and χ(p) = χτ ′(p) = p−iτ ′ , and so

1

2T

∫ T

−T
ψz(log ζP (σ + iτ ′))dτ ′

=
∑

nP∈ZP

Aσ,P (nP ; z, z)
1

2T

∫ T

−T

∏

p∈P

e−iτ ′np log pdτ ′. (6.20)

Write r = π(y) and P = {p1, . . . , pr}. Since np1 log p1 + · · ·+ npr log pr = 0
if and only if np1 = · · · = npr = 0, the integral on the right-hand side of
(6.20) is

=
e−iτ ′(np1 log p1+···+npr log pr)

−i(np1 log p1 + · · ·+ npr log pr)

∣∣∣∣∣

T

τ ′=−T

for any nP 6= 0. Therefore

1

2T

∫ T

−T
ψz(log ζP (σ + iτ ′))dτ ′
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= Aσ,P (0; z, z) +O




1

T

∑

nP∈ZP
nP 6=0

|Aσ,P (nP ; z, z)|
|np1 log p1 + · · ·+ npr log pr|


 .(6.21)

Since the first term on the right-hand side is equal to M̃σ,P (z) by (5.37), we
obtain

YP (z) � 1

T

∑

nP∈ZP
nP 6=0

|Aσ,P (nP ; z, z)|
|np1 log p1 + · · ·+ npr log pr|

. (6.22)

By estimating the right-hand side of the above, we prove

Proposition 9 The estimate

YP (z) � 1

T
exp

(
C3

(
|z|y

3/2−σ

log y
+

y

log y

))

holds uniformly in σ0 ≤ σ ≤ 1, where C3 is an absolute positive constant.

Proof. We denote the positive members of {np1 , . . . , npr} by k1, . . . , ku,
and the negative members by −l1, . . . ,−lv . Then u + v ≤ r. Further we
define p(i) and q(j) by ki = np(i) and −lj = nq(j) (1 ≤ i ≤ u, 1 ≤ j ≤ v).
Then

|np1 log p1 + · · ·+ npr log pr|

=

∣∣∣∣∣∣

u∑

i=1

ki log p(i)−
v∑

j=1

lj log q(j)

∣∣∣∣∣∣

=

∣∣∣∣∣log
(

1 +

(
p(1)k1 · · · p(u)ku

q(1)l1 · · · q(v)lv
− 1

))∣∣∣∣∣ . (6.23)

Let δ2 be a sufficiently small fixed positive constant, and denote by Z
(1)
P the

set of all nP ∈ ZP \ {0} for which

∣∣∣∣∣
p(1)k1 · · · p(u)ku

q(1)l1 · · · q(v)lv
− 1

∣∣∣∣∣ ≥ δ2

holds. Put Z
(2)
P = ZP \ {Z(1)

P ∪ 0}, and divide (6.22) as

YP (z) � 1

T




∑

nP∈Z
(1)
P

+
∑

nP∈Z
(2)
P


 =

1

T
(Y1 + Y2), (6.24)

say.
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When nP ∈ Z
(1)
P , we have

|np1 log p1 + · · ·+ npr log pr| ≥ min {log(1 + δ2),− log(1− δ2)} � 1.

Therefore

Y1 �
∑

nP∈Z
(1)
P

|Aσ,P (nP ; z, z)|

≤
∑

nP∈ZP

|Aσ,P (nP ; z, z)|

=
∏

p∈P


∑

np∈Z

|Aσ,p(np; z, z)|

 (6.25)

by (5.33). Applying Proposition 7 with x0 = |z|/2, we obtain

Y1 �
∏

p∈P

exp

(
C|z|

2(pσ − 1)

)
= exp


C|z|

2

∑

p≤y

1

pσ − 1


 . (6.26)

By using the prime number theorem and partial summation we can easily
see that the sum in the right-most side of (6.26) is � η(y), where

η(y) = η(σ, y) =

{
y1−σ(log y)−1 if 0 < σ < 1,
log log y if σ = 1.

(6.27)

Therefore

1

T
Y1 �

1

T
exp (C4|z|η(y)) (6.28)

with an absolute constant C4 > 0.
Next consider Y2. When nP ∈ Z

(2)
P , we have

|np1 log p1 + · · ·+ npr log pr|

�
∣∣∣∣∣
p(1)k1 · · · p(u)ku

q(1)l1 · · · q(v)lv
− 1

∣∣∣∣∣

=

∣∣∣∣∣
p(1)k1 · · · p(u)ku − q(1)l1 · · · q(v)lv

q(1)l1 · · · q(v)lv

∣∣∣∣∣

≥ 1

q(1)l1 · · · q(v)lv
,

where the last inequality follows because nP 6= 0. Therefore

Y2 �
∑

nP∈Z
(2)
P

q(1)l1 · · · q(v)lv |Aσ,P (nP ; z, z)|. (6.29)

25



Since

1− δ2 <
p(1)k1 · · · p(u)ku

q(1)l1 · · · q(v)lv
< 1 + δ2 (6.30)

holds for nP ∈ Z
(2)
P , we have

q(1)l1 · · · q(v)lv

= (q(1)l1 · · · q(v)lv )1/2(q(1)l1 · · · q(v)lv )1/2

� (p(1)k1 · · · p(u)ku)1/2(q(1)l1 · · · q(v)lv )1/2

=
(
p
|np1 |
1 · · · p|npr |

r

)1/2
.

Therefore from (6.29) and (5.33) we have

Y2 �
∑

nP∈Z
(2)
P

∏

p∈P

p|np|/2|Aσ,p(np; z, z)|. (6.31)

Applying Proposition 6, we have

Y2 �
∑

nP∈ZP

∏

p∈P

p(1/2−σ)|np |G|np|(|z|/2) exp

( |z|
pσ − 1

)

=
∏

p∈P


∑

np∈Z

p(1/2−σ)|np|G|np|(|z|/2)

 exp

( |z|
pσ − 1

)
. (6.32)

Evaluating the right-hand side by (5.25), we obtain

1

T
Y2 �

1

T

∏

p∈P

2 exp

( |z|
2(pσ−1/2 − 1)

+
|z|

pσ − 1

)

� 1

T
2r exp (C5|z|η(σ − 1/2, y)) (6.33)

with an absolute constant C5 > 0. Since r = π(y) � y/ log y, the assertion
of Proposition 9 follows from (6.24), (6.28) and (6.33).

Now, from Propositions 8, 9 and (6.6), we obtain
∣∣∣∣∣

1

2T

∫ T

−T
ψz(log ζ(σ + iτ))dτ − M̃σ(z)

∣∣∣∣∣

� |z|
{
y1/2−α1+ε + T 1/2−α1+ε exp

(
C1

(
y

log y

)1/2
)}

+
1

T
exp

(
C3

(
|z|y

3/2−σ

log y
+

y

log y

))
+ ZP (z). (6.34)

Proposition 4 implies that ZP (z) → 0 as y → ∞, uniformly in z. We
now choose

y = y(T ) = (log T )ω1 (0 < ω1 < 1). (6.35)
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Then, when T tends to ∞, y = y(T ) also tends to ∞, hence ZP (z) → 0.
On the other hand, since ω1 < 1, we have ω1(3/2− σ) < 1 for any σ > 1/2.
Thus the two exponential factors on the right-hand side of (6.34) are O(T ε)
for any ε > 0. Therefore, if ε is sufficiently small, then all the terms on the
right-hand side of (6.34) tend to 0 as T →∞. This completes the proof of
(6.3).

Remark 6. For any fixed R > 0, (6.34) implies that the convergence in
(6.3), that is the case Φ = ψz of (2.8), is uniform in |z| ≤ R.

7 Case (A,Q) for Φ = ψz

Now we proceed to the study of Case (A,Q). Let 1/2 < σ0 < 1, 0 < 3ε1 <
σ0 − 1/2, α1 = σ0 − 2ε1 as in Section 6. Further put α0 = σ0 − ε1 and
α2 = 1/2 + ε1. Then 1/2 < α2 < α1 < α0 < σ0 < 1. All of these constants
are regarded to be fixed. In this section we fix a point s = σ+ iτ in the strip
σ0 ≤ <s ≤ 1, and will prove (2.9) for this s and Φ = ψz. We begin with the
analogue of (6.6), that is

∣∣∣∣∣∣
1

π(m)

∑

f≤m

1

f − 2

∑

χ∈X′(f)

ψz(logL(s, χ))− M̃σ(z)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1

π(m)

∑

f≤m

1

f − 2

∑

χ∈X′(f)

ψz(logL(s, χ))

− 1

π(m)

∑

f≤m

1

f − 2

∑

χ∈X′(f)

ψz(logLP (s, χ))

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

π(m)

∑

f≤m

1

f − 2

∑

χ∈X′(f)

ψz(logLP (s, χ))− M̃σ,P (z)

∣∣∣∣∣∣

+
∣∣∣M̃σ,P (z) − M̃σ(z)

∣∣∣
= XP (z) + YP (z) + ZP (z), (7.1)

say, where P = Py = {p1, . . . , pr}. Note that, in this section, f always
denotes a prime (> 2).

First we estimate XP (z). For this purpose we use the method in Section
4 of [18], whose idea actually goes back to Bohr [1].

Let c be a positive constant, and define the domain

H(τ) = {s′ = σ′ + iτ ′ ; σ′ > α0, τ − c < τ ′ < τ + c},

and the function

RP (s′, χ) = logL(s′, χ)− logLP (s′, χ)
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on Gχ(α1) = Gχ ∩ {σ > α1}. Let δ be a fixed small positive constant. By
ϕδ

P (τ, χ) we mean the function whose value is = 0 if H(τ) ⊂ Gχ(α1) and
|RP (s′, χ)| < δ for any s′ ∈ H(τ), and = 1 otherwise. When σ′ > 1, we have

RP (s′, χ) �
∑

p>y

p−σ′ � 1

σ′ − 1
,

hence we can find a β0 = β0(δ) > 1, independent of χ, for which

|RP (s′, χ)| < δ (7.2)

holds for any s′ with σ′ ≥ β0. Put β1 = β1(δ) = 2β0, and

Q1(τ) = {s′ = σ′ + iτ ′ ; α1 ≤ σ′ ≤ β1, τ − 2c ≤ τ ′ ≤ τ + 2c},
Q0(τ) = {s′ = σ′ + iτ ′ ; α0 < σ′ < β0, τ − c < τ ′ < τ + c},

so that Q0(τ) = H(τ) ∩ {σ′ < β0}, and Q0(τ) ⊂ Q1(τ). Define the function

fP (s′, χ) =
L(s′, χ)

LP (s′, χ)
− 1

on Q1(τ).

Lemma 3 If |fP (s′, χ)| < δ/2 for any s′ ∈ Q0(τ), then ϕδ
P (τ, χ) = 0.

This is just a simple generalization of Hilfssatz 5 of [1], but we give a
proof here for the convenience of readers.

By (7.2), it suffices to show that Q0(τ) ⊂ Gχ(α1) and that |RP (s′, χ)| < δ
for any s′ ∈ Q0(τ).

Let s′ ∈ Q0(τ). Since δ is small, the assumption |fP (s′, χ)| < δ/2 implies
L(s′, χ) 6= 0, so Q0(τ) ⊂ Gχ(α1). By using the assumption again, we see
that the argument of L(s′, χ)/LP (s′, χ) remains between−π/2 and π/2 when
s′ ∈ Q0(τ). Therefore

RP (s′, χ) = Log
L(s′, χ)

LP (s′, χ)
= Log(1 + fP (s′, χ)), (7.3)

which gives |RP (s′, χ)| ≤ 2|fP (s′, χ)| < δ. Hence the lemma.
The following simple function-theoretic lemma is also necessary.

Lemma 4 (Hilfssatz 4 of Bohr [1]) Let Γ, Γ′ be two closed curves on the

complex plane, and D, D′ the open regions surrounded by Γ, Γ′, respectively.

Assume Γ ∪D ⊂ D′. If f(s′) is holomorphic on D′ and

∫ ∫

D′
|f(s′)|2dσ′dτ ′ < π

(
d(Γ,Γ′)

2

)2

a2,

where d(Γ,Γ′) = inf{|z − z′| ; z ∈ Γ, z′ ∈ Γ′}, then |f(s′)| < a for any

s′ ∈ Γ ∪D.
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Put

FP (τ, χ) =

∫ ∫

Q1(τ)
|fP (s′, χ)|2dσ′dτ ′.

The distance between the boundary of Q1(τ) and that of Q0(τ) is min{ε1, c},
which we denote by ε2. Since fp(s

′, χ) is holomorphic on Q1(τ), Lemma 4
implies that, if

FP (τ, χ) < π

(
ε2
2

)2 (δ
2

)2

(7.4)

holds, then |fP (s′, χ)| < δ/2 for s′ ∈ Q0(τ), and so, by Lemma 3, ϕδ
P (τ, χ) =

0.
For any prime f , define

X1(f) = X1(f, s) :=

{
χ ∈ X ′(f) ; FP (τ, χ) ≥ π

(
ε2
2

)2 (δ
2

)2
}
,

X2(f) = X2(f, s) :=

{
χ ∈ X ′(f) ; FP (τ, χ) < π

(
ε2
2

)2 (δ
2

)2
}
.

Divide

∑

χ∈X′(f)

(ψz(logL(s, χ))− ψz(logLP (s, χ)))

=
∑

χ∈X1(f)

+
∑

χ∈X2(f)

= S1(f) + S2(f), (7.5)

say.
Consider S2(f). When χ ∈ X2(f), we find |fP (s′, χ)| < δ/2 for s′ ∈

Q0(τ) as we have seen before, especially Q0(τ) ⊂ Gχ(α1). Applying (6.8)
we obtain

|S2(f)| ≤ |z|
∑

χ∈X2(f)

| logL(s, χ)− logLP (s, χ)|. (7.6)

Combining this with (7.3), we obtain

|S2(f)| � |z|
∑

χ∈X2(f)

|fP (s, χ)|

� |z|f1/2


 ∑

χ∈X2(f)

|fP (s, χ)|2



1/2

. (7.7)

On the mean square of |fP (s, χ)|, we can show the following lemma.
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Lemma 5 For any prime f , we have

∑

χ∈X(f)

|fP (s′, χ)|2 � fy1−2σ′

+ f (1−σ′)/(1−α2) exp

(
B0

y1−α2

log y

)(
1 +

|τ ′|+ 1

f2α2

)
(7.8)

(with a certain absolute positive constant B0) for any s′ satisfying α2 ≤
<s′ ≤ β1, uniformly in this region.

We postpone the proof of this lemma to the next section. Here we assume
the assertion of Lemma 5. If σ′ ≥ α1, then the right-hand side of (7.8) is

≤ fy1−2α1 + f (1−α1)/(1−α2) exp

(
B0

y1−α2

log y

)(
1 +

|τ ′|+ 1

f2α2

)

= A(τ ′, f, y), (7.9)

say. Then from (7.7), (7.8) and (7.9) we obtain

|S2(f)| � |z|f 1/2A(τ, f, y)1/2. (7.10)

Next consider S1(f). We see that

π

(
ε2
2

)2 (δ
2

)2

|X1(f)| ≤
∑

χ∈X1(f)

FP (τ, χ)

=

∫ ∫

Q1(τ)

∑

χ∈X1(f)

|fP (s′, χ)|2dσ′dτ ′. (7.11)

Applying Lemma 5, we see that the right-hand side of (7.11) is

� A(τ, f, y)

∫ ∫

Q1(τ)
dσ′dτ ′,

and the last integral is O(1). Since ε2, δ are also fixed, we find |X1(f)| �
A(τ, f, y). Therefore, noting |ψz| = 1, we obtain

|S1(f)| ≤ 2|X1(f)| � A(τ, f, y). (7.12)

From (7.10) and (7.12), we can conclude

Proposition 10

XP (z) � 1

π(m)

∑

f≤m

1

f

(
|z|f1/2A(τ, f, y)1/2 +A(τ, f, y)

)
.
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The method of estimating YP (z) is analogous to that in Section 6 of [9],
in which the function field case has been treated. Assume y ≤ m, which will
be confirmed later (see (7.27)). Then

1

π(m)

∑

f≤m

1

f − 2

∑

χ∈X′(f)

ψz(logLP (s, χ))

=
1

π(m)

∑

f≤y

1

f − 2

∑

χ∈X′(f)

ψz(logLP (s, χ))

+
1

π(m)

∑

y<f≤m

1

f − 2

∑

χmodf

ψz(logLP (s, χ))

− 1

π(m)

∑

y<f≤m

1

f − 2

∑

χmodf

χ/∈X′(f)

ψz(logLP (s, χ))

= J
(m)
0 + J

(m)
1 + J

(m)
2 , (7.13)

say. When f > y then (f, P ) = 1, so from (3.5) and (5.34) we have

ψz(logLP (s, χ)) = ψz(gσ,P (χPP
−iτ ))

=
∑

nP∈ZP

Aσ,P (nP ; z, z)χnP

P P−iτnP , (7.14)

where
χnP

P =
∏

p∈P

χ(p)np , P−iτnP =
∏

p∈P

p−iτnp .

Hence

∑

χmodf

ψz(logLP (s, χ)) =
∑

nP∈ZP

Aσ,P (nP ; z, z)P−iτnP
∑

χmodf

χnP

P . (7.15)

Define
PnP

1 =
∏

p∈P

np>0

pnp , PnP
2 =

∏

p∈P

np<0

p−np .

Then the inner sum on the right-hand side of (7.15) is f − 1 if P nP
1 ≡ PnP

2

(mod f), and 0 otherwise. Therefore

J
(m)
1 =

1

π(m)

∑

y<f≤m

∑

nP∈ZP

P
nP
1 ≡P

nP
2 (modf)

Aσ,P (nP ; z, z)P−iτnP

+
1

π(m)

∑

y<f≤m

1

f − 2

∑

nP ∈ZP

P
nP
1 ≡P

nP
2 (modf)

Aσ,P (nP ; z, z)P−iτnP

= J
(m)
11 + J

(m)
12 , (7.16)
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say. We can write

J
(m)
11 =

∑

nP∈ZP

E (m)(nP )Aσ,P (nP ; z, z)P−iτnP , (7.17)

where

E (m)(nP ) =
1

π(m)
|{f ; prime ; y < f ≤ m, f |(P nP

1 − PnP
2 )}|.

In particular it is clear that E (m)(0) = 1− π(m)−1π(y). Therefore the term
corresponding to nP = 0 on the right-hand side of (7.17) is

(
1− π(y)

π(m)

)
M̃σ,P (z)

by (5.37). Noting (3.17), we see that this is equal to

M̃σ,P (z) +O

(
y

π(m) log y

)
. (7.18)

On the other hand, if nP 6= 0, we can show

E (m)(nP ) � 1

π(m)


∏

p∈P

(|np|+ 1)


 log y. (7.19)

In fact, writing the number of distinct prime divisors of a positive integer n
as ω(n), it is well known that

ω(n) � log n

log log n
,

hence

ω(|PnP
1 − PnP

2 |) � log(|P nP
1 − PnP

2 |)
log log(|P nP

1 − PnP
2 |) .

Combining this with |(P nP
1 − PnP

2 )| ≤ P |nP |, we obtain

ω(|PnP
1 − PnP

2 |) � log P |nP |

log log P |nP |
� log P |nP | ≤

∑

p∈P

|np| log y, (7.20)

from which (7.19) immediately follows.
Therefore

∑

nP∈ZP \{0}

E (m)(nP )Aσ,P (nP ; z, z)P−iτnP

� 1

π(m)
(log y)

∏

p∈P

∑

np∈Z

(|np|+ 1)|Aσ,p(np; z, z)|,
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which is further estimated as

≤ 1

π(m)
(log y) exp


C|z|

2

∑

p∈P

1

pσ − 1




� 1

π(m)
(log y) exp (C4|z|η(y))

by using Proposition 7 and the prime number theorem, as in (6.26)−(6.28).
Substituting (7.18) and the above estimate into (7.17), we obtain

J
(m)
11 = M̃σ,P (z) +O

(
y

π(m) log y

)
+O

(
log y

π(m)
exp (C4|z|η(y))

)
. (7.21)

The term J
(m)
12 can be expressed similarly to (7.17), only replacing E (m)(nP )

by

Ẽ (m)(nP ) =
1

π(m)

∑

y<f≤m

P
nP
1 ≡P

nP
2 (modf)

1

f − 2
.

Since trivially we have

Ẽ (m)(nP ) ≤ 1

π(m)

∑

f≤m

1

f − 2
� log logm

π(m)
, (7.22)

we obtain

J
(m)
12 � log logm

π(m)

∏

p∈P

|Aσ,p(np; z, z)|

� log logm

π(m)
exp (C4|z|η(y)) (7.23)

again by using Proposition 7 and the prime number theorem.
Next, using |ψz | = 1, we have

J
(m)
0 � 1

π(m)

∑

f≤y

1 � y

π(m) log y
. (7.24)

As for J
(m)
2 , by using |ψz| = 1 and (2.10) (with T = 2|τ |), we have

J
(m)
2 � 1

π(m)

∑

y<f≤m

|X(f) \X ′(f)|+ 1

|X(f)|

� 1

π(m)

∑

y<f≤m

fA(σ0)−1|τ |A(σ0)(log 2f |τ |)14.

Replacing (log 2f |τ |)14 by (log 2m|τ |)14 and using partial summation, we
obtain

J
(m)
2 � (m|τ |)A(σ0)(log 2m|τ |)14

π(m) logm
. (7.25)

From (7.13), (7.16), (7.21), (7.23), (7.24) and (7.25), we obtain
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Proposition 11

YP (z) � y

π(m) log y
+

log y

π(m)
exp (C4|z|η(y))

+
log logm

π(m)
exp (C4|z|η(y)) +

(m|τ |)A(σ0)(log 2m|τ |)14
π(m) logm

. (7.26)

Now we choose

y = y(m) = (logm)ω2 (0 < ω2 < 2). (7.27)

Then ω2(1 − σ) < 1 for any σ > 1/2, so the two exponential factors on the
right-hand side of (7.26) are O(mε) for any ε > 0. Therefore from (7.26) we
have

YP (z) � m−1+A(σ0)+ε, (7.28)

hence YP (z) → 0 as m → ∞. Note that the implied constant in (7.28) is
uniform in |z| ≤ R for any fixed R > 0.

The exponential factor in definition (7.9) of A(τ ′, f, y) is also O(mε)
under the above choice of y, hence

1

π(m)

∑

f≤m

1

f
A(τ, f, y)

� 1

π(m)

∑

f≤m

{
(logm)ω2(1−2α1) + f (1−α1)/(1−α2)−1mε

}

� (logm)ω2(1−2α1) +m−(α1−α2)/(1−α2)+ε, (7.29)

with the implied constant depending on τ . Similarly,

1

π(m)

∑

f≤m

f−1/2A(τ, f, y)1/2

� (logm)ω2(1/2−α1) +m−(α1−α2)/2(1−α2)+ε. (7.30)

Combining (7.29), (7.30) with Proposition 10, we find that XP (z) → 0 as
m → ∞. We also know that ZP (z) → 0 as y → ∞, uniformly in z, by
Proposition 4. Therefore from (7.1) we now obtain (2.9) for Φ = ψz.

Remark 7. The above argument shows that the convergence in the case
Φ = ψz of (2.9) is uniform in |z| ≤ R for any R > 0.

8 A mean value estimate

In this section we supply a proof of Lemma 5. Except for the final part of this
section, f can be any positive integer, not necessarily a prime. Recall P =

34



Py = {p1, . . . , pr}. Let χ ∈ X(f), and write the Dirichlet series expansion
of fP (s′, χ) in the region <s′ > 1 as

fP (s′, χ) =
L(s′, χ)

LP (s′, χ)
− 1 =

∞∑

n=1

bn(χ)n−s′ . (8.1)

Then we find that bn(χ) = χ(n) if n > 1 and (n, p1 · · · pr) = 1, and bn(χ) = 0
otherwise. Take an s′ satisfying σ′ = <s′ ≥ α1, and let ξ ≥ 1, c0 >
max{0, 1 − σ′}. Define

hn(χ) = bn(χ) exp
(
−(n/ξ)σ′−1/2

)
.

Then

∞∑

n=1

hn(χ)n−s′

=
1

2πi(σ′ − 1/2)

∫

(c0)
Γ

(
w

σ′ − 1/2

)
fP (s′ + w,χ)ξwdw, (8.2)

where the path of integration is the vertical line <w = c0. This follows easily
from (8.1).

Shift the path of integration to <w = α2 − σ′. The residue of the
integrand at w = 0 is (σ′−1/2)fP (s′, χ). Therefore, putting w = α2−σ′+iv
we obtain

∞∑

n=1

hn(χ)n−s′ = fP (s′, χ)

+O

(
1

σ′ − 1/2

∫ ∞

−∞

∣∣∣∣Γ
(
α2 − σ′ + iv

σ′ − 1/2

)
fP (α2 + i(τ ′ + v), χ)

∣∣∣∣ ξ
α2−σ′dv

)
.(8.3)

The O-term on the right-hand side is, by Stirling’s formula, estimated as

� ξα2−σ′
∫ ∞

−∞
e−B1|v||fP (α2 + i(τ ′ + v), χ)|dv,

where B1 is a positive constant depending on α1, α2. This is further esti-
mated as

≤ ξα2−σ′
(∫ ∞

−∞
e−B1|v|dv

)1/2 (∫ ∞

−∞
e−B1|v||fP (α2 + i(τ ′ + v), χ)|2dv

)1/2

� ξα2−σ′
(∫ ∞

−∞
e−B1|v||fP (α2 + i(τ ′ + v), χ)|2dv

)1/2

. (8.4)

From (8.3) and (8.4), we have

∑

χ∈X(f)

|fP (s′, χ)|2
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� ξ2(α2−σ′)
∫ ∞

−∞
e−B1|v|

∑

χ∈X(f)

|fP (α2 + i(τ ′ + v), χ)|2dv

+
∑

χ∈X(f)

∣∣∣∣∣

∞∑

n=1

hn(χ)n−s′

∣∣∣∣∣

2

+ |D0(s
′)|2. (8.5)

We estimate the first term on the right-hand side of (8.5). First we note
that

∑

χ∈X(f)

|fP (α2 + i(τ ′ + v), χ)|2

� exp

(
B2

y1−α2

log y

)
∑

χmodf

|L(α2 + i(τ ′ + v), χ)|2 + f (8.6)

with an absolute constant B2 > 0. In fact, since

LP (α2 + iτ ′, χ)−1 ≤ exp


B′

2

∑

p≤y

p−α2


 ≤ exp

(
B2

y1−α2

log y

)
,

estimate (8.6) easily follows from the definition of fP .
Let ϕ(f) be Euler’s function. We prove the following

Lemma 6 For <s′ = α2, we have

∑

χmodf

|L(s′, χ)|2 � ϕ(f)

f2σ′
(f + |τ ′|) + ϕ(f).

Proof. This is an analogue of a result of Gallagher [6], in which the same
type of result was given for <s′ = 1/2. Let ζ(s′, α) =

∑∞
n=0(n + α)−s′ be

the Hurwitz zeta-function, and ζ1(s
′, α) = ζ(s′, α) − α−s′ . We begin with

the expression

L(s′, χ) = f−s′
f∑

a=1

χ(a)ζ(s′, a/f).

By using the orthogonality of characters we have

∑

χmodf

|L(s′, χ)|2 =
ϕ(f)

f2σ′

∑

1≤a≤f

(a,f)=1

|ζ(s′, a/f)|2

� ϕ(f)

f2σ′

∑

1≤a≤f

(a,f)=1

|ζ1(s′, a/f)|2 + ϕ(f). (8.7)

A key inequality of Gallagher [6] (cf. his proof [5] of the large sieve inequal-
ity) is

f∑

a=1

|ζ1(s′, a/f)|2 ≤ f

∫ 1

0
|ζ1(s′, α)|2dα+ 2

∫ 1

0

∣∣∣∣ζ1(s
′, α)

∂

∂α
ζ1(s

′, α)

∣∣∣∣ dα (8.8)
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([6], formula (9)). Since (∂/∂α)ζ1(s
′, α) = −s′ζ1(s′ + 1, α), this factor is

O(|τ ′| + 1) for <s′ = α2. (This is uniform in α, because we consider not ζ
but ζ1.) Therefore, by using Schwarz’ inequality, we have

f∑

a=1

|ζ1(s′, a/f)|2 � f

∫ 1

0
|ζ1(s′, α)|2dα+ (|τ ′|+ 1)

(∫ 1

0
|ζ1(s′, α)|2dα

)1/2

.(8.9)

Concerning the integral appearing on the right-hand side, we know
∫ 1

0
|ζ1(s′, α)|2dα = O(1) (8.10)

for <s′ = α2 (Koksma and Lekkerkerker [14]). Applying (8.10) to (8.9), we
obtain

f∑

a=1

|ζ1(s′, a/f)|2 � f + (|τ ′|+ 1), (8.11)

and combining this with (8.7), we obtain the assertion of Lemma 6.
Using (8.6) and Lemma 6, we obtain
∫ ∞

−∞
e−B1 |v|

∑

χ∈X(f)

|fP (α2 + i(τ ′ + v), χ)|2dv

�
∫ ∞

−∞
e−B1|v|

×
{

exp

(
B2

y1−α2

log y

)(
ϕ(f)

f2α2
(f + |τ ′ + v|) + ϕ(f)

)
+ f

}
dv

=

{
exp

(
B2

y1−α2

log y

)
ϕ(f)(f 1−2α2 + 1) + f

}∫ ∞

−∞
e−B1|v|dv

+exp

(
B2

y1−α2

log y

)
ϕ(f)

f2α2

∫ ∞

−∞
e−B1|v||τ ′ + v|dv

� exp

(
B2

y1−α2

log y

)
ϕ(f)

(
1 +

|τ ′|+ 1

f2α2

)
+ f. (8.12)

Next consider the second term on the right-hand side of (8.5). Since
hn(χ) = 0 if n ≤ y, by using the orthogonality of characters we have

∑

χ∈X(f)

∣∣∣∣∣

∞∑

n=1

hn(χ)n−s′

∣∣∣∣∣

2

≤
∑

χmodf

∣∣∣∣∣

∞∑

n=1

hn(χ)n−s′

∣∣∣∣∣

2

≤ ϕ(f)
∑

m,n>y

m≡n(modf)

exp

(
−
(
m

ξ

)σ′−1/2

−
(
n

ξ

)σ′−1/2
)

(mn)−σ′

= ϕ(f)

{
∑

m=n

+
∑

m>n

+
∑

m<n

}
= ϕ(f)(Σ1 + Σ2 + Σ3), (8.13)
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say. Clearly

Σ1 ≤
∑

n>y

n−2σ′ � y1−2σ′ . (8.14)

Next, Σ3 = Σ2, and

Σ2 =
∑

n>y

exp

(
−
(
n

ξ

)σ′−1/2
)
n−σ′

×
∑

l≥1

exp

(
−
(
n+ lf

ξ

)σ′−1/2
)

(n+ lf)−σ′ . (8.15)

The inner sum can be estimated as

≤
∫ ∞

0
exp

(
−
(
n+ vf

ξ

)σ′−1/2
)

(n+ vf)−σ′dv � f−1ξ1−σ′ ,

hence

Σ2 � f−1ξ1−σ′
∑

n>y

exp

(
−
(
n

ξ

)σ′−1/2
)
n−σ′

≤ f−1ξ1−σ′
∫ ∞

0
exp

(
−
(
v

ξ

)σ′−1/2
)
v−σ′dv � f−1ξ2(1−σ′). (8.16)

From (8.13), (8.14) and (8.16) we obtain

∑

χ∈X(f)

∣∣∣∣∣

∞∑

n=1

hn(χ)n−s′

∣∣∣∣∣

2

� ϕ(f)(y1−2σ′ + f−1ξ2(1−σ′)). (8.17)

Now let f be a prime, hence ϕ(f) = f−1. Substituting (8.12) and (8.17)
into the right-hand side of (8.5), we obtain

∑

χ∈X(f)

|fP (s′, χ)|2 � fξ2(α2−σ′) exp

(
B2

y1−α2

log y

)(
1 +

|τ ′|+ 1

f2α2

)

+ fy1−2σ′ + ξ2(1−σ′). (8.18)

Choosing the value of the parameter ξ as ξ = f 1/2(1−α2), we obtain the
assertion of Lemma 5. The proof of (2.9) for Φ = ψz is thus complete.

9 Completion of the proof

So far we have proved Theorem 1 in the special case Φ = ψz. Now we prove
the theorem for general test function Φ of type (i) or (ii).
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By f∧ (resp. f∨) we denote the Fourier (resp. inverse Fourier) transform
of f . Let Λ be the set of all functions f : C→ C such that f, f ∧ ∈ L1 ∩L∞
and (f∧)∨ = f . We first consider the case when Φ ∈ Λ. The argument in
this case is similar to that in Section 6.7 of [9].

Assume Φ ∈ Λ. Then (Φ∧)∨ = Φ, that is

Φ(w) =

∫

C

Φ∧(z)ψ−z(w)|dz|. (9.1)

On the other hand, from Propositions 4 and 5 we see that Mσ ∈ Λ. There-
fore

∫

C

Mσ(w)Φ(w)|dw| =

∫

C

Mσ
∧(z)Φ∧(z)|dz|

=

∫

C

M̃σ(−z)Φ∧(z)|dz| (9.2)

(the second equality clearly follows from M̃σ = Mσ
∧ and (3.32)). From

(9.1) and (9.2) we obtain

∣∣∣∣Avgf≤mΦ(logL(s, χ))−
∫

C

Mσ(w)Φ(w)|dw|
∣∣∣∣

≤
∫

C

|Φ∧(z)|
∣∣∣Avgf≤mψ−z(logL(s, χ))− M̃σ(−z)

∣∣∣ |dz|

=

∫

C

|Φ∧(−z)|
∣∣∣Avgf≤mψz(logL(s, χ))− M̃σ(z)

∣∣∣ |dz| (9.3)

in Case (A,Q). We divide the integral on the right-hand side into two parts:

∫

|z|≤R
+

∫

|z|>R
(9.4)

(where R > 0). From (3.22) we have

∣∣∣Avgf≤mψz(logL(s, χ))− M̃σ(z)
∣∣∣ ≤ 2.

Using this inequality and the fact Φ∧ ∈ L1, we see that, for any ε > 0, we
can find a sufficiently large R = R(ε) for which the second integral of (9.4)
is smaller than ε/2. Then we use the case Φ = ψz of Theorem 1. We have
already shown that the convergence is uniform in |z| ≤ R (Remarks 6 and
7). Therefore, under the choice of a sufficiently large m, the first integral of
(9.4) can also be smaller than ε/2. This completes the proof of Theorem 1
for Φ ∈ Λ in Case (A,Q). In Case (C), we replace Avgf≤m by

Avg|τ |≤Tφ(χτ ) =
1

2T

∫ T

−T
φ(χτ )dτ

and argue as above to obtain the same conclusion.

39



It is known that the Schwartz space S, whch consists of all C∞-functions
f such that |w|kD(f) tends to 0 as |w| → ∞ for any k ≥ 0 and any partial
derivative of any order, is a subset of Λ. In particular, now we have verified
Theorem 1 for any compactly supported C∞-function.

Any compactly supported continuous function (or even any continuous
function which tends to 0 as |w| → ∞) can be approximated uniformly
by compactly supported C∞-functions, and furthermore, the characteristic
function of any compact subset of C can be approximated by compactly
supported continuous functions. Therefore Case (ii) of Theorem 1 follows.
These arguments are rather standard, and are presented in detail in Section
4.3 of [10], so we omit the details here.

Finally, let Φ be any bounded continuous function. For any R > 0, there
exists a compactly supported continuous function ΦR, such that ΦR(w) =
Φ(w) for |w| ≤ R and |ΦR(w)| ≤ |Φ(w)| everywhere. We have already shown
that Theorem 1 holds for compactly supported continuous functions, hence

lim
m→∞

(
Avgf≤mΦR(logL(s, χ))

)
=

∫

C

Mσ(w)ΦR(w)|dw| (9.5)

holds in Case (A,Q). The right-hand side can be divided as
∫

|w|≥R
Mσ(w)(ΦR(w)− Φ(w))|dw| +

∫

C

Mσ(w)Φ(w)|dw|,

and, when R→∞, the first term of the above tends to 0 because of (3.30).
Therefore

lim
R→∞

∫

C

Mσ(w)ΦR(w)|dw| =
∫

C

Mσ(w)Φ(w)|dw|. (9.6)

The sequence {Avgf≤mΦ(logL(s, χ))}∞m=1 is bounded, hence we can find an
accumulation point α. What we have to show is that this α is unique, and
is equal to the right-hand side of (9.6). Let {Avgf≤m1

Φ(logL(s, χ))}∞m1=1

be a subsequence whose limit is α. The sequence
{
Avgf≤m1

(Φ(logL(s, χ))− ΦR(logL(s, χ)))
}∞

m1=1

is then convergent. Denoting its limit by β(R), we have

β(R) = α−
∫

C

Mσ(w)ΦR(w)|dw|. (9.7)

Let chR(w) be the characteristic function of the set {w ; |w| ≥ R}. Case
(ii) of Theorem 1 implies

lim
m→∞

(
Avgf≤mchR(logL(s, χ))

)
=

∫

C

Mσ(w)chR(w)|dw|

=

∫

|w|≥R
Mσ(w)|dw|, (9.8)
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which tends to 0 as R →∞ by (3.30). Since |Φ− ΦR| � chR, we find that
β(R) → 0 as R→∞. Therefore, taking the limit R→∞ on the both sides
of (9.7), we obtain

α = lim
R→∞

∫

C

Mσ(w)ΦR(w)|dw|. (9.9)

The desired result in Case (A,Q) follows from (9.6) and (9.9). In Case (C),
as before, we replace Avgf≤m by Avg|τ |≤T and argue similarly. The proof
of Theorem 1 is thus complete.

We note that in Case (C), the assertion (ii) of our Theorem 1 includes,
as a special case, the classical result (1.1), (1.2) of Bohr and Jessen.

On the other hand, if we first assume the result of Bohr and Jessen, it
is possible to deduce Case (C) of our Theorem 1 from their result. In fact,
if Φ is a compactly supported C∞-function, then Φ can be approximated
uniformly by some finite linear combination of characteristic functions of
rectangles, hence the result follows from the result of Bohr and Jessen. Then
the general case of Theorem 1 follows as above.
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[3] H. Bohr and B. Jessen, Über die Werteverteilung der Riemannschen
Zetafunktion, I, Acta Math. 54 (1930), 1-35; II, ibid. 58 (1932), 1-55.

[4] V. Borchsenius and B. Jessen, Mean motions and values of the Riemann
zeta function, Acta Math. 80 (1948), 97-166.

[5] P. X. Gallagher, The large sieve, Mathematika 14 (1967), 14-20.

[6] P. X. Gallagher, Local mean value and density estimates for Dirichlet
L-functions, Indag. Math. 37 (1975), 259-264.

[7] Y. Ihara, On the Euler-Kronecker constants of global fields and primes
with small norms, in “Algebraic Geometry and Number Theory”, Progr.
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