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On Holonomic Systems of Micro-
differential Equations. III

—Systems with Regular Singularities—

By

Masaki KAsHIWARA* and Takahiro Kawar*

Introduction

This is the third of the series of the papers dealing with holonomic sys-
tems™. A holonomic system is, by definition, a left coherent &-Module
(or 2-Modules)**) whose characteristic variety is Lagrangian. It shares the
finiteness theorem with a linear ordinary differential equation, namely, all the
cohomology groups associated with its solution sheaf are finite dimensional
([6], [12]). Hence the study of such a system will give us almost complete
information concerning the functions which satisfy the system, as in the one-
dimensional case. Actually, analyzing special functions by the aid of the
theory of ordinary differential equations is one of the most important subjects
in the classical analysis. From this point of view, the study of holonomic sys-
tems with regular singularities is most important. However, even though the
theory of linear ordinary differential equations with regular singularities has been
developed quite successfully, the general theory of holonomic systems with regular
singularities was not fully developed in the past, especially compared with the
fruitful success attained in the one-dimensional case. Still it should be worth
doing, and we hope we have established a solid basis for the theory in this paper.
For example, we establish several basic results needed for the manipulation of
holonomic systems with regular singularities, such as the integration and the
restriction of such systems (Chapter V). We also give an analytic character-
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ization of holonomic 2-Modules with regular singularities in terms of a com-
parison theorem, namely, we show that a holonomic 24-Module .# is with
regular singularities if and only if &er (A, Ox),=&rL (4, Ox,) holds
for any point x € X and for any j, where éX,x denotes the ring of formal power
series at x. (Chapter V1.) In developing our theory, we make full use of the
technique of micro-local analysis, i.e., the analysis on the cotangent bundle.
We use the language of Sato-Kawai-Kashiwara [24], which shall be referred
to as S-K-K [24] for brevity. Especially the use of micro-differential operators
of infinite order is crucial in our study. Making use of such operators, we
establish an important and interesting result to the effect that any holonomic
system can be transformed into a holonomic system with regular singularities by
micro-differential operators of infinite order (Chapters IV and V). The method
of the proof of this result as well as the result itself is efficiently employed for
establishing basic properties of a holonomic system with regular singularities
mentioned earlier. In the course of our arguments, we also make essential use
of the results of Deligne [3]. Since his results are stated in terms of integrable
connections, we re-interpret them in terms of 2-Modules so that we may apply
them to our problems smoothly. (Chapter II. See also Appendix § C.)
Main results of this paper were announced in [15].

Before stating a more detailed plan of this paper, we show one example,
which exemplifies the most significant result of this paper (Theorem 5.2.1 in
Chapter V, § 2), i.e., the theorem which states that any holonomic system can
be transformed into a holonomic system with regular singularities. We hope
our explanation of this example will show the reader the essential part of the
idea of the proof and help the reader’s understanding of our results. We want
to emphasize that such a reduction was not known even for ordinary differential
equations.

Example. Let us consider the following ordinary differential equation:
0.1) (x2D, — a)u(x)=0, (aeC).

If a0, (0.1) is clearly an equation with irregular singularities.
Now consider the following correspondences (0.2) and (0.3).
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where Y(n)= :2:—]1{ —y with Euler’s constant y=0.57721---. Note that
operators used in these correspondences are actually linear differential operators
(of infinite order).

Then the correspondence (0.2) (resp., the correspondence (0.3)) defines an
inverse correspondence of (0.3) (resp., (0.2)), and, furthermore, the equation
(0.1) is brought to

x —a wi |
9 ( 0 xD, )( W2 >_O.

Clearly (0.4) is an equation with regular singularities.

It will be worth mentioning how we have found the transformations (0.2)
and (0.3):

We first considered an analytic solution exp (—a/x) of (0.1) (having x=0 as
its essential singularity) and a multi-valued holomorphic solution exp (—a/x)-
Sx exp (a/t)dt/t of the equation (x2D,—a)u=x. The last equation implies
(x2D,—a)u=0 modulo holomorphic functions defined on a neighborhood of
the origin. Then we found by direct calculations that these two functions can
be obtained by applying operators used in the transformation (0.2) to a/x and 1
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in the first case and to a log x/x and log x in the second case.

The argument given so far was our starting point and, as a matter of fact,
the essential point of the arguments in Chapter IV consists in performing the
same manipulation in the general case, namely, we first construct sufficiently
many multi-valued holomorphic solutions of the holonomic system in question
and next we try to find suitable transformation by operators of infinite order so
that these solutions are transformed into functions with moderate growth
properties. (See also Chapter IV, § 1 for the idea of the proof.) WNeedless
to say, performing this idea in general case is a very hard task to do as is seen
below. Of course, our laborious efforts are rewarded not only by this result
itself but also by its fruitful by-products (Chapter V and Chapter VI). Among
them, we like to call the reader’s attention to the following results which are
basic and important in applications:

(i) For an analytic subset Y of X and a holonomic 2x-Module .# with
R.S., #Fy (M) has R.S. and 2% %(.%”’[‘”(V%))=Jf’§(.@ ?9@;%) holds for any
k. (Chapter V, § 4.)

(il) For holonomic &x-Modules .# and A4 with R.S.,

RS om o (M ) ERH o g (M EFD N)
X

holds. (Chapter VI, § 1.)
(ili) For a projective map F: X—Y and a holonomic 2x-Module A
with R.S., R*F(Dy.x ® M) is a holonomic 2y-Module with R.S. (Chapter
2x

VI, §2)

The plan of this paper is as follows.

Chapter I. Basic Properties of Holonomic Systems

In Section 1, after an algebraic preparation, we give the definition of a
holonomic system with R.S., which is an abbreviation of regular singularities
(Definition 1.1.16). Some elementary results on such systems are also given.
Note that we define the notion “with R.S.”” as a property of the system at generic
points of its characteristic variety. However, we prove that a holonomic
system with R.S. has regular singularities along any involutory variety con-
taining the characteristic veriety of the system (Chapter V, § 1, Corollary 5.1.7).
Also the validity of the comparison theorems (Chapter VI, § 3, Theorem 6.3.1.
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and § 4, Theorem 6.4.1) will justify our usage of the terminology “with R.S.”.
After defining a holonomic system with R.S., we introduce the notion of regular
part .4, of a holonomic system .# (Definition 1.1.19). It is an &-sub-Module
of M* =6 ?uﬂ (Proposition 1.1.20). We later (Chapter I, § 3) analyze
the structure of .# on the non-singular locus of its characteristic variety and
find that .#,., is a holonomic &-Module with R.S. there. We eventually
(Chapter V, § 2) prove that .#,, is actually a holonomic &-Module with R.S.
The most important result of this article is to prove that &% ? My =6 C>;) M
holds for any holonomic #-Module .# (Chapter V, § 2, Theorem 5.2.1). This
is the precise meaning of the statement ‘“‘any holonomic system can be trans-
formed into a holonomic system with regular singularities’’.

In Section 2 we prove several Hartogs’ type theorems for &y-Modules,
namely, the vanishing of &erf( M, V), Ectf( M, ™) and Eorf( M, N/ *®|N)
for j<codim .y Z—projdim 4" for coherent £-Modules .# and 4 (Theorems
1.2.1 and 1.2.2). Here and in what follows, for an £-Module 4", /" denotes
&° ® . These results will play important roles in our subsequent arguments.
Forgexample, we often use these results in the following manner (Corollary
1.2.3): Let .# be a holonomic &£-Module. If a section s of .#* belongs to
A at generic points of Supp .#, then s belongs to .# everywhere. (See also
Proposition 1.3.8 in the next section, where we find that supp s is an analytic
set.)

In Section 3 we determine the structure of .#* for a holonomic &£-Module
4 with non-singular characteristic variety (Lemma 1.3.4). After a quantized
contact transformation which brings Supp .# to a conormal bundle of a non-
singular hypersurface {xe X; x;=0}, #® has the form ® .#%, with
My y=E|(E(xDy—A)"+EDy+---+6D,). Several basic pf}gf)eerties of M.,
follows from this structure theorem (Propositions 1.3.5 and 1.3.6). For example:
M, is a holonomic £-Module with R.S. on the non-singular locus of the sup-
port of .#.

We also use the structure of .#® studied in this section to show that, for a
coherent #-Module .# such that &<j(#, £)=0 for j#r, the support of a
section s of .#® is an analytic set (Proposition 1.3.8). This result often plays
an important role when we want to use the results in Section 2.

In Section 4 we first recall several elementary results on the structure of
E=ti (M, 0) for a holonomic 2-Module .#. One important property of
&=t (M, 0) is that it is a constructible sheaf. A naturally raised question is
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how much the structure of .# is determined by these solution sheaves. Theorem
1.4.9 gives a clear answer to this question: The structure of .#° =527 @ M
is completely determined by R#%esm (4, 0). We often refer to this result as
“Reconstruction Theorem’’, because it asserts that .#* is reconstructed from
Rotomo( My O) (=RHom (M, 0)). We emphasize that the use of linear
differential operators of infinite order is crucial in getting such an isomorphism.

In Section 5 we recall the definition of principal symbols for a system of
micro-differential equations with regular singularities, which was given in [18].
Then we discuss more precisely this notion applied to a holonomic system .#
with regular singularities along a Lagrangian submanifold. In this case we can
define a kind of indicial equations (§ 5.2). The order of a section u of .# is, by
definition, the set of the roots of the indicial equations introduced here. Then
using this notion of the order, we see that there exists a subset Z of C such that,
for any holonomic &-Module .# with R.S., #" ={ue.#; orducZ} is a
coherent &,-Module, where A=Supp .#. (Proposition 1.5.8.)

In Section 6 we prepare some elementary results in symplectic geometry
which we shall need in later sections. The main result is Corollary 1.6.4 which
guarantees that any Lagrangian variety A can be brought to a generic position
in the sense of Definition 1.6.3 by a homogeneous canonical transformation.

Chapter II. Holonomic Systems of D-Type

In Section 1 we explain how the notion of integrable connections is re-
interpreted by the language of 2-Modules.

In Section 2 we first recall the definition of (strict) Nilsson class functions
(associated with a locally constant sheaf L of finite rank on X —Y for a hyper-
surface Y). We denote by #Z (resp., %,) the subsheaf of j.(L® 0Ox.y) con-
sisting of sections in the Nilsson (resp., strict Nilsson) class. I(flere j is the
embedding map from X—Y into X. Note that j.(L® 0Ox_y) acquires a
structure of 2%-Module canonically. Then the results og Deligne [3] assert
that &, is coherent over 0y. Hence & is coherent over 2y. Furthermore %
is a holonomic 2-Module with R.S. on T§X and s#}y(%)=0 holds for any k
(Theorems 2.2.1 and 2.2.2). It also follows from [3] that a Hartogs’ type
result holds for & and %, (Theorem 2.2.1 (iii)). Since the results proved in
[3] are stated in a different manner, we give in Appendix C some supplementary
arguments which are intended to fill the apparent gap between the results in [3]
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and our statement of the results. When we introduce the notion of a holonomic
2-Module of D-type in the next section, the properties of .# stated in Theorems
2.2.1 and 2.2.2 are used as the defining properties of such a system. Here
“D-type’’ is an abbreviation of “Deligne-type”’. Using another result essentially
given in [3] (see also Appendix C) and ‘“‘Reconstruction Theorem’’ proved in
Chapter I, Section 4, we find in Theorem 2.2.4.

0.5) 270 =j*(L<>g Ox-y)-

This result implies that any multi-valued section of L over X — Y can be obtained
by applying a linear differential operator of infinite order to a section in the
Nilsson class. This result will play an important role in Chapter IV (through
the results in Chapter 111, § 4).

In Section 3 we introduce the notion of a holonomic system of D-type along
a hypersurface Yo X (Definition 2.1.1). It immediately follows from this
definition and the results obtained in the preceding section that the category of
holonomic systems of D-type is isomorphic to the category of locally constant
sheaves of finite rank on X —Y (Theorem 2.3.2.(i)). We also prove several
basic results on a holonomic system of D-type (Propositions 2.3.3 and 2.3.4).
Among them, the following two results are particularly important.

(0.6) For a holonomic system % of D-type along Yc X and a hypersurface
ScX, we have 2° ® (Hfs)(L)=HK2° ® £).
2 2

(0.7) Let Z be a hypersurface of X. Let .# be a holonomic 2@x-Module
with R.S. on T*X such that SS(#)cn Y (Z)U T%X. Then & = zy(A)
is of D-type.

Actually, (0.6) is the most essential ingredient of the proof of the results in
Chapter V, Section 4. The result (0.7) gives an important link between D-type
equations and general holonomic 2-Modules with R.S. We also prove a result
(Proposition 2.3.7) which characterizes the strict Nilsson class function in terms
of the notion of the order introduced in Chapter I, Section 5.

Chapter III. Action of Micro-Differential Operators on Holomorphic
Functions

In Section 1 we clarify the action of &(G; D) on holomorphic functions.
Here D is a G-round open set and €(G; D) is the space of operators with finite
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propagation speed. (See [19] § 3 for the definition of &(G; D) etc.) The
action of €(G; D) is defined in [19] in a purely cohomological way, especially
by the aid of residue maps. So we first chase the residue map concretely by
making use of the Cech cohomology (§ 1.2). Next we consider a subclass of
€(G; D) which is easy to manipulate and, at the same time, ample enough for
later applications. (§ 1.3.) For an element in such a subclass we can concretely
find its representative as a cohomology class of a cohomology group of a Stein
covering. Such a representation enables us to write down, as an integral
operator, the action of the element on a suitable relative conomology group with
the sheaf of holomorphic functions as coefficients (Proposition 3.1.5).

In Section 2 we apply the results obtained in Section 1 to study the action of
micro-differential operators on a space of holomorphic functions (Proposition
3.2.1). At the end of this section we exemplify our result by applying it to the
case where micro-differential operators act on the sheaf of microfunctions etc.

In Section 3 we introduce a special class of micro-differential operators which
we call £°. As we show there, & can be identified with a subsheaf of &%
and, at the same time, it is contained in €(G; D) for G contained in a complex
line. The sheaves &® and & play important roles in Chapter IV.

In Section 4 we first review some basic notions concerning multi-valued
holomorphic functions after Sém. Cartan-Serre 1951/52, and next we study
concretely how an element in é;3°, ie., a germ of &> at 0, acts on a space of
multivalued functions considered there. We also introduce the notion of the
holonomic 2-Module #(a) of D-type with singularities along a hypersurface
S and with the monodromy type a for an ideal a of C[x,(X —S)].

In Section 5 we construct a special resolution of a holonomic &-Module
whose characteristic variety is in a generic position so that we may analyze the
structure of holomorphic solutions of such a system. For this purpose we
introduce a subring R (resp., R®) of &, (resp., (f?) which is easy to manipulate
algebraically. Note that the principal symbol of an element in R of order 0
belongs to O4[¢&,/r,..., &,/t], where (t, x; 7, £) is the coordinate system of
T*X(=T*Cr*'). The precise conditions on the special resolution which we
use in Chapter IV are stated in Theorem 3.5.8.
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Chapter IV. Embedding Holonomic Systems in Holonomic Systems of D-Type

In Section 1 we give a precise statement of the embedding theorem ap-
pearing as a title of this chapter. The proof is given in the subsequent sections
of this chapter. The theorem (Theorem 4.1.1) is as follows:

Let .# be a holonomic &x-Module defined on a neighborhood of pge
T*X —T%X. Assume that the characteristic variety A of .# is in a generic
position at py. Then there exist a holonomic Dyx-Module " defined on a
neighborhood of qo=n(p,) and a 9% 4-linear homomorphism ¢ from
M5y = (6% e®xj)"° into N'q, =( .@?g}){ﬂ)qo which satisfy the following
conditions:

(0.8) There exist an integer r and a holonomic system Z of D-type with
singularities along n(A) such that & =2 [0% holds.

(0.9) The homomorphism ¢ from #E, into é”;"og) Mqo=£?og@ NE, de-
fined by ¢(s)=1®¢(s) is an injective &F,-linear homor‘;lorphism. "

In Section 2 we prepare some elementary results concerning the geometry
of S=n(A)=X under the condition that a Lagrangian variety A< T*X — T%X
is in a generic position. Throughout this chapter we assume that dim X =1+n
and take a suitable coordinate system (t, x; 7, &)=(t, X1,..., X455 T, Eq5eens &) OF
T*X such that the fundamental 1-form w equals td¢+ i ¢;dx;. We denote
the point (0; df) by p, and n(py)(=0) by gq,. The projéétion from X to C*
defined by (t, x)—x shall be denoted by F. We also denote by B(e, J) (resp.,
B(g)) the set {(t, x)e X; |t|<é, |x|<e} (resp., {xeC"; |x|<e}. If follows
from the assumption that there exist positive constants d, and g, with g,<J,
and an analytic subset H < B(g,) such that

(0.10) S n (B(eg, 69)— F~1(H)) —£> B(gy) — H is a finite covering.
We denote by G, the closed convex cone {(t, x)e C1**; x=0, Im t=0, Re t<0}.

In Section 3 we construct the following resolution of .# :

(0.11) 0<—-'/ﬂ<——é’1)“{o Lo é’%xe— (_Pir_-léog,.(____o’

where P; are matrices whose components belong to 5,,0 and are of strictly
negative order.

Furtheremore (0.11) is exact on {(t, x; 7, £) e 4; |t|, |x|«< 1} and
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is exact on {(t, x; 7, {)e T*X —A; t#0}. Then we can find a integro-differ-
ential operator K(t, t;, x, D,) defined on {(t,, t,, x); |t;], |t2] <o, IX] <&o}
so that P; has the form K;. Setting D=B(g,, d,), we obtain a complex M of
€(G,; D)-module by

M : 0-C(Gy; D)Vo Ko ... Kr=1 §(Gy; D)Nr «— 0.

We will use this complex to discuss the extensibility of holomorphic solutions
of A.

In Section 4 we prove some vanishing theorems for relative cohomology
groups related to .# so that we may later (§ 6) apply the results to extend multi-
valued holomorphic solutions of .# across (a family of) non-characteristic
hypersurfaces. Their proof essentially relies on Theorem 4.5.1 of [19].

In Section 5 we apply the method developed in [13] to prove that holo-
morphic solutions of .# can be prolonged to a multi-valued holomorphic
solutions with finite determination property. In order to clarify the meaning
of “holomorphic solutions of .#’°, we introduce an &% -module C. An
element 5 in C is represented by a holomorphic function ¢ defined on V—Z
modulo holomorphic functions on ¥ for an open neighborhood V of g4 and a
closed set Z<C'*" with its tangent cone C,(Z) at g, being contained in
{(t, x)eC'*"; Ret=0}. We call the holomorphic function ¢ a representative
of n. In the sequel we denote by 2 the set of closed subsets Z<C'** such
that its normal cone at g, Cq,(Z) is contained in {(t, x) e C'*"; Ret=0}. Then
the main result (Theorem 4.5.2) in this section is as follows:

Let ¢ be in Homy, , (#p,, C), s in 4,, and ¢ a representative of ¢(s)€¥.
Then there exist an open neighborhood of g, and a multi-valued holomorphic
function ¢ on V—S such that a branch of @ coincides with ¢ on V—Z for some
ZeZ.

Furthermore, the monodromy property of thus obtained @ is essentially
invariant under the action of micro-differential operator Peé&,, (Theorem
4.5.3).

In Section 6 and Section 7 we give the proof of Theorem 4.1.1. We first
describe the structure of Homg,,(.#},, C) by using the results proved in
Section 4. For this purpose we take a point x; in B(gg)—H and denote by
p; (j=1,..., N) the points in Sn F~1(x;). Then we have
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N
(0.12) Homgpo ('/41’0’ C)= @1 e}fam‘(uﬂ, %gu’)pj
j=

In particular, (0.12) implies that Homg, (.4}, C) is finite-dimensional.

For generators s; (1< j<N,) of .# and ¢ e Homg,, (4}, C), we denote
by ¢; a representative of ¢(s;). Then ¢; can be extended to a multi-valued holo-
morphic function ¢; on B(e;, §;)—S. Next, for aendffnl(B(so, do)—S) and
¢ e Hom(.#3,, C), we define ¢° as follows:

For se.#§,, take a representative ¢ of ¢(s) and continue ¢ to a multi-
valued holomorphic function @ on ¥—S. Then ¢°(s) is defined by the element
given by o({) e C.

Thus we obtain a finite-dimensional representation Hom (4, C) of 7.
We define ideals ¢ and a of C[x] by the following:

(0.13) ¢={oeC[n]; o(p) is holomorphic near g, for any ¢ € Home,, (4, C)
and any representative ¢ of any element of ¢(.4,,)}={ceC[n]; ¢°=0 for
any ¢ € Hom (.4, C)}.

(0.14) a= Y (y—1e.

ven

We denote by .# the holonomic system of D-type with the monodromy type a.
Then % contains ¢ as a 2-sub-Module and

(0.15) Hoomg (0, £]0),,=0.
Let 4" denote #/0. After these preparations, we easily find the following 27, -
linear map E(¢) from .#%, to A#°F is well-defined for ¢ € Home,, (4}, C).

(0.16) For se.#3, we choose a representative ¢ of ¢(s). Then E(¢)(s) is,
by definition, ¢ mod 0,,. Furthermore, if we define a C-linear homomorphism
F(¢) from 43, to &5, @ A7, by

P

90

F(¢): s — LE(9)(s),

we can verify that F(¢) is actually &3 -linear. (Proposition 4.7.1.) Finally,
we define an &7 -linear map @ from £, into &5, ® 4%, for a base

{¢y,..., 9.} of Homg, (A4, C) by "
O=F(¢)®---@F(¢,),

and we verify that @ is injective. At last, this completes the proof of Theorem
4.1.1 stated in Section 1.
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Chapter V. Basic Properties of Holonomic Systems with R.S.

In Section 1 we prove several basic properties of holonomic systems with
R.S. which are derived from the embedding theorem proved in Chapter IV. The
first one (Theorem 5.1.1) asserts that a holonomic &£-Module .# with R.S.
whose characteristic variety is in a generic position is actually a 2-Module;
more precisely, we have the following result:

Let # be a holonomic &-Module with R.S. defined near pe T*X —T%X.
Assume that Supp .# is in a generic position at p. Then M, is a finitely
generated 9, ,-module. Furthermore we have

(0.17) & ® My=

27 (p)

{ My, (g=Pp),
0 ,(gen'n(p)—TX—Cp).

The second main result (Theorem 5.1.5) in this section is as follows:

Let .# be a holonomic &-Module with R.S. defined near pe T*X —T}X.
Assume that Sup.# is in a generic position at p. Let .#, be a coherent
6(0)-sub-Module of #. Then A, , is an O, -module of finite type.

The third main result (Theorem 5.1.6) implies that, for any holonomic
&-Module with R.S. .#, we can canonically construct a coherent &(0)-sub-
Module .#;, by the aid of the notion of orders. It reads as follows:

Let ¢ be a real number and # a holonomic &-Module with R.S. defined
on an open set QcT*X —T%X. Denote Supp.# by A. Let #, be the
subsheaf of 4 given by U—{se.#(U); ord, (s)c{AeC; ReA<c} for any
point p of UN A,..}. Then #, satisfies the following conditions:

(i) A, is a coherent £(0)|o-Module.

(i) #=&.4y and My=E M.

(ili) For any closed analytic subset W of an open subset U of T*X such
that codim W=dim X + 1, we have 5#$(4 | #,)=0.

As an important corollary of this result we find the following:

Let # be a holonomic &-Module with R.S. Let V be an involutory
analytic set containing Supp .#. Then .# has regular singularities along
V—T%X (Corollary 5.1.7).

Theorem 5.1.6 is also used to prove the global existence of a good filtration
of a holonomic 2-Module with R.S. (Corollary 5.1.11).

In Section 2 we give the proof of our main result (Theorem 5.2.1) which
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asserts that, for any holonomic &x-Module .# defined near p,e T*X, 4.,
is a holonomic (in particular, coherent) &x-Module, and &% ® M=E ® Myeg
holds near p,. The proof of this theorem follows from Theorem 4. 11 on
T*X —T%X, while near T§X the proof requires further considerations. As
its consequence we obtain the following result:

Let &% be a holonomic system of D-type. Then % is a holonomic 2-
Module with R.S.

In Section 3 we prove that the restriction of a holonomic &-Module with
R.S. to a non-characteristic submanifold yields a holonomic system with R.S.
and that the integration of a holonomic &y-Module with R.S. 4 along fiber
@: Y-X yields a holonomic &x-Module with R.S. @.4", if p,'Supp 4~
Nw,(U)-U is a finite map. The proof again makes essential use of the
embedding theorem. We also use the fact proved in Section 2 that a holonomic
system of D-type is with R.S.

In Section 4 we discuss the restriction of a holonomic 2-Module with R.S.
# to an arbitrary submanifold, which is not necessarily non-characteristic with
respect to .#. In the course of the discussion, we obtain some results which are
used in Chapter VI for the proof of several comparison theorems. The main
result (Theorem 5.4.1) of this section is as follows:

Let Y be an analytic subset of X and # a holonomic Zx-Module with
R.S. Then we have
(i) #Fy(A) and #Fx\y((A) have R.S. for any k.

(ii) 2% ® (b A) =Y D% g@ M) holds for any k.
x
(i) 2% ®(Jf[x|y](y/{))=.}f§|y(,@§gu¢) holds for any k.

We prove this result first for a holonomic system of D-type. For such a
system, this follows easily {rom the results in Chapter II, Section 3. The general
case is proved by the induction on the condimension of Supp.#. We note that
(i) is obtained by Mebkhout [20] for the special case where .#=04. As an
immediate consequence of the result stated above we see that, for a submanifold
Y of X, T+:4*(Oy, #) is a holonomic 2y-Module with R.S. for any k, if .#
is a holonomic 2x-Module with R.S. (Corollary 5.4.6). In particular, 4
def@Y ® A is a holonomic 2y-Module with R.S.

Chapter VI. Comparison Theorems

In Section 1 we prove the following comparison theorem (Theorem 6.1.3).
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Let A and & be two holonomic &-Modules with R.S. Then

RAoom g (M, N)=RHom s (M, EZ @ N).
Ex

This means that the solutions are not altered for holonomic systems with R.S.
whether we allow the solutions to have essential singularities or not.

We prove this result first for 24,-Modules by using Theorem 5.4.1 in the
preceding chapter, and then prove the general case by using the result obtained
for 2-Modules.

In Section 2 we generalize a part of the results proved in Chapter V, Section 3
as follows:

Let F: XY be a projective map and # a holonomic Dx-Module with
R.S. Then R¥F(Dy 4 é ) is a holonomic 2y-Module with R.S. (Theorem
6.2.1) o

The proof of Theorem 6.2.1 is based on the comparison theorem proved
in Section 1. Theorem 6.2.1 improves several results of our previous works
which make use of the integration along projective fibers of a holonomic 2-
Modules, in that we find the resulting holonomic 2-Module to be with R.S.
As an example of such an improvement, we give Theorem 6.2.5, which asserts
that the hyperfunction ﬁ[ [ (Res;20) satisfies a holonomic 2-Module with
R.S. (Cf. [11]) =

In Section 3 we prove a comparison theorem between formal power series
category and convergent power series category. The theorem (Theorem 6.3.1)
reads as follows:

Let # be a holonomic 2y-Module with R.S. Then for any point x in
X and any j, the natural homomorphism

(0.18) Bath (M, O3)y —> Eothy (M, Oy )

is an isomorphism.
We prove this result by Theorem 6.1.1 by the aid of the duality argument.
In Section 4 we prove the converse of Theorem 6.3.1, namely, we prove the
following:
Let # be a holonomic @y-Module. Assume that

R%pmzx(j, 0X)x§R9fam9x(j, 0X,x)

holds for any x in X. Then # is with R.S.
We prove this result by the induction on the dimension of X. Note that
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this has been proved by Malgrange [21] for X with dim X=1. We make
essential use of his result. In the course of the proof we prove and use the
following result (Theorem 6.4.5), which is interesting by its right.

Let .# be a holonomic &x-Module with a smooth Largrangian manifold
A as its characteristic variety defined near pe A. Let f(x, &) be a homogeneous
function on T*X of degree O such that f(p)=0. Assume that df(p) and w(p)
are linearly independent and that df|,+#0 at p. Assume furthermore that
the restriction of A to V,={(x, £)e T*X; f(x, &)=a} has R.S. for any a with
lal«1. Then # itself has R.S. in a neighborhood of p.

At the end of this section, we discuss the relationship between the notion of
holonomic 2-Modules with R.S. and the notion of Fuchsian systems introduced
in an interesting paper of Ramis [23]. He defines the notion of a Fuchsian
system for a complex of 2-Modules by using the validity of the comparison
theorem as its characteristic property. Our results show that a complex of
2-Modules is Fuchsian if and only if any of its cohomology groups is with
R.S. in our sense. We emphasize that we have derived comparison theorems
from the micro-local properties of the systems in question.

Appendix

In the appendix we give proofs of the several statements which are used in
this paper and whose reference are difficult to find in spite of the fact that the
results themselves are well-known to specialists.

In Section A we give a detailed recipe how to derive results for 2-Modules
from the corresponding results for £-Modules outside the zero section (i.e.,
T%#X) by adding a dummy variable, namely, by considering ®(.#) &—e—-fé’cé(t)(@/
on T*(Cx X) for an &x-Module .#. We also discuss the monodromy struc-
ture of an &#-Module with R.S. (§ A.4) and a good filtation of a 2-Module
(§ A.S).

In Section B we give a proof of a result on constructible sheaves, as we
could not find a suitable reference for its proof.

In Section C we show how to deduce the results in Chapter 11, Section 2
from the results proved by Deligne [3], namely, we prove Theorem 2.2.1 in
Section C.1 and Theorem 2.2.3 in Section C.2.
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List of Notations

=C-{0)
R*={ceR; c>0}
Z,.={0,1,2,.}

X : A complex manifold.

MxN : The fiber product of topological spaces M and N over a topo-
- logical space L.

TX : The tangent bundle of X.

T, X for a point xe X: The tangent space of X at x.

T*X : The cotangent bundle of X. The canonical projection from

T*X to X is denoted by .

T*X for a point xe X: The cotangent space of X at x.

C*p for a point p in T*X: The orbit through p of the multiplicative group
C* by the action of C* on T*X by C*>c: (x, &)—(x, ¢&) for
(x, & e T*X.

Y., for an analytic subset Y of X: The submanifold {xeY; there exists a

neighborhood U of x such that Y n U is non-singular.}

Yoing g ¥~ Yres

T%X, where Y is an analytic subset of X: The conormal bundle of Y. If Y
is not regular, the conormal bundle T3X means, by definition,
the closure of T§,.,X in n71(Y).

P*X : The projective cotangent bundle, i.e., (T*X—T%X)/C*. The
canonical projection from T*X —T%X to P*X is denoted by y.

py, where fis a holomorphic map from Yto X: The canonical projection from
Yx T*X to T*Y.

X
w,, where fis a map from Y to X: The canonical projection from Yx T*X
x
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to T*X. If there is no fear of confusions, we sometimes omit
the subscript fin p, and w,.

C.(S; V) for a point x in a manifold M and S, V<M: The normal cone of S
and V at x, i.e., {ve T,M; there exist sequences {x,} in S, {y,}in
Vand {a,} in R* such that {x,} and {y,} converge to x and that
a,(x,— y,) converges to v}.

C(S; V)= KEJMCx(S 3 V)

C(8)=Ci(S; {x})

Wy : The fundamental 1-form 3 &;dx; on T*X.
{f, g} for holomorphic functions f and gj on T*X: The Poisson bracket of f
and g.

Hoom (S, B), Where o and & are sheaves of (left) #-Modules for a sheaf
of rings #: The sheaf of #-homomorphisms from & to &.

Rotom( , ) : The right derived functor of #%nm( , ).

bty(of, B): The j-th right derived functor of Hom ,(Z, #). (=The j-th
extension group.)

o @A, where of(resp., #) is a sheaf of left (resp., right) #-Modules: The

7 tensor product of o7 and & over £.

é . The left derived functor of ®.

Tor¥(f, #): The j-th left derived functor of ®. (=The j-th torsion group.)

I'(U; #), where U is an open set of a topological space M and & is a sheaf on
M: The section module of & over U.

I',(U; #), where Z is a closed subset of M: The module of sections of &
over U supported in Z.

I')(F) : The sheaf defined by U~I',(U; £).

RILRI; : The right derived functors of I' and I'y, respectively.
HYUF) : The j-th right derived functor of I',.

H4AF) : The j-th right derived functor of I'y_.

Hi(U; #) : The j-th cohomology group of & over U.

Hi(U; %) : The j-th relative cohomology group of & over U with the support
Z.

I'iy(#), where Y is an analytic subset of a complex manifold X:
lm oy, (Ox/F™, F), where Oy is the sheaf of holomorphic
fﬁnctions on X and £ is an @Ox-Ideal such that Supp (0x/#)=Y.
Iixip(#) lim Homgy(F™, F)
RIyy, RIx)y;:  The right derived functor of I'y; and I'jx|y;, respectively.
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Hi(F), ,%’[fxm(f ): The j-th right derived functor of I'ty(#) and I' iy y(F),
respectively.

@«F , where ¢ is a continuous map from a topological space M to a topological
space N and & is a sheaf on M: The direct image of &# by ¢.

01 F : The sheaf on N given by Uw—{sel(f~'(U); %); flsupps:
supp s— U is proper.}

Ro,, Rp, : The right derived functor of ¢, and ¢, respectively.

Rig,, R/p,: The j-th right derived functor of ¢, and ¢, respectively.

Ox : The sheaf of holomorphic functions on a complex manifold X.
Here and in what follows, the subscript X is often omitted.

5}:,» where x is a point in X: The ring of formal power series at x, i.e.,
5x,x=1iLn0X,x/m", where m is the maximal ideal of Oy ,.

Orex(m) : The sheaf of holomorphic functions on T*X which are homo-
geneous of degree m with respect to the fiber coordinate.

QF . The sheaf of holomorphic p-forms.

Qy=Q¢imX

Dy . The sheaf of linear differential operators of finite order on X.
The subscript X is often omitted.

Dx(m) : The sheaf of linear differential operators of order at most m.

2% . The sheaf of linear differential operator of infinite order.

#%,x,» where Y is a complex submanifold of X of codimension d: #¢(0x).

&y |x 1 Hh(0x).

%% x» where Y is a submanifold of X of codimension d: ¢y x(n"10)*,

where a: T*X—T*X is the antipodal map, i.e., a(x, £)=(x, —&)
def

and n is the projection from the comonoidal transform YX*
onto X (S-K-K [24] Chap. II § 1, Definition 1.1.4).

EYix D BFixlTex-1ix = Y 174%% x and €F x|y x = H#$(0x).
Cy|x . The subsheaf of ¥y consisting of sections of finite order.
&} : FXixxx ® p3'Qy, where p, is the second projection from
XxX o%t:xX.
&% : FFxxx ® pz'Qy, ie., the sheaf of micro-differential
p-lox

(=pseudo-differential) operators of infinite order on T*X.(®

*) In S-K-K [24], #5 (resp., € x) is denoted by 2y (resp., #£). In addition to these changes
of notations, we want to call the reader’s attention to the fact that we consider ¢, and
&% all over T*JX, i.e., including T%X as their domain of definition. Needless to say,
6’:11-}1' and rf}“ir}x are 9 y and 9%, respectively.
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Ex D Fxixxx ® p3'Qy, ie., the sheaf of micro-differential
p-lox
operatorszof finite order.(*)
Z ®Y for an &x,-Module & and an &x,-Module ¢: Let p; (j=1, 2) denote
the projection from T*(X, x X,) to T*X; (j=1, 2, respectively).
Then # ® is, by definition, the &, « x,-Module
Ex,xx, ® (P7'F @ p3'9).
Piex,@ryiex, ¢
AR, where .# is an &-Module: £2®.#.
&
MP=E" ® M Oor D°Q.#, according as .# is an &£-Module or 2-Module.
é 2
=Rloom g (M, ) @ QP 1[dim X] or R Hom,, (A, Dx) ® Q21 [dim X]
ox ox

according as .# is an &x-Module or 2y-Module. When .# is
holonomic, they are &-r$imX(#, &) ® Q%1 or ELrimX (M, Dy)
® Q%-1, respectively.

Mg, Where ./; “is a holonomic &-Module: The regular part of .#. See
Chapter I, Section 1 for its definition (Definition 1.1.19).

&Y~ x, where f is a holomorphic map from Y to X: &% yxx ® Q¢imX  Here
Y is identified with the graph of fin Yx X and T ( Yx X)is iden-
tified with T*Xx Y. &%ix is a (p7'éy, orléx)-bi-Module.

In what follows, we often omit f in this symbol.

EXly : ‘Kylyxx®9d“‘” This is a (@7'€%, p;'€F)-bi-Module.

Eylx : %”Ylyxx®9d'mx

Exly : (gY|YxX®Qd’mY

&(m) : The sheaf of micro-differential operators of order at most m.

Op : The symbol map from &(m) to @ .x(m), namely, the map which
assigns the principal symbol to a micro-differential operator of
order m.

A (m), where # is an &(0)-Module: &(m) ® .#.

€(0)
SS.# for a 9y-Module .#: The characteristic variety of .#,i.e.,

Supp (6x @ ).

f*and & : A spec1a1 subclass of micro-differential operators. See Chapter
111, Section 3 for their definitions.

€(G,D) : HgDxD; 0©m), see [19] Section 3, Definition 3.1.5.

J#y, where Vis a homogeneous involutory subvariety of T*X —T$X: {P e &x(1);
o,(P) vanishes on V}.

(%) See the footnote in p. 830.
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&y :  The sub-Algebra of & generated by .#,.

&/(m) =8y E(m) (= E(m)&y)

ordu for a section u of a holonomic &£-Module with R.S.: The order of u.
See Chapter I, Section 5.3 for the definition.

o(u) . The principal symbol of u. See Chapter I, Section 5.3 for the
definition.

Chapter I. Basic Properties of Holonomic Systems

In this chapter we shall give the definition of holonomic systems of micro-
differential equations with regular singularities. The notion of the systems with
regular singularities was introduced in [18] in order to investigate the boundary
value problems. We also study the elementary properties of holonomic systems
with regular singularities.

§1.

In this section we extend the notion of regular singularities introduced in
[18]. In order to perform this we start by an algebraic preparation.

1.1. Let X be an arbitrary topological space and « a sheaf of (not
necessarily commutative) rings with the unit.

Definition 1.1.1. We say that .« is Noetherian from the left if .7 satisfies
the following conditions.
(a) «f is coherent as a left .o«7-Module.
(b) For any point x € X, the stalk ., is a left Noetherian ring.
(c) For any open set U of X, a sum of left coherent (7|,)-Ideals is also
coherent.

In the sequel, we omit the word “left’’ if there is no fear of confusion.

Example 1.1.2. (a) The sheaf ¢ (resp., 2) of holomorphic functions
(resp., linear differential operators) on a complex manifold is Noetherian.
(b) For a complex manifold X, the sheaves &y and &x(0) are Noetherian
Rings on T*X.

As the following propositions are easy to prove, we leave the proofs to the
reader.

Proposition 1.1.3. Let o/ be a Noetherian Ring and .# a coherent of-
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Module. Then a sum of coherent sZ-sub-Modules of .# is also coherent.

Proposition 1.1.4. Let o7 be a Noetherian Ring and # an Algebra finitely
generated over Z. Then of @R is also Noetherian.
z

Proposition 1.1.5. Let &/ =\U «; be a filtered Ring (i.e., &;>5;_ for
any j, 31 and %-Mkc.sfljefk). Suppose that of, and é_% (/- 1)
are Noetherian and that s; is coherent over <, for any j. ThenJ;voe have

(i)  is a Noetherian Ring.

(ii) Let # be an of-sub-Module of s#N. Then, # is a coherent o/-Module
if and only if 4 0 (Z;)V is coherent over o, for any j.

Definition 1.1.6. An ./-Module .# is called pseudo-coherent if any .-
sub-Module of .# that is locally of finite type on an open subset U of X is
coherent over U.

Proposition 1.1.7. Let &= U be as in Proposition 1.1.5. Then any
coherent o/-Module is a pseudo-coherent «Zy-Module.

Example. Let X be a complex manifold and U an open subset of
T*X —T%X. Then any coherent &y|y-Module is a pseudo-coherent &x(0)|y-
Module.

1.2. We shall recall the notion of regular singularities introduced in [18].

Let X be a complex manifold and we shall use the notations in the list of
notations, e.g., &y, &x(m), T*X, Or.x(m), etc. Let V be a homogeneous
involutory subvariety of T*X—T%X. The subvariety ¥V may have singular
points. Let I,, be the sheaf of holomorphic functions on T*X —T%X which
vanish on ¥, and let I,,(m) denote I, N Op.x(m).

The sheaf {P e &x(1); 6,(P)eI,(1)} shall be denoted by .#,. We denote
by & the sub-Algebra of &4 generated by £y, and by &,(m) the sheaf &,&(m)

=&(m)é&y. Note that Sk=.4,.--4,is a coherent (left and right) £(0)-Module
————r

for any k=0. *

Proposition 1.1.8. &, is a Noetherian Ring.

Proof. Set =6y, A,=58(m=20), o, =&(m) for m<0. Then
= U &, is a filtered Ring and 7, is coherent over a Noetherian Ring .7, for
any m. Hence we can apply Proposition 1.1.5 and it is sufficient to prove that
mé() (L) L,—1) is Noetherian. It is easy to verify that éo (AL 1) is a

= m=

commutative Ring. Let {fi,..., fy} be a system of generators of the coherent
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O1+x(0)-Module Iy(1), and let P; be a section of 4, such that ¢,(P;))=f;. We
define the homomorphism & from the polynomial ring over Oy
O1x(0)[T1,..., Ty] into é(ﬂm/ﬂm_l) by T; —2>P;. Then & is a surjective
homomorphism of gradg&ORings. On the other hand, if we denote by &, the
homogeneous part of @ of degree m, then Ker @, is a coherent @r.x(0)-
Module. Hence the proposition follows from Proposition 1.1.4 and
Proposition 1.1.5. Q.E.D.

By applying Proposition 1.1.5, we also obtain

Proposition 1.1.9. Let .# be an &y-sub-Module of (&)". If 4 n(FEV
is a coherent £(0)-Module for any k=0, then .# is a coherent &,-Module.

Proposition 1.1.10. A coherent &x-Module is pseudo-coherent over &,.

Proof. Let 4 be an &,-sub-Module of a coherent &x-Module .#.
Suppose that .4 is locally of finite type over &,. Let sy,..., sy be a system of
generators of .#°. Let .4’ be the kernel of the homomorphism ¢:£¥—.#
defined by ¢@(P,,..., Py)=3 Pjs;. Since .# is pseudo-coherent over &(0),
A N(FEV is coherent ove; £(0) for any k. Therefore ' is coherent by
Proposition 1.1.5, which implies that .#" is a coherent &,-Module. Q.E.D.

Definition 1.1.11. Let .# be a coherent &-Module defined on Q
cT*X —T%X. Wesay that .# has regular singularities along Vif the following
equivalent conditions are satisfied.

(i) For any point p of Q, there are a neighborhood U of p and an &-sub-
Module .4, of .# defined on U which is coherent over &(0), and which generates
A as an £-Module.

(ii) For any coherent &(0)-sub-Module ¥ of .# defined on an open
subset of Q, £,.% is coherent over &(0).

(iii) Any coherent &,-sub-Module of .# that is defined on an open set of
Q is coherent over £(0).

The equivalence of these three conditions can be proved in the same way
as in the proof of Theorem 1.7 of [18].

We denote by IR(.# ; V) the set of the points x such that .# has not regular
singularities along ¥ on any neighborhood of x.

Lemma 1.1.12. IR(#; V) is a closed analytic subset of Q.

Proof. The question being local, we may assume that .# has an &(0)-
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sub-Module .#, such that .4, is coherent over &(0) and that .#=~&4,.
By (i) and (ii) in Definition 1.1.11, .# has regular singularities in a neighborhood
of x if and only if &,.#, is coherent over £(0). Set .#4=Sf.4, for k=1.
Then it is clear that .#, is coherent over £(0) and that &= \U 4. If
M= My_, for some k=k, then A=.4_, for k=k,. kgToherefore
Supp (.#,/ 4, _,) is a decreasing sequence of analytic subsets, hence locally
stationary. Set Y= n Supp (#,/# ;). Then we have Y=IR(.4; V).
Q.E.D.

Lemma 1.1.13. If .#4 has regular singularities along V, then Supp # < V.

Proof. Take .#, as in the condition (i) of Definition 1.1.1. Then .4,
<. #,. Hence Supp (Ay/E(—1).4,) is contained in V. The lemma follows
from this fact because the support of .# coincides with that of .#,/&(—1).4,.

Q.E.D.

Proposition 1.1.14, Let

0—s At 2 MY M —0
be an exact sequence of coherent &-Modules. Then .# has regular singu-
larities along V if and only if #' and .#" have regular singularities along V.

Proof First we shall show that .# has regular singularities along V if so
are #' and .#". Let 4 be a coherent &y -sub-Module of .#. We set A4
=y(#) and &' =0 1(4). Since .#” is pseudo-coherent over &, 4 is
also a coherent &,-Module. Hence 4™ is coherent over &(0).

We shall show that 4" is a coherent &-Module. Let & (resp., £') be a
coherent &(0)-sub-Module of 4 (resp., .#') which generates .4 (resp., .#’)
as an &y-Module (resp., £-Module). Then 4 is a union of &(&(M)ZL’'n
@~ (S L)), and hence A4~ is a union of coherent sub-Modules of .#". Hence
" is also a coherent &,-Module. Therefore, .#" is coherent over &(0).
Hence it follows from the exact sequence

O— ' — N —H"—0

that .4 is also coherent over €(0). Thus we have proved that .# has regular
singularities.

Conversely assume that .# has regular singularities along V. Then, by
the property (iii) of Definition 1.1.11, .#" has regular singularities along V, and,
by the property (i) of Definition 1.1.11, .#” has regular singularities along V.

Q.E.D.
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Proposition 1.1.15. Let X and Y be two complex manifolds, V(resp., W)
a homogeneous involutory subvariety in T*X —T%X (resp., T*Y—T5Y) and
let A (resp., #°) be a coherent &x-Module (resp., coherent &p-Module) with
regular singularities along V (resp., W). Then # &N is a coherent &xy-
Module with regular singularities along Vx W.

Proof. Clearly %y .y is generated by £, and %y, i.e.,
Iy xw=Exx(0)Fy + Ex x y(0) Iy

Choose a coherent &x(0)-sub-Module .#, (resp., a coherent &,(0)-sub-Module
ANp) of A (resp., #7) such that & =&xH, (resp., /" =8y N,) and Sy, < M,
(resp., FyNo=N,). Then Lo=4,Q A, is a coherent &y, y(0)-sub-Module
of .4 &4 and it satisfies the conditions & xyLy=A RN and I,y Lo L.
Hence .# ®.#" has regular singularities along V'x W.

Q.E.D.

Definition 1.1.16. A holonomic &#-Module .# is said to have R.S.on a
Lagrangian variety A if ANIR(#; A—T%X) is nowhere dense in A—T%X.
We say that .# has R.S. if .# has R.S. on Supp.#. A holonomic 2-Module
A is said to have R.S. if & ® .# has R.S.

If Supp .# is containedg in a locally finite union of Lagrangian varieties
A;, then .# is said to have R.S. if and only if .# has R.S. on any 4.

Note that the notion given in Definition 1.1.16 is different from that given
in Definition 1.1.11. However, we shall prove later (Corollary 5.1.7 in Chapter
V) that, if a holonomic system .# has R.S., then .# has regular singularities
along any involutory variety which contains Supp .#.

The following propositions immediately follow from Proposition 1.1.14
and Proposition 1.1.15, respectively.

Proposition 1.1.17. Let
O— A — M — M"—0

be an exact sequence of holonomic systems. If .# is with R.S., then so are
M and #". Conversely, if #' and #" are with R.S., then so is A.

Proposition 1.1.18. If .# and & are holonomic systems with R.S., then
s0 is MRN .

Definition 1.1.19. Let .# be a holonomic &x-Module. We define the
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subsheaf .4, of .#® by assigning
(I.1.1) M, i(U)={se.#*(U); for any point x in U, there is a coherent Ideal

# of & defined in a neighborhood of x such that &4/# has R.S. and
that .#s=0}

to each open subset U of X.
Proposition 1.1.20. The sheaf M,, is an &-sub-Module of .#*.

Proof. We first show that Pue .4, for Pe & and u € #,,.
If we take £ as in (1.1.1), then &' ={Q € &; QP e .#} is a coherent Ideal of
& and &/#' has R.S. (because &/S'<=&/F). Moreover, S'Pu=0. Hence

Pu belongs to ., Next we show that u, +u, belongs to .4, if u, and u,

eg”
are in #,.,. Then for any point x we can choose coherent Ideals .#; and .7,
as in (1.1.1). Let .# be defined as the annihilator of 1®1 in &/S,®&/F,,
then £/.# has R.S. and #(u, +u,)=0. Hence u, +u, belongs to .4,,.

Q.E.D.
Proposition 1.1.21. Let f be an &*-linear homomorphism from A% to

N, where M and A are holonomic &-Modules. Then f(M,eg) SN g

This immediately follows from the definition.

§2.

In this section we will prove that Ger) M, N), Eoth A M N™)
and &ar), [ M, /|H") all vanish if j<codim Z—proj dim A4",(*) where .#
and A4~ are coherent &y-Modules, not necessarily holonomic. This result
may be regarded as a kind of Hartogs’ theorem for &y-Modules (cf. [16],
Theorem 1) and it will be used frequently in our later arguments.

Theorem 1.2.1. Let # and A& be coherent left &x-Modules. Let Z be a
(not necessarily homogeneous) closed analytic subset of T*X. Then

(1.2.1) Eatly, 7 ( My N[N)=0
holds for j<codimy.y Z—projdim A",

Proof. (I) The case where Z< T*X — T%X and Z is homogeneous.

*) Here proj dim 4~ means the (local) projective dimension of _#; i.e., the largest integer
J such that £,,7 (4} &) +0.
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First, by the induction on projdim 4", we shall reduce the problem to the
case where " is a free &y-Module. In fact, if projdim .#°>0, we choose a
locally free £x-Module . and a surjective homomorphism

(1.2.2) V: L — A
Denote by 4 the kernel of yy. Then we have the following exact sequence:

(1.2.3) o> Bty (M NPIN) — Bt (M, L] L)
— Bt §il g (M, NP N o,

because £5/&y is flat over &%.

On the other hand, it follows from the definition that projdim .4 =
projdim #”+1. Therefore it suffices to show the theorem when projdim .4
=0, and hence we may assume without loss of generality that .4 is free. Since
Ex= Ex|xxx by the definition, it is then enough to show that

(1.2.4) é’dgx,z(-/, gf]xu’/ Exxxx)
=80t} 4,2 (Exxx g My CX 1 xxx] €x)xxx) =0

for a closed subset Z<TH(X x X), if j<codimp.y Z=codimry xxx)Z. Since
%xxxx defines a simple holonomic system supported by T%(X x X), (1.2.4)
can be reduced to the following assertion:

(1.2.5) Catlyy 7(My N N)=0

for j<codimp.y Z—dim X, if .4 is a simple holonomic system and if Z is a
closed subset of Supp 4.

Now we shall prove (1.2.5). If we choose the following exact sequence
(1.2.6) with a free £x-Module .2,

(1.2.6) 0— M —> L —> M — 0,

then we find that if suffices to show (1.2.5) only when .# is a free &x-Module.
In fact, we may use the induction on j in view of the following exact sequence

(1.2-7) ooy é’z/i}{z(yﬁ’, ./V‘w/./V‘) —_— é’@/ix’z(‘ﬂ’ ./Vno/‘/’/-)
— Bty 2 (L NOIN) — Gt f( My N P|N) — e

Thus in proving (1.2.5) we may assume without loss of generality that .# =¢&%.
Therefore it suffices to show

(1.2.8) HL(N°IN)=0



HoronoMic Systems. 111 839

for j<codimp.y Z—dim X on the condition that .#° is a simple holonomic
system and that Z is a homogeneous closed analytic subset of Supp #". Fur-
thermore we may assume that 4" = %y for a non-singular hypersurface Y of X.
Note that Z=7"'(n(Z)) and that codimp.y Z—dim X =codimy n(Z)=codimyZ
holds. Thus we have reduced the problem to the following claim:

(1.2.9) HL(E 5 1x| Gyix) =0

holds for j<codimy Z, if Z is a closed subset of a non-singular hypersurface Y.
Here ¥ x and %y x are regarded as sheaves on Y.

Next we shall show that we have to consider only the case when Z is non-
singular. In fact, by noting the fact codimy Z;,,*) <codimyZ+1 and making
use of the induction on the dimension of Z, we may suppose that
Hhoin (CFx/Cyx)=0 for j<codimyZ,,. If (1.2.9) holds at non-singular
points of Z, then
(1.2.10) Supp #LUEF x| €vix) = Zsing
holds for j<codimy Z.

Then, considering the spectral sequence

ES =58 (3 HE T x| €yix)), we find
(1.2.11) { E51=0, p#0, g <codimy Z
- E% 1= 465 x/ €vix)» p=0, g<codimy Z.

Therefore we can conclude that
(1~2-12) %’i(g?(x/ %ﬂnx) ="%£sing(g?lx/%le)

if j<codimyZ. Furthermore the right-hand side of (1.2.12) is zero by the
hypothesis of the induction.

Now we embark on the proof of (1.2.9) under the additional assumption
that Z is non-singular. First we recall the following commutative diagram:

0— -@(ﬁx I (g(ﬁx — Oxly — 0
(1.2.13) ] ] |
0— Byx — €yix — Ox;y — 0.

This diagram shows that #%,y/%yx is isomorphic to €¥x/%yx. Hence it
suffices to show that

(1.2.14) H5(BY x| By)x) =0

¥ Zng denotes the set of the singular points of Z.
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for j<codimy Z. As we have assumed that Z is non-singular, we may assume
(1.2.15) X=CxC'xC'o>Y={0}xC'xC">Z={0} x {0}} x C".

We shall denote a point in X by (¢, x, y)e Cx C' x C".  Since there is nothing
to prove if =0, we assume [=1. In order to compute .%’%(.@;"l x/ Py x)s
we introduce three families of sets defined as follows:

(1.2.16) K;,.={0, x, y)eY; 6=|x|Ze¢, |y| e}
(1.2.17) K.={0, x, y)eY; |x|Ze, [y|<e}
(1.2.18) Us,e,p=10, x, )€ Y; 6—p<|x|Ze¢, |y| e} .

In order to prove (1.2.14), we want to prove

(1.2.19) i-ii—“a Hox (Ko, BY)x/By1x)=0.

Let #1x be the subsheaf 2yx(m)é(t) of Byx. Then By x=lim ZYx holds.

Since K, and K; , are compact, we have

(1.2.20) Hi, (K .%‘ﬁx/.@“x):li_m,m H};g—xé,s(Kag?|x/g(}'"f})

e—Ks,e

by virtue of the long exact sequence of cohomology groups and the fact that the

inductive limit operation is commutative with the (absolute) cohomology

(K> #).
P .

Since #Fx/#Y)x is isomorphic to By x as sheaves, H,_x, (K,

ZF\x| BY) is isomorphic to Hf, y, (K., #%x)- We shall now show that

operation on compact sets. Here Hi,_y, (K,, *) means lim Hf, y, .
. m .5

(1.2.21) H{Q_K‘,'E(KE, Z%x)=0
for j<Il. If we prove (1.2.21), then by the Mittag-Leffler theorem ([4]) we find

(1-2-22) };%OH{(E—K,,,&(KE, -@?jx) =H£an(Ks9 -@;Q]x)-

Here we have used the fact that

VA n K5=f-\ (Ka_Kﬂ,s) .
<0

In order to prove (1.2.21), it suffices to show that
(1.2.23) 4 Voo, BR0=0  for j<I,

where V. ..={(t, x, y)eX; |t|<e’, |x|<¢, [y|<&’} and S;,.={¢ x,y)eX;t
=0, |x| <6, |y|<&'}. However, it is known (e.g. [20]) that

(1.2.24) Hi,  (Uyer, BY1) = HiL 0y (U 10, 05) =0
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holds for j+1#I1+1. This proves (1.2.23), and hence it finally completes the
proof of Theorem 1.2.1 under the assumption that Z<cT*X —T%X and Z is
homogeneous.

(IT) General case.

In the sequel, (¢, x; 7, &) shall denote a point in T*(Cx X). Define &¢yx-
Modules .# (resp., A7) by &SR (resp., £5()@A). Define Z by
{#, x;1,8) e THC x X); (x, 77 1¢)eZ,t=0,7#0}. Then we have projdim N
=projdim #"+1 and codirnmcxx)Z=codimT*xZ+1. In what follows we
regard T*X as a closed subset of T*(Cx X) by (x, £)—(0, x; 1, £). Then the
result obtained in (I) proves that

Eath oyt My NN ox =0
holds if j <codimy.y Z —projdim A4".
Hence it suffices to prove
é’wféc)(x,z(uﬂ: jw/j)lj‘*xgéawféx,z(./ﬂ, ./1/‘00/../1/‘).

For this purpose, it is enough to prove that

(1.2.25) Eath gy 2 (M N pex = Eatly o (M, N)
and
(1.2.26) Eath gy 2 My N pax 2 Eatly (M, N)

hold for all j. In proving this, we may assume without loss of generality that
M =N =&Y, because 4 and 4" admit free resolutions.

Let us define the projection F from {(t, x; 7, &) e T*(C x X); t=0, t#0}
to T*X by F(0, x; t, £)=(x, t1£). Then we have

RAomexx(Ec6()R Ey, EO(H)REY) = F~16y.
On the other hand, Z=F~1Z holds in {t#0}. Hence we have
RI 2(F~16) lpux  FTIRI 8% | rex = RT £(6%).

This proves (1.2.25). The proof of (1.2.26) is the same as this. Thus we have
completed the proof for the general case. Q.E.D.

The proof given above also proves o#5(Byx) =} (#%x)=0 holds for
j<l. Therefore we have the following

Theorem 1.2.2, Let .# and A be coherent left &x-Modules. Let Z
be a closed subset of T*X. Then
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(1.2.27) Eathy oMy N)=Cath, (M, ¥*)=0
holds for j<codimp.y Z —projdim 4.
In this article we often use these theorems in the following form:

Corollary 1.2.3. Let Q be anopen subset of T*X and Z a closed analytic
subset of Q. Let .# be a coherent &x|o-Module and A a coherent &x|o-
sub-Module of .

(1) Suppose that codimp.y Z=dim X + 1.
(i) If sel(Q; #®) is contained in M outside Z, then sel(Q; #).
(i) If sel(Q; .#%) is contained in & outside Z, then s is contained
in [(Q; #*).
(II) Suppose that codimpy Z=dimX +2. Then any section of .#* defined
on Q—2Z is uniquely extended to a section of .#> defined on Q.

§3.

In this section we investigate some basic properties of holonomic systems
with regular singularities. The main tool used here is the classification of
holonomic systems having a non-singular Lagrangian manifold as characteristic
variety.

First we recall the following classification theorem ([9]).

Theorem 1.3.1. Let A be a non-singular homogeneous Lagrangian
subvariety of T*X —T%X and #, a holonomic system with support in A and
of multiplicity 1 along A. Let y be the projection from T*X — X onto P*X.

(i) For any holonomic system .# with support in A, Eoti( My, MF)
=0 (j*0) and Hom My, AT) is a locally constant sheaf on A. The rank of
Hom o( My, M) coincides with the multiplicity m of # along A and the

canonical homomorphism
ME R Hows o( My, MB)— MR
C

is an isomorphism.
(ii) Suppose that A=y "YWA, My=y"1y. My and M =y y,..#. Then

M=y 1y, (T ® Hom (Mo, M7)).

This theorem says that the structure of .#* is determiaed by
Hom (Mo, #®). We fix one preferred reference system .4, in our argument.
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Since #sm My, AF) is a locally constant sheaf on A and the fiber of y is
€ — {0}, we can associate an m x m constant matrix T, (up to inner automorphism)
with len,(y"1(y(p)), p)=Z for pe A. Let e be a generator of 7n,(y~*(y(p)), p)-
We call T=T, to be the monodromy of .# (with respect to the reference system
My). Using this terminology, we can restate (ii) symbolically as follows:

The structure of .#® is determined by the monodromy of 4.

In what follows we shall explicitly show how .#* is determined by the
monodromy of .#, assuming A has a simple form. The simplifying assumption
on A given there is not restrictive, because any non-singular Lagrangian variety
can be transformed into that form by a homogeneous canonical transformation.

Take X =C" and let A be given by

(1.3.1) {(x, DeT*X; x,=¢;=-=¢=0, |x|<e, §; #0}.
We set Mo=8((6x;+EDy+---+6ED,) and
My y=ENE(x D —A)"+ED,+--+ED,).
Then we have the following
Lemma 1.3.2.  Gotf( M) py My ) X Et (M s AL ).
Proof. 1If m=2, there is an exact sequence
0 — My — My — My — 0.

Hence, by using the induction on m and m’, we can reduce the problem to
the case where m=m’'=1. Set &, =6¢/Ec(tD,—2). Then we have

Eath (Myy M) D Exth (N Nyr)
Eath (Myy ML) D2 Eath (N, D).

(Cf. S-K-K [24], Chapter II, Theorem 5.3.1. Even though &% is needed
there, &y suffices in our case.) Hence it suffices to show

(1.3.2) Bty (N Ny) D5 Bath (N NT).

Let v be the generator 1 mod &(xD;—4") of 4. Then by an immediate
calculation we find

Bt (Nas N3)

0 if A-VeZ

—{AD))o; (iD= @ )=0, ADYed={ L T
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and
Bt G (N N
0 if A-1eZ

= (AD; (6D~ HAD =0, ADpeemy={ . T

Similarly, we can verify

0 if A-Ve&Z
gzl'l ./V, Ny ={
o M= g i a-rez
and
0 if A-Ve&Z
tgz 1 ./V, ./V‘wl = {
e VD=V i a-rez
Thus we have verified (1.3.2). Q.E.D.

Under the assumption (1.3.1) the monodromy matrix T is associated with
the loop e={(x; {)=(0; €%, 0,..., 0)}p<p<2,- Hence we have the following

Lemma 1.3.3. The monodromy of .4, , is equivalent to the following
mxXm matrix:
eZui). 1
eZm’l 1
(1.3.3) R
.1

.'eZni}.
Proof. We first note
fﬂmex(-/ﬂo, '/ﬂ?,m) = ”””Jx('//{f,m’ 'ﬁgx)

Since M §=.4, and AF,=4_,_,,, it is sufficient to study the monodromy
of '}f””"’fx('/[—}.— 1,m> ./;fg)

Set Y={x;=0} and #§=%%x. Then Hom(M_,_;,, AF)={ueEf ,
(x;D;+A+1)y"u=Dyu=--=D,u=0}. Clearly the elements in this space are
given by

x4 1(log x, )Y (0= j<m—1), when —1—1+#0, 1, 2,...
and

x7* 1(logx) (1£j<m), when —4—1=0, 1, 2,... .
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It is then easy to see that this gives the monodromy (1.3.3). Q.E.D.

If we transform the monodromy matrix T of .# in the Jordan form, we see
that there exist A; and m; such that T is equivalent to the monodromy of
@A, - Since the monodromy determines the structure of the holonomic
system over &* (Theorem 1.3.1 (ii)), we obtain the following lemma.

Lemma 1.3.4. .#% is isomorphic to a finite direct sum @45

mje

This lemma proves the following proposition.

Proposition 1.3.5. Let A be a non-singular homogeneous Lagrangian
variety and let .# be a holonomic system whose support is contained in A.
Then

(i) oMy is a coherent &x-Module and it has regular singularities
along A.

(ii) E°QMg—-#7 is an isomorphism.

(i) If j{ has regular singularities along A on a non-void open set of
A and if A is connected, then .# has regular singularities along A on the
whole A.

Proof. Let us first prove (i) and (ii). The question being local, we may
suppose that A has the form (1.3.1). Therefore, it follows from Lemma 1.3.4
that .#* is isomorphic to the finite direct sum of .#3,’s. Therefore, in
proving (i) and (ii), we may suppose that .# =.4; ,. We shall show that .4,
=.# holds in this case. This immediately implies (i) and (ii). Since .# has
regular singularities along A, .#,., contains .#. In order to show that .#,.,
=, it is enough to show that we have f(#")c.# for any holonomic system
A with R.S. and an ¢&-linear homomorphism f: 4 —.#%. First suppose
that 4" has regular singularities along A. Then, by Lemma 3.7 of [18], #
is a quotient of the system defined by

D,u=0
D,,u=0
(x1D1 _A)u =0,

where A is an N x N constant matrix and u is a column vector of size N. By
transforming the matrix 4 into the Jordan form, we find that this system is iso-
morphic to a direct sum of .#;,’s. Therefore 4" is a quotient of @4 ,, .
Then, by Lemma 1.3.2, we find f(#)c.#.

Now suppose that 4 has R.S. Then Z=IR(#"; A)NA is a nowhere
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dense analytic subset of A. We have already verified that f(#)c.# on A—-Z.
Hence it follows from Corollary 1.2.3 in Section 2 that f(A#")c.#.

Thus (i) and (ii) are proved.

Lastly we prove (iii). Set IR(.#; A)=Z. Then Z is a nowhere dense
analytic set of A. We shall show that .#,,>.#. Let u be a section of ..
Then u is contained in .#,, outside Z. Hence Corollary 1.2.3 in Section 2
implies u € #,,. Since it follows from (i) that .#,, has regular singularities
along A, .# has regular singularities along A. Q.E.D.

Proposition 1.3.6. Let .# be a holonomic system with R.S. (We do not
assume that its characteristic variety is non-singular). Then M o= .M.

Proof. lItis trivial that .#,, contains .#. We shall show that .# contains
Mo In order to show this, it is enough to show that, for any holonomic
system .4 with R.S. and an ¢&-linear homomorphism f:A4 —.#%, f(A4) is
contained in .#. However, .# =.#4,, holds in the non-singular locus A’ of
A. Hence, for any section u of 4", f(u) is contained in .# on A—A'. Then
Corollary 1.2.3 in Section 2 entails that f(u) is contained in .#. This com-
pletes the proof of the proposition. Q.D.E.

Proposition 1.3.7. Let A be a connected non-singular homogeneous Lag-
rangian variety and .# and A two coherent &x-Modules supported by A.
Let ¢: #4°—>N* be an & -linear homomorphism. Then we have the
following :

(i) The support of the cokernel of ¢ is A or an empty set.

(ii) The support of the kernel of @ is A or an empty set.

(iii) If ¢ is surjective (resp., injective), then the homomorphism ¢@*: 4/ *®

— M *%is injective (resp., surjective).

Proof. By considering .#,,, and /.., we may assume that .# and 4"
have R.S. Therefore there is a homomorphism y: .#—.#" such that p=&°
®y. Since the cokernel of ¢ is equal to the tensor product of £% and the
cokernel of i/, we obtain (i). The assertion (ii) is verified in the same way.
Now note that ¢ is surjective (resp., injective) if and only if ¥ is so. Hence we
obtain (iii).

As an application of the structure theorem (Theorem 1.3.1) of holonomic
systems and Theorem 1.2.2, we can prove that the support of a section of a
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holonomic system is an analytic subset. More precisely we have the following
proposition.

Proposition 1.3.8. Let .# be a coherent &x-Module with the characteristic
variety V. Suppose that there is an integer r such that Ezri(#, &)=0 for
j#r. Let s be a section of #® defined on an open set Q. Then supp s is a
union of irreducible components of Qn V.

Proof. We shall prove this proposition in several steps.

(a) In the case where Vis smooth and w|, #0, where w is the fundamental
1-form. In this case, we can transform V to {(x, &); &, =---=¢,=0}. By
the condition of the vanishing of cohomology groups, there is a coherent &x-
Module .#' such that A/°@A#'°x=¥°N where L=&/(&D,+---+&D,)
=Cuo (S8-K-K [24] Chapter II, Theorem 5.3.7). Hence we may assume from
the beginning that .#=_¢. Any element s of £ is written in the unique form
s=P(x, D")u,, where P(x, D")=3 P/(x, D") is a micro-differential operator
which commutes with x,..., x,. If s vanishes on a neighborhood of a point
peQnV, then P vanishes on a neighborhood of p and hence every p;(x, &)
vanishes. By analytic continuation each p; vanishes on a connected component
of Q n V containing p, and hence s=0 on this connected component.

(b) In the case where V is smooth and r<dimX. Set Z={peV;
(wly)(p)=0}. Then codimZ=r+1. By the result for the preceding case (a),
supp s N (V—Z) is a union of connected components of ¥—Z. Hence the closure
S of suppsn(V—2Z) is a union of connected components of V. We have Sc
supps<=SUZ. Therefore, s|,_g gives a section of #YA™)|,_s, which
vanishes by Theorem 1.2.2. Thus we have S=supp s.

(c) In the case where V is smooth Lagrangian. By a quantized contact
transformation, we may assume that V={x,=0, {,=---=¢,=0}. Then, by
Lemma 1.3.4, .#* is isomorphic to (&¥/&N(x;D,—A)+&ND,+---+&VD)®
for an N x N constant matrix, and hence any element of .#® is written in the
unique form P(x,, D,,..., D,), where P is a vector of micro-differential operators
of length N. Hence we can apply the same argument as in (a).

(d) The general case. In (a)~(c), we proved the proposition when V is
smooth. Hence suppsn V,, is closed and open in V. Therefore supps
<Supp s N V,eg U Vying- Note that ¥’ =suppsn V,, is a union of irreducible
components of V. If peV,;,,—V’, then s belongs to #79 (#®)p, Since

Vsing

H Y cing(-# *)p,=0by Theorem 1.2.2, s=0at p. Therefore we obtain supp s=V".
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Evidently supp s> V’. Thus we obtain the desired result. Q.E.D.
We conjecture that the following general statement be true.

Conjecture: For any coherent &-Module # and se.#®,supps is an

analytic set.

§4.

In [6] it is shown that, for any holonomic 2y-Module .#, &x¢% (A, OF)
is a constructible sheaf. We shall prove here that these sheaves of the solutions
determine .#.

Definition 1.4.1. We call a sheaf &# of C-vector spaces on X constructible,*
if there is a decreasing sequence X =Xy,> X, > X, >--- of closed analytic subset
of X such that N\ X;=¢ and that F|x _4 ,, is a locally constant sheaf of
finite rank. ’

We first recall the following propositions of constructible sheaves. (See
[25] Exposé 7 and Appendix § C of this article.)

Proposition 1.4.2. (i) If & and ¢ are bounded complex of sheaves with
constructible sheaves as their cohomologies, then Rotomc(F ', %) has con-
structible sheaves as their cohomology.

(ii) Under the same conditions as in (i), we have

R%pmc(c.g’-', g.) =R-}famC(R¢%om(g., CX) ® g’-', CX)
[
=Re%pamc(R.%00mc(g., CX)! Rfomc('g’-., CX))'
In particular, R#omc(RH#omc(F , Cx), Cx)=F . Here and in the sequel
Cy denotes the constant sheaf on X with C as its stalk.

(iii) Let &  be a bounded complex with constructible sheaves as its co-
homologies, and let #" be any bounded complex. Then

RI4(p1'F @ 13! &) =RH omcRH omc(F, Cx), £7)[~2n],

where n=dim X, 4 is the diagonal set of X x X and p, (resp., p;) denotes the
projection from X x X to the first (resp., second) component X.

Proposition 1.4.3. Let .# be a holonomic 2 y-Module and Y a complex

G0 Another terminology ““finitistic’ was used in [6].
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manifold. Let p, and p, denote the projection from X xY onto X and Y,
respectively. Then

R”’”’pl-l@x(pfl('/”)a @Xx}’) *}‘pIIR”“msﬁx('/ﬂ’ wx) %PEICDY

holds.

Proof. The question being local, it is enough to show that for xe X
and yey,

é"mfzj;flgx(l’l_l-/la Oxxy)(x,y) =&ath (M, Ox), ? Oy

Let us take a resolution of .# in a neighborhood of x:

P P Py,
0(——#(—8%0(——0— é’%‘(_‘—---(_Nr_ngTG__O_

Then é’z/{;_lgx(p; L4, 0y), is the j-th cohomology group of the complex

Ox,x: OF% =% OF1, 4o oo TRy O},
and
é'wféx(vﬁy Oxxv) (x,y
is the j-th cohomology group of the complex

. . mNo Po Ny Py .. PNy N
Oxxy,x,3 " OxxY,0x,5) = Oxxv,(x,5 — =" ——> Ox%y,(x,y)

Since Oy , is a nuclear DFS-space and Oxxy’(x,y)=0x,x®0y,y (the completion
of the tensor product of topological linear spaces) and since the cohomology of
Oy, has finite dimension, we have

Hi(Oxxy () =HI(0x ) ® 0y, Q.E.D.
This proposition immediately implies the following corollary.

Corollary 1.4.4. If .#° is a bounded complex of Dx-Modules whose
cohomologies are holonomic, then

R.;fompl-;gx(‘l?rldf., 0XXY) = Rz?fomQx(./., &X) (?p;lﬁy.
Corollary 1.4.5. Let .#° be a bounded complex of Dx-Modules whose

cohomologies are holonomic and let " be a bounded complex of @y-Modules
whose cohomologies are coherent. Then

Rfam_@x(‘,(./['®./1/'., wxxy) =]7I1R=%aam9x(v¢., (Dx)?pEIR'yfam_@Y(./V“, 0}')
holds.
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Proof. We may assume that .#° and 4 are simple complexes (i.e.,
complexes consisting of only one non-trivial component). The question being
local, we may assume further that .#° admits a free resolution. Thus we can
assume that /"=92,. Then

R'#’mgxxy(vf®‘/"', Oxxy) =R3ﬂ"'9x(vl’ Oxxy)
and
Ritomg (N, Oy) =0y.
The corollary follows then from Proposition 1.4.3. Q.E.D.

Proposition 1.4.6. Let .#° be a bounded complex of 2x-Modules with
holonomic systems as cohomologies. Then

R'}f’”'gx(@l\’! y[.)&aRe}fpmc(Rfamgx(.ﬂ', @x), CX)
holds.

Proof. Let I'~.#" be a complex of injective 2y-Modules quasi-iso-
morphic to .#" and let J* be an injective resolution of ¢y as Py-Modules. Then
Homy(Ox, J) is an injective resolution of Cy, because &zri(0y, Ox)=
Hi(Hom5(0x, J')). Hence we have

Ritom o(0, M) = Hom 5 (0, I,
R.?famg(/., @) g.famg(l., J),

and
Rotormc(Rtom o (M, 0), Cx) = Home(Homo(Iy )y Hoomg(0, J')).
We have the homomorphism
Homg (0, I') — Home(Homg(I', T'), Homg (0, J)),
and hence we can define the homomorphism
Rotomn(0y, M) — Ritomc(RHomqo( M, O), Cy).

We shall show that this is an isomorphism. We may assume without loss of
generality that .#" is a single 2y-Module .#. It is enough to show that the
homomorphism

(1.4.1) Re?fam(@, "l)x — Rfomc(R.}?amg(ul, (9), CX)x

is quasi-isomorphism for any x€ X. For this purpose we recall the following
Lemma 1.4.7. For any bounded complex F' with constructible sheaves
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as its cohomologies, we have
RAoome(F', Cx)x = Homc(RI ((F'),, C)[—2n],
where n denotes dim X.

Proof. Let C, be the sheaf with the support at {x} whose stalk at x is C.
Then

(RHomc(F', Cx).)* =Rbomc(RHomg(F ,Cy), Cy)s
=RHomc(RA#ome(Cy, C), F'),
=RAomc(C.[~2n], F),
=RI ( (F),[2n].

Here * means the dual vector space. Q.E.D.

We return to the proof of Proposition 1.4.6. We shall show that (1.4.1)
is a quasi-isomorphism. By [6], we have

(Rtom(O, M) ) =RHoom g (My B (%) [1] =RI (R H o o (M, O)[21].

Thus, together with Lemma 1.4.7, we can conclude that (1.4.1) is a quasi-
isomorphism. This completes the proof of Proposition 1.4.6.

Proposition 1.4.8. Let .#" and 4 be bounded complexes of 2y-Modules
whose cohomologies are holonomic. Then

RAoomg ( My N ®)=RHomc(RHoomg (N, M 7), C)
holds.
Proof. By [8], we have
R omg (N M P) =R o g (N QM *, B 1xx) 1],

where 4 is the diagonal set of X x X and A *=Rilem, (A, 2y) @ Q¥ [n].
o
Hence by Proposition 1.4.2 we have *

Rotom g ( Ny M) =Rbomg,, (N QM ™, R 4(Oxxx)[n])[1]
=RFA(R9f“’”QXxx(‘/V‘®'//!.*i Oxxx))[2n]
=RFA(R9faﬂw(./V", 0x)®R”am(.///‘*, (UX))[Zn].

On the other hand, it follows from Proposition 1.4.6 that

Rtoomc(RHoom g (M*, Oy), Cy))
=Ribomy (Ox, M*)=RHomy (M, Ox).

Hence by Proposition 1.4.2 (iii) we obtain
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Rloomg (N'y M) =RAoomcRHoomy (M O%), Rboomy (N, O)).
In the same way we have
Rloom g ( My N ®) =RHormc(RHsm (N, Ox), Ritoom o (M, Oy)).
Thus the required result follows from Proposition 1.4.2 (ii). Q.E.D.

Now we shall show the following theorem which tells us how to reconstruct
a holonomic system by its solutions.

Theorem 1.4.9. Let .#° be a bounded complex of Dy-Modules whose

cohomologies are holonomic. Then
Rc;famc(RfamQx(u#., 0}(), @X) =./4'w.

Proof. By the definition of %3 x«x and Proposition 1.4.2 (iii), we find
the following equalities.

MP=DF @ M =FGPR O M
Dx P2x
=RAom g, (M*, BE xxx)[n]
=RI (R oy (M *, Oxxx))[2n]
=RT ,(OxQ®RHom g (M*, O%))[2n]

=R;%pamc(R9famc(R9fam9x(uf.*, @X)’ C), @X)
=Rfomc(Rfam9x(./., @X), 0)(). Q. E.D.

§5.

In [18] we developed the notion of principal symbols for a system of micro-
differential equations with regular singularities. Here we apply it to holonomic
systems whose characteristic variety is non-singular.

5.1. Let X be a complex manifold and A a Lagrangian submanifold of
T*X - T}X.

Let 2 be an invertible 0,-Module such that 28> = Q%Q;QA(@Q?“. In
general, such a 2 does not exist globally on A; however, 2 exists locally on 4,
and a local existence of .2 is sufficient for our subsequent discussion.

Let 2’ be another invertible 0,-Module such that 2'®2x~Q ®Q0%-!,
then there is locally an isomorphism ¢: 2— 2’ such that ¢(s)@¢(s)=s®s as a
section of Q,®QP~! for any se 2. If ¢ is such an isomorphism, then any
isomorphism ¢’ satisfying the same condition as ¢ must be either ¢ or —¢; in
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fact, we have @(s)®2=¢'(s)®? for any se 2. Therefore 2 is uniquely deter-
mined up to sign.

Let & be the vector field defined by Z ¢ Then & does not depend

J
on the choice of local coordinate systems Smc(:aeé A is homogeneous, " acts on
Q,®0%! as a derivation, and hence & acts also on 2 as a derivation by the
formula: 2s@%(s) =% (s%2) for s 2.

Let o be the sheaf of linear differential operators of finite order from 2
into 2. Although 2 does not exist globally, o is canonically defined and
exists globally because 2 is uniquely determined up to sign.

For an integer m, we shall denote by «7(m) the subsheaf of o/ consisting of
all homogeneous differential operators from 2 into 2 homogeneous of order
m; in other words, &/(m)={Pe/; [Z, Pl=mP}. We shall denote by 0 ,(m)
the sheaf of homogeneous holomorphic functions of degree m defined on A.
The Algebra .2(0) contains ¢ 4(0) as a sub-Algebra and we have the following
relations:

04 @ Z(0)=(0) @ O4=,
0.4(0) 04(0)
O04(m) @ Z(0)=(0) @ 0,(m)=(m).
04(0) 0.4(0)

In [18] we defined the homomorphism L™ from £ ,(m)=0,(m)s,
into «7(m) as follows

(150 LOPX)={(Hn, ., +P— 5 3 GTo1) o yd0} /a0

2=

for P=P, . (x, D)+P,(x, D)+---€.£,. Here dx=dx,;A---Adx, This ho-
momorphism is uniquely extended to a homomorphism from &,(m) into «(m)
under the condition

(1_5_2) L(mﬂ(Pl)L("lz)(Pz)_—_L(mx+m2)(P1P2)

for P, e&,(m,) and P,e&4(m,). One can check easily L(&,(m—1))=0.
In fact, we have a more precise statement.

Lemma 1.5.1. The sequence

00— & (m—1) — &,(m) L5 o (m) —> 0
is exact.

Proof. By multiplying an invertible micro-differential operator of order
(—m), we can reduce the statement to the case where m=0.

) In [18] this homomorphism is denoted by L(™+1) instead of L),
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Let us denote by J,(k) the intersection J, N Or«x(k). Then, for any k,

we have
FEFE+ FEH (= D) =D (TE N Opex (k) 2 S¥(T4(1)[(JF N Opax(1))),
where S* signifies the k-th symmetric product. On the other hand, if we denote
by O ,(1) the sheaf of homogeneous vector fields on A, and if .«7(0) denotes the
sheaf of homogeneous differential operators from 2 into 2 of order<k, then
we have #,(0)/27,_(0)=S*(O(1)). Since the Hamiltonian map H induces
an isomorphism from J,(1)/(JZ N Orx(1)) onto O ,(1), L@ also induces an
isomorphism
ST n IE(= 1)) =2 #£,(0) /-1 (0).

In particular, we have
SEknKer LO (g% nKer L®)+¢&,(—1) for any k,
which implies Ker L©® = &,(—1). Q.E.D.

Let 6 be a section of 4, such that LO(f)=%. As is easily seen, 0 is
characterised by the following conditions (1.5.3)~(1.5.6):

(1.5.3) 6=0,(x, D)+0y(x, D)+--- is a micro-differential operator of order 1.

(1.5.4) 91[11:0'
(1.5.5) d0,= —wmod J ;Qby.
1a o,
(1.5.6) bo= 5 % pogs- o A

We then find the following properties of 6.
(1.5.7) For any Pe &,(m), [0, Pl=mP mod &,(m—1).

(1.5.8) Let P be an invertible micro-differential operator of order m. Then,
for any polynomial g(6) of one variable, we have

Pg(@)P~1=g(0+m) mod &,(—1).
The property (1.5.7) immediately follows from Lemma 1.5.1 and (1.5.8) is
an easy consequence of (1.5.7).

5.2. Let .# be a coherent &x-Module with regular singularities along a
Lagrangian submanifold 4. In particular, the support of .# is contained in A
and hence .# is a holonomic &x-Module.

Let .#, be a coherent &,-sub-Module of .#. Since .# has regular
singularities, .#, is coherent over £(0). We denote by .#, the quotient sheaf
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Mo| My(—1). Then .4, is endowed with a canonical structure of =Z(0)-
Module, and .#, is a coherent 0¢,(0)-Module. Since & ® A=
0, ® .#,is an «/-Module coherent over ¢,, we can apply the ﬁl(gé)ry of
syst%?l(los) of linear differential equations and ¢, ® A, is locally isomorphic
to a finite direct sum of copies of 2 as an Ja{ Module. In particular,
0, ®0 Ay is a locally free ®,-Module of finite rank, and hence .4, is a
locally free 0 ,(0)-Module of finite rank.

Let & be the C,-Module Jfamd((DA ® My, 2)= .%”amd(o)(.jo, 2).
Then & is a locally free C,-Module of finite rank and we have an isomorphism
0, C:;) My Homc (F, 2) of o-Modules. Since C[0] is the center of
.91?(1)1)(, # is endowed with a structure of C[f#]-Module. One can check easily
that

(1.5.9) My 5 Homcio)(F, 2).

Since & is a locally free € ,-Module of finite rank, there exists a non-zero
polynomial b(f) such that b(6)& =0. This condition is equivalent to the
condition b(f).#, =0 by the isomorphism (1.5.9). We shall denote by b(0: .#,)
the monic polynomial h(f) with the smallest degree such that b(6).#,=0. The
above investigation assures the existence of b(0; 4,).

For AeC, we define #(A) and #,{A) by

(1.5.10) Fy={seF;(0-1)Ns=0 for N>»0}
and
(1.5.11) MLy ={s€ My; (0—)¥s=0  for N»0}.

Then, three conditions F{A)=0, #,<{A>=0 and b(L; .#,)#0 are obviously
equivalent. We have also

(1.5.12) F=@F0Od
(1.5.13) Ay= Aela ARG

(1.5.14) oAy = Horm o F Y, 2)
(1.5.15) F Y2 Horm oy 0 A2, 2).

Lemma 1.5.2. b(0: #y(k))=b(0—k; A4,).

Proof. Let P be an invertible micro-differential operator of order k.
Then, for a polynomial b(8), by (1.5.8), we have the following chain of equivalent
statements:
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b(6) A =0 <> b(0).Mo < Mo(— 1) &= b(O)P~! Mo(K) = P~ My(k—1)
&= Pb(0)P~1 My(k) = Mok — 1) &> b(0+ k) My(k) = M(k—1) .

Thus we have the desired result. Q.E.D.

Lemma 1.53. If .#( is a coherent &,-sub-Module of a coherent &,
sub-Module #, of #. Then b(0; #{) is a divisor of b(0; #,)b(0+1; A,)
«-b(0+ N; A,) for some N.

Proof. There is N such that .#{ N Ay (—N—-1)c#y(—1). We have

b(0; M)b(0+1; Mp)---b(0+N; M) M
<=b(8; A(—N)b(O; Mo(1—N))--b(0; M)ty
<b(0; Mo(—N))---b(0; Mo(—1)Mo(—1) = = Mo(=N—1).

and hence we obtain

b(O;4,)b(0+1; Ay)---b(O+ N ; )M
cMy0 Mo(—N—=1)ct(—1).

This gives the desired result. Q.E.D.

Lemma 1.5.4. Let #, be a coherent &,-sub-Module of .# which gen-
erates M as an &-Module. Let @(0) be a polynomial prime to b(6—k; #,)
for any k=1, 2,.... Then we have

Mo={seM; p(O)se A} .

Proof. Let s be a section of .# such that @(f)se.#,. There is N such
that s e #y(N). By the induction on N, we shall prove that s belongs to .4.
If N0, then there is nothing to prove. Suppose that N>0. Then
b(0; My(N)=b(0—N; #,) and @(f) are prime to each other. Therefore
b(0; #y(N))se #y(N~1) and ¢(0)se #H(N—1) imply se #y(N—1). By the
hypothesis of induction, we obtain s € .#. Q.E.D.

Lemma 1.5.5. Let .#; be a coherent &,-sub-Module of a coherent
&4-sub-Module My of #. Then, for any \eC, M \y— ML) is injective
if B(A+k; Ay)#0 for k=1, 2, 3,....

Proof. In order to prove this lemma, it is sufficient to show that for any
SeEMyN My(—1) and an integer m(@—A)"se #y(—1) implies se.#y(—1).
Let us take N such that #{nN #(—N—-1)c#y—1) and set b(0)=b(6;
My(—1))-+-b(0; My(—N)). Then we have b(0)#y(—1)=#y(—N—-1) and
hence b(0)se A (—N—1)n 4y #y(—1). Since b() and (8—A)" are prime
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to each other, we obtain se .#y(—1). Q.E.D.

Lemma 1.5.6. Let .#, be a coherent &,-sub-Module of .# and let A be a
complex number. Choose a polynomial b(6) and a non-negative integer N
so that b(0; #,)=Db(O)O—A)N with b(A)#0. Let #y be the kernel of 4,
> Mo{Ay. Then b(0; #{) is a divisor of b(0)(0—A+1)V.

Proof. If N=0, then .#,{A>=0 and hence #,=.#,. Therefore the
lemma is obvious.

Suppose N=1. We have #,=4, {A>® {se€.4,; b(B)s=0}. Hence
b(0)( o] Ao(—1))=0, or equivalently, b(f).#y<=.#,(—1). Now, we shall
show that (@—A+1)"b(O)#i=sy(—1). We have (0—A+1D¥b(O)s5c
O—=2+D¥sy(—1). Since 0—-4y(—1)>My(—1)>(My(—1)){A—1) is exact
and (60— A+ DV(ay(—1)<{A> =0, (@— 1+ 1DVAy(—1) is contained in #H(—1).
Thus we obtain the desired result. Q.E.D.

5.3. Let u be a section of .#. A root of b(0; &,u)=0 is called an order
of u and the set of roots of u will be denoted by ord u. It is easy to see that
ord (Pu)=ord u+ord P, if a micro-differential operator P satisfies o(P)|,#0.

A solution of the system of linear differential equations for ¢ € 2

(1.5.16) L ¢ =0 for any P € &, satisfying Pu=0

is called a principal symbol of u and the linear hull of principal symbols of u
isdenoted by o(u). The space of principal symbol is nothing but
Hom g0y Eau|E4(— Du, 2). If m is the multiplicity of &xu, then &,u/8,(—1u
is locally isomorphic to 2™ and hence o(P) has dimension m. If P is a micro-
differential operator such that o(P)|,#0, then o(Pu)=oa(P)o(u).

Let .#, be a coherent &,-sub-Module of .# which generates .# as an
&x-Module and let 4,,..., 1y be the roots of b(0; .#,)=0. Then, by Lemma
1.5.2. and Lemma 1.5.3, any order of any section has the form 1;~—v for some
jand veZ. By Lemma 1.5.3, any order of any section of .#, has the form
A;—v for some j and veZ,. More precisely, we have the following lemma,
which is an immediate consequence of Lemma 1.5.5.

Lemma 1.5.7. Let .4, be a coherent & -sub-Module in # and let
{A1s--.» Ay} be the set of roots of b(A; #,)=0. Then for any section u of the
kernel of My—>My{Ly, ord u has either the form A, —v(v=1, 2,...) or the form
Ai=v(j=2,..,N,v=0,1,2,.).
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Proposition 1.5.8. Let Z be a subset of C satisfying the following three

conditions:

(1.5.17) IfzeZ and keZ, then z—keZ.
(1.5.18) For any z eC, there is k€ Z such that z+ ke Z.
(1.5.19) For any z e C, there is k€ Z such that z+ k& Z.

Then #"={ue.#; orducZ} is a coherent &,~-Module.

Proof. Let .#, be a coherent &,-sub-Module of .# such that .#=¢&.4,.
Let {44,..., Ay} be the set of roots of b(4; #,)=0. Let m; be the maximum of
{meZ;A;—meZ}. By replacing .#, with .#,(N) for N»>0, we may assume
that m;=0. Hence there is an integer N =0 such that the following condition
(1.5.20), holds:

(1.5.20)y There is a coherent &,-sub-Module .#, of .# such that &.#,=.#
and that, for any root A of b(d; #,)=0, A+1&Z and A-NeZ.

We shall prove (1.5.20), implies (1.5.20)y_, for N=1. Let A,,..., 4, be
sets of roots of b(4; .#,)=0 such that A¢Z. We define .#, as the kernel of
M~ M (A (j=1,..., ). Then, by the repeated application of Lemma
1.5.6, we can easily see that b(4;; .#)#0 (1=j<I) and b(i; .#)=0 implies
either A=1;—1 (1< j<I) or b(A; .#4,)=0. Hence b(A; .#4)=0 implies A+1¢&Z
and A—(N—1)eZ. Thus (1.5.20)y_,; holds. Therefore, by the induction,
(1.5.20)y holds for N=0, i.e., there is a coherent &,-sub-Module .#, of .#

such that &.#,=.# and that b(1; #,)=0 implies A€ Z and A+ 1&Z.

Now we shall show that #"=.#,. Lemma 1.5.3 implies 4/ >.4,. We
shall show the converse inclusion relation. Let u be a section of . and let
b(0)=0b(0; &,u). Further let {A,..., Ay} be the set of roots of b(4; .#,)=0.
Then 4; is not a root of b(A—v)=0for v=1, 2,.... On the other hand

b(—k)---b(Oues(—k—1uc.4, for k>0.
Hence Lemma 1.5.4 implies that u € .4, Q.E.D.

In the course of the proof of Proposition 1.5.8, we also obtained the fol-
lowing proposition.

Proposition 1.5.9. Let Z and 4 be as in Proposition 1.5.8, and let 4,
be a coherent &(0)-sub-Module of .# which generates .# as an &-Module.
Then the following two conditions are equivalent
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(i) ./V-=./¢0.
(il) Any root A of b(L; #,)=0 satisfies Ae Z and A+1&Z.

Before ending this section, we shall remark the following. If .4, is a
coherent &,-sub-Module of .# defined on €, then Jﬂmd(o)(%, 2)is a locally
constant sheaf. Hence the monic polynomial b(6) with the smallest degree
such that b(())(%),,:O(peA N 2) does not depend on p when AN Q is con-
nected. In particular, for a section u of .# defined on an open set Q, ord u is
well-defined on each connected component A; of 4 N L, which we shall denote
by ord 4, (u) (or ord, (u) for x € A4,).

§6.

In this section we prepare some geometric results in symplectic geometry.
Even though they might be well-known, we include their proofs for completeness.
These results will be frequently used in our later discussions.

Proposition 1.6.1. Let (V, E) be a (2n)-dimensional symplectic vector
space™ and let A be an isotropic homogeneous analytic subset of V. Then
there is a Lagrangian (linear) subspace A such that An Ac{0}.

Proof. We shall prove by the induction on n. If n=1 then all lines are
Lagrangian and dim A<1. Therefore the proposition is evident. Suppose
n>1. Then, there is a line u such that un A< {0}. Then utnA—-ptjp=V’
is a finite map. Let A’ be its image. Then A’ is isotropic in V' (see Proposition
4.9 in [7]). By the hypothesis of the induction on n, there is a Lagrangian
subspace A’ of V' such that A’ n A’ <={0}. Then the inverse image 4 of A’ by the
map put— V' satisfies the required condition. Q.E.D.

The following corollary is an immediate consequence of Proposition 1.6.1.

Corollary 1.6.2. Let (V, E) be a symplectic vector space, A a homogeneous
isotropic analytic subset of V, and X(V) the space of all Lagrangian sub-
spaces. Then Y={le X(V); An A¢{0}} is a proper closed analytic subset
of X(V).

In order to state another corollary of the proposition (Corollary 1.6.4),
we introduce the following notion.

!) This means, by definition, that V is a 2n-dimensional vector space and E is a non-
degenerate skew-symmetric form on V.
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Definition 1.6.3. Let A be a Lagrangian variety of T*X —T%X. We say
A is in a generic position at a point p in A—T%X if and only if 4 n =z~ 1(n(p))
=C*p in a neighborhood of p.

Corollary 1.6.4. Let X be a complex manifold, p a pointin T*X —T%X,
A; (j=1,..., N) Lagrangian manifolds of T*X and A a Lagrangian variety of
T*X. Then we can find a homogeneous canonical transformation ¢: (T*X, p)
—(T*X, p) such that ®(A) is in a generic position at p and that ®(A;) is the
conormal bundle of a smooth hypersurface S; of X (j=1,..., n).

Proof. Set u=T,(C*p) and V=p/ucT,(T*X)/u. ThenV is a symplectic
vector space. By [19] Proposition 10.4.1, C,(AU\UA4))/u is a Lagrangian
variety of V. Therefore we can find a Lagrangian sublspace A of T(T*X) such
that A5 p and that (A/u) n C(AU\UA4;)/p=0. If there is a homogeneous can-
onical transformation @ such that é(ﬂ): T,n~'n(p)/u, then, by replacing A and
A; with @4 and ®A; respectively, we may assume that

T, 'n(p) N C(A)p
and
T, in(p)n T,A;cp (j=1,...,n)
hold. Then we immediately find the desired results. Therefore it suffices to

show the existence of such ¢. This is an immediate consequence of the following
lemma.

Lemma 1.6.5. Let X be a complex manifold, p a point of T*X —T%X,
u=T,(C*p) and g a symplectic transformation of T,(T*X) such that g|,
=id,. Then there is a homogeneous canonical transformation ®: (T*X, p)
—(T*X, p) such that T,®=g.

Since the proof of this lemma is easy, we omit it.

Chapter II. Holonomic Systems of D-type

§1.

Let X be a complex manifold, Y a hypersurface (possibly with singularities)
of X and j the inclusion map from X —Yinto X. In [3] Deligne proved the
correspondance of locally constant sheaves on X — Y of finite rank with integrable
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connections with regular singularities along Y. We shall re-interpret his result
by the terminology of 2x-Modules.

Let X be a complex manifold, @y the sheaf of the vector fields and Q%
the sheaf of the k-forms. Note that @, contains ©,. We write Q, for Q§imX.
In what follows n denotes dim X.

Let & be an 0y -Module. Remember that an integrable connection on

F isamap Oy ® F 3v®s—V se F satisfying the properties
Cc

Vo s0,5=F y5+V ;5

Vsi+8)=F,s,+V,s,

V. (s)=al s

V (as)=al s+ (v(a))s

V o000 =V 0,7 538 =V 5,7 1.5

for v, V1, 0, €Oy, s, 8,5, €Z# and aely.
Then it is easy to see that we can endow & with the structure of 9x-Module

so that V (s)=wvs and that the structure of 0x-Module on & coincides with that
induced from the structure of 92x-Module, namely, an integrable connection

is nothing but a 2y-Module. Let ¥ be an integrable connection on &% and
consider the associated de Rham complex

2ll) FRQ F 4, FQQAU 4, FQRQL 4, 4, FQQL—0.
Ox ox ox

Ox

Here the operator is defined so that the following relations (2.1.2) are
satisfied by the aid of a local coordinate system (xy,..., X,,).

ds= i‘, Vs s®dx; for sez
(2.1.2) J=1 ox;
disrnw)=(=1)PsAndo+dsAw for seZF®QRLY and weQf.
Ox

Here s A w, for example, is considered as a section of & ® Q§.

ox
On the other hand, we can consider the following resolution of ¢y as a
9x-Module:

2
(2.1-3) 0(——0x(——gx<—6—-gx®@x(—a——gx®/\gx<—a——
Ox 0x
v D@ A Oy 0.
ox

Here the homomorphism 25— 0y is given by P—P1 and ¢ is defined by
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(2.1.4) 6(PQuy A -+ ADy)
p .
=2 (= D7TPy, @0y A AUy AV Aot ADY)
i=1

* ';j< (=D*P ([, 1AV A AV Al A

A
[
~

AV AV g A AL)

Then we find that &# ® Q% is nothing but Hom,, (Dx ® A Oy, F). Con-

sidering their cohomologlcs we also find

(2.1.5) HHF @ Qi) =Eary (05, F).
Cx

In other words, we obtain

(216) Rfomgx(mx, y)=f ® QX'
Ox

§2.

Let Y be a hypersurface of a complex manifold. Let L be a locally constant
sheaf of finite rank on X —Y (i.e., locally free Cy_y-Module of finite rank).
Let j be the inclusion map from X —Y into X. Then j,.(L® Ox_y) has ca-
nonically a structure of QX-Module. Fix a non-singular point yf, of Yand choose
a local coordinate system (x,,..., x,,) in a neighborhood U of y, so that y,=0
and that U n Yis defined by x; =0in U and U={x; |x|<1}. Set Ut={xeU;
+Rex,>—|Imx,|}. Then L is a constant sheaf on U%. Let f. be the iso-
morphism L|y=—Cy+ and f.; (i=1,..., m) be the composition of f, and the
i-th projection: Cjj+—C,=. We say a section s of j(L®0x._y) at y, is in a
Nilsson class (resp., in a strict Nilsson class) at y, if the:e are C>0, N>0 and
£>0 such that

(2.2.1) |f£ ()= Clxy 7Y
(2.2.2) (resp., |f+ (s)(x)| = C(log (1/]x, D))
for xe Ut with |x|<e and for any i=1,..., m. This notion does not depend
on the choice of local coordinate systems.
For any section se I'(U; j(L®0x_y)), f+ s) can be prolonged to a multi-

valued function on U-Y with finite determination. Therefore we can

N
write f, (s) in the form }, > a, (x)x{(logx,)/, where I is a finite
i€l j=1
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subset of € such that A—u&Z for A#uel and a; (x)eI'(U—-Y;0x). Then
the condition (2.2.1) is equivalent to saying that a; j(x) are meromorphic
functions with pole along Y. Therefore f, (s) satisfies a holonomic system of
linear differential equations whose characteristic variety is contained in T¥X
U T%X. Furthermore the holonomic system is with R.S. Hence s itself satisfies
a holonomic system of linear differential equations with R.S. Conversely, if
s satisfies a system of linear differential equations with R.S., then so does f i(s).
Therefore the condition (2.2.1) is satisfied.

More generally, we say that a section of j,(L® 0y _y) is in the (strict) Nilsson
class if so is it at any non-singular point of Y. We shall denote by .Z(L) (resp.,
ZLo(L)) the subsheaf of j,(L®0Oy_y) consisting of the sections in the (resp.,
strict) Nilsson class.

The following theorem is proved in [3] Chapter I (Proposition 5.7,
Théoréme 6.2 and Théoréme 4.1. See also Appendix § C of this article). For
brevity, we shall write .# and .%, for #(L) and Z,(L).

Theorem 2.2.1. (i) .%, is a coherent Ox-Module.

(i) L=AHKn(Lo) and Hfxy(L)=0 for k#0; #ky(L)=0 for
any k.

(iii)) Let s be a section of j,(L®0Ux_y) on an open set U of X.
Suppose that s belongs to % (resp., .%,) outside a closed analytic subset of U
of codimension at least 2. Then s belongs to % (resp., .%,).

This theorem immediately implies the following theorem.

Theorem 2.2.2. (i) % is a coherent 9y-Module, and, moreover, & is
holonomic.

(i) & is a system with regular singularities along T§, .. X.

Proof. 1t is clear that 94.%, is a coherent 2y-Module and holonomic
on X~—Y. Therefore &=y (2x%) is also holonomic ([8]). The
assertion (ii) is clear.

In [3] the following theorem is also proved. (See also Appendix § C of
this article.)

Theorem 2.2.3. Rotomg (O, £)=Rj.(L).

This theorem combined with Theorem 1.4.9 of Chapter I, Section 4 implies
the following theorem.
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Theorem 2.2.4. ¥*°=j,(L® Ox_y).
c

Proof. Tt follows from Theorem 1.4.9 that
gw'-:R”amC(R”amgx(g, @X)’ wx)
On the other hand we have

R-%pamgx(,g, @X) =R-%p¢mQx(R.9fam(@X, g), CX)
=R.9famc(Rj*(L), CX) =R.]'(L*)!
where L* is the sheaf on X-—Y defined by #emc(L, Cx_y), because

Rotomc(Rj 1L*, Cx)=Rj,L. Thus we oblain L°=Riomc(Rji(L¥), Ox)
=Rj +(Rom(L*, 0X_y))=Rj*(L(>c§ Ox_y)- Q.E.D.

§3.

In this section we first introduce the notion of a holonomic system of D-
type, and, then we investigate some of its basic properties.

Definition 2.3.1. Let Y be a hypersurface of X. A holonomic system .%
of linear differential equations(® on X is said to be of D-type with singularities(*)
along Y if it satisfies the following conditions:

(2.3.1) SS(P)=n Y (Y)U T}X,
(2.3.2) Z has R.S. on T§X.
(2.3.3) HEy(L)=0 for any k.

We saw in the last section that, for a locally constant sheaf L of finite rank
defined on X —Y, #(L) is a holonomic system of D-type.

Conversely, suppose that % is of D-type along Y. Then L=
Homo(Ox, L)x-y is a locally constant sheaf of finite rank on X—-Y. Con-
sider the 9y-linear homomorphism {: ¥ —j.(L®0Ox_y). The homomorphism
Y is an isomorphism on X —Y. Since the kernel of  is contained in #9(Z)
=Py (Z£), ¥ is injective. By condition (2.3.2), Y(£) is contained in #(L).
Since Y(£) and #(L) coincide outside Y, the condition (2.3.3) implies that
Y(&L)=2(L). Thus we have obtained the following theorem.

G5 In the sequel we shall simply say ‘holonomic system & of D-type”, namely, omit “linear
differential equations”. We also often omit “with singularities™.
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Theorem 2.3.2. (i) The category of holonomic systems of D-type along
Y and that of locally constant sheaves of finite rank on X —Y are isomorphic
under the correspondences L Hom g, (Ox, L)x-y and L—>L(L).

(i) If a holonomic system & is of D-type along Y, then we have
(lia) Poxj,.j 12
and
HY(FL*)=0  forany k.
(iib) If the support of a section s of £ *|% is contained in an analytic
set of codimension=2, then s is zero.

(iii) For any coherent Ox-sub-Module ¢ of % and an analytic subset
Z of codimension>2, #¥,7(¥) is a coheretn Ox-Module.

Proof. All assertions have already been proved except (iii). Let us prove
(iii). Suppose that Y is defined by f=0. Then, by Hilbert’s Nullstellensatz,
¢ is contained in f~¥Z, for N»0. Since #Px z(Lo)=<, (Theorem 2.2.1
(iii)), ##0x|z(%) is contained in f~N.%,, and thus coherent. Q.E.D.

In the rest of this section we show several basic properties of a holonomic
system of D-type.

Proposition 2.3.3. Let % be a holonomic system of D-type along a hyper-
surface Y. Let S be a hypersurface of X. Then

and
H'Pxs(ZL) is of D-type along SU Y.
(i) (LN =H#KL").
Proof. The assertion that #fy 5(#)=0 for k#0 is obvious, because S
is a hypersurface. Let us prove that &’ =0y 5(#) is of D-type along SU Y.

The condition (2.3.1) in Definition 2.3.1 is clearly satisfied. We show that the
condition (2.3.3) in Definition 2.3.1 is satisfied. By (1.2.7) of [8], we have

(2.3.4) Rr[su Y]RF[X‘s](g) =RF[X|S]RF[SU yl(g).
On the other hand, we have the following commutative diagram:

RI(sny1(2)
(2.3.5) _— 2
RI5(&L) ORI y1(£) > R suy1(Z).
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Since RIy(:£)=0, we have RI(gyy(-£)=RI5RIy(£)=0. Hence (2.3.5)
implies
(2.3.6) RI5(&L)=RI 5y v(Z).
Therefore we have by (2.3.4) and (2.3.6)
Ry Y]RF[X|S]($)=RF[X|S]RF[S]($)-

Since RI5(%) is supported by S, this clearly vanishes. Thus we have verified
the condition (2.3.3).

Next let us prove that %’ has R.S. on T{uyX. We write S=S,U S, so
that S, and S, are hypersurfaces and that S;cY and S; nY is codimension
greater than 1. Since ¥'=% on X—S, &’ has R.S. on T§X. Lct us prove
that ¢’ has R.S. on T§ X. Let x be a non-singular point of S§; —Y. Then, in
a neighborhood of x, .Z is isomorphic to a direct sum of finite copies of 0.
On the other hand, #Qs,{(0x) has regular singularities along T§X in a
neighborhood of x. This implies that .’ has R.S. on T§ X.

Now, we shall prove

Hley(2)°=HKL).
First note that Theorem 2.3.3 (iia) entails that
RIgy Y(RF[X|S]($)°°) =0
holds, because ¢’ =RI |y 5(¥) is of D-type along SU Y. Therefore we have
Rrsuy(-gw)=RFsuy(Rr[S](-7)°°)-

Thus we have

RIg(£*)=RIRIs,y (L) =RIRI g, Y(RF[S](g)w) =RI’[S]($)°°.

Q.E.D.

Proposition 2.3.4. Let .# be a holonomic 2y-Module, Z an analytic
subset of X, and Z, the union of irreducible components of Z of codimension
1. Assume that .# has R.S. on T} X and that SS(#)c=n"'(Z)u T%X.
Then & = #Px\z(A) is of D-type.

Proof. We may assume that Z is a proper analytic subset. Let Z, be the
union of the irreducible components of codimension greater than 1. Let i be
the imbedding from X —Z into X—Z,. Let L be the locally constant sheaf
Hoomc(Oxs M)|x-z. Then # is isomorphic to L@@X on X—Z. Since Z,
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has codimension greater than one, L=i,L is also a locally constant sheaf on
X—Z, Let #' be the holonomic system of D-type with singularities along Z,
corresponding to L. Then we can construct the homomorphism /: .# —.%'*,
because £’ °=j (LO®0Ox|x_z)=js(#|x_z) holds. Here j denotes the im-
bedding of X —Z into X. Since .# has R.S. on T# X, the image of ¥ is con-
tained in %#’. Thus we obtain the homomorphism .#—.%’, which is an
isomorphism on X—Z. Therefore &= z(#) is isomorphic to %’
=0 2((L")- Q.E.D.

Proposition 2.3.5. Let % be a holonomic 2y-Module of D-type along a
hypersurface Y, and let s be a section of £®. If s satisfies a holonomic system
of micro-differential equations with R.S. at each point on T3, X —T%X, then
s belongs to .

Proof. Let § denote the section 1®s of &% _@ mn-lgw. Then 3§
belongs to (& ?.f),eg on T§,.,X—T%X. Since & ﬁasﬂ R.S. on T*X—x!
(Ying), We have (g§$)reg|T‘X—n'1(Ysing)=(£§$)IT*X—N“I(Y5ing)' Therefore
§ belongs to £®.% on T*X —n~(¥Y,;,,)—T¥X. Then we can apply Theorem
1.2.1 to concluge that § belongs to §®.¥ on T*X —n~!(Y,;,,). Therefore s
belongs to ¢ outside Y;,,. The desgired result then follows from Theorem

2.3.2 (iib). Q.E.D.

Proposition 2.3.6. Let % be a holonomic 2-Module of D-type with
singularities along a hypersurface Y. Let s be a section of #* and §=1Qs
the corresponding section of &% Q@ £“. Suppose that supp 5) N (T}X —T%X)
is a nowhere dense subset of T’;)?—T;‘}X. Then 2s is a holonomic 2-Module
locally isomorphic to a direct sum of finite copies of 0.

Proof. By the preceding proposition, s belongs to #. On Y, this pro-
position is evident. Hence 2s is a holonomic 2-Module locally isomorphic to a
direct sum of finite copies of ¢ on X —Y e Set L=omz(0, D5)|x-yging
Then L is a locally constant sheaf on X —Y;,.. Since 7,(X)=n(X —Y;,,),
L can be extended to a locally constant sheaf L on X. Set #"=0y®L. Then
A" is isomorphic to Zs outside Y;,,. Hence an injection j: .; lx-¥sing™
Z®|x-vsng can be prolonged to j: A —oZ®.  Since A=
N QH §;,(0)=0, there is a section § of A" such that §=j(s) on X — Y.
Hegce j@)=s on X —Y; ., which implies §=s. This shows that 2s is a quo-
tient of .#” and we obtain the desired result. Q.E.D.
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Let % be a holonomic 24x-Module of D-type with singularities along Y.
Then # = %(L) for a locally constant sheaf L. We call a section s of #% is in
the strict Nilsson class if s belongs to #y(L). Now fix a non-singular point

Yo of Y and define f, ; as in Section 2. Then f, (s)= Z Z a;, {(x)x}(log x,)7,
where I is a finite subset of € such that 0<Re/1<12 and a; (x)eo(U-Y).
Then s is in the strict Nilsson class if and only if a; j(x)e @®(U). Thus we have

Proposition 2.3.7. A section s of & is in the strict Nilsson class if and
only if 0rdr§,egx(5) c{leC; Rei=s —1/2}.

Proposition 2.3.8. Let ¥ be a holonomic 2-Module of D-type with
singularities along {x; =0} and %, the subsheaf of ¥ consisting of the sections
in the strict Nilsson class. Then the following properties hold.

(i) (xlDl)egngo, ngoceyo (j=2,..., n).

(ii) There is a polynomial b(A) such that D b(x,D,)%,<=%, and any
root 4 of b(A)=0 satisfies 0SRe A1<1.

Proof. (i) is obvious. Let us prove (ii). There is a finite set I of {1eC;
0<Re <1} and an integer N such that for any section s of %,

F2d9= 3, %, ax)xi(0g x)

for some a, ; € Oy y.
Set b(s)= IT(s—A)N. Then it is easy to check that x7'b(x,D,)s is in the strict
Ael

Nilsson class. Hence we have

D,b(x,D,)s € Z,. Q.E.D.

Chapter III. Action of Micro-differential Operators
on Holomeorphic Functions

The main purpose of this chapter is to clarify the action of €(G; D) on
holomorphic functions. In the course of the discussion we introduce a special
class & of micro-differential operators and prove several basic properties of é
(§3 and §5). These materials will be effectively used in Chaper IV. We
also recall some basic facts concerning multi-valued holomorphic functions for
our arguments in later chapters. (§ 4)
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§1.

As shown in [19], operators in &(G; D) act on the relative cohomology
groups with the sheaf of holomorphic functions as coefficients. On the other
hand, [10] and [2] show explicitly how micro-differential operators act on a
space of holomorphic functions. The purpose of this section is to discuss their
relationship.

1.1. The action of €(G; D) is defined in [19] in a purely cohomological
way, especially by the aid of residue maps. Hence we begin our investigation
by the study of residue maps. Let X and Y be two complex manifolds of
dimension n and m, respecitively, and let f be a smooth holomorphic map
from X to Y. One can define the residue map

RYf(Q0)— 2y  (I=n—m)([5])

Here Qy (resp., Qy) denotes the sheaf of holomorphic n (resp., m)-forms on X
(resp., Y). Let us recall how this homomorphism is constructed. Let #%-?
(resp., ZF-P) denote the sheaf of (p, q)-forms having hyperfunctions as their
coefficients (the reader can replace here hyperfunctions with infinitely differ-
entiable functions). Then we have the flabby resolutions of Qy and Qy:

0 QX gg;n,o) bl gg{n,l) .. 8 gg(n,n) 0

and
0—s Qp — By 0, gyn) 4, ... 0, gimm __, 0,
On the other hand we have
S(BYR) — @y for kzl

by integration along fiber. It is easy to see that this gives the homomorphism
of the complexes

0 f!g;n,o) J . ... @ f!gg(n,l—l) J f!g&n,l) 6-; ves 0 f!‘ggl(xn,n) 0

l l l l

O —_— ey O - l@glm,O) _5__) vea _5__) g(ym,m) N 0
and hence we obtain the homomorphism
RAQ [ =123 [1] — B =Qy .

If g: Y>Z is another smooth map of fiber dimension r, then the homomor-
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phism R(gof)iQx[I+r]—Q, coincides with the composition RgQy[r]—Q,
and RgRf1Q[I+r]-Rg:Qy[r] obtained from RfiQ4[I]->Qy by applying
the functor Rg,[r].

1.2, We shall calculate the residue map when the cohomology group
R} (Qy) is given by the Cech cohomology.

Let us consider the special case where the fiber of fis of dimension 1.

Let us suppose that there is a closed subset Z of X proper on Y and suppose
that X is Stein. Then

HY(X; Qx)=T(X—Z; Qx)/I'(X; Q).

Suppose that the section of RIf(Qy) is given by a section pe (X —Z; Qy)
through the homomorphisms

I'(X—Z; Qy) — HY(X; Qx) — HY(Y; Rf(RI5(Q[1]) — H(Y; R'f1Qy).

Let us calculate the corresponding holomorphic function on Y. Consider the
exact sequence of the complexes

0— I'z(X; #¢:)) — I'(X; BP) — T(X—Z; B¢) — 0.

The homomorphism I'(X —Z; Qx)—>HL(X; Q) is derived from the homomor-
phism HYI'(X—Z; %)) —-H (T4 X; #¢7)). If we choose an element ¢
of I'(X; #{+9) such that @ coincides with ¢ on X —Z, then 06 e I',(X; %)
gives the element of HY(I',(X; #¢))=HY(X; Qy). Hence the corresponding
holomorphic function is given by the integral

o

along the fiber.
Take an open subset D containing Z with a smooth boundary. Then,
by Stoke’s theorem,

Thus we obtain

Proposition 3.1.1. Let the fiber dimension be 1 and Z a closed subset of
X proper on Y. Let ¢ be a section of Qy on X—2Z, and [¢] the element of
HL(X; Q) corresponding to . Then the corresponding element of H(Y ; Qy)

is given
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W(y)=3y (@
where v is a cycle in the fiber f~1(y) around Z 0 f~1(y).

In what follows we shall use relative cohomology groups of covering (éech
cohomology groups). See e.g. [20] for the definition of the relative Cech
cohomology groups.

The following Corollary 3.1.2 is an immediate consequence of Proposition
3.1.1

Corollary 3.1.2. Let X, Y and Z be as in the preceding proposition, and
let % ={U;};c; be an open covering of Y, %' ={U};;, a subcovering of % and
T=Y— \U U;. Let % be the open covering (f~(U)—2); of X—Y and ¥’

ielg
={f"WU)—Z};y, the subcovering of %. Let (@s,....1,) be a relative cocycle
Zr(% mod %'; Qy). Then the image of
Z( % mod &' 5 Q) — Hy-1(p(X — Z3 Qx) — H(1902(X; Q) — HY(Y 5 Qy)

is the image of the cocycle {{;, ;}€Z"(% mod %'; Qy) by the homomorphism

Zr(@ mod %'; Qy) — H4%(Y; Qy),
where

l//io,...,i,-—:g Pi,....ir
k4
for a cycle y in the fiber of f around Z.

Corollary 3.1.3. Let X,Y,Z, %, %', % and %' be as in the preceding
corollary. Let @ be the open covering of X given by {Ua(,), U,,(,)}EI, where

~

(7,,“)=f‘1(Ui) and ﬁb(,)—f YU)—-Z, and @' the subcovering
{ﬁa(i)}iela u {ﬁb(i)}iel'
Let ¢ be a cocycle in Z’*‘(Wj mod 027’; 0x). Then the image of ¢ by the map
2@ mod &' @) - Hiryn o X5 )~ HE(Y ;5 ©y)
is given by the cocycle Y € Z"(% mod %’ ; Qy), where

r

Vioonin= Z( 1)”“&%(%) ..... (iy),B(iy)sesblirs 1) 2

where y is a path in the fiber of f around Z.

Proof. By taking a refinement of 4, we may assume that Ui and Uy
are Stein open subsets. If ¢ is the image of an element ¢ in Z"(% mod Z'; Qy)
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by the homomorphism Z"(% mod 4'; Qy)—Zr+'(% mod %' ; Qy), then we have

Paio)blio)srb(ir) = — Pioye.nir
and other ¢’s are zero.
It is easy to see that if ¢ is a coboundary then so is {y. On the other hand,
Hr (% mod 4'; Qy) = H’(% mod %’ Qy)=Hy ' -1ry(X; Q) and hence
Z (G mod @' Qy) =B (@ mod @'; Qy)
+Im (Z'(@ mod ¥'; Qy)—>Zr+ (@ mod @5 Qy)).
This proves the corollary.

By the repeated application of the preceding corollary, we obtain the
following corollary.

Corollary 3.1.4. Let Y be a complex manifold, % ={U,;},.; an open covering
of Y and #'={U},,, an open subcovering of % and T=Y— U U, Let X be
an open subset of YxC!, f the projection from X to Y and Z a closed subset
of YxC(j=1,...,1). Suppose that Z=2Z, x < >;Z,<:Yx C' is a subset of X.

Set Vi=X—Cx--xCxZ;xCx--xC. For p,qeZ with p=q, let [p, 4]
denote the set of integers in such that p<i<gq. Let # be the open covering
Wit inernxs Where Wi n=V;n U, Let #' be the subcovering of W
consisting of W, withiel,. Let ¢ be a cocycle in Zrti=1(o mod #77; Oy).
Then the image of @ by the map

Zr+l I(W- mOdW 0x)"‘)H I(T)(X Z 0x)—">H%+‘:]lf—1(T)(X; 0x)—”H'i‘(Y, 01{)

is given by the image of the cocycle ¢e€Z"(% mod¥'; Oy) by the map
Z' (% mod #'; Oy)—>HY(Y; 0y). Here ¢ is given by (up to sign)

¢i0 ,,,, i,(y)=2(—l)kgv Y P12, 1))es (a(r+l),iﬁ(r+l))(ya t)dt1"‘dfl
LXee Xy

r+l
where k=% Bv)(a(v)—a(v—1)) and vy; is a path in (YxC)x{y} around
v=2 Y
Z; (j=1,..., ). Here the summation is over the set of («, f) such that o is a
nondecreasing surjective map from [1, r+1] to [1, I] and B is a nondecreasing
surjective map from [1, r+1] to [0, r]. (Note that we may assume that ((v),
BO))—(a(v—1), B(v—1)) is (0, 1) or (1, 0); otherwise ¢ =0.)
Proof. We shall prove this corollary by the induction on I.
We may assume that X=YxC' Let # be the open covering
{W.n}jero.nxr and #' the open covering {Winbjetonxrourrnx s Where W
=f~1U;. Consider the image of ¢ by the map H"'~1(# mod#; Ox)
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—H™(# mod#'; 04). Then the image is given by ¢ eZ ™ (# mod #";
0Oy), where

lp(O,il),(h,ix),---,(ir—«l.irﬂ)
=—_(p(jlsil) ----- Grs Lir 1) if 0<jl§j2§a--'a §j1-+1

and ¥ takes the value zero otherwise. Let X, be defined by Y xC!™!, g the
projection from X onto X, defined by (y, ty,..., t)=>(y, t1,..., t,_1), f; the
projection from X, onto Y, and Z,;=g(Z). Let % ={W;}i.neroi11x1
and 7} ={Wii.n}ero—11x1our1,1x7 D€ the open covering of X, and its
subcovering defined in the same way as % and #. Let #, be the covering
of X given by Iff/a(j,,-)=g‘1W1(j,i)= W, (where W,y =U;xC"!'—=Cx--xC
XZ;xCx - xC) and Wy =g "Wy;50 Vi=W;,0V, for je[0,—1] and
iel, and #, the subcovering  {W,¢,n}j,ner0,1-11x10 U {Watin)} (peto,i- 11 1-
Then W,;,<W;; and Wy, =W, Hence, by the preceding corollary, the
image of ¥ by the map
Zri (o mod W Oy) — ZrH(H mod W' ; 0y) —
Hrztllf_l(T)(X; @X) I Hrztln—fl;l(r)(Xl; @X1)
is given by the cocycle ¢ € Zr+1=1(# ", mod #; 0y,), where
¢(jo,io),...,(ir+1—1,ir+1—1)
=2 (=1 Sv W GosioersGsin) (i 1-1) *
v 1
Therefore ¢ =0 unless j,#0 except one u, and
¢(0,i)y(j1,i1),--~,(jr+x,ir+z)

=X (=D Svl Pty ) i Do o) *
Therefore ¢ is the image of ¢ € Z*!~2(%", mod #°;; Oy) given by

¢(j1,i1)...(jr+hir+l)

= ; (=1 Sh Pssin)eelvsin)iv)n L +1)*

Therefore, by the induction of I, ¢ is given by

_ 1) ~
¢io,...,i,—2( 1) Sle"«h-l P (1),15 (1) )srer(@(r + 1= 1)ig ri 1-1y)

_ — 1)kt
= Z ( 1) v S Pa(1),ip (1)) (2(V)sig (v))oig (v + 1))erelloip (rt 1))
YiXeXVy
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where k=" Z B () —(p—1)).  Set d(p)=o(p)(u=v) and &) =1 for p>v.
Since oc(v)—l —1 and f(u)=u—1 for u>v (other terms do not give any con-
tribution),

3, G0 —au= 0B = 3, (0 == DR+ B+ D=k-+(=1+1),

we have the desired result. Q.E.D.

1.3. We shall consider the action of €(G; D) in the following special case.
Set X =C" and let ¢ and a;j=2,..., n) be positive numbers.*)  Set

(3.1.1) Z=Z(a,,..., a,; )={z€C"; ajlz,| 2|z}
for j=2,..,n,cRez;=|Imz,|}

and let G=G(a,,..., a,; ¢) be the convex hull of Z, i.e.,

3.1.2) G(a,,..., a,; 0)={zeC"; aj(1+c?)2Re z, 2|z}
for j=2,...,nand cRez,=|Imz,[}.

The dual cone of G is given by
E={{eCr dIm | +(1+¢)2 3 ajlt|<Rely}.

Set
Z={(z, weC"xC"; w—zeZ)}
and
G={(z, weC"xC"; w—zeG}.
For a G-round™®* open set D, &(G; D) is defined by
Hi(DxDj; Og2n)
([19]1, § 3). The elements of Hi(D x D; Oc2») being difficult to express ex-
plicitly, we shall consider
HYDxD; Og2n)
instead of the relative cohomology group with support in G.
Clearly C2"—Z has an open Stein covering _&i/l V;, where V;={(z, w);

cRe(w;—z)<|Im (w; —z)|} for j=1 and VJ-={(zJ, w); ajlzy—w,| <|zj—wl}
for j=2,..., n. Hence, if D is G-round and holomorphically convex, then

) Actually ¢ and a; may be zero.
**) An open set D is called G-round if (D+G)N(D+G*)=D, where G*= {z; —zG}.
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n n
Hy(Dx D; ©)=0(1\ ¥;nDxD)/( % 0( NN D x D)).
i= =1

Set V= f"_\ V,={(z, w); cRe(w; —z,)<Im (w, —2z,), a;|z, —w,|<|z;—w;| for
j=2,..., nl}—.1

Any holomorphic function f(z, w) defined on ¥'n D x D determines an ele-
ment in HY(D x D; 0) and hence an element in &(G; D), which we shall denote
by [f(z, w)].

Let 2, and Q, be two G-open and holomorphically convex sets such that
2,50, and Q,—Q,ccD. Then €(G; D) operates on H} _o,(Q;; 0)=
0(R2,)]0(Q)=0(2,n D)/0(2,nD). In the next subsection we shall write
down this operation explicitly.

1.4. Let ¢’ be a positive number greater than ¢, and let [ be a line in C
such that {w; el; ¢'|Rew,|=|Im w,|} is compact. Let o and B be two points
on [ such that Ima>Im . We define L={weC"; w el}, L,={weC"; w,;
el+R*}and Lo={weC"; w, e[a, f]}. Here [«, ] means the segment joining
o and . We shall denote by G’ the closed cone G(a,,..., a,; ¢’) defined by the
formula (3.1.2). The cone G’ contains G. We shall assume further that D
is holomorphically convex and G’-round. Let D be the open subset {z€D;
(z+G)nLeLynD,(z+G)nLcD,c’ Re(ea—2z;)>Im(x—2z,)>cRe(x—z,) and
¢'Re(B—z,)>—-Im(B—z,)>cRe(B—z,)}. One can easily verify that D is
also holomorphically convex.

Let f(z, w) be a holomorphic function defined on ¥ n D x D and 2 a G'-open
subset of C*. We shall define a homomorphism

Ki(f): 0(Q n D) — 0(Q n D)
by the formula

KENWE= [ aw, <§ dw,-- <§ dwaf (2, wu(w).

Here tg» dw; means the contour integral along the cycle {w;; |z;—w;|=a;|z; —w,|
+¢&} with O<e«1.

Let us verify that Kf(f) is well-defined. For a holomorphic function
u(w) defined on Q n D, we put

g(z, wy) =<g> dwy--+ <g> aw,f(z, wu(w).

For (z, w,) e C" x C, we define
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T(z, w)={(wy, w)eC; |w,~z;|Sa;lw, —z,| for j=2,...,n}

Then it is obvious that g(z, w,) is defined at (z, w,) if ze D, cRe(w;—z)<
Im (W, —z,)| and T(z, w,)<Qn D.

cRe(w, —z;)=Im(w, —2z,)
e

~
cRe(n; —z))=—Im(w, —z,)

w, —plane

Fig. 3.1.1

Consider a path y in the w,-plane as figured in Fig. 3.1.1, that is, y is a path
starting from o and ending at § and y is contained in

{wys lwy—zi]=¢, cRe(w; —z;) <|Im (w; —z))|}
U{wg; wi=z+ta—zy), 0<ts1}
U{wgps wi=z+#(B—z,), 0<t=1}

for 0<e«1. Such a path y can be described in the w,-plane because zeD.
We define

Kﬁ(f)(u)(2)=gy 9z, wy)dw,.

Hence, in order to see that K(f)(u) is defined on Q n D, it is enough to verify
that T(z, w,)cQnD and cRe(w;—z,)<|Im(w,~z,)| if zeQ2nD and w, ey.
The second condition is satisfied because w, €y. T(z, w,) is contained in any
neighborhood of z if w, is sufficiently close to z. Hence we may assume that
wy=z,+Ha—z,) or w,=z,+Hf—z,) with 0<t=<1. Then T(z, w,) is con-
tained in (z+G)nL_. Hence T(z, w,)cz+G <Qn(D+G’). Moreover we
have T(z, w))c(z+G)NL)+G*=D+G'*. Hence we obtain T(z, w,)c
(D+G*9)n(D+G)=D. Thus we have shown that K& f) is a well-defined
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homomorphism from ¢(Q n D) into 6(Q n D). Q.E.D.

Proposition 3.1.5. Let Q,>Q, be two G'-open subsets such that Q, —Q, € D
and that Q, N D and Q, N D are holomorphically convex. Then for fe O(V
N D x D), the action of the corresponding element [ f] in €(G; D) on H}, _q,-
(Q,; 0x) coincides with

Hp,—0,(2,; 0x)=0(Q,n D)/0(2,n D)
XD 9(Q,n D)o@, n D)
== Hp,0,(245 0x) .

Proof. Let (2,—Q,)s- be the topological space 2, —Q, endowed with the
G'-topology. Then the action of [ f] on H}_,(Q; 0y) is a sheaf endomorphism
of the sheaf Q—Q,—~H}_,,(Q; 0x) on (2, —Q,)¢. The endomorphism induced
from KA(f) gives also a sheaf endomorphism of the same sheaf on (Q; —Q,)¢
If they coincide on an open basis of (Q, —Q,)s, then they are equal. Thus it
is enough to show that, for Q=2z,4-(Int G’), the action on H}_,,(2: Ox) of [f]
and that of KA(f) coincide. Then @n Q, and Q are holomorphically convex.
Hence we may assume from the first that ©, and Q, are holomorphically convex.

The action of HY(D x D; Oy, x) on HY _5.(Q,; Ox) is given by

HE(DXD; Oxxx)®H b,-0,(2¢; Ox)
—2 H 35 e, np)x@2-22)((21 N D) X (21 N D); Oxxx)
L Hy 0,(2,nD; 0y).

Here a is the cup-product and f is the residue map.

Let u be a holomorphic function defined on Q, N D and [u] the corre-
sponding element of H) _,(Q2;; 0x)=0x(2,n D)[0x(Q, n D). We shall express
the image of [ f]®[u] by « using Cech cohomology.

Take a Stein open covering # ={W;};—.. ., of (2, nD)x(Q,nD)—Z)
U2, nD)x(Q,nD), where Wy=(Q,nD)x(Q,nD) and W;=V;n(Q;nD)
x(QnD) for j=1,2,...,n. Then f(z, wu(w)e &( ("\1 W;) determines a coho-

=

mology class in H"(#"; 0y, X)=0(J(:\0 WHI( éo 0(jf+\k W;), which we shall
denote by [ f(z, wu(w)]. Then a([f]®[u])=[f(z, w)u(w)] holds if we identily

H'"(# 5 Ox «x)=H"(2; N D)x (2, N D)—Z) U ((2; N D) x (2, N D)); Ox xx)
with

HyHainpyx@1-0,) (21 N D) x (2, N D); Oxxx)-
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For any holomorphic function ¢(z, w) defined on /\ » let us denote by
[¢] the correspondmg element of H%'Y 0 0pyxc0,- ﬂz)((gl n D) x(Q,ND); Oxxx)
SHYOW; Oxx) 200 WIS, 000 W),

Thus, in order to prove the proposition, it is sufficient to show
(3.1.3) for any g€ 0(1('_'\0 W),

S dw, <§>dw2-~- <§>dw,,(p(z, w) modulo 0(Q, n D)
7

coincides with the image of [¢] by f. Here y is the path from « to § given in
Fig. 3.1.1.

Since Z N (2, ND)x (2, ~Q,)=Z n(Q, nD)x(C"—Q,), we can apply the
excision theorem for relative cohomology groups and we obtain the isomorphism

H 5t 0Dy (cn-022)((€1 N D) X C"; Oxxx)
2% Hanpyx@-0.)((21 N D) X (2,1 D); Oxxx) -

Let #'={W/};-,.. be the Stein open covering of ((22,nD)x Cc"-7)

U (R, nD)x Q, given by
WO—(QlﬂD)XQZ, Wi Vﬂ(QlﬂD)XC" fOl‘ J=1, s B
Then we have the isomorphism
H"W'; Oxxx) == H"(W"; Oxxx) -

Hence we have

pe0(N WH+ Y o(N W).
j=0 k=0 FEal]

We shall show that, if ¢ e ¢( r\ W;) for some k, then S dwl%dw2 -'§>dw,,
¢(z, w) is holomorphic on Q, n D. If' k=2,..., n, then Cauchy s integral formula
implies

48> dw,o(z, w)=0

and hence S dw1§>dw2---§dw,,(p(z, w)=0. If k=0, g dw, <§dw2--- %dw,,q:(z, w)
is holomorpyhic on Q,nD by the argument employéd in order to prove the
holomorphic character of K&(f)(u).

Now, let us suppose that ¢ is holomorphic on /\ W;=(Q2, nD)x (2, n D)

n f\z V;. As was shown earlier, the holomorphic functlon
J=
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g9(z, wy) =§ dw,-- % dw,p(z, w)

is holomorphic if ze Q, N D and T(z, w,) = {(wy, w)eCr; |lw;—zj|Sajlw; —z,|
for j=2,...,n}=Q,nD. Lety; be the straight path joining « and f. Then for
zeQ, n D, we have

[ gz woaw,={ gz wdw,.
Y 71

We shall prove that the second term is holomorphic on ze @, n D. In order to
prove this, it is sufficient to show that, if zeQ, n D and w, €y}, then T(z, w,)
=Q,nD. Since zeD and w, €y}, we have

¢'Re(wy—zy) 2 [Im (w; —z,)|

and hence T(z, w,)c=(z+G’)nL. Therefore we have T(z, w;)=Q, nD. On
the other hand Dn L=¢. Hence we obtain T(z, w,)=Q,n(D—D)<=Q,nD.

Therefore, in proving (3.1.3), we may assume from the first that ¢ is holo-
morphic on /'1\ W'

Let us tgi(oe a sufficient large positive number R such that |[Re (w, —z,)|=R
for w,zeQ,—Q,. Set Z,={(z, wyeZ;Re(w,—z,)SR}. Then Zn(Q, nD)
x(C"—Q,)=Z n(Q,—Q,)x (2, —Q,) is a closed subset of Z, N (Q, —Q,)xC".
Hence the residue map

HYh apyxcr-an((QND) X C"; Oxxx) —> Hp, _o,(2; N b; Ox)
decomposes into
H 3 @npyxcr-0)((21 N D) X C"; Oxxx)
— HYtha-02)xcn((21 N D) X C"; Oxxx)
L H),0,(2:ND; Oxex)
We put Vi={(z, wye C"xC"; Re(w; —z)>R or c'Re(w; —z,) <|Im(w, —z,)|}
and V=V, (j=2,...,n). Then {V'};o. . is a Stein open covering of C"
xC"—Z,. Let #"={W'};,. . be the Stein covering of ((2; N D)xC"—Z,)
U(®,nD)xC" given by 0=(@2,nD)xC" and W}=V;n(Q,nD)xC"
for j=1,...,n. Then we have
HY"#™"; Oxxx)ZH (2, N D)x C"—Zy) U (2, N D)X C*; Oxxx)
=H% 1 0-0,)xen((2; N D)X C"; Ox )

and 7y induces the homomorphism
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’ ”" 1 n i n
H"(W ] @xxx) I H"(W ; @Xxx) =(9x><x( ,[\0 Wj)/(kzo (9X><X( Qk WJ)) .
i= = J

Let y/(z, w) be a holomorphic function defined on f\ W which represents
Y([@(z, w)]). Then it follows from Corollary 3.1.4 that the image f'op([o(z, w)])
=pB'([Y¥(z, w)] is given by

g W(z, wdw  modulo (@, n D).
Y1Xe Xy,

Here y;(j=2,..., n) is a cycle in the w;-plane around {w;; |w;—z;|Sa;lw;—z,[}
and y, is a cycle in the w,-plane around (w;; Re(w,—z,)<R, c Re(w; —z)
>|Im (w;—z,)|}. Now, we shall investigate the relation between ¢(z, w) and
Y(z, w) in order to show that

S” dw, & dwyee- <§» dw,0(z, W)= S Wz, wdw  modulo 6(®, n D).

P1Xe Xy

Let #={U,};=0,. n+1 be the Stein covering given by Uy,=Vin (2, n D)
xQ,, U;=V;n(Q,nD)yxC" (j=1,...,n), and U,,;=(Q,nD)xQ,. Then %
is also a Stein covering of (@, ND)xC"—Zy)U(Q,NnD)xC", and % is a re-
finement of #~' and #” at once.

Since Upc= Wy, U;cWi(j=1,...,n) and U, =Wy, the image of [¢(z, w)]
in HY G 0—0,)xen((@1 N D) x C"; Ox ) is expressed by {@;,, i} €Z(%; Ox xx),
where ¢, ; (io<--<i,) are given by

(p0,2,...,u+ 1= (P(Z, W) 3
(p1,2 ..... ,,+1=(—1)"§D(Z, W),
®i....:,=0 otherwise.

In the same way, we have Uy W], U, W’ (j=1,...,n) and U, = Wq.
Hence [{(z, w)] is expressed by {y;, ;}€Z"(¥; Oxxx), Where ¥, ; (ip<
-+ <i,) are given by
l//0,2 ..... n+1=(—1)n'/1(za W)y
‘//1,2,...,n+ 1 =(— 1)”[#(2, W) 5

Wignin=0 otherwise.

As {@,, ..} and {¥; .} give the same cohomology class in H"(%; Oxx),
{0s.....,—Vio,..i.y 18 a coboundary. Hence there are holomorphic functions
¢ (D= — Py, ;) defined on Q U; (j, k=0, 1,..., n+1) such that

ik

0z W= dipes(z W) on N U=@ND)x20 NV,
i iFn J=
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and
Wz W= gz w)  on N U=(@0D)x20 A\ V).
4 i Jj=

For zeQ, n D and w, such that T(z, w,)c=Q,,

S (p(Z, W)dW,= Z S ¢i,n+ 1(2, W)dW’.
YaXe XV, YaXe XV

By Cauchy’s integral formula, we find
g AWirns1(z, W)=0  for i=2,...n
7,
and hence we obtain

Sv ey o(z, w)dw’=g bo.n+1(2, w)dw'+gv o Oy ni1(z, wydw'.

Y2Xe XYy

Since ¢g,4+1(z, w) is holomorphic on ¥V n(Q;nD)xC", S Don+1
- VXV XXV p
(z, w)dw is holomorphic on @, N D. Here y is the path from « to B given in

Fig. 3.1.1. Hence we obtain
3.1.4)

o(z, w)dwzg $1a+1(z, Wdw  modulo 0(Q, nD).

S)’X}’zx-ux)',, PXY XXV

Similarly, by using Cauchy’s integral formula, we find

S Wz, wydw' =3 S b1z, wydw'
'y2)(.--)('yn ‘yz)(...x’yn

13

=S7’ XeeeX Y (¢1’0(2’ w)+¢1,n+l(z’ W))dW’ .

However, again by Cauchy’s integral formula,
g b10(z, wdw=0  for zeQ,nD,
ViXeX¥y

because ¢, ¢(z, w) is defined on (2, N D)xQ, N N V;. Thus we obtain
ji=2

g)’lx...xyn Y(z, wydw= SY

@1 n+1(2, Wydw .
1X XY p

Together with (3.1.4) it suffices to prove

[ it waw= $1pei(z widw  modulo (@, n D).
'ylx...xyn Tn

PX7V XX

The function ¢ ,.,(z, w) is holomorphic on +m Ui=(Q,nD)xQ2,n
1,n+1
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f"\ V5. Tt is easy to see that h(z, w1)=g ¢4 n+1(z, w)ydw' is holo-
Jj=1 defJyax.xy,

ef

morphic if zeQ,nD, T(z, w,)=Q, and wl—zleK:f{teC; cRet=|Im1y,
Ret<R}.
Now let y’ be the path from B to « described in Fig. 3.1.2.

w, —plane 8

Fig. 3.1.2
If ze Q,nD and w, €y Uy, then T(z, w;) <=, and hence
S h(z, wl)dwl—g hz, wl)dw1=g h(z, w)dw,  for ze@,nD.
7y y v

Next suppose that zeQ,nND and w,ey. Then ¢ Re(w,—z,)>
|Im (w, —z,)|, and hence T(z, w,)ez+G' <=Q,. Since DnL;=¢, T(z, w,)
cynl,cQ,-DcQ,. Thus g _h(z, w)dw, is holomorphic on ,nD.
This completes the proof of Proposyition 3.1.5.
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§2.

The results in the preceding section yield the explicit formula for the action
of micro-differential operators on the sheaf of microfunctions etc., as described
in [10] and [2].

Let us first recall what is the kernel function of a micro-differential operator
(see S-K-K [24], Chapter II, § 1.4). Let &,(r) be a holomorphic function
defined on 7e C—R™ given by

)

(-0*

where we choose a branch @,(—1)=I(1). It follows from the definition that
®, has a pole at A=0, —1,.... We define by convention

?,(r)=

¢_ ()=~ {log (=) +y—(1+-+1/n)},
for n=0, 1, 2,..., where y=0.57721... is the Euler constant. Then

)=t + PO+ A+ F(, 7)

in a neighborhood of A= —n, where F(4, t) is holomorphic if 4 is in a neigh-
borhood of —n and te C—R*. Thus we have
0 p,(1)=0
¥ A(D)=9;.,(0).
For a=(ay,..., o), and z=(z,..., z,), We set

¢az(z) = ¢a1(21)' °t ¢an(zn) .

Let P(z, D,) be a micro-differential operator defined in a neighborhood of
(2% dz,). Then, we can expand P as a power series in Dy,..., D,;

aszzn a,(z)D% .
a;20 (j=2,...,n)

We set

K(Z, W) = @El;)-ﬁ Z am(z)¢a+ 6(z - W) ’

e s,
where d=(1,..., 1).
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Then K(z, w) has the form

K(z, w)=Ko(z, W)+ 52 Ky(z, W) log (w; —2)) + Ky(z, ),

where

Koz, W) =iy X, 82 Puralz =)

— 1 aa(z) —_ —ay~1 ! w!
Kl(z9 W)_ (27171.)"—1 algo (_a1_1)| (zl wl) ! ¢1’+6’(Z w ) .
a=(a,a’)

LI .
Here ¢6'=(1,..., 1), z'=(z,,..., z,) and w' =(w,,..., w,). Then there are positive

numbers a; (j=2,..., n) and a neighborhood D of z° such that

(3.2.1) Ky(z, w) is holomorphic on {(z, wyeDxD; z;#w; (j=1,...,n)} and
K,(z, w) and K,(z, w) are holomorphic on {(z, w)e Dx D; |z;—w;|>a;|z; —wy|
for j=2,..., n}.

We shall define Z, G and V as in Section 1.3 and use the same notations as
those used there with ¢=0. This means, in particular, Z=G={zeC"; a;|z,|
Z|z;| for j=2,...,n and Imz,=0, Rez;=0}. Then K is holomorphic on
VnDxD. Therefore K determines an element of H%(D X D; Oy, x) and hence
that of €(G; D).

Set

Py(z, D)= 3. az)D%.
@120

Then Py(z, D,) is a differential operator of infinite order.

Set
— aa(z) — —a1—1al
A(Z’ Wi, Dz’) u(l;o ) (_a1_1)| (zl Wl) ! Dz .
a=(ay, e’

For any ¢’>0, we take a, f, G’ and D as in Section 1.4.

Proposition 3.2.1. (i) If v(w') is holomorphic in a neighborhood of
{weCr1; |lwy—z;|Sajlz; —wyl|, j=2,...,n}, then A(z, wy, D,)v(z") is well-
defined in a neighborhood of (z, w,).

(i) Let Q, and Q, be G'-open subsets such that Q,—Q,<D and u(z) a
holomorphic function defined on Q, N D. Then the function K&(K)(u) is equal to

(322 (OGP DI+ A wi, DJulw,, 2)dw,

modulo 0(Q, n D).
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Proof. The first assertion is obvious, because
Az, w,, D,)o(z) = —S K,(z, wyow)dw’ ,
VaXeXVy,

where y;={w;eC; |w;—z;|=a;|z; —w,| +&} for O0<e«x].

Let us prove the second assertion. Clearly K4(K,) is holomorphic on
Q,nbD.

On the other hand, it follows from the definition that

(KUK — K u)(z) = g . (Kofz W)+ Koz, w) Log (21 = w)Ju(widw

PXY g XeeeX

where 7y is the path from « to f described in Fig. 3.2.1.

Fig. 3.2.1
Let y' be the straight path [, «] from f to . Then we can easily verify

0 (olE W Kz W) log (2= wi)u(w)dw

is holomorphic on Q, n D. Thus

Koz, w)u(w)dwsg Koz, wu(w)dw

vav:x"-xvn (VY YRV XXV,

modulo 0(2, n D) and the last term is equal to Py(z, D,)u(z) by Cauchy’s integral
formula.
On the other hand, we have

=3
2mi (P4 )X V2 XX V1

.
2ni

K (z, w)log (w, — z,)u(w)dw

S A(z, wy, D )u(wy, z') log (w, —z,)dw, .
vy’

Taking the difference of the branch of log (w; —z;), we find that this equals
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Zy
g Az, wy, D,Yu(wy, 2)dw,. Q.E.D.
a

This proposition can be effectively used to clarify the action of micro-
differential operators on various sheaves, as we see below.

Case 1. Let ¢ be a real valued real analytic (or C!) function on an open set
W of C" and S=¢~1(0). Suppose that Q={z e W; ¢(z) <0} is pseudo-convex
and de does not vanish on S. Set %gw=#_o(0cn)ls and (TEW)r=
{(z, k0,0)e T*C"; k>0, ze S} and let n, be the projection from (T#W)* onto
S. Then &%®|yw)+ acts on n3! €5y Let p be a point in (TEW)*. By an
affine transformation, let us assume that p=(0, dz,). Let P be a micro-differ-
ential operator defined at p. Then we can take {a;} and an open neighborhood
D of 0 such that the condition (3.1.1) is satisfied. Defining G as in Section 1.3,
and shrinking D so that D is G-round, and taking I, « and B sufficiently near to
0 and ¢’ sufficiently large, we may assume that D is a neighborhood of 0. Hence,
by Proposition 3.2.1, we find that P operates on ¢(Q n D)/0(Q) by the action
(P), defined by the formula (3.2.2). Since %5y, is an inductive limit of
o(U n Q)/o(U), where U runs over the set of neighborhood of 0, P operates on
%syw,p DY the action (P), with 0< —a«1.

Case 2. Let Y be a non-singular complex hypersurface of a complex mani-
fold X. We defined in S-K-K [24], Chapter II, Section 1.1, the sheaf €§
on S}X (or T§X —T%X). Thisis an £°-Module. Let us choose a coordinate
system z=(zy,..., z,) of X such that Y is given by z;=0. At g=(0, dz,) the
action of a micro-differential operator P is given as follows: Set Q;={zeC";
Rez; <6|[Imz,|}. Then €% x,= lg 0(Un9,,)/@(U) Thus, in the same

way as in Case 1, P acts on %’;lxq as (P) with 0< —a«1.

Case 3. Let M be a real analytic manifold and let X be its complexification.
Let %, be the sheaf of microfunctions. The sheaf &), is defined on T#X and
% acts on %,. Let us choose a coordinate system z=(z,,..., z,) such that
M={zeC; z;eR, j=1,...,n}. Consider a point g=(0,/—1dz,). Then
%wm,q 18 an inductive limit of H%,(U; 0) with T,={zeC", —6Imz; = Im z;
forj=2,...,nand —6Imz, =2 ~-(Imz,+---+Imz,)}and Ui 1s a holomorphically
convex open neighborhood of 0. Then we have U—T;= U UnVyé), where
Vi(d)={—0Imz,<Imz;}, j=2,..,n, and V,(0)={-0 Im z;<~—Im(z,+-
+2z,)}. Hence
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Hy (U; 0)=0(Un A VNS U N N V{6)).
j=1 k=1 JFEk

Let P be a micro-differential operator defined on a neighborhood of g. Choose
corresponding G and D as before. Since the action of P as an element of
€(G; D) is local with respect to G-topology, P acts on %, , by the action of
(P), on (U n jf:\I V(0)) and 6(U n j@k Vi(9)) (k=1,..., n).

§3.

As seen in the preceding sections, operators in (G; D) has a local property
with respect to G-topology, or, roughly speaking, operators in &(G; D) have
influence domain to the direction G.

We shall here introduce the class of operators where G is contained in a
complex line.

Let X and Y be complex manifolds, and let F be a smooth holomorphic map
from X to Y. Assume the fiber dimension of F is one. Set n=dim Y and
dim X=1+n. The 2(1+n)-dimensional manifold X xX contains X >; X
and the diagonal set X. If we employ a coordinate system (¢, y)=(t, V1,---s Vn)
of X and y=(y,,..., y,) of Y such that F is given by (¢, y)—y, then X x X =
{(t, 3, 12, 7)), XxX={(ts, y, 15, ¥); y=Y'}, and X={(ty, y, t2, y'}st1=t3, ¥
=y'}. Note that X x X is of codimension n in X x X and that X is a hyper-
surface of X x X. Lgt p; and p, be the first and the second projections from
X x X onto XY , respectively. Consider

A = gxxxprxx ® pzlgx—fxxx(@xxx ® p3'Qy).

pjlox p;lox
Here Qy is the sheaf of (1+n)-forms on X. If we fix coordinate systems

(), y=(1,-e0s yu) and (14, 15, y)
of X, Y and X x X, respectively, we can identify o~ with the sheaf of all linear
differential opergtors (of infinite order) defined on X x X that contains neither
D,, nor D,,. !

Now we employ the same procedure as that used in constructing the sheaf
%yix in S-K-K [24], Chapter II, Section 1.1, replacing the sheaf Oy used there
with the sheaf A introduced above. Let S¥(X xX) be the conormal sphere
bundle, X xX * the comonoidal transform of X xX with center X and = the
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. . ~~
projection from (X x X)* onto X x X. Set
Y Y
& =n*%§;(x;x)(n‘lf) .

Then, in the same way as in S-K-K [24], Chapter II, Section 1.1, we obtain
exact sequence

0 — AYUH) — ° —> A'|xy — 0.
On the other hand,

HY(A) =Jf}(%¢5’(§x(@xxx ® p3'Qy)

-1
P2 X

=5 "(Oxxx ® p3'Qx)

P;‘("x
=9%.
Hence we obtain
0— 93— & — Ay —0.
Next we shall identify # with a subsheaf of £#2. Lety be the projection
from T*X—XxT*Y onto X. Then &% can be considered as a subsheaf of
Y
Y£(ER | Tex - X,;T*Y) as follows:

The section s of &% is given by

1 1
(3.3.1)  s=5_+ {Po(t1, ¥ Dy, Dy)g_—t_l—_‘-K(tla 12, ¥, D)) log (tz“t1)} .
where K belongs to #" and Pe 2%. Therefore, by expanding K(t;, t,, y, D))
into the form J;o ji!K i(t1, y, D)(t; —1t,)7, we assign the micro-differential

operator
Py, y, D,, D)~ ,go K1, y, D,)D;7/

to 5. In S-K-K [24], Chapter II, Section 1.4, for any micro-differential
operator P(t,y,D,D,)= ¥ a;,t, y)D{D% defined in a neighborhood of

JjeZ,aeZ
(0, 0; dt), we associated to it the kernel function

(3.3.2) K(ty, 13, ¥, yl)=“(2n—\/l_;‘1)n—+f 2 a;(t, )P y(ty— 1) Py s(y—V),
—_—
where 6=(1,..., 1) and @,(z2)=9, (z,)---P,,(z,).
Then P gives a section of £® on {t,y;1,{); t=y=0, |7|> il a;¢;l3,
=



Horonowmic Systems. III 889

if K(t,, 15, y, ') converges for 0<|y;—yi|<alt;—t,| (j=1,...,n).
We set

(333) PO(ta Vs Dt: Dy)= z 1 aj,zx(ta .}’)DtjD;

(j,mezt’

and
(334) Kl t20.D)= 3 ~soqyp apulls )t~ 1) 71DID;
Ji<0,aezZ.

Then P is a section of & if and only if K(i;, t,, v, y') defined by (3.3.4) con-
verges for t;#t,. This is equivalent to saying that K(t,1t,, y, y') given by
(3.3.2) converges for y;#y} and t;#t,. Hence, by this correspondence, E®
can be identified with a subsheaf of y.(€$|rx_xx1y). Therefore it also
implies that, for any G,={(t, x)e C'*"; x=0, teezz”’ﬁ_*}, an element of &
defines an element of €(G,, D) for some D.

The advantage in introducing the sheaf &® lies in the fact that the action of
&> on holomorphic functions is local with respect to y-coordinates (but not
local with respect to t-coordinate).

This enables us to define the action of operators in & on a special kind of
multi-valued function. (See § 4.)

We shall call the pair (Py(t, y, D,, D)), K(t;, t,, y, D,)) given by (3.3.1) the
kernel of se&®. We denote by & the subsheaf &% n V5 (Exl(rex - H T+Y)
of &*.

§4.

In this section we first review some basic notions concerning multi-valued
holomorphic function after Séminaire Cartan-Serre 1951/52 (Seminaire sur les
fonctions de plusieurs variables). Then we prepare some results needed in
Chapter 1V.

4.1. A pair (X', ¢) is called a manifold étalé over X if X’ is a complex
manifold and ¢ is a local isomorphism from X’ to X. A manifold (X', ¢)
¢talé over X is called a covering space of X if for any point x in X, there is a
neighborhood U of x such that X' n¢~{(U) is isomorphic to a disjoint sum of
the copies of U. Hereafter we assume that X is a connected complex manifold.

Let F be a connected subset of X and ¢ a germ of a holomorphic function
on F (i.e., ¢ is a holomorphic function defined on a neighborhood of F). We
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say that ¢ is continued to a multi-valued holomorphic function defined on X
if there are a holomorphic function ¢ on the universal covering ¢o: X—X and
a connected set F in X such that ¢o(F)=F and the germ of ¢ at F equals the
pull back of ¢.

For the germ of any holomorphic function ¢, there is a maximal continuation
(X', ¢), F', @) in the following sense: there is a “largest’’ connected manifold
(X', ¢) étalé over X, a closed subset F’ of X’ and a holomorphic function ¢’ on
X' such that F’ is homeomorphic to F by ¢ and that the germ of ¢’ at F’ equals ¢.
This means: if (X", ¢’), F” and ¢" satisfy the same conditions as (X', ¢), F’' and
@', then there exists a unique morphism ¢” from X” to X’ such that ¢ =¢oc”,
¢"(F")=F'" and @"=¢’o¢". Hence ¢ is continued to a multi-valued holomorphic
function on X if the maximal continuation in this sense is a covering space over X.

Proposition 3.4.1. Let Z, and Z, be two disjoint closed sets in X. Suppose
that X—Z,, X—Z, and X—(Z, U Z,) are connected and that n,(X —(Z, U Z,))
—-n(X—2Z;) is surjective (j=1,2). If a germ of holomorphic function ¢
at a point xo € X —(Z, U Z,) is continued to a multi-valued holomorphic function
on X—Z; and to a multi-valued holomorphic function on X —Z,, then ¢ is
continued to a multi-valued holomorphic function on X.

Proof. Let ((X',¢), xp, ¢') be the maximal continuation of ¢ (in the
sense defined above). Let X’; be the connected component of X' n ¢ 1(X—Z;)
containing xg (j=1, 2). Then it follows from the assumption that X is a
covering space of X—Z;. By the condition on the fundamental groups,
X;ne (X —(Z, U Zy)) is connected.

Since X n X3 is a covering space of X —(Z; U Z,), we have

Xine (X —-(Z,uZ)=XinX; (j=12).
Thus we obtain
Xine(X—(Z,uZ)=X;nc(X—(Z,U Zy)).

This implies that X7 U X} is a covering space of X. Hence ¢ is continued to a
multi-valued holomorphic function on X. Q.E.D.

Proposition 3.4.2. Let Y, and Y, be closed analytic susbets of X such that
the codimension of Y, NY, is strictly greater than 1. Let ¢ be a germ of a
holomorphic function at xo€e X —(Y; U Y;). If @ is continued to a multi-valued
function on XY for j=1,2, then ¢ is continued to a multi-valued holo-

morphic function on X,
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Proof. By the preceding proposition, ¢ is continued to a multi-valued
holomorphic function on X — Y, where Y=Y, n Y,. Since n,(X—Y)=n,(X), if
X ‘o, X is the universal covering of X, then ¢5!(X —Y) is a universal covering
of X—Y. Any holomorphic function on X —¢5(Y) is continued to a holo-
morphic function on X, because codim ¢g!(Y)=2. This implies the desired
result. Q.E.D.

Let X be a connected complex manifold, = the fundamental group of X
and X the universal covering of X. Then 7 acts on X and X=X/n. A holo-
morphic function on X is called multi-valued holomorphic function on X.

Since the fundamental group = of X acts on the space @(X) of holomorphic
functions on the universal covering X of X, 0(X) is a module over the group
ring C[n] of n. Let a be a left ideal of C[n]. We say that a holomorphic
function f on X has monodromy type a if af=0. We say that f has finite deter-
mination if fis of monodromy type a for a left ideal a such that dimg (C[n]/a)
< 0.

4.2, Let X, Yand F be as in Section 2. That is, X is a complex manifold
of dimension (1+n), Y a complex manifold of dimension n and F a smooth
holomorphic map from X to Y.

Assume furthermore the following conditions:

(3.4.1) F is topologically trivial locally on Y, and Y is connected.

(3.4.2) F admits a section, i.e., there is a submanifold X of X such that X is
isomorphic to Y through F.

(3.4.3) All fibers of F are connected.

Let X and ¥ be a universal covering of X and Y, respectively. By Hurewicz-
Steenrod isomorphism, we have an exact sequence.

m2(X) — m(Y) — 7, (FH(y)) — 1y (X) — 74(Y)

for yeY. Since F admits a section X, n,(X)—n,(Y) and 7,(X)—-n,(Y) are
surjective and hence the sequence

1 — n,(F7(y) — (X)) — 1y (Y) — 1

is exact. Set X’=X/n,(Z) and let ¢’ be the natural projection from X’ onto X.
The map ¢'~1(2)—2 admits a section, which we shall denote by the same letter
Z. By applying the same argument to F ’;{F -¢': X'>Y, we have an exact
sequence



892 MASAKI KASHIWARA AND TAKAHIRO KAWAIL

1 — my(F71(y)) — 1y(X") — 7y (Y) — 1.

On the other hand, n,(X')=n,;(Z)=n,(Y) and hence =,(F'~'(y))=1. This
means that any fiber of F’ is simply connected. Also, one can easily show that
X>x'x7.

WeY shall assume further
(3.4.4) F decomposes into X —, Cx Y2, Y, where p is the projection from
Cx Y onto Yand i is a local isomorphism.

Hence there exists a canonical map from X’ x X’ into Cx C so that X' x X’
is étalé over CxCx Y. Let 5 denote the projec}';ion from X’ x X' onto YI;md
2 the sheaf 7,2% . x_y. Then # has a structure of sheaf gf rings (without
the unit) in the follcl;wing way: Let us denote by (¢4, t,, yY)eCxCxY a local
coordinate system of CxCxY or X'xX'. For P=P(t,t,, y,D,) and Q
=Q(t4, t3, y, D,), the product R(t, t,, y,YDy) of P and Q is

t2
R(rl’ i3 ¥, D)’)=gr dt3P(t1’ t3, ¥, Dy)Q(tas 12, ¥, Dy)a
1

Then this is well-defined because any fiber of X'— Y is simply connected. The
Ring £ operates on FL0Oyx by

3 9P(tla t25 ,V, Dy): (p(ta y) = lp(ts y)s
where

t

w(t, y)=§ P, 5. 7. D,)o(s, y)ds.

INF ~1(y

This integral is well-defined, but this action does depend on the choice of 2. We
shall denote by P this action of Pe £.
Let 2’ be another section of F’. Then we have

g r—

(y)
P(t, s, y, Dy)o(s, y)ds

Pso(t, y)—Pyo(1, y)=3 i
INF ~1(y)
and hence this is a function defined on Y. Therefore P;¢ does not depend on

X, as a section of Fy0y./0y.

4.3. Let F be the projection from C'*" onto C" defined by (, x)
=(t, Xq5.-., X)X =(Xy,..., X,,). Let S be a hypersurface of C'*" containing
the origin. Suppose that the origin is an isolated point of Sn F~1(0). Let
B(e, 6) and B(g) denote the open sets {(t, x)e C'*"; |t]<J, |x|<e} and {xeC";
|x| <&}, respectively. Then there are positive g, and J, such that the following
hold:
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(3.4.5) SN B(eg, 8o) is a closed hypersurface of B(eo, o),
(3.4.6) Sn{(t x): |t]=00, Ix|Seo} =9
(3.47) SNF10) N B(gg, 09)=10}.

For §>0, let () be inf {|x|; there exists ¢ such that (¢, x) belongs to S
N B(gy, 6o)— B(gg, 6)}. Then ‘lsin g(0)=0. By (3.4.6), S n B(go, d¢) - B(gp) is
a finite map. Let H be the subset of B(g,) consisting of the points over which
S N B(eo, d9)— B(go) is not a local isomorphism. Then H is a closed analytic
subset of B(g,) with codimension greater than zero. We shall set X = B(eo, do),
Y=B(d,) and So=(SU F~I(H))n X.

By replacing &, with a smaller one, we can assume further
(3.4.8) B(e)— HSB(gp)— H, B(e, 30)— S&B(gg, 00)—S, B(e, d9) — S B(eo, o)
— S, are isomorphisms up to homotopy.

Let )??éo and }c—\fjl be a universal covering space of X —S, and Y—H,
respectively. Let 7 (resp., mp) denote the fundamental group of X —S, (resp.,
Y—H). By using the section {(t, x); t=4, xe Y—H} of F, where 1eC such
that 0<d,—|A|« 1, my can be regarded as a subgroup of m. Let m; be the
fundamental group of a fiber of X —S,—Y—H. Then n, is a normal subgroup
of m and = is a semi-direct product of =, and n,.

Set X’=()??§0)/7r0 and we define ¢, ¢/, «, o, ®;, @, and F as in Fig. 3.4.1.
The map F commutes with the action of .

X=5,

//O(So) x Y—H
FJ F'\[
~~/
YiH %o Y—H
Fig. 3.4.1

F

f\J
We denote by X" the fiber product X x Y—H and by f the projection
Y
from X" onto X —F~1(H) (hence « is the restriction of ). Set

(3.4.9) F =lim 0py,(0"1(U = So))
U

and
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(3.4.10) G=lim Ox(f~'(U—F~'(H))),
7]

where U ranges over a fundamental neighborhood system of the origin of
C'tn". By definition, G is identified with a subspace of F. Clearly 7 acts on F,
G and F/G.

~—
Lemma 3.4.3. Let u(t, x) be a holomorphic function on X —S, and x,
—~
a point of Y—=H. Let y be a closed cycle in F-'(x,). Then we have
g u(t, xo)dt=0.
Y

Proof. Since the fiber of F' is simply connected, this lemma is obvious by
Cauchy’s integral formula. Q.E.D.

Let ¢ be a holomorphic function defined on a~!(B(e, §)—S,) for ¢ and o
such that 0<d=<d, and O<e<sgy, £(6). Let P(t, x, D,, D,) be an element of
2%(B(e, )) and let K(t,, t,, x, D,) be an element of 2g,x.y({(t;, 12 X); [t4],
|t,] <&, |x|<6}). Then u=(P, K) determines an element of é;(°,°.

We choose a section 2 of

¢~!(B(e, 6)—Sy) — B(e)—H.

We define the action of u on ¢ by
p

(3.4.11) pyo(p)=P(t, x, D,, Dx)<p(p)+S . K(t, s, x, Dy)¢p(q)ds ,
a3 (X)nF-L(F(p))

where a(q)=(s, x) and the integral is calculated along the path in F~1(F(p))

which starts from a31(2) n F-1(F(p)) and ends at p. The preceding lemma

guarantees the right-hand side of (3.4.11) is well-defined on a~1(B(g, d)— Sy).
By defining the action of y e £ in this way, we obtain the following

Proposition 3.4.4. F/G is an £P-module.

Proof. 1t is easy to see that the definition (3.4.11) does not depend on the
choice of 2 modulo G, and that, for ¢ € Ox(8~*(B(g, §)— F~*(H))), us;¢ belongs
to Ox(B~1(B(g, 6)— F~1(H))). (See the preceding subsection 4.2.)

Set Go={(t, x); x=0, t=0}. Then &% is a subring of (ﬁdffl_i%; €(Gy; D),
where D ranges over the set of G,-round neighborhoods of the origin.

Now, F/G is identified with a subspace of
K =lim 0x(f~(U = (So + G/ Ox-(F~(U — F~1(H)))

=lim o5 (V= H); 05" #y),
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where U (resp., V) ranges over a neighborhood system of the origin of C*"
(resp., C"), and 5 is the sheaf on Y— H associated with the presheaf

W — anF—l(W)n(so+Gn)(Un F-I(W); @X) .

Since we can take a neighborhood system of the origin of C!*" formed by U
such that U n (S, + G8) is a locally closed open susset of D with respect to the
G-topology, €(G,; D) acts on s, and hence on K. Thus K is an E-module, in
particular, K is an #¢-module. By Propositions 3.1.5 and 3.2.1, the action of
&2 on K coincides with (3.4.11). Thus we obtain the desired result. Q.E.D.

Remark that the action of é£3° on F/G commutes with that of =.
Let a be an ideal of C[n]. Set

(3.4.12) F(a)={p€eF; a(p)=0 for any oea}
and
G(a)=G N F(a).

Suppose further that dim; C[n]/a<oco. Let L(a) be the locally constant
Cx_s,-module defined by (C[rn]/a)*; namely, for any open set U of X—S,,
I'(U; L(a))={y; ¢y is a C-linear map from C[xn]/a into the space of locally
constant function on «~}(U) such that Y(yo)(x)=y(o)(y~'x) for oeC[xn]/q,
yen and xeoa Y(U)}. Let £(a) be the associated holonomic 2y-Module of
D-type with singularities along S,. Hence, for any Uc X, I'(U; £(a)®) is the
space of holomorphic functions ¢ defined on a~(U—S,) such that a(p)=0
for 6ea. Therefore we have

(3.4.13) F(a)=2(a)3 .

We call #(a) the holonomic 2-Module of D-type with singularities along
S, and with the monodromy type a.

Let a’ be the image of a by the map C[n]—-C[n,(X—F (H))]=C[=,]
and let ¢(a) be the holonomic 24-Module of D-type with singularities along
F~1(H) and with the monodromy type a’. Then we have ¥(a)< % (a) and

(3.4.14) G(a)=%(a) .

Now, we shall show that &2(F(a)/G(a)) is contained in F(b)/G(b) for
some b such that dim C[7]/b < oo.
In order to show this, we shall prepare several lemmas.

Lemma 3.4.5. Let n be a group generated by finite elements and a a
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left ideal of C[n]. If C[n]/ais finite-dimensional, then a is a finitely generated
ideal of C[n].

Proof. Suppose that n is generated by o,=1, 04,..., oy as a semi-group.
Let 4; (j=0, 1,...) be the subset of C[n] defined by 4,={1}, Aj=i§) oA,
(jz1). Then C[rn]=\ A;. Since C[rn]/a is finite-dimensional by the as-
sumption, there is an in{eger m such that C[n]=a+A4,. Lety,,...,7, be a base
of the C-vector space A,,.,. Then thereis y, in A, such that y —y’ is contained
ina (v=1,...,¥). We shall show that

a=(anAd,)+ éi Cl=1(v,—7,)-

Let o’ be the right-hand side. We shall show that a N A,<a’ by the induction
on k. If k<m, this is evident. Suppose k>m. Lets be an element of a n 4.

r
Then we can write s= > s,y, with s,e 4,_,,—,. Hence
v=1

s= 3 syh+ 3 s —v) =Y sy, mod a'.
v=1 v=1

Since Y's,y; is contained in A;_, N a, this is contained in a’ by the hypothesis
of induction. Q.E.D.

Lemma 3.4.6. Let w be a group generated by finite elements and let a,
and a, be two left ideals such that C[r]/a, is finite-dimensional (v=1, 2).
Then C[n]/a,a, is also finite-dimensional.

Proof. By the preceding lemma, a, is finitely generated. Let y,,..., vy
be a system of generators of a,. We have an exact sequence
0 — a,/a,a, — C[n]/a,a, — C[n]/a, — 0.
Since a,/a;a, is a quotient of (C[xn]/a,)¥ by the homomorphism (s4,..., sy)
N
= > 87, Gy/aya, is finite-dimensional. Since C[n]/a, is finite-dimensional,
=1
C [;r]/ala2 is also finite-dimensional. Q.E.D.
Lemma 3.4.7. For any left ideal a of C[rn] such that C[n]/a is a finite-

dimensional C-vector space, there is a left ideal b of C[n,] satisfying the

following properties:
(3.4.15) dim¢ C[wy]/b< c0.

(3.4.16) Let ¢ and 6 be positive numbers satisfying 0<d=d, and 0<e<gg,
&(0), and let ¥ be a section of ¢~ (B(e, 6)—Sy)—»B(e)—H. Then, for any
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multi-valued holomorphic function u on B(e, §)— S, with the monodromy type
a and for y,, y, €™,

vaa; (E)nF~1(g)

v(q)=g u dt (qu/(e)\—fi)

y1e; {(HNF-1(g)

is a multi-valued holomorphic function on B(¢)—H with the monodromy
type b.

Proof. Let C[n/n,] be the vector space generated by n/n,. We denote
by V the C-vector space C[n/my]®C[n/n,]®(C[7]/a), and we endow V with
C [

a structure of n-module by

Y71 @7, @wW)=77; ®y7,®yw

for y,, y,€n/ny, yen and we C[n]/a. We denote by W the C-vector subspace
of V generated by 7;@y;®@W—7;@7,@W—7,87:8®W, 7, @7, @W+7,87;,®w
and a(y; ®y,®w)—7y,®y,®w for y, y5, y3 €/ny, weC[n]/a and cen,. The
vector space W becomes a n-submodule of V.

We now claim that V/W is finite-dimensional. In fact, since 7 is a semi-
direct product of 7, and =y, V/W is generated by 7,®7,®w (y1, 7y, €7y,
we C[n]/a) as a vector space. On the other hand, we have

11 ®7,9w=y,®1®w—y,®1®wmod W

and
117 @1@w=7,R1®@y7'w+7y,® ®@w mod W.

Hence, if {y;,..., yy} is a system of generators of m;, then y;,®1®(C[r]/a)
generate V/W.

Moreover 7; acts trivially on V/W. We shall define a homomorphism
®: V|W—0(B(z)—H) by

7125 (Z)nF-1(g)

11©7,®6 — vW(q)= S (ou)dt (g Ble)~H)

Y223 HD)NF-1(q)

for y,, vy, €nfny, oET.
Then it is easy to see that @ is a well-defined ny-linear homomorphism. Then
b={oeC[n,]; o(V/W)=0} satisfies the required property. Q.E.D.

Lemma 3.4.8. Let a be a left ideal of C[n] such that dim C[n]/a< 0.
Then there is a left ideal o’ of C[xn] such that dim C[rn]/a’< oo and that F(a)
< D,F(a").
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Proof. Let u(t, x) be a multi-valued holomorphic function defined on
B(e, 6)— S for some ¢, 6 such that 0<d<dy, 0<e<egg, &J). Suppose that u
is with the monodromy type a. We choose a section X of ¢~!(B(e, 6)—Sy)
—B(e)— H, and define a multi-valued holomorphic function v(p) defined on
B(e, 6)— S, by

p

op)=| wdt  (pear(B(e 8)-So)
a7 UENF~1(F(p))

Then, for y e n, we have
yip

| =]
a; (ONF-1F(y~'p) ya; ME)NF-1(F(p))

= (ruyas

a; H(Z)NF-1(F(p))

o)) =| (yu)dt

ya; {(E)nF-1(F(p))
: (yw)dt .
a; Y(Z)NF~1(F(p))

Hence, if b is a left ideal of C[n,] satisfying the conditions in the preceding

lemma and if a’ denote the inverse image of b by the map C[n]—C[n,], then

(yv)(p) equals Sp yudt modulo G(a’). Therefore we have o(v)e G(a’)
a; HENF-LU(F(p)

for 6 ea. Hence we obtain ve F(a’a). Thus a’a satisfies the required condition.
Q.E.D.

Proposition 3.4.9. Let a be a left ideal of C[n] such that dim C[n]/a< c0.
Then there is a left ideal b of C[n] satisfying the following properties:
(3.4.17) dimC[n]/b<o and bca.

(3.4.18) Let o be the homomorphism from &% ® (Z(a)? into €3 @

X,0

2%.0
(Z(b)) and B the homomorphism from (L (b)) into € ® (Z(b)®. Then
9% 00
the image of a is contained in that of .

Proof. Let .# be an arbitrary holonomic 2-Module. As shown in
Section 3, we have the exact sequence

0——».@}"——»6;3‘?—+Jflx——+0
Here & is a sheaf isomorphic t0 23%.x/(2%xxD:,+ D, 2%xx) and (ty, t,, X)
Y Y Y

=(ty, t3, X1,.--, X,) is the coordinate system of X x X such that (¢,, t,, x)— (¢, x)
cn
(resp., (t3, x)) is the first (resp., the second) projection from X x X onto X.
Cn

Hence we have the exact sequence

DIQM— E°QM—> A |3y @ M — 0.
2x Dx Zx
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We shall identify X x X with €x X by (t;, t5, X)—(t1, (15, x))eCx X. Then
CVI
(D%x|2%xxD,) ® M =(0c&4)°. Hence we have
Y Y Py

f‘x 9@ -/lfzwc@-/f)w/l)t;(@c@d/l)ﬂx-

Thus we obtain the following diagram for any left ideal b of C[x] such that
dim C[r]/b<co.

Z(0)” — & ® Z(0) — 27|D,, £y — 0

ai |

2(0)° — 6°® £(b) — £F/D,, 25|y — 0,

where #, =0,® £(a) and £, =0, Z(b).

In order to show Proposition 3.4.9, it is sufficient to prove that
P (LYID, L= (L2 D, £%)|y is the zero map at 0, ie., (£)=D,(£F)o.
By the definition, (&), (resp., (£5),) is the set of multi-valued holomorphic
functions defined on V—C x S, with the monodromy type a (resp., b) for some
neighborhood V of (0,0)eCx X. Hence, by the preceding lemma, we have
(Z¥)o=D,(£5%), for some b. Q.E.D.

Corollary 3.4.10. For a left ideal a of C[xn] such that dim C[rn]/a< o0,
there exists a left ideal b of C[n] such that dim C[n]/a<oo and é;g'j’(F(a)/G(a))
< F(b)/G(b).

Proof. Let b be an ideal of C[x] satisfying the conditions in the preceding
proposition. Consider the diagram
F(b)

1/1

Ee ® F(a) —%> & ® F(b) — F|G .

Then the corollary immediately follows from the fact that x(£® ® F(a)) is
25
contained in B(F(b)). Q.E.D.

§5.

The purpose of this section is to construct a special resolution of a holonomic
#-Module whose characteristic variety is in a generic position. This result
will be effectively used in Chapter IV.
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5.1. Let X be C'*". We denote by (¢, x)=(t, x;,..., X,) a point of X.
Let (¢, x; 7, ©)=(t, X15.-v X3 T, E15-.., &,) be a coordinate system of T*X such
that the canonical 1-form is zdt+ Jg ¢idx;. Let E be the subset {(t, x; 7, {);
t#0} of T*X. Then, as shown in Section 3 of this chapter, & is a subsheaf of
(€| g)-

Let us denote by R (resp., R®) the ring of micro-differential operators P
in &,, (resp., &5,) satisfying the following condition:

(3.5.1) P is a polynomial in D, i.e., there exists an integer N such that
(adx)VP=0 for j=1,..., n.

We denote RN &y (m) by R(m). Then R(0)/R(—1)=0yx q,[¢/7,..., &afT].
We denote by 0 the sheaf 04[¢,/r,..., &,/t] on X. Hence R(O)/R(—1)=0'qo.
The ring R (resp., R®) is a subring of éqo (resp., é;‘,’,"o).

We set
A*={PeR%;[x;, P1=0 for j=1,...,n}, A=A°NR and A(m)=An R(m).
Then A and A(0) is a Noetherian ring (Chapter II, § 3 of S-K-K [24]) and
A(0)/A(—1)=0y,q4, The ring R (resp., R(0)) is generated by D, D;! (j=1,...,n)
over A (resp., 4(0)).

Hence, by using Propositions 1.1.4 and 1.1.5 of Chapter I, Section 1, we
obtain the following

Lemma 3.5.1. A4, R, A(0) and R(0) are Noetherian rings.

Moreover, R (resp., R(0)) is a free A (resp., A(0)) module with a base
(D.D;Y)* (e Z"), and hence we have

Lemma 3.5.2. R (resp., R(0)) is faithfully flat over A (resp., A(0)).
Using these results, we prove the following

Lemma 3.5.3. Let d and ry be an integer and M a left submodule of
Rro.  Then there exist integers ry,..., Ty and homomorphisms f;: R(0) s+
—R(0) (j=0,..., d) such that the following sequences are all exact.

(3.5.2) 0—— R(0)°/(R(0)o n M) «—— R(0)° Lo R(O)yt -+ L2 R(O)ra+1
(3.53) 0——Ro/M —— Rro B8 Rri ... R8Ja Rraws
(3.5.4) 0 &0/(6°M) —— &1 L28T0 gri ... 228 prans

for pe Enn~1(qy).

Proof. Since R(0) is Noetherian, we can find an exact sequence (3.5.2).
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Since R(m) is isomorphic to R(0) for every m, R is flat over R(0). Hence (3.5.3)
is exact. In order to prove the exactness of (3.5.4), let us consider the following
diagram:

(3.5.5)
0 0 0 0

l l l l

0——R(—=Dr/(R(—=1)ren M)—R(—1)o—R(—1)rte—- - «——R(—1)ra+t

J i l l

0——  R(0)°/(R(0)°NM) —— R(O)° «—— R(0)t «—---——R(0)ra+t

| l |

O O, —re— O
{ I

| | l
0 0 0

Since all columns and the first two rows are exact, the row in the bottom is also

exact. On the other hand, Or.ci+n , is flat over 0.,10. Hence the sequence

(3.5.6) OBigion,p —— Ogron p e - — Ofithion

is exact. This is the symbol sequence of (3.5.4). Therefore, by combining
* Theorem 3.4.1 (a) and Proposition 3.2.7 of S-K-K [24] Chapter II (cf. p. 405
of S-K-K [24]), we find (3.5.4) is exact. Q.E.D.

Corollary 3.5.4. &, is flat over R for any pe Enn~(q).

Proposition 3.5.5. Let .# be a holonomic &x-Module and #, a coherent
&6(0)-sub-Module of #. Suppose that the support of .# is in a generic po-
sition at py. Then the stalk My, (resp., My p,) of M (resp., M) at py is a
finitely generated left A-module (resp., A(0)-module), and satisfies the fol-
lowing :

M for peC*p,
3.5.7 8y ® My, =8, ® M, ={ Po
( ) r ? Po Pé’g;)o Po 0 fOI' pEE N n_l(qo) _Cx_po .
MY, for peC*p,

358) ECQ@MD=EF Q@ ML ={
( ) F 1@ bo p;? P lo for peEnn(gy) —C*p,.
1]

Proof. We may assume #=~&.4, The 0(0)-Module .#,/.#,(—1) is
a coherent ¢(0)-Module whose support is contained in Supp.#. Hence
(AMo| Mo(—1))p, is a finitely generated Oy ,-module. Since p, is an isolated
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point of Supp .# nn~1(qy) N {t=1}, &/t operates on (4y/&(— 1)./40),,0 ® C

as a nilpotent operator for v=1,..., n. We choose a set of elements {u J} j=1,d
of (.4,)p, such that the module class [u;] of u; in (My/&(— 1)-//’0)110 ® C

forms a base of the finite-dimensional vector space

(Ao/&(=1)otle)gy ® C=llyp,)(E(=D+ 3 6Oz, -

Since (£(— 1)+ i x,6(0)),, is contained in the maximal ideal of the local ring
v=1

6(0),,, Nakayama’s lemma entails

(3.5.9) Mo=é°(0)u1+-"+é”(0)ud.

Let U be the column vector with u,,..., u, as components. Since &/t acts on
(M| E(— I)MO)I,0 ® C as a nilpotent operator, there is a d x d matrix A,(t, x)

of holomorphic functlons on X such that (D,D;j'—A)U e .#,(—1)i, and
A0, 0) is a nilpotent matrix. Hence we obtain (D,—A,D)U € (#4),4. By
(3.5.9), there is P, € M (£(0),,)™® (v=1,..., n) such that

(3.5.10) D,—AD,~P)YU=0  for v=1,...,n.

Next we shall show that there exist By,..., B, € M (&(1),,) such that
(3.5.11) B, is free from Dy,..., D, i.e.,, [D,, B,]=0 for v, u=1,...,n
(3.5.12) (D,—B,)U=0 for v=1,...,n
(3.5.13) o.(B,)=A[t, x)t for v=1,...,n.

For this purpose, we consider the following condition:

(3.5.11), B, is free from D;,..., D, for v=1,...,n.

We shall prove the existence of Bj,..., B,e M(&(1),,) satisfying (3.5.11),,
(3.5.12) and (3.5.13) for u=0,..., n by the induction on u. This is true for u=0.
For 0= u<n, let us suppose the existence of such B, satisfying (3.5.11),, (3.5.12)
and (3.5.13). By Spith-type division theorem for micro-differential operators
(S-K-K [24] Chapter II, § 2.2, Theorem 2.2.1), we divide B, by D,,;—B,,;
B,=5,D,+1—B,+)+B, where S,eM,(£(0),) and B,eMy&(1),) such
that B, is free from D,,,. The uniqueness of the division implies that B, is
also free from D,,..., D,. We have also ¢,(B,)=0,(B,)=A4,(t, x)t. Thus we

n

¢¢) Here and in what follows, M (x) denotes the set of dxd matrices whose components
belong to *.
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see that B, satisfies (3.5.11),..4, (3.5.12) and (3.5.13), and the induction proceeds.
This completes the proof of the existence of B, satisfying the required
conditions (3.5.11), (3.5.12) and (3.5.13).
Hence the Spath-type division theorem entails

(3.5.14) 83, = ¥, (650D (D= B)+ A
(3.5.15) Epy= ;1 (£,)D,— B,)+ A4

and

(3.5.16) Er, = 21 (€5)U(D,—B,)+(4")¢.

This implies 4 ,,= Z E0)pou;= Z AQ)u; and A, = Z Epollj= Z Auj,
and hence .4, (resp., /{0 o) 18 ﬁnltely generated over A (resp A(O)) a
Next we shall show (3.5.7). The relation &, ®¢//,,o =6, ® Mp,=0 for

peEnn(qy)—C*p, immediately follows from (3.5.12) and (3 5 13), because

A0, 0) is a nilpotent matrix and D,— B, is invertible at p.
Let us consider the following homomorphisms:

"%Po > ébl’o CI? "A/Po "‘f_> '///PO’

where f and g are defined by g(s)=1®s and f(P®s)=Ps. It is clear that
feg=id. Hence the surjectivity of g will imply that both f and g are isomor-
phisms. Again by (3.5.15) we find &, %} ¢//p0=é’p%<)(ZRuj)=Zé’pC>l<‘)uj
=2 1® X Ru;=g(A,,) for peC*p,. In the same way, we have &, ® My,
=.#,,. Hence we obtain (3.5.7). The property (3.5.8) is also obtaiil‘ec’ci in
the same way, by using (3.5.16) instead of (3.5.15). We leave the detailed
arguments to the reader. Q.E.D.

Corollary 3.5.6. A3, =83 My,
In fact, £, Z Eynuj, and (3.5.16) shows the desired result.
Jj=1

Corollary 3.5.7. Any R-submodule of 4, is an &,,-module.

Proof. Since .4, is finitely generated over R, any R-submodule N of
My, 18 ﬁnitely generated. Let Sls ., S, be a system of generators of N. Then
No= Z R(0)s; is contained in Z €(0)s;, and hence N, is a finitely generated

A(O)-modu]e Let uy,..., u; be é—system of generators of N, as an 4(0)-module.
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Then there is B,e A(1) (v=1,..., n) such that (D,—B,)U=0, where U is the
column vector with wu,,...,u, as components. Since é”;‘,o=vZ:‘,l ¢¢.(D,—B,)
+A44, the division theorem entails ) &, u,=2 Au,=N. Hence N is an
&p,-module. ’ ' Q.E.D.

5.2. Let .# be a holonomic £&x-Module defined on a neighborhood U
of po. Suppose that the characteristic variety A of .# is in a generic position
at po,. Hence p, is an isolated point of A N=n~!(gy) N {t=1}. Therefore, by
shrinking U if necessary, we may assume that A is a closed analytic subset of
n~1(V)—T%X for a neighborhood V of q,, and A N7 1(qy)=C*p,. Moreover
A is defined over n~1(V)— T%X with Supp 4 =A.

Theorem 3.5.8. There exist integers rg,..., Faurq, P;€ M(¥jyy, r;3 R)
(j=0,...,2n) and a homomorphism F:&w— My, such that the sequence

(3.517) Ot Lg% Lo gy B ... FLant pin Pan planer

is exact on ENn~Y(V) for some neighborhood V of q,, where E={(t, x; 1, &)
eT*X; 1#0}.

Proof. Let uy,...,u, be a system of generators of .#,, as an R-module.
Setting d=r,, we have an exact sequence by u,,..., u,,: 0«.#; «R". Let M
be the kernel of Rro«.#,,. Then, by Lemma 3.5.3, there is an exact sequence

0 —R(0)o/(RO) n M) R(O)re L& R(O): «— -+ «=22=1 R(O) ",

Let N be the kernel of R(0)2» —P2n=1, R(O)2=-1. Set P,;=(R(0)/R(—1)®P;
and N=N/R(—1)N. Then the sequence

N——0

(3.5.18) Op Lo G P Grpn
is exact. Since the global cohomological dimension of dqo is 2n+1, N is a
projective @.qo-module. On the other hand, by Grothendieck’s theorem in
K-theory (e.g. [27] Chapter XII. § 3), we can find an integer r such that N @(530
is a free dqo-module. Then by replacing r,, with r,,+# and P,,_, with
P, 1 ®0, respectively, we may assume from the first that N is a free @.qo-module.

Let v4,..., 0 be a set of elements of N such that the modulo classes [v,],

Fan+1

weos [y,,,,] form a base of N. Let P,, be the r,.; X r,, matrix determined by
Vgseees Uy, and set P, =(R(0)/R(—1))®@P,,_,

*) Here and in what follows, M (r, r’; *) denotes the set of r X r” matrices whose components
belong to *.
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(3.5.19) Op Lo O o Oppn Ban granes 0
is an exact sequence. Since 0 is a coherent sheaf on X N
(3.5.20) gro Fo gri P Pan gransi
is exact on a neighborhood of qo. Since Opeci+n]y is flat over @, the sequence
(3.5.21) Ofgron <2 Otigron e o B2n @anst 0

is exact on Enn~Y(V) for a neighborhood V of g,. Since this is the symbol
sequence of the sequence.

(3.5.22) Ero Fo gri ... Pan grane

the sequence (3.5.22) is exact on Enzn~!(V). Let .#' be the cokernel of
&ro Lo, #r1. Since M, R Lo Rriis exact, we have A, =&, ® Mpy= My,
Hence .#' is a coherent &y-Module defined on Enzn~(V) such that .4,
=Mp,

Let U be the column vector with uy,..., u,, as components. Then it follows
from the proof of Lemma 3.5.1 that there exists B,e M, (R(1)) (v=1,..., n)
such that

(3.5.23) B, is free from D, and its principal symbol ¢(B,) is nilpotent at
( x)=(0, 0)

(3.5.24) (D,— B,)U =0.

The property (3.5.24) asserts that we can find a homomorphism Q,: R™—R"
such that D,—B,=Py°Q,. Hence the support of .#’ is contained in {(¢, x;
T, £); det (¢,—o((B,)t, x, 7))=0 for v=1,..., n}. The property (3.5.23) implies
that Supp .#’ is a closed analytic subset of #=4(V')n T$X for a neighborhood
V' of qo and Supp #' N 7"1(qy)=C*p,y. Since 4 =.#' on a neighborhood of
Do> M =.#" on =Y (V") n E for a neighborhood V" of q,. Q.E.D.

Chapter IV. Embedding Holonomic Systems into
Holonomic Systems of D-type

The purpose of this chapter is to prove a theorem which asserts that any
holonomic system whose characteristic variety is in a generic position can be
embedded into a holonomic system of D-type. Since holonomic systems of
D-type have a rather simple structure, we can study properties of an arbitrary
holonomic system by this embedding.
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§1. Statement of the Results and Outline of the Proof

Our main result of this chapter is the following theorem.

Theorem 4.1.1. Let .# be a holonomic & x-Module defined on a neighbor-
hood of poe T*X —T%$X. Assume that the characteristic variety A of M is
in a generic position. Then there exists a holonomic Dx-Module & defined
on a neighborhood of q,=mn(p,) and a D3 q,-linear homomorphism ¢ from
j;‘,"o;f(é’?%.//)po into ./Vi‘,"odff(.@?g N )y, satisfying the following conditions:
(4.1.1) There exist an integer r and a holonomic system % of D-type with
singularities along n(A) such that A" is isomorphic to the quotient £|0%.
(4.1.2) The homomorphism from M43, into é’;‘f‘og@;) ./qu=é”§‘,°°9@ N7, defined
by s—>1®¢(s) is an injective &5, -linear homomorph?sm. o

The idea of the proof of this theorem is as follows: Let C be the space of
holomorphic functions defined on some cone whose apex is the origin modulo
holomorphic functions defined on a neighborhood of the origin (see Section 5
for the exact definition of C). Then V= Hom,; (A7, C) is a finite dimen-
tional vector space (Proposition 4.6.1), and this space is sufficiently ample, in
the sense that the homomorphism .#7,—-Hom¢(V, C) is an injective map
(Proposition 4.6.2). Therefore .#7, is embedded into C' for some [>0. Let
$1,..., Sy be a system of generators of .# and {¢,} a base of V. Let ¢;, be a
holomorphic function whose modulo class is ¢,(s;). Then we can prove that
@;,, is a multi-valued holomorphic functions defined on X —n(4) with finite
determination (§5, §6). Hence all ¢;, can be considered as a section of £*
for a holonomic 2-Module ¢ of D-type. In Section 7 we prove that the map
from #7, to #7! defined by s;~(¢;,), is the desired embedding of .#*.

Sections 3 and 4 are devoted to the preparation for making V explicit, and
Section 5 is to prove that ¢; , are multi-valued holomorphic functions defined on
X —n(A).

§2. Geometric Preparations

Let X be a complex manifold of dimension 14+n (n=1), A4 a closed homo-
geneous Lagrangian variety in T*X —T%X, p, a2 poin! in A and go=n(p,).
Suppose that
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4.2.1) AnaYqo)=C*py.

Then S =n(A) is a closed hypersurface of X on a neighborhood of gy and A=T¥X
on a neighborhood of g,. Let F be a holomorphic map from (X, q,) into
(Cm, 0) (i.e., F is a holomorphic map from a neighborhood of g, into C" such
that F(q,)=0). Suppose that F is of maximal rank and the restriction of the
covector p, on the fiber F~1(0) does not vanish. Then there is a local co-
ordinate system (¢, x)=(t, xy,..., X,) of X at g, such that p,=(0; dt) and F: (t, x)
—x. We shall take the local coordinate system (t, x; 1, &)=(t, X1,.-, X,3
T, &1y.eny &) Of T*X such that the fundamental 1-form w equals tdt+ i ¢dx;.
For ¢, 6>0 we shall denote =

(4.2.2) B(e, 0)={(t, x); |t| <9, |x| <&},
and
4.2.3) B(e)={xeC"; |x|<e}.

Lemma 4.2.1. For any p>0, there is a neighborhood U of q, such that
SnU<{(, x); [t =plxl}.

Proof. S is the projection of {(t, x; 17, {)e A; T=1} in a neighborhood of
qo. Hence, if the lemma were not true, there would be a path p(1)=(t(1), x(1);
1, &(A)) in A such that p(0)=p, and [t(1)| > p|x(4)| for 0<i« 1. Since w=0 on
A, we have

dt(4)

i) _ <€(i) dx(/l) .

dt(A)+ &), dx(A))=0, i.e.,

Set
(#2), x(A)=(tg, xo)A™ mod Am+1

with (2o, xXo)#0. Then [t5|=p|x,|. Since £(0)=0, we have

dx(l)

<5(;) > =0 mod A"

and hence we obtain t,=0. This is a contradiction. Q.E.D.

By this lemma, there are positive numbers g, and d, satisfying the following
conditions.

(4.2.4) 0< g < 50, B(Eo, 50) X ’
(4.2.5) SN B(eg, d) is a closed hypersurface of B(g, d),
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and

(4.2.6) S 0 B(go, 60) ={(2, x) € B(o, do); [t|Z1x]} .

The property (4.2.6) implies that F | snpeg.60): S N B(&o, 89)— B(go) is a finite map.
Hence there is a closed analytic subset H of B(g,) satisfying

4.2.7) S N (B(gg, dg)— F~1(H)) —£5 B(eg)— H is a finite covering.

Since A N n~(gy)=C*p,y, We may assume also

428)  {(t, x; 7, Oed; (1, X)eBleo, 60)} <{(t, x; 7, &); 8| =]}

Throughout this chapter G, always denotes the closed convex cone {(t, x)
eCl*m; x=0, Imt=0, Ret<0} of C'*". We also denote by G§ the antipodal
set of Gy, i.e. {x=0, Imt=0, Re t=<0].

Lemma 4.2.2. For any p>0, there exists a point x; of B(e;)—H which
satisfies the following conditions:

(4.2.9) x| <p,
4.2.10) For any point p of F~1(x,) N S N B(gy, 0p),
B(eo, 90) N S N ({p}+ Go)={p} .
Proof. Let x, be a point of B(g,) N B(p)—H. Then, by (4.2.7), there are

a neighborhood W of x, and holomorphic functions ¢;(x) (1= j<m) defined on
W such that

B(gg, do) N SN FY(W)= Q1 {(t, x); pj(x)=t, xe W}

and @;(x)# @u(x) for j#k, xe W. Note that ¢;(x)—¢@,(x) is not a constant
function for j#k (otherwise, S><"S should contain {(t4, t,, x); t; —t,=c} for
¢#0 and this would contradict (46.2.6)). Therefore there is a point x, of Wsuch
that @;(x;)—@u(x;)&R for j#k and that |x; —x,|<p—|x,|. This x, satisfies
the required conditions. Q.E.D.

§3. Resolution of .#

We shall keep the notations of the preceding section. Let .# be a coherent
&x-Module defined on a neighborhood of p,, whose support is contained in A.
Hence we can extend .# into a holonomic £-Module defined on a neighborhood
of ©~1(qo)— T3X, whose support is contained in A. Therefore, in the sequel,
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we assume that .# is a holonomic &x-Module defined on a neighborhood of
n~Yge)— T%X, and Supp (#) < A.

In Chapter 111, Section 5, we proved that .# has the following resolution
(4.3.1) on a neighborhood of p,:

(4.3.1) 00— M «

&0 FPo EY A | EYr ¢ 0,

where P; are matrices whose components belong to & and are of order <0.
Moreover (4.3.1) is exact on {(t, x; 7, {)e T*X; |t], |x|«1, t#0}. Each P;
can be expressed by a matrix of integro-differential operators K(t,, t,, x, D,)
(Chapter 111, §3). Hence, for some g, and J, such that O<e, <d,, &, =g, and
0, =00, all K; are defined on {(t,, t;, x); |t;], [t,] <y, |x| <g;} and the sequence
(4.3.1) is exact on {(t,x;1, {)eT*X; (t; x)eB(g;, 04), T#0}. Hence, by
replacing &,, d, with ¢,, 6,, we may assume from the beginning

(4.3.2) All Ki(ty, t;, x, D,) are defined on {(t;, t5, x); |t;], [t2] <o, |X| <&o} -

Hence K; gives an element of €&G,; D) with D=B(gy, dp) and Go={(t, x)
eCl*"; x=0,t<0}. Note that D is Gy-round. Thus we may assume the
following:

(4.3.3) P; is given by K.
4.3.4) Let Mt be the following complex:
0 «—— &Gy, D)No Ko ... K-t (G, DY¥r 0.

Then éa:’t@(c(?-u) M is quasi-isomorphic to .#F for pedAnF (D) and

Y ® M isexact for pe{(t, x; 1, ) &EA; 1#0, (1, x)eD}.

€(Go;D)

§4. Vanishing Theorems

In the preceding section, we constructed a resolution 9, of .#,, where 3,
is a complex of €(G,; D)-module. Hence we can apply Theorem 4.5.1 of [19].
We note that we can replace the condition (c;) in Theorem 4.5.1 of [19] with
the following weaker condition:

ERQM . is exact for p=(x, £) such that xe Q; —Q, and (&, Q(x)) <O0.

The same proof in [19] can be also applicable under this weaker condition.
Thus we have the following proposition in our case.

Proposition 4.4.1. There is a Gy-open neighborhood U of q, contained in
D =B(ey, 0,) which satisfies the following condition:
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Let Q, and Q, be two open subsets of C'*" satisfying the following con-
ditions:

(a) Q,2Qyand Q,—Q,€U.

(b) There is an open convex cone R in TU such that R> U x(Go—{0})
and that Q, and Q4 are R-flat on U.

(c) There are an open convex cone Q of TU and a C'-function g defined
on a neighborhood of Q, —Q, satisfying the following conditions:

(cy) {(p, V)eTU; v, dg(p)> >0, peQ, - QO}DQ Nt 1(Q;—Q), =R,
(c) Q,—Q, is Q-flat in a neighborhood of Q, —Q,
(c;) For any point p=(t, x; 1, &) in T*U, if (t x)e.Q1 Q, and if
Re (tw+ <&, v))<0 for any (t, x; w, v)€Q, then p does not belong
to A.
Then Q,—Q, is locally closed in D with respect to Gy-topology and
RHomggy;p) (M., RINg, - 0(24; ¢40x))=0.

In this proposition and in the sequel, we denote. by ¢ the continuous map
from B(gy, o) into B(ey, d¢)g,, Where B(go, do)g, is the topological space B(go, o)
endowed with the G,-topology.

By using this proposition, we shall prove various vanishing theorems for
the cohomology groups R Hom (9t ,, ¢..0).

In the sequel, for a>0, let G(a) denote the following convex cone:

4.4.1) G(a)={(t, x); Ret< —a(|Ilm t|+ |x])}.
Then {G(a)},>, is a decreasing family and we have G,= N G(a).

a>0

Proposition 4.4.2. Let Q; and Q, be two Gy-open subsets of C1*" satisfying
the following conditions:

(1) Ql—'QoCU.
(i) (@, -0,)nS=0.

Then we have
RHomgg,py (M, R, _o,(2,; ©+0x)=0.

Proof. The Gy-open subset E={(t, x); Ret< —¢gy} does not intersect U.
Replacing Q, and Q, with Q, U E and Q, U E, respectively, we may assume from
the first that

(i) QN Q,oE.

In order to prove the proposition, it is sufficient to show that
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RHomgg,,p) (M., R, _o(9+0x)) is quasi-isomorphic to the zero complex of
the sheaves on (Q; —Qy)g,- On the other hand, open subsets Q of Q, satisfying
the three conditions:

QoE, Q—-Q,cQ, -9, and Q is G(a)-open for some a>0,
form a base of open subsets of (Q; —Q,),- Hence it is sufficient to show
RI(2; RHomggyp) (M, RI g, - 0(¢+0x))) =0
for such an Q. By replacing 2, with Q, we may assume from the beginning
(0) Q, is G(a)-open for some a>0,
(i) Q,—Q,cU,
(i) (Q,—-Qy)NnS=0,
(iii) Q,nQoE.

For 6>0, we set Qy(b)={x; x+G(b)cQ,}. Then Qu(b) is a G(b)-open
set and contains E. We shall prove that

(4.4.2) 2, N Q0= U (2N 2(b)),
and
(4.4.3) fax —Qo(b)=0,— Q.

Let us prove first that

Q00 Q= U (210 (b))

Let p be a point in 2, N Q,. Then (p+ Gy)—E is contained in @, N Q,. Hence
(p+ G(b))—E is contained in Q; N Q, for some b>0, because {(p+ G(b))—E},>,
is a decreasing family of compact sets whose intersection is (p+ G,) —E. This
shows peQy(b) for some b>0. Thus we obtain (4.4.2). Let us prove that
(4.4.3). 1t is obvious that r\ Q,—Qy(b)>Q2,—Q,. We shall prove the con-
verse inclusion relation. Let p be a point outside Q; —Q,, and we shall show
P& /\ Q, —Qy(b). Since p&Q,—Q,, there is an open neighborhood V of p
such that VnQ,cQ, Therefore Qyo((V'nQ,)+Gy)UE. There are also a
neighborhood V' of p, and b>0 such that, for any p’ in V', we have

(@' +G(@)nV)+Go) U E=p'+G(b).

Thus we have Q, n V' = Qy(b). This implies that pe£Q, — Qy(b). Thus (4.4.3)
has been proved.

Since {Q, —Qy(b)},>o is a decreasing family of compact subsets, we have
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Q,—Qyb)cU and Q,—Qy(b)nS=¢ for b>1,a. Hence, if we prove the
proposition for Q; and Q,(b), then
Ext/ (M, Rl g, —0,(Qy; ¢+0x))
=l%ﬂ_1 Ext/ (M, R g, —0,)(215 94+0%))=0.

Thus we may assume from the first

(0 Q, and Q, are G(a)-open for some a,

i @,-Q,cU,

(i) Q,-Q,nS=g.

Now we can apply Proposition 4.4.1. Set Q=R=U xIntG(a) and
g= —Ret. Then all conditions in Proposition 4.4.1 are satisfied and we obtain
Ext/ (I, RIg, —o,(Q;; ¢+0x)=0 for any j. Q.E.D.

Proposition 4.4.3. Let Q, and Q, be two Gy-open subsets of C**" and W
an open subset of B(ey). Assume the following conditions:

(i) 2,-Q,cU.

(i) SNFY(W)cR,—-9Q,.

Then we have

(a) Any cohomology group of R(F|g,).RHom (M, Rl _o(0.0x) is a
locally constant sheaf on W. Here F |, is the restriction of F to Q, (and hence
Flgq, is a map from Q to C™).

(b) R(F|q)«RHom (M, Rl g _o(@40x)|w does not depend on the
choice of Q, and Q,. More precisely, if Q) and Qy are two Gy-open subsets
satisfying the conditions (i) and (ii), then

R(F|go)«RHom (M, Rl g, - o,(9+0x)) | w
and

R(F| 91)*R Hom (9, RFQ}—QE,(‘P*@X)) [ w
are canonically isomorphic.

Remark. F|gq gives a continuous map from Q,; to C", where Q¢ is
endowed with the G,-topology and C" is endowed with the usual topology.
Hence the above statements make sense.

Proof. First we shall show (b).
We shall consider the case where Q,=Q; and Q,>502]>Q,. Then it is
enough to show
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R(Flgo)sRHom (M, RIg, o (940x)) | w =0,
because we have the triangle

R(F|g,)+«R Hom (M, RI o, _0;(¢+0x)) | w

/ +1
R(F| 0,)R Hom (., RTg,_0,(940x) | \

— R(F|g;)«RHom (M, R g;_0,(¢0:0x)) | w -
For any open subset W’ of W, we have

R Hom (M, RFF-X(W')n(Ql—9;)(F_1(W') NQ¢; @40x))=0.

In fact, since F-1(W)n(Q,—Q})<U and (F-{(W')n(R;—L))) N S=g, we can
apply Proposition 4.4.2.

Secondly, we shall consider the case where Q,=0Q]>5Q,>Q;. Then, for
any open subset W' of W, we obtain

RHom (M, RI g, oi(F~H(W') N Qo; ¢40%))=0
by applying Proposition 4.4.2 and hence, by the same way as in the preceding
discussion, we have
R(F|g,)«R Hom (3t , ano—ﬂf,((/’*@x)) lw=0
and hence
R(F|g)xRHom (M, RI g, - o(0:0x)) | w
=R(F|g,)«RHom (M, RI'g, _ oi(0+0x)) | w -
Now we shall prove (b) in general. We may assume 2, > €, and Q> Q.
Set Q1=0Q, n 2] and QE=0, U 2y. Then we have
R(F|go)«RHom (I, Rl g, —o0(#+0x)) | w

=R(F|g,)«RHom (M, R, _ o5(0:0x)) | w

=R(F| a;’)*R Hom (90t , RF.Q'{ —ng(ﬁo*wx)) | w
by using the preceding results. In the same way

R(F| 9’,)*R Hom (M, RFQ}—Q{,(QD*@X)) [w

=R(F| 9’,’)*R Hom (M, RI gy _ o5(040x)) | w .

Thus we obtain the desired result (b).
Next we shall show (a). The question being local on W, we may assume

that SnFY(W)=Q,—9, by replacing W with its relatively compact open
subset. Set E={(t, x); Ret< —gy}. Then E is a Gy-open subset disjoint from
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U. Replacing Q, and Q, with Q, U E and Q, U E, respectively we may assume
that Q, N Qy>E. Let U’ be an open subset of U such that

SNFY(W)cU' and U'<cQ,nU.
Set G(b)={(t, x); Ret< —b(|[Im t|+[x|)}. Since (U’ +Gy) N (U’ +G8 <=(U+Gy)
N(U+Gg=U, we have
4.4.4) (U +G6b)n(U +Gb))=U for b»1.

Then Q;=(U'+G(b)) U E and Q{=C"*1—(U’+ G(b)?) satisfy the conditions (i)
and (ii). Hence, by replacing Q; and Q, with Q] and @ respectively, we may
assume from the first

(0) Q, and Q, are G(b)-open for some b>0 and Q, N Qo E,

(i) 2,-2cU,

(i) Q,—Q,>SnFY(W).

For x, € W, denote by W(x,, r) the open ball centered at x, with radius r.
We shall show that

(4.4.5) R Hom (I, RTg, -o,(F~'(W(xy, 7)) N Q5 Ox)
~RHom (M, RTg, _o,(F{(W(x;, )1 2,: 0)))

for 0O<r’'<r and W(x,, r)cW.
Set, for a>0,

U(x,, a, )={(t, x); Ret<ar—egy—alx—x,[}.
Then we have

U(xy, a, »NUcF Y (W(x,, 1),
Uxy,a, )NUcU(xy,a', ¥)NU for O<a=a,0<r'=sr",

and
Fix)nUcU(xy, a, r) for ar >2e,.
Note that |[Ret|<gy on U. We now have the following

Lemma 4.4.4. RHom (I, Ry, _o (2, N U(x,, a, r'); Ox))
~RHom (M, RI g, (2, N U(xy, a, r"); Ox))
=RHom (M, RIg,_o,(2; N U(xy, a’, 7'); Ox))

ifo<r' &r", W(x,, r"Yc W, 1<a<a’ and ar' >2s,.

Proof. It is enough to prove
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(4.4.6) RHom (M, RIy, apmna, - @ovuenarn(@1 N UXy, a, 1'); 05))=0,

and

(4.47) RHom (M, R yi,.am)n01 - (@00 Urary(@1 N Uxy, @', 1); 0x))=0.
Take an open set U’ such that SNF{(W)<U’ and U'<=(Q,—-Q)nU.

Choose da”">a’,b,1 and define R=Ux{(w, v)eC!*"; Rew< —2a”"(|Im w|

+|vD)}, git, x)=Ret—a"|x—x;| and Q@ by RU{({t x;w,0)eTU; (t, x)eU’,

x#x; and Re(<(w, ), dg(t, x)>)=Re<w—%%(t, x)+ i vji)‘?—(t, x))

j=1 i
< —e(|Imw|+]v])} ’
for 0<e« 1. Then Q is a convex cone. If peU’'—U(xy, a, r') and if (z, &)

e C1*n satisfies Re ({(z, &), @ nt™1(p)>) <0, then (t, &) is very near to R*dg(p)
(0<ex1). Since

”

09(n)=(3 5 5p)  for p=(x),

we have |t <|¢|. (In fact, we have || =(a”"—¢) Ret and |[Im 7|<e¢Ret. Hence,
if a">e+(1+¢£2)1/2, we have |1|<|&]). Therefore (p; (z, &) is not contained in
A by (4.2.8). Thus the conditions in Proposition 4.4.1 are satisfied for
U(xy, a, )N Q2 —(Qy U U(xy, a, 7)) and U(xy, a’, ) N2, — (2o U U(x,4, a, 1))
for these Q, R and g. This implies (4.4.6) and (4.4.7) and completes the proof of
Lemma 4.4.4.

Now let us return to the proof of (4.4.5). Since U (Un U(xy, a,r))
a>0
=Un F~Y(W(x,, 1)), we can apply Mittag-Leffler’s theorem, and we obtain

Ext/ (M., Rl g, o (F~'(W(x1, 1) N Q,); Ox)
=lim Ext/ (W, RTg, _0,(U(xy, @, 1) 1 Q5 Ox))

=1iam Exti (D, Rl g, — o, (U(xy, a, )N Qy; Oy))
=Ext/ (M, R, _o,(F1(W(xq, r)NQ;); Ox)).
Thus we find (4.4.5). Hence, if we put
F =R(F|g)«RHom (M , R g, _o(¢+0x))
then we have
Hi(W(xy, r); F) 2 H(W(xq, 1'); &) forany j.

Note that we can take a representative & such that #/=0 for j<0. Then the
property (a) in Proposition 4.4.3 follows from the following lemma.
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Lemma 4.4.5. Let & be a complex of sheaves on an open set A of R»
such that %7 =0 for j<0. Suppose that for any y,€ A and r such that

A(yo, 1) = {yeR"; |y—yol<r}c4,
we have
H(A(yo, 1); F) = H(A(yo, 1); F)
for O<r'<r and any i. Then any cohomology group of % is a locally con-
stant sheaf on A.

Proof. First we shall consider the case where & is a single complex, i.e.,
HI(F)=0 for j#0. In this case, the lemma follows from the following sub-

lemma.

Sublemma 4.4.6. Let & be a sheaf on A. Suppose that F(A(yy, 1))
—F (Ao, ') is an isomorphism for any y,, r and v’ such that A(y,, r)c A
and 0<r'<r. Then & is a locally constant sheaf on A.

Proof of the sublemma. The question being local on 4, we can assume
A={y; |yl<1}. It is enough to show that #(A4)—%, is an isomorphism for
any ygo€ A, or F(A4)-»>F(A(yy, r)) is an isomorphism for any y,€ A4 and any r
such that O<r<1—|y,|. Set A,=A(tyy, 1—t|yo|])- Then Ay=A4, A;=A,,
1—|yol) and 4,24, for 0=Z¢<¢'<1. If 1—(3¢'—21)|yo|>0, then 4,04,
S A(tyg, 1 =2t — 1) |yol)2 A(t'yy, 1 —(3t'—21)|yo|). Hence we have a diagram

F(4) - F(4,) L F(A(tyo, 1~ 21 ~1) [yol))
— F(A(t'yo, 1—(3t' =20 |yl)) -
Since joi and keoj are isomorphisms by the assumption, i is an isomorphism.
This shows that F(4,)=%#(4,). Since F(A4,)=F (Ao, 1 —|yol)) = F(A(yo,
r)), we obtain the desired result. Q.E.D.

We resume the proof of Lemma 4.4.5. Suppose that s#/(%#)=0 for j<k.
Then there is a triangle

#H(F)[—K]

/ \+1

F g

with " such that s#/(¢")=0 for j<k and #/(¢")=s#7(F") for j>k. Then we
have
H*(A(yo, 1); #)=I(A(yo, 1); #X(F)).
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Hence s#%(# ') is a locally constant sheaf by Sublemma 4.4.6. Hence
RI(A(yo, 1); #X(F))
=RI(A(yo, 1'); #4F )
This implies that
RI(A(yo, 1); ¥°)
~RI(A(yg, 1); F).

Hence #%+*Y(F)=s**1(¢") is a locally constant sheaf on A. By repeating
this procedure, we can prove Lemma 4.4.5.

Thus we have completed the proof of Proposition 4.4.3.

§5. Multi-valued Holomorphic Function Solutions of .#

Now we shall investigate holomorphic solutions of .# and we shall prove
that they are prolonged to multi-valued holomorphic functions with finite de-
termination property. In order to make our discussion smooth, we shall
introduce the following module, which is similar to the space of microfunctions.
(See S-K-K [24] Chapter I for the theory of microfunction.)

Let & be the set of closed subsets Z of €!*" such that the normal cone
C4(Z) of Z is contained in {(, x); Ret=0}. We define

(4.5.1) C=1_i£l f%((pcl*n)qo
Zex

Clearly any Ze & is contained in some Z'€ % such that C1*"—Z’ is convex in
a neighborhood of q,. Hence we have

(4.5.2) l_im %%(061*")40:0 fOI‘ k#l
Zez

by Oka-Cartan’s theorem.
Set W(a)={(t, x); Ret< —a(|Im t|+|x|)} for a>0. Then W(a)NnZ=¢ in
a neighborhood of g, for any a>0 and Ze Z.

Lemma 4.5.1. The vector space C is canonically endowed with a structure
of & -module.

Proof. Set G(a)={(t, x); Ret< —a(|Im¢t|+|x[)}. Then &% is, by the
definition, the inductive limit of &(G(a); D'), where D’ runs over the set of
G(a)-open neighborhoods of q,. For any Z in &, there is Z'€ % containing Z
and G(a)-closed in a neighborhood of g,. Hence 5#%.(0Og:+n)q, has a structure
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of €(G(a); D')-module. Taking the inductive limit, we obtain the desired
result. Q.E.D.

Each element of C is a modulo class # of a holomorphic function defined on
V—Z for some open neighborhood V of g, and some Ze%. We shall call this
holomorphic function a representative of 7.

We shall make explicit the action of operators in &,, on C. Let P be an
element of é;.,o and 5 an element of C. Let (Py(t, x, D), K(t,, t,, x, D,)) the
representative of P and ¢ a representative of #. Then, for 0< —A«1, (P);@
=Py(t, x, D)o(t, x)+gj1 K(t, s, z, D,)o(s, x)ds gives an element of C. This
element equals Pn by Proposition 3.1.5 and Proposition 3.2.1 in Chapter III.
See also Case 1 discussed in Section 3, Chapter III.

Theorem 4.5.2. Let ¢ be an element of Hom,po (M pyy C), s an element of
M, and @ a representative of ¢(s). Then there are an open neighborhood V
of qo and multi-valued holomorphic function ¢ on V—S such that a branch
of @ coincides with ¢ on V—Z for some Ze Z.

Now we note that we can choose Ze % and an open neighborhood V of g,
so that ¢ is defined on V—Z. Moreover we can assume that .# is generated by
s. Hence by Corollary 3.5.7 in Chapter III, Section 5, #,,=&[(§P,+ -+ P&y)
with P;e &4, Further we can assume that P; are of order <0, and hence P; is
represented by the kernel K(t,, t,, x, D). Then, as has already been noted,
the integral

g; K1, s, x, D)o(s, x)ds (0< —-1ix1)

gives P;’s and hence this function is a holomorphic function defined on a neigh-
borhood of g, for j=1,..., N.

When these additional conditions are satisfied, we can employ the same
arguments as in [13]. Here we do not repeat the detailed arguments but leave
them to the reader.

Set n=m,(B(e, )—S) for 0<exd«1l. Then n does not depend on the
choice of ¢ and . By replacing &, and d, with smaller ones, we may assume

(4.5.3) n=7,(B(, §)—9) if O0<e=Ze, 0<I<d, and £<4.

Theorem 4.5.3. Let ¢, s, ¢ and $ be as in Theorem 4.5.2. Let a be the
ideal of C[x] consisting of aeC[n] such that o(Q) is holomorphic on a neigh-
borhood of q,. Let P be a micro-differential operator (of infinite order)
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defined on a neighborhood of p, and ¥ a representative of ¢(Ps). Then y is
also continued to a multi-valued holomorphic function \j defined on V'—S for
some neighborhood V' of q,. Moreover a(fy) is holomorphic on a neighbor-
hood of q, for any cea.

Proof. We can assume from the beginning that .#=¢&s. Then .#,, is
generated by s over é;qo by Corollary 3.5.7 in Chapter III, Section 5. By
Corollary 3.5.6 there, Jé’?‘,:é;,ﬁ,v/?,,o, and hence ,///;°0=é5,°1°05. Thus we can
assume that P belongs to é;2,°o. If P is a linear differential operator, then this
theorem is obvious because yy — P¢ is holomorphic on a neighborhood of g,.
Since any element of é;:}"o is a sum of a linear differential operator and an integro-
differential operator K(t,, t,, x, D,), we may assume from the first that P is
given by K(1,, t,, x, D,).

Assume that ¢ is holomorphic on B(e, 6)— W(1) for Oxe«xd«1l and
K(ty, t5, x, D,) is defined for |t,], |t,] <9I, |x]<e. Take a real A such 0< —A<e.
Then, by the definition of the action of P on C (cf. Propositions 3.1.5 and 3.2.1
in Chapter III), y¥(t, x)—gt K(t, s, z, D,)o(s, x)dx is holomorphic on a neigh-
borhood of the origin. Hénce we can assume, without loss of generality,

W, x)=gl K(, s, x, D)o(s, x)ds.

Hence, as shown in Chapter III, Section 4, i is continued to a multi-valued
holomorphic function on B{e, §)— F~'(H)—S.

Hence, in order to show that i is continued to a multi-valued function on
B(e, 6)— S, it is enough to show that iy does not have singularities on F~1(H).

We shall now employ the same method as in p. 127 of [13]. We take
another fibering F’, where F' is the map from X to C" defined by (¢, x)—(x, + 13,
Xp+8,..., x,+t"1). Let H' be the image of the points of S where F'|s: S
—C" is not a local isomorphism. Then, by the same argument as above, V¥ is
continued to a multi-valued holomorphic function on V—S—F'~1(H’) for a
neighborhood V. Hence, if we can prove that F~!(H) n F'~!(H') has codimen-
sion =2, then F~!(H) n F'~1(H') is a removable singularity and we can continue
¥ to a multi-valued holomorphic function on ¥— S (Proposition 3.4.2 in Chapter
111, § 4.).

Lemma 4.5.4. F~'(H) N F'~Y(H') has codimension =2.

Proof. 1If not, there is a hypersurface T which is an irreducible component
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of F~1(H) and F'~1(H') at once. T is a union of fiber of F (resp., F). There-

O 5 0 3. 0 . _ n
fore the vector fields d/0t and pY —2t o, -3t 0%, (n+1)t ox,
tangent to V. Hence any vector field in the Lie algebra generated by these two
vector fields is tangent to V. However, this Lie algebra contains 0/dt, 0/0x,...,

0/0x,. This contradicts the fact that Tis a hypersurface. Q.E.D.

are

Thus we have proved that ¢ is continued to a multi-valued holomorphic
function on V—S§ for a neighborhood V of g,.

In order to prove that o(y) is holomorphic on a neighborhood of g, for
oge€a, we shall use the results in Section 4 of Chapter III. Let [¢] and [] be
the elements of F/G (given in (3.4.6) and (3.4.7)) corresponding to ¢ and ¥,
respectively. Then we have [y]=P[¢]. Since the action of C[n] on F/G
commutes with that of é;;"o, we have o([Y])=P(6([¢]))=0. This means that
o(¥) is a multi-valued holomorphic function defined on V—F~1(H) for a neigh-
borhood V of g,. On the other hand, o(}) is continued to a multi-valued
function on ¥—S. Hence o(¥) is holomorphic on a neighborhood of g, by
Proposition 3.4.2. This completes the proof of Theorem 4.5.3.

§6. Proof of Theorem 4.1.1.

Now, let us investigate the structure of the group Hom g (A 5, C).

Since &%§, o G(?;D) 9t is quasi-isomorphic to .#% by (4.3.4), we have

(4.6.1) Hom,, (A4 p, C)=Homgg,p) (M., C).

The module C is, by the definition, lim HL(V; 0x), where V ranges over a
neighborhood system of g,. Since Szj—%geﬂ’, Z U (S+ G8) belongs to £ for
any Ze%. Hence we may assume that Z contains S and that Z is G,-closed.
Hence we have

RHom &, (A p,, C)= %i:rré R Homgg,,;py (M., RI g 5ynz(B(e, 6); 0))[1].

Z>S
0<e<d

By using Proposition 4.4.3, we find that, if B(e, 6)c U

(4.6.2) R Homg gy,py (M., RI g 5)02(B(e, 9); 0))

=R Homggy;p) (M., RI p(e,5)-w(1)(B(e 9); 0)),
where W(1)={(t, x); Re t< —(|Im ¢[ + [x])}.
Take O<eg;<d; such that B(e;, 6;,)cU. Then Proposition 4.4.3 shows
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that the both sides of (4.6.2) are independent of ¢ and 6 if 0<e<d, e<e; and
0=6,. Thus we obtain
(4.6.3) Hom,, (A, C)=Ext! (M, Rl 5,)-w(1)(B(e1, 01); 0)).

Let us take a point x; of B(e;, §;)— W(1) such that the condition (4.2.10) is
satisfied. For O<r<eg; —|x,|, we denote by V(r) the open ball centered at x,
with radius r. Then, by Proposition 4.4.3, we have

Ext! (M, RI g, 5,)-wy(B(e1, 61); 0))
=Ext! (M, RIp-1vryynBeersn-wyE V() 0 Bey, 64); 0)).

There are positive numbers ry, p, and holomorphic functions h; (1< j<N)
deﬁned on V(r,) such that O<ro<e,—|x{|, F7'(V(ry)) N B(ey, 6,)NS=
I_] {(t, x); xeV(ro), t=h;(x)} and that |Im (h;(x)—h(x))|>2p, for xeV(ry)
( ]aék) We denote by S; the hypersurface {(t, x); xe V(ro), t=h(x)} (j=1,.
N). ForO<p<p,and 0<r<r,, set

N
& p)=1 {(t, x); Ix—x,| <7, [t—h;(x)|<p}+Go

and define Q,(r, p) by

N
‘QO(r, p)=Ql(r9 P)— \jl ({(t: X), ]x_xll <r, It_ h](x)l <p} + G(a)) .
j=
The open sets 2,(r, p) and Qy(r, p) are the union of disjoint N open sets. Then
again by Proposition 4.4.3, we have

(4.6.4) Ext! (M, RFF“1(V(r))ﬂB(ex,61)—W(l)(F—l(V(r)) N B(ey, 61); 0))
=Ext' (M, R g, (r,p) - 20(r.0)(21(75 0); O)) .

Let p; denote the point (hj(x,), x;; 1, —grad, hj(x,)) of T§X (j=1,..., N).
Then we have
N
im R g, . py-00cr, 0 (R1(75 p); Ox)) = j®1 %glx,pj['— 17.
r,p =
Finally we obtain the following

Proposition 4.6.1. Hom,, (/{ po» C) = @ Home (M, CSix)p, @
Ext%, (/po, C)=0 for k+#0.

This implies, in particular, that Hom,, (.#,, C) is finite-dimensional be-
cause so is each Hem o (M, C§x)p, -

Proposition 4.6.2. Let s be an element of #3,. If ¢(s)=0 for any ¢
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eHom,; (A3Z,, C), then s=0.

Proof. Since 43, =67, @ A3, (Chapter III, §5, Proposition 3.5.5), we
d'qo
have

Hom,; (A7, C)=Homz; (47, C).
By (4.6.3), we have

Hom,;?;o (A3, C)=Homg:;o (A3, C'), where C'=5#14n_w1)(Ox) -

Note that C’ is an €%, -module because W(1) is Go-open. Since C' contains C
as a submodule, we have ¢(s)=0 for any q&eHomg?o (A5, C'). Letuy,...,uy,
be the system of generators given in Section 2. Then.#y, =3 é’qo j by Corol-
lary 3.5.6. Hence we can express s= 3 P;u; with Pjeé;:;’o.l There is a G-
round open neighborhood D’ of ¢, suchj that P; is considered as an element of
&(Gy; D) and also as a section of £* on {(t, x; 1, &); T#0, (t, x)eD'}. Now,
set M’ =Hy(€(Gy; D’ ) ® iUI .) and denote by s; (j=1,..., Nj) the elements of
I’ corresponding to the base of My=E(G,, D)Vo. Let § be the section 3 Pu
of .#* defined on {(t, x; 7, £); T#0, (¢, x)eD'}. Since Homgq (./;‘?O,JC’) is
finite-dimensional and C'= Ol<_n;< H} e 5-w)(B(e, 6); Ox), there is 0<e<d such
that 3° P;¢(s;)=0 for ¢ e Homgg,,pry (', H}(c,5)—w(1)(B(&, 0); Ox)).

Now let us take x, € B(d), S;, Q,(r, p), Qo(r, p) and p; as before. Then, by
(4.6.4), the map

H}i(a,a)—wu)(B(a, 0); Ox) — H}?[(r,p)—ﬂo(r,p)(gl(ra p); Ox)
induces an isomorphism
Homggy;py (O, Hi(z,5)-w(1)(B(e, 9); Ox)
= Homg g,y (W, H,(r,0)- 2000y (2175 P); O%))
Hence we obtain 3 P;¢(s;)=0 for any ¢ in
J
HomG(Go;D’) (“Dt,s H.}zl(r,p)—ﬂo(r,p)(gl(rs p)a 0}()) .

Hence, by taking the inductive limit on r and p, we have 3 P;¢(s;)=0 for
any ¢ e Homg g, p) (W', @ %§,x,p,)» Or equivalently, ¢(8)=0 for any ¢e
Hom(,;J (A7, €8, 1x,p,)- By Theorem 1.3.1 of Chapter I, .#%= é”"@.ﬁ is
locally isomorphic to a direct sum of copies of ¥¥,x at p;, and hence we obtain
§=0 as an element of .ﬁf,‘j. Since M5, is contained in J:’gj, we have §, ,=0, ie.,
supp §#p;. Since supp3§ is a union of irreducible components of A nn~1(D")
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by Proposition 1.3.8 of Chapter I, supp §=¢ and hence s=0. Q.E.D.

Let s,,..., sy, be the system of generators of .# given in Section 3 of this
chapter. Let ¢ be an element of Hom ro (A p,, C), and ¢; a representative of
¢(s;)). Then, as is shown in Theorem 4.5.2, there is an open neighborhood V
of g, such that ¢; can be continued to a multi-valued holomorphic function
defined on V—S. Since ¢ ranges only over a finite-dimensional vector space,
we may assume that V does not depend on ¢ (for a suitable choice of ¢;). We
can take V as B(gy, d,) for 0<eg, <d,«1. Let ¢ be the projection from the
universal covering m of B(ey, 0;)—S onto B(g;, §,)—S and let us fix
a section f of ¢ over B(g;, ,)—W(1). Let ¢; be an analytic continuation of
@ofi~!. Then we have the following

Proposition 4.6.3. For cen=mn,(B(gg, 09)—S)=mn,(B(gy, 6,)—S), the map
s;—>(0(P;))ep defines an &5, -linear homomorphism from A3, into C.

Proof. By Section 2, s; satisfies the fundamental relations
ZP1151=0 (i=l,..., Nl)
J

with P,-jeé:’,,D such that ord P;;<0. Since ¢ is & -linear, for 0<—A«l1,
2. (P;j),®; is holomorphic on a neighborhood of g,. (Proposition 3.1.5 and
PJroposition 3.2.1 in Chapter III.) On the other hand, ¢(3 (P;;)$;) is equal to
2. (P;j);0(#;) modulo multi-valued holomorphic functions defined on
l}'— F~1(H) for a neighborhood V' of ¢, (Chapter IIl, §4.) Hence
2. (P;j);0(p;) is a multi-valued holomorphic function defined on V'~ F~1(H)
fé)r a neighborhood V' of ¢,.

If we apply the same argument for the fibering F’ (cf. the proof of Theorem
4.5.3), 3 (P;));0(®;) is seen to be homomorphic on V'—F'~1(H’). Therefore
3 (P;;),0(@,) is holomorphic at the origin. Q.E.D.
J

In what follows, we denote by ¢ the map defined in the above proposition.

§7. Proof of Theorem 4.1.1 (Continued)

In order to prove Theorem 4.1.1, we shall make full use of the results of
Chapter III, Section 4.

Let ¢ be the subset of C[n] consisting of ceC[n] such that o(¢) is holo-
morphic on a neighborhood of g, for any ¢ € Hom P (A, C) and any repre-
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sentative ¢ of any element of ¢(.#,,). Then ¢ is a two-sided ideal of C[x], and
the vector space C[n]/c has a finite dimension. In fact, ¢ is the kernel of the
homomorphism

C[r]30 — (¢—¢°)e End, (I—Iomt,.p0 (A 5y C)).

Set a= > (y—1)c. Then, by Lemma 3.4.6, C[n]/a is also finite-dimensional.
Let & ggnthe holonomic system of D-type with singularities along S and with
the monodromy type a, ie., £3, (resp., Z,,) is the set of multi-valued holo-
morphic functions ¢ defined on V—S for a neighborhood V of g, such that
a(p)=0 for any oea (resp., and in the Nilsson class). Let £ be the coherent
PDx-sub-Module of .Z such that 2, is the image of 0, ® Hom, (0, L)y~ Ly,
defined by f @y +—— x(f)- ¢

Since #om g (0, £)q,=C, such a 2 exists and 2 is isomorphic to ¢. More-
OVer Hom g (0, P)gy =5 Homo(0, L)q,. Set /' =2L[P. Then we have

(4.7.1) famg((v, ./V)q0=0.

Let ¢ be an element of Hom,, (.#,, C). Lets bean element of .7, and
let @ be a representative of ¢(s). Since o(¢) is holomorphic at g, for any oec,
ap=0. Hence ¢ belongs to #7,. Since ¢ is determined up to holomorphic
function defined on a neighborhood of g,, the homomorphism s~ (¢ mod £¢)
is a well-defined C-linear map from .#3, into 4#°,. We shall denote this map
by E(¢). This homomorphism E(¢) is evidently 27, -linear.

Let F(¢) be the 27 -linear homomorphism from .#3, into &3, 962 N,

defined by s—1®E($)(s). °
We shall now prove

Proposition 4.7.1. F(¢) is &5, -linear.

At first sight, this proposition might seem obvious. However, this is far
from obvious, and, as a matter of fact, this proposition is one of the most es-
sential steps of the proof of Theorem 4.1.1.

In order to prove Proposition 4.7.1, we prepare some lemmas.

Let X’ (resp., Y’) be the universal covering of B(g;, 6;)—S— F~1(H) (resp.,
B(e,)—H) and ¢ (resp., x) the projection from X' (resp., X" = B(e;, 51)3():1) Y")
onto B(g, 6,)—S—F~1(H) (resp., B(g,, 6;)—F1(H)). Set F=1i7n1 Ox (™Y (U
—S—F~1(H)) and G=lim Ox.(xk~Y(U—F~1(H))), where U ranges over a neigh-
borhood system of qo.U Then, as was shown in Chapter III, Section 4, the
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quotient F/G is an é:}"o-module. For any left ideal b of C[n] contained in a
such that dim C[n]/b< 0, let #(b) be a holonomic system of D-type with
singularities along S U F~}(H) and the monodromy type b. (See §4.3 of Chapter
II). Then % is a sub-Module of #(b) and #(b)7, is contained in F. Let
%(b) be the &x-sub-Module of Z(b) consisting of sections which do not have
singularities on S, i.e., #(b) is a holonomic 2x-Module of D-type with sin-
gularities along F~'(H) and with the monodromy typeb. We have ¢(b)7 n £7,
=2,,, because a function in ¢(b)7, N 5, has singularities neither on S nor on
F~Y(H). Therefore we have

(4.7.2) L312,, SN 20)7./%(b)7, <——> F|G.
Since Peé’.‘fo operates by (P), on C and on F/G, we have the following:
(4.7.3) The homomorphism jeicE(¢): A5, —F/G is é?o-linear.

Lemma 4.7.2. There exists a left ideal b=a of C[n] satisfying the follow-
ing conditions

(4.7.4) dim¢ €[7]/b< oo
(4.7.5) MY —> ET ® (£(0)/%(b))7,

defined by s—>1Q®icE(P)(s) is é;?o-linear, where i is the homomorphism from
N°T, into (Z(b)/%(b))3,.

Proof. By Proposition 3.4.9, there exists a left ideal b < a satisfying (4.7.4)
and the following condition:

(4.7.6) Theimage of the homomorphism from &%, ® Z(a)7, into &% ® Z£(b)3,
is contained in the image of the homomorphism .,Sf‘(b)qo into é°°° ® .?(b)

Let s be an element of .#%, and P an element of £%,. By (4 7.6), there
exists ue(L(b)/%(b))7, such that PRicE(¢)s=1®u holds as an equality in
EY, ® (Z(6)/%(b))g,. Therefore we have P®joic E()(s)=1®,(u) in £, ® (F/G).
By app]ymg the homomorphism &%, ® (FIG)2 Q®v— QueF|G, We obtam

PjoioE(¢)(s)=j(u). Since joioE(}) is £2 -hnear this shows joicE(¢)(Ps)=j(u),
and hence icE(¢)(Ps)=u. Thus we obtain P® icE($)s=1Q®ioE(¢)(Ps), and
Lemma 4.7.2 is proved. Q.E.D.

Now, let us prove Proposition 4.7.1.  Since J/;"O—»é"‘” ® (,Sﬂ(b)/%(b))qo is
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-?,"o-linear by the preceding lemma, the homomorphism obtained by tensoring
Chor €50 @ My, — €5, ® €5, ® (£ ((®)/%(1)3,) = &5, ® (2 (®)/2((1)7,

£dq

(defined by P®s»—>P®E((/)) (s)) is e‘” ,,o-hnear. On the other hand
Epo & My, — M5, (P®s+> Ps)
faq
is an &§ -linear isomorphism by Proposition 3.5.5, and hence the homomor-
phism
My, — 65, @ M5, (defined by s—1Q®s)

fag,

is also &7 -linear. This implies that

My, — Eqn (® (£()/%(0))7, (defined by s— 1QE(¢)s)

is an &y,-linear homomorphism. On the other hand, ., is a submodule
of (£(b)/%(b)),, by (4.7.2), and hence &3, ® W7, is a submodule of

s, 9@” (£(b)/%(b))7,. This shows that F(¢) is é" > -linear, which completes

the proof of Proposition 4.7.1.

Now we are ready to prove Theorem 4.1.1. Let {¢,..., ¢,} be a base of
Homgpo(yﬂpo, C). Set

¢ =E(¢1)C‘B o @E(¢r) ‘/lgoo_)‘/VZO

Then @ is a 2§, -linear-homomorphism. Let ¥ denote the &7 -linear homo-
morphism #5,—&5, ® N, defined by s—>1@®(s). We shall show @ is injec-
tive. Let s be an element of 47, such that &(s)=0. Hence, for any ¢e

Hom,;;o (A3, C), ¢(s)=0. Therefore, by Proposition 4.6.2, s=0. Therefore
¥ is injective. This completes the proof of Theorem 4.1.1.

Chapter V. Basic Properties of Holonomic Systems with R.S.

In this chapter we prove several basic properties of holonomic systems with
R.S. 1In Section 1 we derive several important properties of holonomic systems
with R.S. from the embedding theorem proved in Chapter IV. In Section 2 by
the embedding theorem we prove our main theorem which asserts that £§ ® .#
=% ®.ﬁ reg N0lds for any holonomic £-Module .#. In Section 3 we ;ﬁow
that the application of the integration procedure and the restriction procedure
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to holonomic systems with R.S. yields holonomic systems with R.S. under
moderate conditions. Here we essentially use the embedding theorem again.
In Section 4 we discuss the restriction of holonomic 2-Modules with R.S. to
an arbitrary submanifold. In the course of the proof we prove some results
which are basic for the proof of comparison theorems given in Chapter VI.

§1.

In this section we first prove the following Theorem 5.1.1. This result is
interesting and basic and it will be often used in our later arguments. Next we
construct a special £€(0)-sub-Module of a holonomic &#-Module with R.S. by
using the notion of orders. (Theorem 5.1.6). Then using this result we prove
Corollary 5.1.7, which clarifies the relationship between the notion of holonomic
systems with R.S. and the general notion of systems with regular singularities
along an involutory variety. We also use Theorem 5.1.6 to prove that a holo-
nomic 2-Module with R. S. has a good filtration.

Theorem 5.1.1. Let .# be a holonomic &-Module with R.S. defined on
a neighborhood of a point p in T*X —T%¥X. Suppose that the characteristic
variety A of .# is in a generic position at p. Then 4, is a finitely generated
D n(py-module and we have

v ® My=M for p'=p

=1
T DX, (p)

Ex
=0 for pen'n(p)—TiX—-C*p.

Proof. Set g=mn(p) and Y=n(A). By Theorem 4.1.1, there exist a holo-
nomic system % of D-type with singularities along Y, a holonomic sub-Module
2 of & isomorphic to a direct sum of ¢ and a 9 -linear homomorphism

Yoy — (L]2)7

such that the composite of ¥ with (,7/?);"—%’3?,,,9?‘1(,?/.@);"=é’5‘(°,p9?q.5f,, is
an injective &Y ,-linear homomorphism from .#y inio €% » 9? q.?q. V\}e shall
show that y(.# ) is contained in £/2. Let u be a section of .# and v a section
of #* suchthat Y(u) is v modulo £ =2%. Since u satisfies a system of micro-
differential equations with R.S., v also satisfies a system of micro-differential
equations with R.S. in a neighborhood of p. Hence v belongs to .# at a generic
point of Y. Therefore v is a section of #. (Chapter II, §3, Proposition 2.3.5.)
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Thus .#, is a finitely generated 2y ,-module. Let ': .#,—(%/2), be the
restriction of ¢. Since Y’ is injective, IQV’: &, ® My & ® (,5,’/9’),,
injective. Consider the diagram

] ’ ¢
(5.1.1)

& ® My 25 8, ® (2]2),,
2x,q 9X,q
where ¢ and ¢ are defined by @(P®u)=Pu and ¢(u)=1Qi’(u), respectively.
Since ¢ is &,-linear, the diagram (5.1.1) is commutative. Hence ¢ is injec-
tive because 1®y' is injective. On the other hand, the surjectivity of ¢ is clear.
Therefore ¢ is an isomorphism, namely, &, ® #,=.#,.
Lastly we shall show that Fx

é’p,ggq.,é’p:O for p'en ' (q)-C*p—TiX.
Let & be a coherent 24-Module defined in a neighborhood of g such that
& ,=M, It is enough to show that the characteristic variety A" of % is con-
tainedin AU T§X. Since é’®,/ is a sub-Module of & ®($/9), A’ is contained
in T¥X un'(Y). Since é"®./ is 4 in a nelghborhood of p, we can write
A'=AUT%X U A", where /1” is a closed Lagrangian variety such that peA”
and A"cn~1(Y). Then Lemma 5.1.2 proved below implies that A" is void, i.e.,

A'=AU TEX. Q.E.D.

Lemma 5.1.2. Let A be a closed homogeneous Lagrangian variety of
T*X —T%X and let p be a point of A. Assume that A satisfies the following
condition:

(5.1.2) 7~ Y(n(p) N A=C*p

Let A’ be another closed Lagrangian variety such that pe A’ and that n(A’)
cn(A). Then A’ 0w~ Y(n(p))=g.

Proof. We shall prove this by a reduction to absurdity. Denote n(p) by
g and denote n(A) (resp., n(A")) by Y (resp., Z). Suppose that A’ N n~1(q) #g.
Then Z should contain n(p). Since A’ is a homogeneous Lagrangian variety,
A’ contains T$X. On the other hand, since Y contains Z by the assumption,
T%X contains W= TyX nn~(Z—Z,) for some nowhere dense analytic subset
Z, of Z. Here we note that (W—T%X)nn1(q)#06. Since W—T%X is con-
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tained in A, (W—T%$X) n n~1(q) is contained in C*p. Hence W should contain
p. Therefore A’ should contain p. This is a contradiction. Q.E.D.

In the course of the proof of Theorem 5.1.1, we have obtained the following

Theorem 5.1.3. Let .# and A be as in Theorem 5.1.1. Then there exist
a holonomic system ¥ of D-type, a holonomic 2-sub-Module 2 of &%
with SS(2)cT%X and an injective Dy ,,y-linear homomorphism ¢: #,—
(L1P) -

The following theorem follows immediately from Theorem 5.1.1.

Theorem 5.1.4. Let .# and A be as in Theorem 5.1.1. Then there exists
a holonomic 2-Module & with R.S. which satisfies the following conditions:

(5.1.3) Fp=A4,
(5.14) & ® F=.4 holds in a neighborhood of p.
n~ 19
(5.1.5) SS(&%) is contained in AU T¥X is a neighborhood of n~(n(p)).

In what follows, we shall prove several coherency properties of the sheaves
related to holonomic systems with R.S. The key point in our arguments is the
coherency over 0Oy of &, the sub-Module of # consisting of the sections in the
strict Nilsson class. (Chapter II, §2.)

Theorem 5.1.5. Let .# and A be as in Theorem 5.1.1. Let #, be a
coherent &(0)-sub-Module of .#. Then .4, ,, the stalk of .#, at p, is a finitely
generated Ox ,,-module.

Proof. Let us use the same notations as in the proof of Theorem 5.1.1.
Let %, be the sub-Module of .# consisting of the sections in the strict Nilsson
class. Let f be a holomorphic function on X such that f~1(0)=Y. Then there
exists m € Z such that Re (ord u) <m for any section u of .#, defined on an open
subset of A,.,. Let u be a section of .#, and let v be a section of ¥ whose
modulo class in #/# is Y(u). Then Re(ord f™*lv)< —1 on T}, X. Hence
Proposition 2.3.7 in Chapter II entails that f™*!v belongs to %,. Hence Y/(u)
belongs to f™™ 1.%,/#. Therefore we see that .#,, is a submodule of
(f ™ 1L/ P)rpy- Since both £, and 2 are of finite type over 0y, we obtain
the required result. Q.E.D.

Theorem 5.1.6. Let ¢ be a real number and .# a holonomic &-Module
with R.S. defined on an open subset Q of T*X —T%X. Let A be the support of
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M. Let M, denote the subsheaf of .# given by assigning {se.#,(U); ord,s
<{A€C; Re A<c} for any point p of UN A} to U.  Then the following hold:
(i) ., is a coherent £(0)|,-Module.
(i) A=EMy and Hy=8& 4 4,.
(iii) For any closed analytic subset W of an open subset U of T*X such
that codim W=n+1, we have #G (4|4 y)=0.

Proof. The property (ii) of .#, is clear. The property (iii) follows from
the fact that ord,, u is locally constant in pe A,,. To prove (i), we shall employ
a quantized contact transformation. There is a finite subset F of € such that
ord scF+Z for any section s of .#. By a quantized contact transformation,
we may assume that c=—1/2 and for any Ae F+Z, ReA# —1/2. Let p, be a
point of A. Again by a quantized contact transformation, we may assume
that A is in a generic position at p,. Set go=n(py). Then we may assume that
Q=7"Y(U)—T%X for an open neighborhood U of g, and A N7 1(gy)=C*p,.
Let # be a coherent 9y-Module such that &%, =.#,. Then, by Theorem
5.1.4, & is a holonomic 9x-Module with R.S., SS(#F)cAU T(X, and #
=& 699.97 . Set S=n(A). Then we have

(5.1.6) AN7Y(S,ep) = Té‘regX— T$X .
We have
(5.1.7) HUF)=0.

In fact, #'=#UF) is a holonomic Dx-Module such that SS(F')=(AU T(X)
nn~i(S). Hence F'| Sreg
Bseegix- Since an order of a section of é”(ﬁ).@smg, x |4 is a half integer, e"%.ﬁ’ !
=0on T _X—T%X. Hence we obtain

SS(FN) =@ HS) N TEX) U (A N7 (Ss1n)) -

is locally isomorphic to a direct sum of copies of

On the other hand, since
dim (7 /(S) N TXX) U (AN (Sing))Sn—1,

we have SS(#')=g. Thus (5.1.7) has been proved. Let % denote 0y 5;(%).
Then % is a holonomic 2y-Module of D-type by Proposition 2.3.4 in Chapter
II, and # contains & as a sub-Module. Let %, be the subsheaf of £ consist-
ing of the sections of % in the strict Nilsson class. Then we have

(5.1.8) Lo={ue ¥, OrdT§,egx—T}X (u)cH},
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where H ={}LEC ; Red= ——é—} Since %, is a coherent Oy-Module, &# n.%,
is also a coherent 0y-Module. Let .# be the £(0)-sub-Module of .# generated
by # NS, Then .#; is clearly a coherent &£(0)-Module. We shall prove
My=My on 171(S,,). Let g be a point of S, and we shall take a local
coordinate system (x,..., x,) around g such that S, is given by x;=0. By

the definition of .%,, %, contains x,D,%,, D,%,,..., D,%, and hence we have
LoNF 23D (LoNF)+D(LoNF)+ - +D(Lo N F).

Since &, is generated by x,D,, D,,..., D, over &(0), .#; is an &,~-Module on
n~1(S,e). By Proposition 2.3.8 in Chapter II, there exists a polynomial b(4)
satisfying

(5.1.9) le<—;ch1 —%).z’oc,%
and
(5.1.10) any root A of b(1)=0 satisfies —%< Re A= ——21—.

This shows that

D1b< —x,D;, —é—)foc Zo

and hence
D1b<—x1D1——21")($0 ﬂ gz‘)cgo ﬂ f.
Hence we obtain

b<—x1D1—%>J{6Cy[6(—-l).(*)

Therefore we obtain #,=.#, on A,, by Lemma 1.5.7 in Chapter I. Set
W=A07"1(S,;,e).- We shall show

(5.1.11) Y (M o(1) | M) 5,=0.

By the definition of .%,, we have

) In general, for an ¢(0)-Module .#, we denote by .#(k) the £(0)-Module k) ® #. If
&)
 is an ¢(0)-sub-Module of an #-Module ., then (k) coincides with &(k).«.
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(Lo N F)g,=lim {se F(V); ord,seH for any pen~'(V)n T%, X}
14
=lim {se #(n"'(V)); ord,se H for any pen (V)N A},
1 4

where V ranges over a neighborhood system of g,. Hence (%, n &),, is an
&(0)p,-module. Therefore we have A§ p,=(Fo N F)gy and Ag p,= I}i?r;;o {se
#(U); ord ,s€ H for any peUn A,,}, where U runs over a neighborhood
system of p,. Let P be a micro-differential operator of order O such that
0o(P) |l wna=0 and g,(P) is not identically zero on any irreducible component
of A. In order to show (5.1.11), let us take a section s of .#y(1) on a
neighborhood U of p, such that s|y_,€#;. Since #y(1)/#, is a coherent
0(0)-Module, there is an integer m such P"ue.#; Hence we find that
ord Pru e H for any pe UN 4,,. On the other hand, ord, P"u=ord,u+
ord, Pm=ord,u. This implies ue.#; p, and hence we obtain (5.1.11).

Since #GY(Ao(1)]#4,) is a coherent Or.x-Module, #Y (A 1)/ 45)=0
holds on a neighborhood U of p,. This entails further that
HY (AN k)| A (k—1)) ;=0 for any k, because .#y(k)/.#y(k—1) is locally
isomorphic to #y(1)/4p. This implies 59 (A o(k)/4() |y =0 and hence

(5.1.12) Y (M| M) | y=0.

Now we are ready to prove #,=.#;. In fact, #,=.4, outside W and .#;
cM,. Therefore we find A/ A< # (M [A4)=0.
Since .# is a coherent £(0)-Module, this proves (i). Q.E.D.

As an immediate consequence of Theorem 5.1.6, we obtain the following
important corollary.

Corollary 5.1.7. Let .# be a holonomic &x-Module with R.S. and V a
homogeneous involutory analytic set containing Supp .#. Then # has regular

singularities along V—T%X.

Proof. The sub-Module .#, of .# given in Theorem 5.1.6 is an &-
Module which is coherent over £(0) and generates .# as an &-Module. Hence
# has regular singularities along V—T%X. Q.E.D.

By the aid of Theorem 5.1.6, we can also prove the following

Theorem 5.1.8. Let .# be a holonomic &x-Module with R.S. Let W be
a closed subvariety of an open subset QcT*X —T%X such that codim W
=dim X +1. Let 4 be a coherent £(0)-Module and let 4" denote the subsheaf
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given by assigning {se 4 (U); s|y_weN(U)} to U. Then & is a coherent
&(0)-Module.

Proof. First note that /" =&4". In fact, we have #%(#/&4)=0 and
hence we have

(N +EN)|EN < HY (N +EN)|EN) S HY (M| EN)=0.

Therefore, by replacing .# with &.4", we may assume from the first that .# =&.4".
Let .#, be the subsheaf of .# given in Theorem 5.1.6. By considering .#,(m)
for sufficiently large m, we may assume without loss of generality that 4 is
contained in .#,. Let J be the defining Ideal of W and denote a5'(J) by .#.
Here o, designates the symbol map from &(0) to Or.x. Define A4} by 4 and
A% (k=1) inductively by

{ueAp_1(1); FucHy_1}.

Evidently {#}};>o is an increasing sequence of &(0)-sub-Modules. Denote
U A, by A&, Then it is clear that
k=0

(5.1.13) N ={uen"(1); FucH"}

holds.
Let us first prove that 4™ is a coherent £(0)-Module. In order to prove

this we show, by the induction on k, that .4} is coherent. In fact, choosing
P;e&(0) so that

F=80)P;+---+60)P,
holds, we see that the following sequence is exact.
(.1.14) 0 — Ay HNioy — Ny (1) [ oy B0 (o (1) [ M)

(5.1.14) combined with the induction on k clearly entails that .4} is coherent.
Since A4~ is contained in .#,, 4} (k=0) is contained in .#, Therefore 4"
=k\>Jo./Vk is a union of coherent &(0)-sub-Modules of .#,. This implies that
A" is coherent over &(0).

On the other hand, it is clear from the definition of .} that 4}, =" holds
outside W. Hence 4" =" holds outside W.

Now we shall show 4" =4". It follows from (5.1.13) that

(5.1.15) Ky (N |4 (—=1))=0.
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Then, by the same argument as that used in the proof of Theorem 5.1.6 for the
proof of (5.1.12), we can conclude from (5.1.15) that s#%(.#/4")=0 holds.
Hence we find

N'={ueM;ul;yEN"}
={ued;ul,_yeN}=4".

Thus we conclude that #"=". Therefore 4" is a coherent £(0)-Module.
Q.E.D.
We next apply Theorem 5.1.6 to prove the existence of a good filtration for
a holonomic 2-Module .# with R.S. (See Section A.5 in Appendix A for the
definition of a good filtration.) Before proving the result (Corollary 5.1.11)
we prepare the following elementary lemma.

Lemma 5.1.9. Define a complex manifold X' by Cx X and identify X
with the submanifold {0} x X of X'. Let p be the canonical projection from
Xx T*X' onto T*X. Let # be an &x-Module defined on an open subset Q
of T*X Denote &y ex ® p 14 by . Then we have the following:

(i) Nisa coherent é”x -Module on p~(Q) if and only if # is a coherent
&x-Module on Q.

(ii) " is a holonomic &x-Module on p=1(Q) if and only if # is a holo-
nomic &x-Module.

(iii) Let V be a homogeneous involutory subvariety of Q—T$X. If & is
a coherent &x~Module with regular singularities along p~(V) on a neighbor-
hood ofpeX;(g T*X', then # has regular singularities along V on a neighbor-
hood of p(p). Conversely, if .# has regular singularities along V, then &
has regular singularities along p~ (V) on p~(Q — T3}X).

(iv) & is a holonomic &x-Module with R.S. if and only if # is a holo-
nomic &x-Module with R.S.

Proof. The proof of the assertion (i) is given in Appendix A. (Propo-
sition A.2.) In order to prove (ii), it suffices to show

Supp (€xex ® p~'M)=p~'(Supp.#).
pTlex

This immediately follows from the fact that &y is faithfully flat over p~1&y.
(S-K-K [24] Chapter 11, §3.)

(iii) Let us prove the first assertion. Let ¢ denote a coordinate of C.
Then &y . x=8&x[Ext. We denote by 1.y the section of &y ..x given by
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1e&y.. Let #, be a coherent &(0)-sub-Module of .#. Define a coherent
¢x(0)-Module 4, by &x.x(0) @ A, where &y x(0)z Ex(0)/6x(0)t
(=6x(0)1x..x). Then it follows gf;ng)n the assumption that &,-:;)A, is
coherent over &y.(0). We shall prove

(5.1.16) égp—l(y)-/i/‘():éuxl(_x(o) ® éBVMO-
£x(0)

If (5.1.16) is proved, then the coherence of &,.#, over &x(0) can be derived from
that of &,-14) A4, over &x(0) by the same reasoning as in the proof of Propo-
sition A.2 in Appendix A. The assertion (5.1.16) follows from Sublemma
5.1.10 proved below. In fact, it is clear that & . x(0) ® &y.#, is contained
in &,-1yy#o, while Lemma 5.1.10 entails x®

(5.1.17) 'ﬁ;’:‘%V)(éDXW—X(O) ® M)=6xx(0) @ I,
£x(0) £x(0)

for k=1,2,.... Here ., (resp., J£,-1y)) denotes {Ped&x(l); o,(P)ely}
(resp., {Peéx(1); o,(P)€l,-1y,}), where I, (resp., I,-1y,)) is the sheaf of
holomorphic functions on T*X (resp., T*X’) vanishing on V (resp., p~1(V)).
Clearly (5.1.17) implies that &,-14,)4#, is contained in é’x'ex(o)“@(%) Sy M.
Thus we shall be finished if we prove the following

Sllblemma 5.1.10- jp—x(y)éaxl <_X(0) =éDX' ‘_x(o)jy .

Proof. It is obvious that & . x(0).#, is contained in .£,-.y)&x x(0).
Hence it suffices to show that .7,-.;)8x.x(0) is contained in &y . x(0).5y.
Take a local coordinate system x of X, (x, &) of T*X and (¢, x; 7, £) of T*X'.
Then for Pef,-iy), we can find f(t, x; 7, &), gi(t, x; 7, &) and hy(x; &)
(1=k=N) which are of homogeneous degree of 1, 0 and 1 with respect to (z, &),
respectively, so that h,el, and o,(P)=ft+ ﬁ gih, holds. Hence there exist
F, G e &y and H, e&x with o,(F)=f, ao(Gk)k;lgk and o,(H,)=h, so that

N
(5.1.18) P—Ft— 3 GH,e&x(0)
k=1

holds. Since it follows from the definition that &% . x(0)=&%(0)14 .5 holds,
Jp—l(y)éaxq_x(o)=fp—1(y)1xl<_x hOldS. Since Hk iS in jy, (51.18) entails
N

P 1x'<—x = Z (leXN—X)Hk .

k=1

Therefore we conclude that Ply. 5 is contained in & . x(0).#,. This com-
pletes the proof of Sublemma 5.1.10. Q.E.D.
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Let us return to the proof of the second assertion in (iii). Suppose that .#
has regular singularities along V. Then there exists locally a coherent &-sub-
Module #, of .# such that # =&y#, and A,=6&y.#,. Then A,
=6xx(0)(1x ex ® )./%0) is a coherent &%.(0)-Module which generates /4" as
an &y-Module. F urthermore Sublemma 5.1.10 asserts that A4} is an &,- 1y
sub-Module. Therefore .4~ has regular singularities along p~(¥). This com-
pletes the proof of the second assertion of (iii).

(iv) Denote Supp .# by A. Then .# is isomorphic to ¢ for some integer
m on a neighborhood of T§X—A. Hence 4 is with R.S. on p~}(T%¥X). Let
us next prove that .# is with R.S. on A—T%X if and only if 4" is with R.S. on
p Y A-T%X). 1t follows from (iii) that p 'IR(#; A—TEX)=IR(A;
p Y (A-T%X)). Hence IR(AN; p~Y(A—-T%X)) is a nowhere dense subset of
p~Y(A—-T%X) if and only if IR (#; A—T%X) is a nowhere dense subset of
A—T%X. Therefore A4 is with R.S. on p~1(4—T%X) if and only if .# is with
R.S. on A—-T%X. Q.E.D.

Now we have the following

Corollary 5.1.11. Let .# be a holonomic 2x-Module with R.S. defined
on X. Then there exists a good filtration { M}z of # defined on X.

Proof. We shall use the results and the notations of Appendix A. By
Lemma 5.1.9, //=&(#) is a holonomic &x-Module with R.S. defined on a
neighborhood of V. Let 4 be the sub-Module of 4" consisting of the sections
s of 4 such that ordsc{AeC; ReA<0}. Then, by Theorem 5.1.6, A is a
coherent &(0)-sub-Module of 4" satisfying &y 4y A and & =EA,. Hence
we can apply Proposition A.8 in Appendix A to see that {jo'AH(k) N A} ez
is a good filtration of .#. Q.E.D.

§2.

The purpose of this section is to derive the following Theorem 5.2.1 from
Theorem 4.1.1 proved in Chapter IV.

Theorem 5.2.1. Let .# be a holonomic &x-Module defined on a neighbor-
hood of poeT*X. Then M, is a holonomic (in particular, coherent) &x-
Module and

(5.2.1) EX R M=EF Q Mreq
Ex éx



Horonowmic Systems. III 937

holds on a neighborhood of p,.

Proof. First we consider the case where po& T5X. In this case, applying
a suitable quantized contact transformation (Chapter I, §6, Corollary 1.6.4),
we may assume without loss of generality that A = Supp .# isin a generic posi-
tion at p,. Let g, denote n(p,) and let S denote n(A). In what follows, n
designates dim X. Here we note the following

Lemma 5.2.2. There exist a holonomic &-Module 4 with R.S. defined
on a neighborhood of p, and an &%-linear homomorphism h: & —.#* such
that hpy: /'3~ AT, and hf, = Eetb(h, EF)QQO 1 MF — N 3T are injective.

Proof. We apply Theorem 4.1.1 in Chapter IV to the dual system .#*
=Gt (A, Ex)®Q®1 of .#z. Then we can find a holonomic system %’ of
D-type along S and an &£*-linear homomorphism ¢': A£*°—(&®.%L')* defined
on a neighborhood of p, such that ¢}, : A3, —&5, ® L, is injgctive. Apply-

2
ing Theorem 4.1.1 to .#, we can also find a holonmr?ic system .# of D-type, a
2-sub-Module 2 of % isomorphic to a direct sum of copies of Ox and a D 4,-
linear homomorphism ¢: 47, —(£/#)7, such that E(¢): 45, —&E 5, Q@ (Z|2)q
is an injective &%, -linear homomorphism. Hence E(¢) is the germ g(}" an &°-
linear homomorphism ¢: #*—E&°®(ZL/#) defined on a neighborhood of p,.
Let us now consider the map yx fror% 0%? Hoom g (0, L)q, 10 Zy, by assigning
@(s) to (s, @). Let 2 be the coherent @-sub-Module of .# such that 2, is the
image of y. Since dimg Hom, (0, L), is finite, such a 2 exists and it is iso-
morphié to a direct sum of copies of ¢. Furthermore it follows from the
definition of 2 that S#%m (0, 2),, is isomorphic to Hom, (0, £),,. Hence, by
replacing 2 with 2 if necessary, we may assume from the first that #em (0, 2),,
is isomorphic to H#om, (O, L)g,.
By taking the dual of ¢’, we obtain an &£*-linear homomorphism

P=0*: QR L* > A7,
2
We shall now prove
(5.2.2) o0, (18 L55) (L[ P)g, -

Let s be a section of #’* defined on a neighborhood of q,. Then s satisfies
a holonomic system of linear differential equations which has R.S. on T% X
Since assigning ¢@(1®s) to s defines a 2=-linear map, ¢p@,(s)e L7, /25, also
satisfies a holonomic system of linear differential equations which has R.S. on
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T§,.,X. Hence, by Proposition 2.3.5 in Chapter II, s is contained in £,/ 2,
Thus we have verified (5.2.2). Hence we can find a 2-linear homomorphism
Y L% 2|2 such that €°QY: €° ® L' *»&° ®(L[2) coincides with do.
Denote by .4 the image of . Then (2”""@./1/ o iz contained in #7, as a sub-
module of (£° (L /2)),,. Hencewe ﬁndg’?chat &°® " is a sub-Module of .#®
near p,. On g';he other hand, SS(A4")<=SS(Z". ? Let A’ be the closure of
SS(A#)—A—T%X. Since SS(4) is contained in A=Supp .# on a neighbor-
hood of p,, the Lagrangian variety A’ does not contain p,. On the other hand,
n(A") is contained in the closure of 7(SS (&#')— T%X), and hence in S. Hence by
Lemma 5.1.2 in Section 1, we see that A’=g. This implies that SS (") is con-
tained in AU T$X. Therefore 4" is with R.S. Furthermore we know that the
homomorphism h: &*°@A4"—>.#% is injective at p,. Since L'*—>.A" is surjec-
tive, £’ 4% is injective. Hence £° ® L'« & ® #* is injective. Therefore
h*: #4*°>(&*Q H)*® is injective at pz. This ccfmpletes the proof of Lemma
5.2.2.

We now resume proving Theorem 5.2.1. Applying Lemma 5.2.2 to .#*
instead of .#, we can find a holonomic &#-Module 4" with R.S. and an £%-
linear homomorphism k: .#®-.#"* such that k,, and kj_ are injective. It
follows from Proposition 1.1.21 and Proposition 1.3.6 in Chapter I that kh(4")
=, Since (kh)y, Is injective, ¢ =kh|,: #"—>A4" is injective on a neighbor-
hood of p,. In the same way, ¢*: #”*— ¥ is seen to be injective on a neigh-
borhood of p,. Since * is an exact functor which is an involution on the cate-
gory of holonomic systems, ¢ is an isomorphism. This implies that both k,,
and h,, are isomorphisms. Since A4, #'® and .#% are £*-Modules locally
of finite presentation, k and h are isomorphisms on a neighborhood of p,.
Then, by Proposition 1.3.6 in Chapter I, we find .#,.,=.#". This completes the
proof of Theorem 5.2.1 when p,&T$X.

Now we consider the case where p,e T¥X. Denote CxX by X' and
identify X with the subset {0} x X of X’. Denote by p the canonical projection
from X % T*X' onto T*X. Let V be the involutory submanifold {(t, x; 1, &)
eT*X'; t=0, T#0} and denote by j, the inclusion map from X into V defined
by jo(x)=(0, x; 1, 0). Let £ be the &-Module &./&t and denote by .#
the &x-Module &(.#) @Zﬂ_@‘ xp“.ﬂ(*). By what has been proved so far,

M ez is @ holonomic &y-Module with R.S. on a neighborhood of V' and it

*) Here we use the same notations as in Appendix A.
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satisfies €% ®,¢ &% ®.,4reg there. Since Corollary 5.1.7 guarantees that
M,eg has regular srngularrtres along V, M4’ =j5' V(A reg) ™ (= Hom o (L, M reg))
is a coherent Zy-Module. Since . |;%4y is a coherent Zy-Module by the
assumption, the monodromy of .# in the sense of Appendix is the identity.
(Proposition A.5 of Appendix A.) Therefore it follows from Proposition A.9
of Appendix A that the monodromy of .#, reg 1S also the identity. Hence Propo-
sition A.6 of Appendix A asserts that

reg

(5.2.3) LRQM=M
2x

Hence it follows from Lemma 5.1.9 in Section 1 that .#’ is a holonomic 9y-
Module with R.S. Furthermore (5.2.3) implies that ¥ ® M=% ® M

=%*@® # holds. On the other hand, Proposition A.10 of Appendrx A asserts
&x
that

Homgz(MP |13y, M) Zjo ' Hom ey, (.9“’(@ M 3""3@.//’) and
X X
Homge(M' Py MP|11x) = ]o  Hom g2, (fw-@@%', 3°°£®./¢).
X X
Hence .#* and .#'® are isomorphic. On the other hand, .#’ is with R.S.

Therefore &y ® M' =M, holds. This completes the proof of Theorem 5.2.1
when py € TXX Q.E.D.

As an important consequence of Theorem 5.2.1, we find the following

Theorem 5.2.3. Let ¥ be a holonomic system of D-type along a hyper-
surface S. Then % is a holonomic 2-Module with R.S.

Proof. It follows from Proposition 2.3.5 in Chapter II, %, is a sub-
Module of #. On the other hand, Theorem 5.2.1 asserts that 2% ® %,
=9 ® % holds. Since 2 is faithfully flat over 2 (S-K-K [24] Rerngark 2,
(2) in p 406), we conclude that %, ,,=.% holds. Therefore . is with R.S.

Q.E.D.

§3.

In this section we first show that the restriction of a holonomic &-Module
with R.S. to a non-characteristic submanifold yields a holonomic system with
R.S. By a quantized contact transformation, this result proves the correspond-

*) Here we use the same notations as in Appendix A.
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ing statement for the integration along finite fiber. These results are also ex-
tended to 2-Modules.

Theorem 5.3.1. Let ¢: Y- X be a holomorphic map and .# a holonomic
&x-Module with R.S. defined on an open set U in T*X —T%X. Let V be an
open set in T*Y—T%Y such that w=(Supp #) N p~Y(V)—>V is finite. Then
qo*,//:fp*(é"y_,xm_@lxw“j) is a holonomic &y|,-Module with R.S.

Proof. It suffices to prove the results when ¢ is imbedding and when ¢ is
smooth, since the general case can be dealt with as a combination of these two
cases. In case @ is smooth, the result is obvious, because ¢p*.# is a system ob-
tained by adding the de Rham equations along fibers to .#. Hence it suffices
to show the theorem when ¢ is imbedding. Therefore we may assume without
loss of generality that Yis a submanifold of X of codimension 1. Furthermore,
by a suitable quantized contact transformation (Chapter I, § 6, Corollary 1.6.4),
we may assume that X is an open set in €C*, Y={x€ X; x, =0} and that Supp .#
is in a generic position at peSupp .#. Let S denote n(Supp .# — T%X) and let
g denote n(p). Let 4" be a coherent Zy-Module such that 4, =.4,. (Theo-
rem 5.1.1 in §1.) Then 4 is a holonomic 2x-Module with R.S. such that
SS(A#)=Supp# U T%X. Let ¢:.#,-(ZL[P), be an injective Dy ,linear
homomorphism satisfying the conditions in Theorem 5.1.3. Then we have an
injection ¢: & —#£/2. On the other hand, it follows from the definition that

(p*.//(=(a"y§,® (gy-»XQ® VR

Hence it suffices to show that 4|y = Dy ® A is a holonomic Z,-Module
with R.S. In view of Lemma 5.1.9 in Sectlon 1 combined with the following
isomorphism ([8] Propositions 4.2 and 4.3.)

(5.3.1) Dxer ® (N Ny) AN, [N,

it suffices to show that .4} is with R.S. Here and in what follows, .45, etc.
denotes, by definition, .;f[xm(./tf ) etc. Since the localization procedure is an
exact functor and since the localization .%,, of % is of D-type (Theorem 2.3.3 in
Chapter II), Z,, is with R.S. (Theorem 5 2.3 in §2.) Since the quotient of
holonomic systems with R.S. is with R.S., %, /2., is also with R.S. (Propo-
sition 1.1.17 in Chapter I.) Therefore 4, is with R.S. This completes the
proof of the theorem. Q.E.D.

By applying a quantized contact transformation we obtain following
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Theorem 5.3.2 as an immediate consequence of Theorem 5.3.1.

Theorem 5.3.2. Let ¢: Y-X be a holomorphic map, U an open set in
T*X —T%X and V an open set in T*Y—T3}Y. Let A" be a coherent &-Module
defined on V. Assume that " is a holonomic &-Module with R.S.  Assume
that p~'(Supp &) N w~Y(U)-U is a finite map. Then s =T (Ex ey _(>l§
p~ ') is a holonomic & |y-Module with R.S. e

Theorem 5.3.1 and Theorem 5.3.2 also hold at the zero-section of T*X,
namely, the following theorems hold:

Theorem 5.3.3. Theorem 5.3.1 holds for a pair (U, V), where U (resp., V)
is an open set of T*X (resp., T*Y).

Theorem 5.3.4. Theorem 5.3.2 holds for a pair (U, V), where U (resp., V)
is an open set of T*X (resp., T*Y).

Since the proofs of these theorems are the same, we prove Theorem 5.3.3.
Take a coordinate system x (resp., y) on X (resp., Y) and let (¢, x) be a coordinate
system on X' = CxX. Set Y'=CxY and define a map ¢: Y'->X" by ¢(t, y)
=(t, ¢(y)). Denote by .# the &x-Module &(4) = (&x//Ex1)@-#. Then, by
Lemma 5.1.9 in Section 1, .# is with R.S. Hence it follows from Theorem 5.3.1
that 4" = @*.4 1is with R.S. near {(t, y;1,n)eT*Y’; 1#£0}. Since A
=(&y /6y t) ® (@* A7), again by Lemma 5.1.9 in Section 1 we have ¢*4" is with
R.S. o Q.E.D.

§4.

4.1. In [8]itis proved that for a holonomic 2-Module .# on X, s#f(.#)
and 2ty 11(#) are holonomic for any k and any analytic subset Tof X. Using
this result, we proved there that 0y ® .# is holonomic for any submanifold Y of
X and any holonomic 2-Module ./;xon X.

We shall prove in this section that these cohomology groups have R.S.,
if # has R.S.

Theorem 5.4.1. Let T be an analytic subset of a complex manifold X and
M a holonomic 9x-Module with R.S. Then

(54.1) Htr(M) and Hly r(4) have R.S. for any k.
(5.4.2) (AN = (M”)
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and
('%ﬂ{‘xm(-///))°° ='9f§ir(-/°°) s

where A°=DFQR M.
2x

We shall prove this theorem by reducing it to the case where .# is of D-type.
First let us recall the exact sequences
00— f?’r](-/f) — M — f?xu"](vﬂ) I %”[IT](/) —0
and
0 — HANMA®) —> M° — K1 (M) — H1(M™) — 0.
Hence the isomorphisms
and
Y r (M) =H5H (M) for k=1
show immediately that the statement on #fr(.#) and the statement on
#txr(A) in Theorem 5.4.1 are equivalent. Hence we will concentrate our
attention to () in what follows.

Next we reduce the situation of the theorem to the case where T is a hyper-

surface.

Lemma 5.4.2. Suppose that for a holonomic 2-Module .# with R.S. on
X Theorem 5.3.1 holds for any hypersurface T. Then Theorem 5.4.1 holds for
A and any analytic subset T.

Proof. Any analytic subset T is locally an intersection of finite number of
hypersurfaces Ti,..., T, We shall prove by the induction on I. If [=0 (i.e.,
X =T), there is nothing to prove. If /=1, then this is nothing but the assump-
tion. Suppose that I[>1. Set T'=T,n---N7T, Then, by the hypothesis of
induction, RI(7(.#) and RI7 ,r(#) have holonomic systems with R.S. as
their cohomologies and

RF[Tr](j)w=RFT'(./4w) .
and

RI—[T,UT'](vf)Oo =RFT,UT'(-/4°°)

hold. On the other hand, we have triangles
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RI ()™

N\

RIp (M) @RI [y (A)

RIr vy (A)%
and

RI (A7)

O

RI 7, (M°) DRI 1. (M) '

RI7,up (%) .

Therefore RI'(1(#)® =RI 1(.#%) holds and RIy(.#) has holonomic systems

with R.S. as its cohomologies. Q.E.D.
By this reduction, we immediately find the following

Lemma 5.4.3. For a holonomic system .# of D-type the statement of
Theorem 5.3.1 holds.

This is an immediate consequence of the preceding lemma Proposition
2.3.3 in Chapter II and Theorem 5.2.3 in Section 2.

Lemma 5.4.4. Let % be a holonomic system of D-type along a hypersur-
faces S and Z an analytic set. Assume that Z is locally of complete inter-
section of codimension | outside S. Then we have

K (L)=0  for k#l

and the statement of Theorem 5.4.1 holds for .4 = 5} (¥) and for any analytic
subset T. Furthermore, for any proper analytic subset Z' of Z, 5#0,(#)=0
holds.

Proof. Since #=0% outside S, #°f,(£) vanishes outside S for k#l.
Hence we have

Rr [XIS]RF [Z](-g )=RF [xlsr;f fz](-g ) [— l]
=-9f?xls19ffz1(-7) [— l] .
Since RF[XIZ]('?)='? and RF[Z]RF[XIS]=RF[X|S]RF[Z] hold,
RF[Z](-g):f?Xm”fZJ(iﬂ) [-1.

This proves the first statement of the lemma.
Next let us prove the second statement. It follows from the definition of
A that
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Htr (M) = H T 21(Z)
holds, and hence s#f1{(.#) has R.S. by the preceding lemma.

Now we shall prove (5.4.2) for .#=u#};(¥). The preceding lemma
entails

M for k=I/

E%pk PO = f" P)® =
2(£°)=(# (L) 0 for ksl

Hence we have

RI (4 =)=RI(RT (£*)[1])
=RI'70(£*) 1]
=(RF[TOZ]($))°°[]]
=(RF[T](RF[Z]($) [l]))oo
=(RI [T](d” e

Therefore, by considering the cohomology groups, we obtain (5.4.2).

Now let us prove the last statement, i.e., #0;(#}7(£))=0. Let Z" be
an analytic subset of Z which contains Z’ and is of locally complete intersection
of codimension /+1 outside S. Then we have

”?2'1%621(3)C‘%ﬂ?z”]'}ffll(g)
=ffzn]($)=0. QE.D

4.2. We shall prove Theorem 5.4.1 by the induction on the codimension
of the support of .#. In order to facilitate the induction, we shall consider the
following situation. Let X be a complex manifold of dimension n, Y a complex
manifold of dimension n—1[ and F a smooth map from X into Y. Let Z be an
analytic subset of X such that the restriction of F to Z gives a finite map from Z
to Y. Let .# be a coherent 2,-Module such that SS(#)cT%X. Since .# is
(locally) a union of increasing sequence of coherent @x-Modules, we have a
homomorphism

M—— Ox @ FFu(Qyy®-2)[1],

where Qyy=Qy ® F1(Q9") ([5]). Applying the functor RI5 to it and
F-1lgy

considering its 0-th cohomology group, we get a map

r/// — %{:Z](@XF@@ F—IF*(Qx/Y g® g/l)).
Y X

We have the canonical homomorphism 0y—9y.,y and Qxy—9Py.x. Hence
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we obtain a homomorphism
(5.4.3) M _—_)‘#{Z](‘@X—'Y ® F—IF*(.@yhx®¢”)).
F-l19y 2x
Then we have the following

Lemma 5.4.5. When Z—Y is an isomorphism, then (5.4.3) is an isomor-
phism.

Proof. Since #f;(Dx.y)=0 for k#I and since #[;(Dx.y)= 9x®@z
is flat over F~19y, lo—».}fm(.@,{_,y ® F- 1(9y,_x®¢//)) is an exact funct01
from the category of coherent 9y- Modules with support in Z to the category of
2x-Modules.

The question being local, we may assume that .#= @X®(92 Then

F(9y x ®.///) 9y holds and hence f[l](-@x—»y ® F~ IF*(.@W_X ®.//))
=9y ® @z holds.

Remark. We can prove that (5.4.3) is injective.

4.3. We now prove Theorem 5.4.1 by the induction on the codimension
of the support of .#.

Set I=codim Supp .#. Then we can find locally an analytic subset Z of
complete intersection of codimension / and a smooth map F: X—Y to an (n—1)
dimensional complex manifold Y such that Z— Yis a finite map and Z> Supp .#.
Set &/ =F,( Dy x ® A). Then by Theorem 5.3.4 we find that .4~ has R.S.
There is a hypersurface S of Y such that SS(4#)=T3%Y on Y-S. Set &
=#Py51(#"). Then £ is of D-type along S. Let ¢ be the composition of the
homomorphisms

M — WfZ](gx—»Yg@ N) — ffZ](-@x—wyg@ ).
Y Y

Let Z, be the union of Z n F~1(S) and the subset of Z where Z— Y is not a local
isomorphism. Then codim Z,=1+1. Since A& =% outside S, ¢ is injective
and 9y-linear outside Z, by Lemma 5.4.5. On the other hand, it is obvious
that Qx-w@-f is a holonomic system of D-type along F~!(S). Hence
%[ZO]%[Z](.@X_,y(@,?) 0 holds. Therefore ¢ is Dy-linear. Let .#’ and
A" be the kernel and the image of ¢, respectively. Since ¢ 1is injective

outside Z, by Lemma 5.4.5, Supp .#’ is contained in Z,. On the other hand,
we have an exact sequence
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(5.4.4) s AT (M) — Ky (M) — Hlpy(A)
s () — L) e,

and a commutative diagram

(5 4. 5)
[T] (-///”)w“’Jip[r](‘/fr)QO "flfr](v//)w—’f%p[ﬂ(-/")_’«%pk“(vf )
zkﬂll a;(l czkl aﬁl ak+ll
oY M) AN (M) H( M) S (M) > (M)
Set X" =}, (Dx-y ® %) and let ¢’ be the cokernel of ¢. Since 2 has
R.S. by Lemma 5.4.4, ¢’ has alsoR.S. Since 4.y ® £ is of D-type, #Fr(A)

has R.S. for any k and s#fr(#")°—#%(4"®) is an 1somorphlsm We have also
exact sequences

(5.4.6) > f[’r]l(%) — %[T]I(.%/‘I) — f’f]‘](l”)
— M[T](%) - -ffT](f') >,

and

(5.4. 7)

[T] (f)w“’”[T]I(f')w"’-ff‘n(/”)m"’”’[‘T](f)w"’flfr](f')w"’

ﬁk-ll ﬁL—:l “Zl ﬂkl ﬂfel

D HEN (A > (A ) (M) > HE(AT) > (H) -

We shall prove that s#f;(.#) has R.S. by the induction on k. Suppose that
Hfr(A) has R.S. for k<k,. Then s#fr(#"') has R.S. for k<k, because
Supp #'=Z. Hence it follows from the exact sequence (5.4.6) that s#{2,(.#")
has R.S. On the other hand, Supp .#'<Z,. Therefore, by the induction on

H#f2(#") has R.S. Then the exact sequence (5.4.4) entails that AL M)
has R.S.

Next we shall prove that

ak ”[T](M)w I % (‘lw)

is an isomorphism by the induction on k. By the induction on I, we may
assume that aj, is an isomorphism for any k.

Suppose that «, is an isomorphism for k<k, Since Supp(#')<Z,
Bi: KA ) —%(A ') is an isomorphism for k<k,. Since By : #fp()°—
H#%(A®) is an isomorphism for any k, it follows from (5.4.7) that oy, is injec-
tive. Since o, y: HFY (M )°>H# ko7 (4") is an isomorphism by the
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hypothesis of the induction on k, oy, is injective by the diagram (5.4.5). Thus
we have shown that o, is injective for any holonomic system .# with R.S.
supported in Z. Applying this result to ', f;, is seen to be injective. Thus
by the exact sequence (5.4.7) and the bijectivity of B, _;, we find that oy is
surjective. On the other hand, Supp .#' < Z,, oy, is bijective for any k by the
hypothesis of the induction on /. Hence it follows from the diagram (5.4.7)
that o, is surjective. Q.E.D.

Corollary 5.4.6. Let Y be a submanifold of X and # a holonomic Zx-
Module with R.S. Then Z4:4x(Oy, #) is a holonomic 2y-Module with R.S.

Proof. Set l=codim Y. Then
Dxey 9@ ToefX(Oy, M) =H (M)
Y
and this has R.S. by Theorem 5.4.1. Therefore F.:¢x(0y, .#) has R.S.

Corollary 5.4.7. Let .# and & be two holonomic Dy-Modules with R.S.
Then To:{*(M, ¥") has R.S.

Proof. Since ToslX(M, N)=T0slx*%(Oy, M4 RN), this is an immediate
consequence of Corollary 5.4.6.

Corollary 5.4.8. Let F: Y>X be a holomorphic map and .# a holonomic
Dy-Module with R.S. Then Ts:f '9%x(0y, F-1.4) has R.S.

Proof. Since To.f 0x(Oy, F M )= T0sx*¥(Oy, M4 @ Oy), this follows from
Corollary 5.4.6.

Chapter VI. Comparison Theorems

The purpose of this chapter is to prove several comparison theorems for
holonomic systems with R.S. As a by-product, we prove in Section 2 that
holonomic 2-Modules with R.S. remain holonomic #2-Module with R.S.
under the integration procedure with projective fibers and the general restriction
procedure. In Section 4 we also show that the validity of comparison theorems
is a characteristic property of holonomic system with R. S.

§1.

1.1. We first show the following Theorem 6.1.1 as a consequence of
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Theorem 5.4.1. In the next subsection we generalize the result to £-Modules.

Theorem 6.1.1. Let .# and & be two holonomic 2y-Modules with R.S.
Then

Rtorm g (My N) D Ritom g (Mo N®) .

Proof. We shall use the diagonal process.
We have
Rtoom gy (My N) =RHom g (MEON*, Bxxxx)[n],
where
B x1xxx =" x1(Oxxx)
and
R o g (M s N ) =RH o g (M N, B i) 7] .
Set Z=.4QN*.
Since
Zixxx =RI x(0xxx)[n],
we have

Rty (My N ) =RExRHom o (L, Oxxx)[20]
=RIxRHom 5, (Oxxx, L*)[21]
=RI yRHom 5, (Oxxx, L*°)[2n]
=R om 5, (Oxxx, R[x(L**))[2n] .

Since #* has R.S., RI'y(£**)=RI"x(£*)° holds by Theorem 5.4.1. Hence
we have

(6.1.1)  Rbomg,, (M V) =RHrmg (Oxux, R p(L*))) [20]
=RW”m9xxx(&XxX’ RF[X](g*)) [2”] .

In order to calculate the right hand side of (6.1.1) we prepare the following

Lemma 6.1.2. Let # and A" be two holonomic 9x-Modules. Then for
any analytic subset Z of X, we have

Re;fam@x(./ﬂ, Rr[z](./t/‘)) =R.§?pmgx(./1/‘*, RF[Z](V[*)) .

Proof. By Theorem 1.2 of [8], we have
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Rotom g (M, RT 171(N))

L
=RHom o, (M, D) g)( RIzy(A)

L
=RF[Z]R%OM(¢£, ‘QX) ®‘A/‘
2x
=R3fam@x(R%¢m@x(u/V, gx), RI‘[Z]Rfam(j, ‘QX)) .
Q.E.D.

Proof of Theorem 6.1.1 continued. Applying this lemma to (6.1.1), we
have

R.}fomax('/ﬂa '/Voo)':R'}f’”’.@xxx(z’ RF[X](@XXX)) [271]
=Rt om g, (L Bxxxx)[7]
=R%¢m9x(dﬂ’ ‘/V') .

This completes the proof of Theorem 6.1.1.
1.2. We shall generalize the result in subsection 1.1 to &x-Modules.

Theorem 6.1.3. Let .# and & be two holonomic &x-Modules with R.S.
Then

Re}fomgx(u//, ./V) =R%amﬂx(‘/é/, ./V.w) .

Proof. At the zero section, this theorem is nothing but Theorem 6.1.1.
Therefore we shall prove this theorem outside the zero section. Since
Ritoom gy (My N) =RHom gy ( (MO N*, G x1xxx) []
and
Rotoom gy (My V) =RHom gy (MON*, EF1xxx) [1]
holds, we may assume without loss of generality that the support of 4" is a
non-singular Lagrangian manifold and that 4" has multiplicity 1.
By a quantized contact transformation, we may assume that Supp .# is in
a generic position and Supp 4 is a conormal bundle of a smooth hypersurface
Yof X and #"=~%yy. Now, there is a holonomic Zy-Module A4 with R.S.
that £/ =654 ® . Therefore it is enough to show
PDx
Rtoomg (M, Cy\x) D5 Rbomy (M, €F)x) .
Since €Y x/ €y \x=#Y x| By|x, this follows from the isomorphism
Rtoom gy (M, By\x) 5 Rtom g, (M, B |x) .
Q.E.D.
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§2.

The purpose of this section is to extend the results obtained in Chapter V,
Section 3 under the additional assumption that .# is a 2-Module.

2.1. Let F: X—Y be a projective map (i.e., F can be embedded in YxP¥
—Y). Let .# be a holonomic 25x-Module with R.S. By Corollary 5.1.11 in
Chapter V, Section 1, .# has a good ﬁltratlon { M} ez defined on X. (See also
Appendix A.) Therefore RF.(%y. x ® ) has holonomic systems as co-
homologies. ([11] Lemma 5, [7] Theorem 4.2)) In this section we will show
that they are actually with R.S. if so is .#, namely we will prove

Theorem 6.2.1. Under the condition above R¥F . (Dy _x ® M) is a holo-
nomic @y-Module with R.S.

2.2. Let F: X—>Y be a smooth projective map with fiber dimension I.
Let .# be a 9y-Module and % a coherent 2y-Module. Then we have the
following

Proposition 6.2.2.
(1) RF*RJ%mQX(QX_,Yg@ L, M)
Y

L
=R9fam9y(g, RF*(QIW—X ® vf))["‘l] 2
2x

. L
(11) RF*Ro}famQX(QX_,Y 9@ Z, Jw)
Y
L
=R omg, (£, RE(Dyox @ 4*)[1].
X
Proof. Since the problem is of local character on Y, we may assume that

& has a free resolution. Thus we may assume that #=2y,. Therefore it

suffices to show
RF*Rfamgx(gx_.y, e/f)
L
=RF*(-@Y<-X§3 M) —1].
X

Since

R%’mgx(-@x—»ra 'l) L
=R9%ﬂ'9x(9x—>h Dx) g@ M
p.e

and
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Rfvm.«ax(gymy, Dx) =9y x[—11,
we get the isomorphism (i). The second one can be obtained exactly in the
same way as above. Q.E.D.
Proposition 6.2.3. For a coherent @y-Module .# such that there is a

coherent Oy sub-Module 4, of M4 with 4 =Dy.M,, we have

RF(Dyx ® M)°=RF(Dy x ® M%) .
9x 9x

This result can be proved in the same way as in [7], Section 4. We omit
the details.

2.3. Let X be a complex manifold and .#° a bounded complex of 94-
Modules. Assume that all cohomology groups s#*(.#") are holonomic.

Proposition 6.2.4. Assume that
Rfam_@x(g, ./f) SN Rfom_@x(g, jw)

holds for any holonomic 9x-Module &% with R.S. Then #*(4") is with
R.S. for any k.

Proof. Suppose that #%(#')=0 holds for k>k, or k<k, We shall
prove the proposition by the induction on k, —k,. If k; <k,, then the propo-
sition is trivial. Suppose that ky > k,. Set & =s%(4"),,,. We have

HO(RHoom( Ly M) =Hoom( L, H*(M))
and -

HO(RHoom( Ly M) =Hoom( L, H*(M)7) .
Thus we have

Hoom( L, Hko(M)) T Hom( L, HFo(M)7) .
It is clear that

Homg( L, H(M)°) % Hoomm ge( L P, 4 (M))

holds.

We shall apply these isomorphisms to & =#*°(.#"),,,. The isomorphism
Lo % (4)° comes from the homomorphism i: Z—s#*o(#"). Thus
Z 2 s%(A") holds. This implies s#*°(.#") has R.S. Let 4 be a complex
such that there exists a triangle
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A#Fo (M) [~ ko]

/X

M N
Then " satisfies the condition of the proposition. Furthermore
XN V= (M)  for k#k,
and
Hro(N)=0
hold. Thus, by the hypothesis of the induction, s#*(4#"") has R.S. Q.E.D.

2.4, We now embark on the proof of Theorem 6.2.1. We first embed
F: X—Yinto a smooth projective map F': X'—Y. Then

L
RF(Dyx @ M)
2x L
=RF(Dyx ®,(9X'<-x ® A)) .
Dx 2x
Since Zy..x ® # has R.S. (Lemma 5.2.9), we may assume from the first that
2

F is smooth and projective. Set A RF*(QY(_X® ). In order to show

that 4" has holonomic 2,-Modules with R.S. as its cohomolog1es it is enough
to show that for any holonomic system .# with R.S.

Rtomy (L3 N)
=RHomgy (&L /™). (Proposition 6.2.4.)
On the other hand, we see by Proposition 6.2.2 that
Rtoom g, (L) N)
=RF*R'%9mﬂx(@X—*Y ® g, j)
Dy
and

Rtom g, (L, N
=RF*R*%9'”9X(-@X—->Y ® g, ../”00) .

Since Dy._.y ® % and # have R.S., they are isomorphic.
This completes the proof of Theorem 6.2.1.

Remark. Theorem 6.2.1 enables us to improve several results obtained
earlier by using the integration of 2-Modules along projective fibers so that
we may conclude that the resulting system is with R.S. As an example of such
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results, we state the following

Theorem 6.2.5. Let f; (j=1,..., n) be real-valued real analytic functions
defined on a real analytic manifold M. Let s; (j=1,..., n) be complex num-
bers with non-negative real part. Then there exists a holonomic @-Module
# with R.S. which the hyperfunction ﬁf;’; solves. (Cf. Theorem 1 and
Lemma 5 of [11]) =

§3.

In this section we use Theorem 6.1.1 to prove that cohomology groups
considered for formal power series coincide with those considered for convergent
power series, if the holonomic system .# in question is with R.S. Theorem
6.3.1 below is, actually, a dual statement of a special case of Theorem 6.1.1.
(See [17] and [28] for related topics.)

We first recall some basic facts about the topological vector spaces needed
here.

Let X be a complex manifold and x a point in X. We shall denote by m
the maximal ideal of 0y , and by (DAX,X the completion of 0 , by m-adic topology,
ie.,

éX,x= h<—m @X,x/]nk .
k
First note that Oy , (resp., (ﬁx,x) has the natural structure of DFS- (resp., FS-)
topological vector space and that #, x (resp., %, x) has the natural structure
of FS- (resp., DFS-)topological vector space. Furthermore 0, and Qy 0@2 BEyix

(resp., @AX,x and Qy ® # . x) are mutually dual vector spaces.
Ox

Our main result in this section is the following

Theorem 6.3.1. Let .# be a holonomic 9x-Module with R.S. Then, for
any point x in X and any integer j, the natural homomorphism

Eatly (M, Oy ) — Eotly (M, Oy )
is an isomorphism.
In [6] we proved the following result.

Proposition 6.3.2. For a holonomic 2@y-Module M &Eoth (M, Ox,) is
the dual vector space of ot i(M*, By x). Here n=dim X,
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This proposition was proved by using the fact that QQ #, x is the dual
vector space of Oy, and the fact that dim; &=sf (A, Oy ) is finite. We know
that dimg &zsf (M, B 5yx) is finite and that Q® # . x is the dual vector
space of &X,x' Thus the same argument works and we obtain the following

Proposition 6.3.3. For a holonomic 9y-Module M, &=L, (A, @AX,,,) is
the dual vector space of E=¢5.) (M*, B 1x31%)-

Then Theorem 6.3.1 immediately follows from these propositions com-
bined with Theorem 6.1.1.

§4.
In this section we shall show the converse of Theorem 6.3.1.
Theorem 6.4.1. Let .# be a holonomic @x-Module. Assume that
(6.4.1) Ritosmg (M, Og) R Hom g (M, Oy )
holds for any x in X. Then .# is with R.S.

We shall prove the theorem by the induction on the dimension of X. In
the course of the proof we abbreviate djx’x to @x for brevity.

First let us prove the theorem when dim X is equal to one. In this case,
this theorem is essentially proved by Malgrange [21]. By a result of Bjork [1],
# is generated locally by one element. Therefore we may assume that .#
=9/# for a coherent left Ideal .#. Since .# is holonomic, .# is not equal to
zero. We may assume that X is a domain in € and SS(#)<=T{,X U T3X.
Let P=x"D"+a,;(x)D™ 1+ ---+a,(x) be a section of .# such that n is minimal.
Set '=2/2P. Then we have an exact sequence

0O—F— AN — 4 —0,
where ¥ =2/9P. Furthermore we have the following
Lemma 6.4.2. SS(¥)cT3X.
Proof. Set p=(0, dx). Itis enough to show that
SFcE,P.

Let Q be an element in .#. Then, by a division theorem (S-K-K [24],
Chapter II, Theorem 2.2.1), we can write

Q=TP+S§
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with T, Se&, and (ad D)"S=0. Since S in &,#, we have S=0. In fact, the
symbol Ideal of & at p is x". Q.E.D.

Therefore .# is isomorphic to a power of ¢. Thus
Rtom( L, Ox), 2RHowm( L, O.,)

holds for any point x.

Therefore we have
Rotloom( N, Ox), 5 Rboom( N, 0,)

with x=0.
Let us now recall the following result due to Malgrange [21].

Theorem 6.4.3. The equation Pu=0 is with R.S. if and only if
dim Ker (P; 0,—0,)—dim Coker (P; 0,—0,)
=dim Ker (P; 0,—0,)—dim Coker (P; 0, 0,)
holds.

By virtue of this result we find that .4 is with R.S. Hence .# is also with
R.S.

Now we discuss the case where dim X >1.

Lemma 6.4.4. Let .# be a coherent Dx-Module and Y a submanifold of
X which is non-characteristic with respect to .# at a point xe Y. Then

R‘;f"”‘ax('/%a éX,x) -t R';f’m.@y('/ﬂY9 éY,x) ]
where My=0y ® M, i.e., the restriction of 4 to Y.
Ox
Proof. By the technics we used in S.K.K. [24], Chapter II, Section 3.5,

we may assume that Y is a hypersurface and that .# =2/2P for a differential
operator P. Hence we may assume that

Y={x,=0} and P=Dy+ ¥ p,(x, Dy,..., D,_ Dy,
i=1

where p; is of order <j. Then P: @AX,xﬁ(ﬁX,x is surjective and the Cauchy
problem Pu=0, (0/0x,)ul, -o=v; (j=0,..., m—1) has a unique solution u in
éx,x for any vje(ﬁy,x. The same result holds for the pair (0 ,, Oy,). Hence
we have the required result. Q.E.D.

Now, let .# be a holonomic 24x-Module satisfying the condition (6.4.1) and
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Y a submanifold of X non-characteristic with respect to .#. Then, by the
preceding lemma, the restriction .#; also satisfies the condition (6.4.1). Hence,
if dim Y <dim X, .#; has R.S. by the hypothesis of the induction.

We shall now show that if .#; has R.S. for a generic hypersurface Y, then
A itself has R.S.

We shall first formulate this claim in a micro-local way.

Let X be a complex manifold, V a regular involutory subset of T*X of
codimension I. Then locally the set of bicharacteristics of ¥V is a symplectic
manifold. Therefore there is an (n—I) dimensional complex manifold T*Y
and a smooth map F: V- T*Y so that any fiber of F is a bicharacteristic of V.
Let us fix a right 25-Module ¥ =ué& with characteristic variety V such that
Z=¢|# and that the Ideal of symbols of operators in .# coincides with the
Ideal of holomorphic functions vanishing on V. Then &x»/(¥) is isomorphic to
F~1¢y. Note that £ is uniquely determined locally (S-K-K [24], Chapter II,
§5.3), and the isomorphism &»e’,, (£)=F1&y is unique up to inner auto-
morphisms of & by a section in &(4) for some complex number 4. Let .#
be a coherent &x-Module. Suppose that Supp .# N V—T*Y is finite. Then
F. (& ® #)has a structure of &-Module. In [24] we showed that F (% ? M)
isa coﬁzrent &y-Module and J..£x(%, #)=0for k#0. Note that &»" ,;(’:SP”)
~F~1¢y and F (¥ ® M)=EF ® F (& ® ). Therefore we can determine
F. (& ® #) modulo quant1zed contact transform of (T*Y, &y), which we shall
denotc by My.

Now let .# be a holonomic &x-Module with a smooth Lagrangian manifold
A as its characteristic variety defined near pe A. Let f(x, £) be a homogeneous
function on T*X of degree O such that f(p)=0. Suppose that

(6.4.2) df(p) and w(p) are linearly independent.

Then, for any aeC, V,={(x, )e T*X; f(x, £)=a} is a regular involu-
tory hypersurface of T*X in a neighborhood of p. Assume that df|, does not
vanish at p. Then we have the following

Theorem 6.4.5. Consider the problem in the situation described above.
Assume in addition that #y_ has R.S. for any a with |a|«1. Then A itself
has R.S. in a neighborhood of p.

First let us show that we can transform the geometric situation into a very

simple one by a contact transformation.
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Lemma 6.4.6. There exists a homogeneous canonical transformation of
T*X in a neighborhood of p which makes f=x, and A={(x, £); &,=---=¢,
=x,=0}.

Proof. By the condition (6.4.2), n=dim X>1 and p&T$X. Fix a fiber-
ing F: Vy—T*Yas in Chapter I, Section 4. Then F(V, n A)=A,is a Lagrangian
manifold of T*Y. Therefore by a contact transformation of T*Y, we may
assume

Ao={(y, M= 1s--s Yu-15 N1see M=) ET*Y;
Yyi=my=--=M,_1=0}.
Take a homogeneous hypersurface Z containing A and {peV; (Fon,) 1(0)}
such that H (p)& T,Z.
Then we solve the initial value problem

{f, gu}=—1
{ g,.lj=0-

Next we solve the initial value problem for g4,..., g,—1 and fi,..., f,—;

{ {9n 9;3=0
gily=npF (j=1,...,n-1),
{ {gw fi}=0

filv=yjF (j=1,....,n—1).

We also define f, by f. Then g; are homogeneous of degree 1, f; are of degree
0 and, furthermore, they satisfy the following:

{ {gn! {fa gj}}=0 (.]:las n)a
9w £, £33=0 (j=1,...,n).

Hence we can find a contact transformation which makes g;=¢; and f;=x;.
Since A<¢;1(0) and AN {x,=0jc{é,=-==x;=0}, A={{,=--=¢,=x,

—0}. Q.E.D.

Now let us prove Theorem 6.4.5. We may assume that the geometric
situation is as in Lemma 6.4.6. Set Y,={x; x,=a}. Then, by the assumption
the restriction .#y_has R.S. for any a. By Lemma 1.3.4 of Chapter I, Section 3,
there is a system % given by (x;D,—Au=D,u=---=D,u=0, where u is a
column vector of N unknown functions u,,..., uy and A is a constant matrix of
size¢ Nx N and .#® is isomorphic to #®. Let ¢: #*—>%® be this isomor-
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phism. It is enough to show that ¢(.#)=.%. Any section v of ¥® is written

uniquely in the form
N

(6.4.3) v=72 P/(Xs..., X,, D)u,
v=1

with P,e&® such that [P, x;]=0(1<j<n) and [P, D;]=0. Clearly v
belongs to % if and only if any P, belongs to &. Let w be a section of .#.
Set v=¢(w) and write v in the form (6.4.3). Since w|y, (i.e. w mod (x,—a))
satisfies a holonomic system of micro-differential equations on Y with R.S.,
vy, belongs to %y, and hence P [(x,,..., X,_, a, D) is of finite order for any
a. This implies that P(x,,..., x,, D;) is of finite order. Therefore v belongs
to #. This completes the proof of Theorem 6.4.5.

Let us now resume the proof of Theorem 6.4.1. By the reduction done
before, we may assume that dimX>1. Set SS(#)=U T} X. If dimY;
=dim X, then .# has R.S. on T}, X by the definition. Wé shall prove that .#
has R.S. on T} X if dim Y;#0. We can choose a local coordinate system
(X15.++5 X,) of X around a non-singular point of Y; so that Y¥;={x; x;=---=x,
=0} with 1=I<n. Since SS(#) N 7"1(Y},,) is isotropic, SS(A) N (Y ee)
is contained in T?J_regX . (Sublemma 3.3 of [6].) Set Z,={x;x,=a}.
Then Z, is noncharacteristic with respect to .#. Therefore .#,, has R.S.
as seen before. Applying Theorem 6.4.5, we find that .# has R.S. along T¥ X.

Hence there is a hypersurface Z of X such that .# has R.S. on T%#X and
SS(#)cn Y (Z)U T{X. Then N =i#P,(#) is a holonomic system of
D-type and hence with R.S. (Corollary 4.1.2 of Chapter 1V, §1).

Let .#” be the image of .# in #°. Then .#” has R.S. Let .#’ be the
kernel of #—.#". Then .#' satisfies also the condition (6.4.1) and Supp .#’
<Z. Thus by replacing .# with .#’, we may assume from the first that the
support of .# is contained in the hypersurface Z.

Lemma 6.4.7. Let F: X—Y be a smooth map and let .# be a coherent
Dx-Module such that Supp # —Y is finite. Then

RFERHomg (M, Ox)ZRHom g, (Fe(Dy x ® M), Oy) [dim ¥ —dim X ]
2x
and

Rotom g (My Oy ) ZRAom g, (Fy(Dy oy ®4); Oy, pew) [dim Y —dim X ] .
X

Proof. By the induction on dim X —dim Y, we may assume that 1=dim X
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—dim Y. Then choosing a local coordinate system so that X=C", Y=Crt,
F(x4,..., X)) =(x5,..., X,—1) and the support of .# is contained in {xeX; f(x)
=0} with f(x)=x"+a,(Xq,..., X,—)x® t+-..-. Then we can assume that
M =Dy|Dyf, and we may assume x=0 and f~1(0)n F~*(0)={0}. Then we
have Fyo(Zy x 9@ )= 2% and hence it suffices to show that

x

Ker (f: 0x ;= 0y )
=Ker (f: @Ax.x—’ éX,x)

=0
and
Coker (f: O0x ,—0x ) =0%,0
Coker (f: Oy y—0x ) =0%5 .
These assertions immediately follow from Spéth’s division theorem. Q.E.D.

Now, let us resume the proof of Theorem 6.4.1. We may assume that
Supp # is contained in a hypersurface Z. Let Y be a manifold such that
dim Y=dim X —1 and let F: X—Y be a smooth map such that Z—Y is finite.
Then by the preceding lemma A" =F . (Dy.x ® A ) satisfies the condition (6.4.1).
Since dim Y <dim X, 4" has R.S. by the hypotheSJS of induction.

Now we shall employ Theorem 6.4.5. We can take a local coordinate
system (xj,..., x,) of X around p so that p is the origin 0, 6/0x;€C,(Z) and
dx,&SS(#)—T*X. Let F, be the projection Xxr>(Xy,..., X,_ 1, X,+ax,).
Then F,|z: Z-»Y=C""" is a finite map. Hence A" = F,4(A4) is with R.S.
(Theorem 5.3.2 in Chapter V, §3.) On the other hand, setting f=¢,/¢,
and defining V, by f~1(a), we find &y ® &/ =(€®.#)|y,. Therefore Theorem
6.4.5 asserts that #®.# has R.S. on ’_l?fX . This completes the proof of Theo-
rem 6.4.1. Q.E.D.

Remark. We have the following theorem, which can be proved in the
same way as Theorem 6.4.1.

Theorem 6.4.8. Let .# be a holonomic 2y-Module. Suppose that

> (=1 dimg sl (M, O),
=3 (= 1)) dimg Gerd, (A, Ox.)
J

for any xe X. Then # has R.S.

Remark. We can generalize Theorem 6.4.1 as follows:



960 MASAKI KASHIWARA AND TAKAHIRO KAWAI

Let X be a complex manifold and .# a bounded complex of 2y-Module.
Assume that s#,(#) is a holonomic 24-Module for any k and

RAoom (M, 0,) SR orm( M., O )

for any x. Then all cohomology groups +#,(.#) have R.S.

In fact, we can reduce the problem to the case where dim X=1 by the
same argument employed in the proof of Theorem 6.4.1.

Suppose that dim X =1 and +#,(#)=0 for k<k,. By the induction on
ko it is sufficient to show that s#,(.#)) has R.S. By the theory of spectral

sequences, we have
Hom (#y,(4.), 0:/0,) = H**(R Hom (A4, 0:/0,))
and
Ext! (#4,(4), 0,/0,) = H**'(R Hom (A, 0,]0,)).
Since the cohomology groups of R Hom (.7, éx/@x) vanish by the assumption,
we obtain
Hom (#4,(4.), 0/0,) =ExXt'(#y, (A.), 6,/0,) =0.
This implies that
1

o (_1)‘] dim Extj(.}fko(j.)’ @x)

J

= ~210 (-—I)J dim Eth('fko('/ﬂ.)s éx) .
j=

Hence s#, () has R.S. by Malgrange’s theorem.

Ramis [23] called a bounded complex .# of 2y-Modules Fuchsian if .#
satisfies the following conditions

(6.4.4) o () is a holonomic 9y-Module for any k,

(6.4.5) RI'y(A*)=(RIy(4))” for any analytic subset ¥ of X,

and

(6.4.6) Rtom (M., Ox)|y = RHom (M, éX,Y) for any analytic set Y of X,

where Oyy=lm Ox/#* for the defining Ideal .# of Y.
k
Ramis showed that (6.4.5) and (6.4.6) are equivalent under the condition
(6.4.4). The above remark shows that these two conditions are also equivalent

to
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(6.4.7) #(A) has R.S. for any k.

Appendix

A.1. In this paper, in proving some statement on 2-Modules, we some-
times reduce the problem to that of &-Modules outside the zero section of the
cotangent bundle by adding a dummy variable.

We shall give the detailed discussion about this method in this section.

A2, Let X be a complex manifold and let X’ denote C x X. We shall
take local coordinate systems X =(Xi,..., X,), (£, X), (%, E)=(X1,-.+5 Xu3 E1sees En)s
(t, x; 7, &) of X, X', T*X and T*X', respectively.

Let us identify T*X' with T*C xT*X=CxCxT*X by (t, x;1,¢&)
o(, 1, (x, ). We embed T*X into T*X'—T% X' by j: p—(0,1; p) and X
into T*X'—T% X' by jo: x—(t, x; 7, £)=(0, x; 1, 0).

We define V={(t, x; 7, )e T*X'; t=0, 1#0} and let F be the projection
from V onto T*X. Let % be the sheaf &y./éxt on V. The sheaf & has a
structure of (€., F~1&y)-bi-Module. Let u, be the section of # given by
1€&y modulo &xt. Hence % is generated by u, as &.-Module. Any section
of #® (resp., .#) can be written in a unique form P(x, D,, D u, for Pe&%
(resp., &) such that [D,, P1=0. We shall define the right £%-linear homo-
morphism p,: jgl¥*—>2% (keZ) as follows. For a section P(x, D,, D,)u,
of jo'#®, we expand P(x, D, D,)=3 P;x, D,)D! with P,e 2%, and we
define !

pk(Pu0)=Pk(x, Dx) .

We have the exact sequences

(A.2.1) 0— 9Puy — £*° 1o F° L4, j .29 — 0
and
(A.2.2) 0— Qyuy— £ 1> £ L% jo. Dy —> 0.

A.3. For an &x-Module .#, we define the £y.-Module &(.#) by
(A.3.1) (M=% @ F 'l
&x

and, for an &~-Module 4 with support in ¥, we define the &x-Module ¥(4")
by
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(A.3.2) V(N ) =\ Hom g (L) ) .

For a 94y-Module ./, let p,(#) be the homomorphism from j5!®@(.#) to
# defined by p,®id ,.

Proposition A.1. For an &x-Module #, YO(#) = M.

Proof. Ritoom s, (&, P(A)) is quasi-isomorphic to j~1@(A) L jT1O(A).
Since j~l.¥ - j71.¥ is quasi-isomorphic to &y —%> 9Dy in the category of
9y-Modules by

j_l_? t j—lép

b b

& —2— —@X|T}x .
Hence j~1&(4) — j~1&(4) is quasi-isomorphic to
M s Mpex.
Thus we obtain the desired result by taking the 0-th cohomology. Q.E.D.
Remark. By the same reasoning as above,

Y(D(A))=M>.

Proposition A.2. Let .# be an &x-Module. Then # is an &x-Module
locally of finite type (resp., a coherent &x-Module) if and only if ®(A) is an
Ex~Module locally of finite type (resp., a coherent &x~Module).

Proof. If # is locally of finite type (resp., coherent) over &y, then there
exists locally an exact sequence O—.#«&% (resp., O «—&Yo—&Y1). By
tensoring %, we obtain an exact sequence 0« @(A)—ZLY¥=@(&Y) (resp.,
0 B( M)~ LNoe #N1).  Since Z is coherent over &y, D(#) is locally of finite
type (resp., coherent) over &x..

We shall prove the converse. Suppose that @(.#) is locally of finite type
over &.. Then there are sections s,,..., Sy of &(.#) which generate &(.#)
(locally). Since s; is a finite linear combination of u,®uv's (ve #), we may as-
sume that there exist sections vy,..., v, of .# such that u,®u;,..., u,®v, generate
&o(#). Let @ be the &y-linear homomorphism from &% into .# defined by
Viy.--» V. Then @(@): @(£%)—~>P(A) is surjective. Since & is faithfully flat
over &y, ¢ is surjective. Thus we have proved that .# is locally of finite type.

We shall next prove that .# is coherent if ®(_#) is coherent. Since ®(.#)
is locally of finite type, .# is locally of finite type as we have already shown.
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Therefore # is a quotient of &Y. Let .#’ be the kernel of the homomorphism
@: EY—.#. Then &(#') is the kernel of &(¢): LN—>D(#). Therefore d(4')
is locally of finite type. This implies that .#’ is locally of finite type, and hence
# is coherent. Q.E.D.

Proposition A.3. If .# is a coherent &x-Module, then ®(4) is a coherent
&x~Module with regular singularities along V.

Proof. A quotient of a coherent &y-Module with regular singularities
along V has regular singularities along V. Since .# is a quotient of &%, &(.#)
is a quotient of ®(&Y)=2N. Q.E.D.

Proposition A.4. Let A be a coherent &x-Module with regular singu-
larities along V. Then, for any integer k, jolé=tk (&, #7) is a coherent
9x-Module and

P% ® Jo'bat e (L, N)=]5 Eatln (L, /).
X

Proof. Let us prove this proposition at a point x, of X. As proved
in Theorem 3.2 [18], # is a quotient of 4", where 4", has the form
&Y. |&Y.(tD,— A(x, D,)) for an N x N matrix A(x, D,) of linear differential
operators on X, which satisfies the following condition.

(A.4) A(x, D,) has the form (A4;{(x, D,)), <i j<r Where A;(x, D,) is an N;xN;
matrix of linear differential operators. If i>j, 4;;=0 and A; is a matrix of
functions on x, and A4;(x,) is Ay, for 4;€C. Furthermore we have 4;;=0 if
i# ).

Suppose first that the claims are true for such 4#°,. Let .7, be the kernel
of #g—#". Then we have the exact sequence

J31EtM (L Ny) — jo Gt (L, N o) — 516t (L, N)
— o Gt UL, N ) — [ Bl (L, M) .

We shall prove the first assertion on coherency by the descending induction on
k. If k#0, 1, then &=r*(¥, #)=0. Hence the claim is evident. By the hy-
pothesis of the induction, jj!&=¢*"1(&, #°,) is coherent. Since jgl&r (L, N )
and j31€¢*t1(Z, &) are coherent by the assumption, jl1&*(Z, #°) is locally
of finite type, and hence so is jg!&=r* (&L, #;). Therefore jgl&ar® (L, ) is a
coherent 9x-Module.

Let us prove the second claim also by the descending induction on k. If
k+#0, 1, then 2L, /) =E2¢* (L, #)=0 and hence the claim is evident.
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Consider the following diagram:

(jo'€t* (L, /'1))® — (jo'bat" (L, N 0)* — (jo'Cat* (L, N))”
! /| |
Jolbat" (L, W) —— j5'6a¥(L, NT) — j3 ' Cat™ (L, /™)
— (Jo' Gt UL, H))” — (Jo'Gut*TH (L, N))®
| |
— Jjo'Cet* UL, NT) — j5lEat* (L, NF).
By the hypothesis of the induction, J is an isomorphism. We assumed that
B and ¢ are also isomorphisms. Hence y is surjective. By applying this to /4",
instead of 4", a is also surjective. Hence y is an isomorphism.
Let us prove the claims for #;,. By decomposing 4} into the direct sum,
we may assume that 4, =---=4,.
Then, by Theorem 3.11 [18], if A, is not an integer, then &=/*(Z, A7)
=E4M(Z, #/F)=0. Hence the claim holds. Let us assume that 1; is an
integer. Then by the same theorem, we have

Hom( L, Ny) =Ker (2§ 24, 9%)
Homs(L, /D) =Ker (9N 214, .@wN)
E=41(¥, /) =Coker (2§ 2124, 9¥)
Et' (L, #'T) =Coker (23N 2174, 9%N) .

Hence the proposition immediately follows from these equalities. Q.E.D.

A4. In Theorem 3.8 [18], we defined the monodromy of a coherent
&x~Module with regular singularities along V. Let us recall the definition.
Let A be the submanifold (T,C—T¢C) x T3X of V.

For any coherent &x.~-Module 4" with regular singularities along ¥, we can
define the &y |,-linear automorphism M(A4"): #°|,— A"|, functorially. If
A is the cokernel of tD,— A(x, D,): &% —&%., where A(x, D,) is an NxN
matrix of micro-differential operators such that 4 has the highest order <0.
Then we have the commutative diagram

0‘—VVIA<—£§"A<M-£§'IA

M(#)l lezuiA 1921“/1

0— Hge— E%ls <222 614

Proposition A.5. If .# is a coherent 9x-Module, then the monodromy of
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(M) is the identity.

Proof. .# is a quotient of a free Module 2V and hence &(.#) is a quotient
of ®(2V)=#N. Since the monodromy of #V is the identity, we obtain the
desired result.

Proposition A.6. If 4" is a coherent &x-Module with regular singularities
along V with the identity as its monodromy. Then ®¥Y(AN") 3 N .

Proof. We shall prove first the following lemma.

Lemma A.7. If 4 isasin Proposition A.6, then & |, is locally a quotient
of a direct sum of the copies of % | ,.

Proof. We shall consider on a neighborhood of j,(0). By Theorem 3.2
[18], 4" is a quotient of

'/V0=é”§’/é’¥'(tDt_B) s

where B(x, D) has the form described in (A4). N =N/M(NY) Ny =
&Y. [(¥A(tD,— B) + &£Y¥.(e27B —1)). By the assumption on 4", #" is a quotient
of No/M(ANy)ANy. Hence we may assume without loss of generality that
N =No|M(Ny)ANy. By decomposing A5, into a direct sum, we may assume
that all the diagonal components of B are 4 at x=0.

If A&Z, then e?"*B—1 is invertible and hence .#"=0. Suppose that
A€Z. Then (e2*B—1)/(B—A) is invertible. Hence &¥.(e?"8—1)=&Y.(B—A).
Therefore & =&Y./(6¥.(tD,—1)+ &¥(B—2)). Thus 4 is a quotient of
&Y. [&Y.(tD,— 1), which is isomorphic to #¥. Q.E.D.

Now, let us prove Proposition A.6. By Lemma A.7, we have an exact
sequence

PN 2 PNo — fr—0.

Let .# be the cokernel of ¥(¢p): P(£L¥1)—»P(LNo). Since dY(FL)=2 and D is
an exact functor, @(#) is the cokernel of @¥(p)=¢: LV¥1— #No,  Therefore
A" is isomorphic to @(.#). Hence V(") is isomorphic to .# and 4 =PV (A").

Q.E.D.

A5, Let # be a coherent 2y-Module. An increasing sequence {4}z
of Ox-sub-Modules of .# is called a filtration if

(A5 M,=0 for k«0 (locally),
(A.5.2) M), is coberent 0x-Modules,
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(A.5.3) QM My, for any k and [,
(A5.4) M=\ M.

If, in addition, {.#,} satisfies
(A.5.5) g9 My=M,,., for k>0 and 120,

then the filtration {.#,} is called good. = We shall prove that the notion of a good
filtration of .# is equivalent to that of a coherent &y(0)-sub-Module of @(.#).

Proposition A.8. Let .# be a coherent 2y-Module, and let & be O(A).
We shall identify .# with the sub-Module of jg'" by s—>uy®s.

(i) If {M}rez is a good filtration, then Ny=3 Ex(—k)(Uo®.4,) is a
coherent &x(0)-Module, N =ENy, tNycHNo(—1) and M=j5 N (k) N A
=p(A)(N). Here #o(k)=8E(k) 4.

(i) Let 4, be a coherent &x/(0)-Module such that /=Ny and tN,
cHy(—1). Let M be joji¥o(k)nN 4. Then {4} is a good filtration of A,
and Ny=73 E(—k)(uo®-4,).

Proof. We shall prove first (i). We have tA#y=2 t&(—k)(uo@-4)
e X[t (-] (U@ M)+ X E(—K)(tue®@ M) = X E(—k—1)(uo @A) =
Ao(—1). Let us prove that 4, is coherent. &(—k)(u,®.4,) are coherent
&x(0)-Module. Moreover, for k>0, &(—k—1) U@ A, )=E(—k—1)(u,®
9, M) E(—k)(uy®-4,). Hence we have A= ﬁ: E(—k)(u,®@.4) for N>0.
Therefore .47 is a coherent &x.(0)-Module. o

It is clear that 4 cjgi (k)N #. We shall prove joluy(k)=.#. Let
pi(A#) be the homomorphism from jgl4” into .# defined by p,®id ,. Then
po(A) |, is the identity. We have (k)= ﬁ Ek—D)(u,®.4,) for N>0.
Any element of &(k—1)(uo®-4)) is a combilﬁ;gon of elements of the type
P(x, D,, D)u,®s with Pe&(k—1I). Expanding P=3 Pjx, D,)D{, we have
P,e2,_,_;. Thus we have po(Puo®s)=P,_,;S€ Dx,-.#. Hence we obtain

N
M N jol ¥ o(k) = po(jot Ho(k) = pu( M) (N) = t=z-:1v Dy jo—1-#)
k
= Zw Dy j— 1 < M, .

1==

This implies A, =j51 N (k) N A = pi (M) (N).

We shall prove (ii). The property (A.5.4) is evident, because A =&A%.
Let us take a good filtration {.#}} of .#, and we define /", =3 &(—k) (uy®-A}).
Then by (i), #7 is a coherent &(0)-Module such that 4 =&x.47,. Hence
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there is N such that /73> 4H(—N). We may assume that N=0 by replacing
Ny with #5(—N). Then 4 <=.#;. Hence (A.5.1) is clear. We have 2,4,
c oD AN () N A =l (N o(k+ D) N M =M, Thus (A.5.3) is proved.
Let us take a point x, in X, and we shall prove the other claims on a neighbor-
hood of x,. Since 4 S} o ANd Dy oMy o S Mk 1 x> i x, 15 @ finitely
generated Oy . -module and 2, .# ..=# iy, for k>0 and [20. Hence
there are a neighborhood U of x and a good filtration {.#%} of .# defined on U
such that /7 , =4, and #;c.4. Set ¥/ 5=3 &(—k)(uo®@#}). Then
by (i), A4 is a coherent &y.(0)-Module.

We shall prove A7g jo(xoy=40,joxo)- 1t is €vident that 47 = A%,

Let uy,..., uy be a system of generators of 4}, and let u be the column
vector with u,,..., uy as components. Then there is an N x N matrix A(¢, x, D,, D,)
of micro-differential operators of order <0 such that tDu =A(t, x, D,, D,)u.

The proof of Theorem 3.2 [18] shows the following: there are invertible
matrices of U(t, x, D,, D,) and U’(t, x, D,, D) of micro-differential operators
of order 0 such that

U(t, X, Db Dx)(tDt'—A(ts X, Dta Dx))Ul(ta X, Dt9 Dx)=tDt_C(t5 X, Dts Dx)

Moreover, C(t, x, D,, D,) has the following form (A.5.10) for N,;x N;-
matrices By(x, D,)=(b; (X, D,)); <uv<n, (i=1,..., ¥) which satisfy the following
conditions:

(A.5.6) " N,=N.
i=1

(A.5.7) b; ,y=0 (u<v).
(A.5.8) b; ,, depends only on x.
(A.5.9) b; yu(x0)=4.

B,
(A.5.10) R(tD,—C)R"'=tD,—| .. |.

B,

Here R is the diagonal matrix with D as components. Let 4; be the diagonal
components of ¢o(B;)(x). By replacing u with U’'~'u, we may assume that
(tD,— C)u=0.

B, Mwy]
Hence (tD,—— Ru=0. Set Ru=[ : J with Nj-column vector
B, w,

w;(j=1,...,7). Then (tD,—B;w;=0. Since the monodromy of 4 is the
identity, e2**Bsw;=w;. If A; is not an integer, then e2>":8i—1 is invertible and
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hence w;=0. 1If 4; is an integer, (e?":8/—1)/(B;—4;) is invertible. Hence we
have Bjw;=A;w;, which implies (tD,—A;)w;=0. Therefore u, satisfies
(tD,— wJu,=0 for some integer y,. Then D¥**1ly,=0. Hence Dirtly,
=uo®u; for some u,e.#. The section u; is contained in .4, ., by the
definition. Hence u, is contained in &(—u,—1)(Uo® Ay, ). Therefore we
obtain A5 ;i xe) SA70, jo(xo)-

Since A4, and A7 are coherent and A joxo) =40, jo(x0)» WE haVE A=A
on a neighborhood of jy(x,). Therefore (ii) follows from (i).

A.6. Proposition A.9. Let 4, and &, be two coherent &x-Modules
with regular singularities along V and f an &%.-linear homomorphism from
® into /5. Then we have

M(A)*of=foM(A47),

where M(A,)® is the automorphism of 4% obtained from M(A4) by tensoring
% (j=1,2).

Proof. We can take a system of generators uy,..., tt; (resp., vy,..., U,,) of
N7 (resp., 43) and an IxI (resp., mxm) matrix of differential operators
A(x, D) (resp., B(x, D,)) of the highest order <0 such that, if « (resp., v) denotes
the column vector with uy,..., u; (resp., vy,...,0,) as components, we have
(tD,— A(x, D,))u=0 (resp., (tD,— B(x, D,))v=0).

Let &' be the sheaf of microdifferential operators which commute with D,
and set &'(m)=&x(m)N&’. Then, for any integer m, &'(m) is a coherent
sheaf and &'(0) is Noetherian (i.e., an increasing sequence of coherent Ideals is
locally stationary). Let .# be the sub-Module of £%. consisting of H e &% such
that Hv=0. Then # n &'(0)™ is a coherent &'(0)-sub-Module of £ n &’'(0).
Let @ be the operator of &' defined by H—[1D,, H]+ HB. Then &(# n &™)
csNnéE™. In fact, for Hes n &', ®(Hyw=([tD,, H1+HB)v=(HB—H!D,)v
=0. It is easy to see that, for an &'(0)-sub-Module & of &' generated by
Siseens Spy F+O(F) is an &'(0)-sub-Module generated by s,..., S, P(s1),...,
&(s,). Hence, if # is a coherent £'(0)-sub-Module of '™, then so is & + &(F).
There is an integer k such that any component of B is a linear differential
operator of order <k for any i. Hence ®¥(&'(0)")=&’'(k)" for any i. Thus
{Z &£ n &0y}, is an increasing sequence of coherent &'(0)-sub-Module of

’(k)'” and hence S'= Z Pi(#£ n&'(0)y") is a coherent &’(0)-sub-Module of
fné&m  Let {Hy,. H N} be a system of generators of .#’. Then we can see
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casily that {H,,..., Hy} has the following properties:

(A.6.1) If we denote by H the N xm matrix of micro-differential operators
whose row-vectors are H,,..., Hy, then there is an N x N matrix R of micro-
differential operators in &(0) such that HB=RH —[tD,, H].

(A.6.2) If a row vector P of length m of micro-differential operators satisfies
=0 and [D,, P]=0, then there is a row vector S of length N such that P=SH.

Let G(x, D,, D,) be an [ x m matrix of micro-differential operators of infinite
order such that f(u)=Gv and [D,, G]=0. Since

0=f((tD,— A)u)=(tD,— A) f(u)=(tD,— A)Gv
=GtDw— AGv+[tD,, Glvo=(GB—AG+[tD,, G])v,

there is an [ x N matrix S(x, D,, D,) of micro-differential operators such that
(A.6.3) AG~GB=[tD,, G]+SH.
We define G(1), H(%), R(%) and S(1) by

G(i) [tD,, G(4)] dR(i)

L_H(3)=[1D,, H()), =[tD,, R(2)]

T dA
WS(A):[ID,, S(2)] and G(0)=G, H(0)=H, R(0)=R,
S(0)=5.
If we expand G=3 Gj(x, D,)D{, then we have G(A)=3 G;(x, D,)e"/*D].
Hence G(27r\/——1)=(§, H(Q2n/—1)=H,.... Itis easy to verify
(A.6.4) H(A)B=R(A)H(1)— H A).
Now, we define K(1) by

_:71)_ K(A)=R(A)K(Z) and K(0)=1.

The existence of such a K(4) is guaranteed by Theorem 5.2.1, Chapter 11 of
S-K-K [24].
We have

(A.6.5) H(i)erB=K()H .

In fact, if we set ®(A)=H(L)e*®— K(A)H, then we have tD(A) H(1)e*BB
+ 7‘%H(A)e“’ K (WDH=HM)e*®B + (R(MH(L) — H(/I)B)e'“g R(A)KAW)H
=R()P(A) by (A.6.4). Since @(0)=0, we have ®(1)=0 by the uniqueness of
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a solution of the differential equation. By (A.6.3), we have
(A.6.6) AG(A) — G(i)B=-‘;‘,’17G(i)+S(l)H(l).

We define F(A) by the equation

%F(A)—AF(/"L)=S(/1)K(A) (or %e—MF(A)w-MS(A)K(A))

and F(0)=0.
Let us verify
(A.6.7) 4G —G(L)e*t=F(M)H .
Set #(A)=e*4G — G(A)e*B—F(A)H. Then we have
d®(2)/dA=Ae*4G - G'(A)e*E — G(A)e*B—F'(A)H
= Ae*4G—(AG(X)— G(A)B—S(A)H(A))e*B — G(1)e*BB
—(AF(A)+ S(M)K(A)H
=AP(A)+ S(A) (H(A)e*® — K(A)H)
=A%(),

and ¢(0)=0. Thus we obtain #=0. (A.6.7) implies, in particular,
(A.6.8) e2™/"1AG — Ge?™V=1B=F(2n,/—1)H .
Hence we have
e2tV=TAGp = Ge2mnv—1By ,
which implies f(M(A7)°u)=M(A3)*f(u). Since #°F is generated by u, we
obtain foM(A7)® =M(A3) %o f. Q.E.D.

Proposition A.10. Let .# be a coherent Zx-Module and A" a coherent
&x~Module with regular singularities. Then we have an isomorphism

Hoons g ( My PN |p1x) D5 ot Hom g (P(M), N .

Proof. By Proposition A.4, we have Y(AN)* =j5! Hom ey, (L, /™).
Hence, we have
Hom gy (M, V(N )| 13yx) =Hom g (M, j5' Hom gy (L N))
EHomoy(My Homj5' oy (Jo' L, o' N))
X tom gt ey, (J5'ZL ;®xv¢ Jot ™)
2 5 o 1 (£ @ M, H).
Q.E.D.
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B.1. The purpose of this section is to prove (iii) of Proposition 1.4.2 in
Chapter I, Section 4.

Proposition B.1. Let &  be a bounded complex on a complex manifold
X whose cohomology groups are constructible and let ¥ be a complex of
sheaves on X. Let p; and p, be the first and the second projection from X x X
onto X, respectively. Let A denote the diagonal set of X x X. Then we have

PisRI,(PT'RHomc (F, Cx) @ p3'9 ) = RHomc (F7, ¢)[—2dim X].
Lemma B.2. Let & be as in Proposition B.1 and V a C-vector space
(which is not necessarily finite-dimensional). Then we have
RAtovme(F ', Cyx) @ Vy 2% Rilomc(F, Vy)
where Vy is the constant sheaf on X whose stalks are V.

Proof. We may assume that & is a simple complex. We identify &#°
with & =s#%F"). There exists a triangulation of X on each of whose simplex
Z is a constant sheaf of finite rank. Hence we may assume that & is C, where
o is a simplex in X. Then the above lemma is obvious. Q.E.D.

Lemma B.3. p7IRH#omc(F ', Cy) ® p3'% =RHomc(p1  F , p3'9) .

Proof. Let us take a point x=(x,, x,) of X x X. Let U; be an open neigh-
borhood of x; (j=1, 2). Then we have

RI(U; x Uy; R omc(p1 F ', p3'9))
=RI'(Uy; R#omc(F, R(P1lpglgz)*(l’ilg'b;l,}z))) .
On the other hand we have
R(pilpsr )29 1,00 )=RI(Uz; 9)x.
Hence we obtain
RI(Uy x Uy; R#omc(p1' F ', p7'9))
=RI'(Uy; R#omc(F', Cx) QRI'(U,, 9)y) .
Hence, by taking an inductive limit, we obtain

vaﬂmc(lﬁl?‘., p;lg')x=R.}fme(f., CX)x1®g.;cz .
Q.E.D.

Now, we are ready to prove Proposition B.1. By Lemma B.3, we have

Pi'RHomc(F ', Cx) @ p3'9 =Rlomc(p1'F , p3'9) .



972 MaAsAKI KASHIWARA AND TAKAHIRO KAwATL

Hence we have
RI 4(p1'RHomc(F ', Cx) ® p3'9)
=Rl RHomc(p1'F ', p3'9’)
=RAomc(p7'F |4 R 4(p3'9)) .
On the other hand, we can easily verify
RI 4(p2'9 ) =RI 4(Cxxx) ® p3'9 =p3'% | [ —2dim X]
(e.g., we can use Lemma B.3 after coordinate transformations). This shows

immediately Proposition B.1.

C.1. It seems that Theorem 2.2.1 and Theorem 2.2.3 are not written
explicitly in [3]. In this appendix we shall give their proof.

The following proposition is proved in [3] (Proposition 5.7 in p. 96 and
Theorem 4.1 in p. 85).

Proposition C.1.1. Let X be a complex manifold, Y a hypersurface of
X and j the inclusion map from X —Y into X. Let L be a locally free Cx_y-
Module of finite rank. Then there exists a coherent Ox-sub-Module %, of
Jx(Ox_y @ L) satisfying the following conditions:

(C.l.l) .?0 lx_y=0x_y®L as a gx_y'Module.
Cc
(C.1.2) L=ty (L) is a Dy-sub-Module of j,(Ox_y ® L).
[

(C.1.3) On Y, & (resp., &) is the subsheaf of j«(Ox_y® L) consisting of
sections in the Nilsson class (resp., the strict Nilsson class).

The sheaf 9y.%, is a coherent 2y-Module and 2x.%,|x-y=%o|x—y 1S
a holonomic 2y,_y-Module. Hence Theorem 3.1 [8] implies that Z=
Hxv(Px%,) is a holonomic Zy-Module. By the definition of #(L) and
Zs(L) given in Chapter II, we have
='?(L) =°%ﬂ?(|l/sing($)
and
gO(L) ='9f9(leing(=(£0) .

Now, let us prove Theorem 2.2.1. On X —Y;,,, Theorem 2.2.1 is evident.
Hence Theorem 2.2.1 follows from the following proposition. In fact, the
following proposition implies %, (L) is a coherent 0x-Module and .Z(L)=%.



Horonowmic Systems. 111 973

Proposition C.1.2. Let X be a complex manifold and Y a hypersurface of
X. Let & be a coherent Ox-Module satisfying the following conditions:

(C1.4) #9%(£)=0.
(C.1.5) &F|x_yisalocally free Ox_y-Module.

Let & denote #'0xy(F). Then we have the following:

(i) Let s be a section of #%y(F) defined on an open set U of X. Assume
that there is an open subset V such that s|,e %(V) and V intersects any ir-
reducible component of UNY. Then s belongs to £(U).

(ii) Let &' be the subsheaf of & given by F'(U)={se £(U); there is an
open subset V of U such that se (V) and V nY is a dense subset of UN Y}.
Then &' is a coherent Ox-Module.

Proof. We prove this proposition in several steps.

(1) The case where Y is smooth and % is locally free.

In this case, we may assume & =0y. Then &#'=4% and (i) is easily proved
by using the Laurent expansion with respect to the vertical direction of Y. We
leave the details to the reader.

(2) The case where Y is smooth.

There is a locally free Oy-sub-Module ¢ of ¢ such that &= y(9).
We may assume further >4 . The property (i) is derived from the case (1).
Let us prove (ii). We have 5% ’. Then it is easy to see that &' is coherent
over Oy, because &'|F is the sheaf of sections of #9(¢/%) whose support has
codimension =2.

(3) The general case.

If se #°%y(F) satisfies the condition in (i), then s|y_y;,, € L(X — Ying)
by the case (2). Thereforeit is sufficient to show #%,y,;, (Z)=2. Hence the
properties (i) and (ii) are local problems.

Now, let us assume that Y is defined by f(x)=0. We may assume that f
is of the Weierstrass type:

=X+ a1(X1500es Xy )X e+ @ (Xgseees Xpe 1) -

Let F be the map from X into C" given by x~(xy,..., X,—1, f(x)). Then F is
locally a finite map. Hence shrinking X, we may assume that F is a finite map
from X into an open subset X’ of C”. Set Y'={(xy,..., X,—1, )EX <=C";
t=0}. Then Y=F"1(Y’). Set ¥=F,%. Then we have #9.(¢9)=0, and
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G | - _y is a locally free 0y._y~Module because F is a flat map. We have
Fy & =% y1(9),
and
Fu( %1 ¥sing(Z)) S H X F(¥sing) Fx L) -

By case (2), we have H#% ryyng(Fs¥)=F4%, and hence we obtain
F*(X%lysing(g))=F*g' This lmplies foxlysing(g)—:-g'
Now, we shall prove (ii). It is easy to see

F,.ZF'={seF,%; s belongs to F,% on an open dense subset of Y'}.

Hence Case (2) implies that F,#' is a coherent Oy-Module. Therefore &' is
a coherent 0y-Module. Q.E.D.

C.2. Let us prove Theorem 2.2.3.
Since Rt ,,(Ox, L) x-y=L, it is sufficient to show

(C.Z.I) RFSR.}fmeX(GX, 3):0,

(1st-step) Reduction to the case where Y is normally crossing.
By Hironaka’s desingularization theorem ([26]), there is a monoidal
transform f: X'— X of X satisfying the following conditions

(C.2.2) X'—f"1(Yging)= X — Y iy is an isomorphism.

(C.2.3) Y'=f"1(Y) is normally crossing, i.e., we can choose a local coordinate
system (t,,..., t,) of X’ around any point of Y’ such that Y’ is given by ¢,---#,=0.

Let j' be the inclusion map from X'—Y’ into X' and let L’ be the locally
constant sheaf (f|y_y) 'L on X'—Y’. Set ¥'=%(L’). Then as easily shown,
we have

(C24) f, =2
(C24') Rrf,%'=0  for k#0.
Let Q%(%) be the de Rham complex associated with .#:
ARY — QAL —--.
Ox Ox
Let Q%.(#’) be the de Rham complex associated with .#’. Then we have

Q8(2) for £=0

C.2.5 R £, Q2 (£ =
(C.2.5) f*x(){0 for A0,
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because Q%.(Z")=f ‘1Q§f@l) &', Now, Ritom, (O, L) (resp., Rtom, (O,
-lo
£")) is quasi-isomorphic to Q)';(..?) (resp., Q%.(£")) (see §1, Chapter II). Hence
(C.2.5) implies that
Rf*Rfomer(wxz, ,f’) =RW¢m9x(@X, g) .

Thus we obtain

Rryk.?fomgx(@x, .,?) =Rf*(RFY/ R-%ﬂamgx,((pxr, y’)) .
Hence the vanishing of RI'yR#om,,(0x, &) is reduced to that of
RIyR#ome g, (Oxy L)
(2nd-step) The case where Y is normally crossing.

We have
R:}famgx(@x, g) =R9fomC(R9fam(g, (Qx), CX)

and hence

RFyR‘%pamgx(@X, ,?) =R-famc(RWam9x($, 0X)IY’ CX) .
Hence it is sufficient to show that
(C.2.6) Eath (£, 0x),=0 for any peY and any j.

Let us take a local coordinate system (xg,..., x,) around p such that Y
={x;---x,;=0} and p is the origin. Set Y;={x;x;=0} (1=<j=I]). Then
Y= U Y, Letustake asmall ball U centered at p on which L is defined. Since
n,(U—7Y) is the free abelian group generated by the I elements v,,..., y; where
7; is a cycle around Y;. Recall that L is represented by the representation of
n,(U—7Y) on a finite-dimensional vector space V; hence L is determined by
B,..., Bie GL(V), which correspond to yy,...,7;. The B;’s satisfy [B;, B;]=0.
Let us take 4,,..., 4, End (V) such that

(C.2.7) exp (2n/—14;)=B;, [4; 4;]1=0,

and

(C.2.8) any eigenvalue A of 4;isnot 0, 1, 2,....
We define a 2-Module ¢’ by

#'=9,9 V/(Zl(gx ®V)(x,D;~ A+ 3 (2:QV)D).

J=1+1

Here an element of End (V) operates on V from the right. Then one can easily
check that



976 MASAKI KASHIWARA AND TAKAHIRO KAWAL

(C29) SS(¥)<={(x, ); x;¢;=0 for 1=j=I, ;=0 for I+1=<j<n}.
(C.2.10) 2’ is a holonomic Zx-Module with R.S.,
and
(C211) Homgy(Ox, ) ]o-y=Llo-y.
Lemma C.2.1. #}(£"),=0  forany k.

Proof. In order to show this, it is sufficient to show that the multiplication
by x; gives an isomorphism on %,

We shall show first the multiplication by x; gives a surjective map on ..
For an element ve V, we denote by the same letter the corresponding section of
Z'. We first prepare the following formula:

(C.2.12) xmDm T1 (4,—k)'=v (1Sj<D).
k=0
We shall prove this formula by the induction on m. We have

m—2
x7-1Dmly kEIO(A i—k)"'=v by the hypothesis of the induction. Hence,
applying this to (4;—m+1)"!v, we obtain

m—1
<Dy TT (4= =o(dy—m+ 1),

On the other hand, we have
xmD"=(x;D;—m+1)x7"1Dm"t,
Thus we obtain

X Dy E (A= k)t =(x;D; — m+ (A, —m+ 1)1
=v(4;—m+1)"(4;—m+1)=v.
Now we begin proving that x;: &,—%, is surjective. The surjectivity of
x, (I4+1=j=n) is clear, because x;#0 at p. Hence it suffices to show the
surjectivity of x; for j=1,...,I. Let u be an element of .#,. It follows from
the definition of %, that u has the form } P,v, with P,€ 2, and veV, we may
assume from the first that u=Pv. Letm I;e an integer greater than the order of
P. Then there exists a linear differential operator R such that x;R=Px™ holds.
Let w denote the element RD™(v ’;ij: (A;—k)") of #,. Then, by using (C.2.12),

we find

m—1
X;w=x;RD" };[0 4;—k)1
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m—1
= Px7D7v k];[o 4=k
=Pv=u.

This means that x; defines a surjective map.
In order to prove the injectivity of x;, we prepare the following

!
Sublemma C.2.2. Let Pe(2®V), Then Pe .21(9®V)p(ijj—Aj)+
=
Zn: (2®V),D; if and only if Pxf1---xf1=0.

=T+

I n
Proof. Set J= > (2®V),(x;D;—A)+ ; ) (2®V),D; and J' ={P
i=1 JETH
e(2®V),, Px{1--xf1=0}. It is easy to see that J=J'. We shall prove the

converse inclusion relation. Let P be an element of J'. Then we can write

P= ¥ b(x)D* with b(x)e0,®V.

acZ’
Then there is ay(x)e 0,0V such that

P= Y ayx)Df modJ,

ﬂezi
where Df =§181/0x41---0xf+ and ay(x) satisfies
(C.2.13) @/0x)a,=0 if B,#0.

1 Bj—1
Set Ay=TT 11 (4;—K). Then Pxfs.-xf1=0 implies
j=1 k=0
(C.2.14) Y agx)4px~f=0,
pez’,

where x~#=x7#1.-.-x7#. Hence it is sufficient to show that (C.2.13) and (C.2.14)
implies ag(x)=0 for any B.

It is easy to check that (C.2.13) and (C.2.14) imply ay(x)4;=0 for any f.
Since Ay is invertible, we obtain a;=0. Thus Sublemma C.2.2 is proved.

Now we resume the proof of Lemma C.2.1. Sublemma C.2.2 shows that
£, is contained in

(P (O)RV)xgr-xit.
Hence x;: #,— .2, is injective. Thus Lemma C.2.1 is proved.

Lemma C.2.1 shows ¥’ =.¢ and we obtain

(C.2.15) .Sf=.@®V/(§(.@®V)(ijj—Aj)+ 3 (2®V)D).

J=Il+1
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Set £/=2QV|/(2®V)(x;D;—A;). Then by using the Koszul complex, we
have an exact sequence of 2-Modules

00— — M — A" (__'/[(5‘1) —ie— MV — # —0.

We can easily verify ¢} (#, 0x),=0 for any j. Thus, we obtain &=¢L(Z, 0y),
=0 for any j.
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