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The Riemann-Hilbert Problem
for Holonomic Systems

By

Masaki KASHIWARA*

Introduction

The purpose of this paper is to give a proof to the equivalence

of the derived category of holonomic systems and that of constructible

sheaves.

Let X be a paracompact complex manifold and let ® x and 0 x

be the sheaf of differential operators and holomorphic functions,

respectively.

We denote by Mod(^z) the abelian category of left ^^-Modules

and by D(^) its derived category. Let ~D^(^x) denote the full

sub-category of D(^z) consisting of bounded complexes whose

cohomology groups are regular holonomic ([KK]).

By replacing @x with @*x, the sheaf of differential operators of

infinite order, and "regular holonomic" with "holonomic," we similarly

define Mod(^J), D(SJ) and DU^*)-

Let us denote by Mod(X) the category of sheaves of C-vector

spaces on X and by D(X) its derived category. We denote by

Dc(-X) the full sub -category of D(X) consisting of bounded complexes

whose cohomology groups are constructible.

Let us define

by

Jx = @x®
®x

Q x, Jl}
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DRX : Jf

The purpose of this paper is to prove the following theorem.

Theorem. By J* DRX, DRX, Dr
b

h(Sz), Dl(@x) and DS(X) are
equivalent.

This result was announced in [K]. Mebkout [Me] gave another
proof to this theorem.

0. 2. In [KK], we have already shown that Jx gives an equivalence
and that DRX is fully faithful; i.e. for any Jt\ -^"' e Djh ( ̂ x) > we
have

0.3.

(Sflf-^dim X], and *:Db(X)->Db(X)° by
®x
Here o denotes the opposite category and Qx denotes the sheaf of
differential forms with the highest degree. Then we have DRX°* =
*°DRX and **=id.

0. 4. Now for ^'eD?h(^z)5 we put F'=DRXW)*. Then in
[KK] we have proved

By taking the flabby resolution of 0 x

of 0 x, we have therefore

(0.4. 1) J**' ji

Here 38 denotes the sheaf of hyperfunctions.

0. 5. Keeping this in mind, we shall construct the inverse functor
W x : D b

c ( X ) ->Db
h(Sjf) as follows. The idea is to replace @x in

(0. 4. 1) with ^/^, the sheaf of distributions. However, since F^-*
Jjfom(F, 94x) is not an exact functor, Jtfbm(F\ S^f'O is not well-
defined. Therefore, we have to modify Jfom(*, @d).

0. 6. Let M be a real analytic manifold and @£M the sheaf of
distributions on M. A sheaf F of C7-vector spaces on M is called
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J2-constructible, if there exists a sub-analytic (see [HI], [H2])
stratification M— U Ma such that F\M is locally constant.

We define, for an J2-constructible sheaf F, the sub-sheaf TH(F}
of 3tfbmcM(F, @>4M} as follows. For any open subset Q of M and
(p^F(Q, Jt?omc(F, £^M)\ 9 belongs to F (Q, TH(F)} if, for any
relatively compact open sub-analytic subset U of Q and s^F(U, F)
there exists u^F(M, S/M) such that u\v = <p(s).

Then it turns out that F^>TH(F) is an exact functor in F.

0.7. Let Xbe a complex manifold. We shall define ¥x : Dc
b(X) °

— >Drh(^jf), which will be an inverse of DRX°*, as follows. For F'e
D£(X), we shall take a bounded complex G\ quasi-isomorphic to F\
such that G3 is 1^-constructible for any j. We define WX(F') as the
Dolbeaut complex with TH(G') as coefficients

TH(G') (^-

Since TH(*} is an exact functor, ¥x is well-defined. Once we
introduced Wx, it is not difficult to show that Wx and DRxo* are an
inverse to each other. The main idea is to reduce the problem to
a simple case by using Hironaka's desingularization theorem.

0. 8. The plan of this article is as follows. §1 is the preparation to
§2, where we shall study the properties of jR-constructible sheaves.
In §3 we define the functor TH. Its properties are studied in §4.
In §5, we review the theory of regular holonomic systems. In §6 we
announce the statement of our main theorem and §7 is devoted to
its proof. In §8 we shall give some applications.

§ 1. Constructible Sheaves on a Semi-Simpllcial Complex

1. Oo In the later section, we treat constructible sheaves on a com-
plex manifold. However, constructible sheaves are not easy objects to
manipulate. To avoid this difficulty, we study J2-constructible sheaves
(Def. 2. 6) on its underlying real analytic manifold. This section is
the preliminary to study jR-constructible sheaves.

1. 1. In this paper, a simplicial complex £f — (S, J) means the

following:^ consists of two data, a set S and a set A of subsets of 5,
which satisfy the following axioms:
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(1. 1. 1) Any a of A is a non-empty finite subset of S.

(1. 1.2) If T is a non-empty subset of an element a of A, then r

belongs to A.

(1. 1.3) For any p^S, {p} belongs to A,

(1. 1.4) (locally fmitude) For any p<=S,

{a^A ; p^a] is a finite set.

An element of S is called a vertex and an element of A is called

a simplex. Let J25 denote the set of maps from S into R equipped

with the product topology. For any a^A, we define the subset \a of

Rs by

(1. 1.5) \a\ = [x<=Rs', x(p)=0 for p&ff, x(p)>0 for />ee7 and

We denote by |^| the union of \a\ (a^A) endowed with the

induced topology from the product topology of Rs. Then \0\'s are

disjoint to each other. For any aEi.A, we set

(1.1.6) U(a}= U |r |
jBrDCT

and for any x^ \Sf |, we set

(1.1.7) U(x) = U(a(x»9

where o(x) is the unique simplex such that \a contains x. Hence

we have

(1. 1.8) [/(*) = {ye \Se\\ y(p)>0 for any p^S such that ^(

and

(1.1.9) C7(<j) = {o;e|^|; ^(^)>0 for

Hence, U(a) and C7(^) are open subsets of \£f I. Define 5 (a) by

(1.1.10) S(<0 = {peS; {/>}Ut7eJ}.

Then iS(<7) is a finite subset of S by (1. 1.4), and U(a} is contained

in RS(ff\ Hence C7(ff) is homeomorphic to a locally closed subset of
Rl with Z = #5((j). As we have

(1.1.11) \a\ = {xS=U(oy,x(p)=Q for p&a],

\a\ is a closed subset of Ufa), and hence \a\ is locally closed in
We can also verify

(1. L 12) \a\ = {x^Rs', x(p)^Q for any p^S, x(p)=0
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for any p3=.o and 2 X(P) — 1}
pea

— I J lr|— U , t | .

Also, we have, for any (7, r^J,

f T T ( I I 'N " fa -t io\ rr/ \ /-> r T / \ ' ^ ^ ^. i. ioj u(&) n ̂ (r)

(1. 1. 14) [/(a) C[/(r) if and only if (/Dr.

The axiom (1.1.4) implies together with (1.1.13) that
is a locally finite open covering of \&*\. Therefore, |^| is a para-
compact topological space.

1.2. Let £f = (S, A) be a simplicial complex. We denote by
Mod (5^) the abelian category of sheaves of C7-vector spaces on \&*\.

Definition 1. 1. A sheaf F of C -vector spaces on \<9* is called
S-constructible if F\ la{ is a constant sheaf for any a^A.

We denote by S-Const (5*) the full subcategory of Mod(^)
consisting of all the S-constructible sheaves on \ £ f \ .

One can show easily the following lemma.

Lemma 1. 2. (i) If f- F->F' is a homomorphism of S-constructi-
ble sheaves, then the kernel, the image and the cokernel of f are also
S-constructible.
(ii) If 0— >F/->F-~>F//->0 is an exact sequence of sheaves on \Sf\
and if F' and F" are S-constructible, then F is also S-constructible.

Proposition 1.3. Let F be an S-constructible sheaf on \ £ f \ .
Then, for any v^A and x^ a , we have

(1.2.1) H * f ( C 7 ( ^ ) ; 1 0 = - f f l ( k l ; F ) = 0 for

and

(1. 2. 2) H°(C7(<0 ; F) ^H°( \a \ ; F) ^Fx

Proof. For 0<^£<^1, we set 7e= {££!£; e ^ ^ ^ l } , and define the
map 7re from Ie X U(a) into C/(a) by; for any t^Ie and y^U(a)

(1.2.3) TTE(£, 3;) (/>) —ty(p) + (1 — f)x(p) for p^S.

Then it is easy to see that TT£ is a continuous map from Ie X £/(</)
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onto C/O) and 7re(l, y) =y. Moreover we have ne(t, y) e | r \ for r

such that ye |r|. Thus, if we denote by h the projection from
7SX [/((/) onto t/(tf), TTjlF is a constant sheaf over any fiber of h.

Hence we have

Hn({e} x UM ; n*lF}^Hn(I&xU(a} ; ^10 ^#"({1} X U(a) ; Tr^F).

On the other hand, 7re is a homeomorphism from {1} X [7(0- ) onto

£7(00 and hence

H*( {1} X U(o} ; Trr1^) ̂ H*(U(a) ; F).

Similarly, we have

H"({e} X t7(a) ; n?F) =H*(jr.({e} X C7(<j)) ; F).

By taking the inductive limit with respect to e, we obtain

(1.2.4) H"(U(a}; F^\imH"(^({s} xU(<r)); F).

Remark that TCB ( {e} X U(a} ) forms a neighborhood system of x.

Therefore, the right hand side of (1.2.4) equals Fx for n=Q and

vanishes for n^Q. Thus we obtain

If we apply the same argument to the simplicial complex o and

we obtain

0 for
a- E. D.

This proposition particularly implies the following

Proposition 1.4. (i) For any a, F^-*r(U(<j} ; F) is an exact

functor in FeS-Const(^). (i i) For any FeOb(S-Const(^)), if

F ( f / ( c r ) ) = 0 for any a<=A, then F = 0'

1.3.

Definition 1. 5. A sheaf F on \^\ is called S-acyclic if

Hk(U(a); F)=0 for k^O and a<=A.

Then, Proposition 1. 3 says that an S-constructible sheaf is S-

acyclic. Flabby sheaves are also S-acyclic.

For any sheaf .F on \9> |, let a(F) denote the sheaf 0 F( U(o))U(ff*.

* For a locally closed set Z of a topological space X and a vector space V, Vz denotes
the sheaf on X such that Vz\x-z = ® and that Vz\z is the constant sheaf on Z with
fiber V.
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Then we have the canonical homomorphism t ( F ) : a(F)—>F which is
functorial in F. Let G be the kernel of t(F) and let /3(F) denote

the cokernel of the composition a(G) - >G-^a(F). Then we have

a homomorphism 5 (F) : /9 (F) ->F functorial in F. It is clear that

a(F) and /3(F) are S-constructible sheaves.

Lemma 1. 6. For any sheaf F and a

r([/O);s(F)): r([7(«j); /30F))-*F([/(» ; F)

is an isomorphism.

Proof. Let us consider the diagram

U(a}) - >0

0 - >G( [/(*)) - >a(F}(U(a}} - > F(U(a}} - > 0.

Since F(U(a) ; *) is an exact functor on S-Const(^), the top row is

exact. Since the homomorphism a(F) (U(a)) ->F(U(a}) is surjective,
the bottom row is also exact. Then the surjectivity of

implies the desired result. Q. E. D.

Lemma 1. 1. If F is S-constructible, then s ( F ) : fi(F)->F is an

isomorphism.

Proof. Both F and f)(F) are S-constructible and hence it is
sufficient to show that for any a^A, F(U(a} ; s ( F ) ) is an isomorphism

(Proposition 1.4). This is a consequence of the preceding lemma.

Q.E.D.

Lemma 1. 6. implies immediately the following-

Proposition 1.8, (i) ft is a left exact functor from Mod(^)

into S-Const(^).
(ii) r(U(a):(Rkp)(F))=Hk(U(a)'t F) where Rkfi is the k-th right

derived functor of /5.

(iii) R*P(F) =0 for k^O if and only if F is S-acyclic.
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Proof. (i) Let 0->F/->F->F/"->0 be an exact sequence in
Mod(^). In order to see that 0->0 (F) ->j8(F) ->/3(F') is exact,
it is sufficient to show the exactness of its transform by F(U(a)\ *)
because they are S-constructible sheaves. This transform is, by the
preceding lemma, nothing but 0->F( C7(ff)) ~*F( ^O)) -*F" (
which is evidently exact.
( i i ) Let F be an injective resolution of F. Then,
(/3(F)). Hence, we have

=Hk(F(U(a) ;

(iii) This is an immediate consequence of (ii). Q. E. D.

Proposition 1. 9. Le£ F &g a complex of S-acyclic sheaves satisfying
Fn = Q for n<^0. If all the cohomology groups of F' are S-con-
structible, then fi(F')-+F' is a quasi-isomorphism.

Proof. Set Zn(F') =Kerf^-: Fn->Fn+l) and Bn(F') =Im(dn
F~l: Fn~l

->Fn). We shall show by the induction on n

(1.3.1) Zn(F) and Bn(F) are S-acyclic.

Assume that Z*~1(F') and Bn~l(F'} are S-acyclic. We have the exact
sequence

(1.3.2) O^Z"'1 (F) -^Fn~l->Bn (F) ->0

and

(1.3.3) 0~>Bn(F)^Z"(F)-^/f"(F)^0.

The exact sequence (1.3.2) gives the exact sequence

R*P (Fn~l) -> R*p (Bn (F) ) -> ̂ ft+1/3 (Z"'1 (F) ) .

Since Fn~l and Zn~l(F) are S-acyclic, this shows Rkj$(Bn(F'}} =Q for
&:£0, which means that Bn(F') is S-acyclic. In the same way, the
exact sequence (1.3.3) implies the S-acyclicity of Z"(F) because
Bn(F') and Hn(F'} are S-acyclic. Thus, the induction proceeds and
the property (1.3.1) holds for any n.

Now the sequence

0^/3 (Z* (F') ) ->£ (Fn)
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is exact because /3 is left exact. Hence we obtain

The exact sequence (1. 3. 2) derives the exact sequence

in which the last term vanishes because of the S-acyclicity of Z"~1(F")
(see (iii) of Proposition 1.8). Thus (1.3.4) implies

(1.3.5) /3(B"(F))S5"^(F)).

Finally the exact sequence (1. 3. 3) gives the exact sequence

because (R1^ (5" OF")) =0.
Since Hn(F'} is S-constructible, we have fi(Hn(F')} = Hn(F') by

Lemma 1.7. This implies the desired result: H n ( F ' ) ^ H n ( f i ( F ' ) ) .

Q.E.D.

Let us denote by D(S-Const(50) the derived category of S-Const
(50 and by D+(S-Const(^)) the full subcategory of D(S-Const(50)
consisting of F'eOb(D(S-Const(50) such that F* = Q for n<0. Let
Ds_const(50 be the full subcategory of the derived category D(Mod
(50) consisting of F' such that Fn = 0 for n<0 and that all Hn(F'}
are S-constructible. Then the following theorem is an immediate
consequence of the preceding proposition.

Theorem 1. 10. D+(S-Const(50) and D£_c<mit(«50 are equivalent
by the canonical functor

D-L(S-Const(^))->Ds
+-const(^) given by F'\ - >F'

and R$: Ds
+-consi(^) - >D+(S-Const(^)).

Remark, The category S-Const(^) is equivalent to the category
jtf of covariant functors from A into the category of vector spaces.
Here A is regarded as the category as follows: Hom(<r, r )=0 if G(£.T
and HomCo", r) consists of the single element if aCr. The functor
from S-ConstC^)-^^ is given by F^[o*-*F(U(ff))}. The converse
functor ^f-^S-Const(^) is constructed as follows: for an object F(a)
of J/3 we define two homomorphisms / and g from ®F(a)UM into

T-3G

U(0} by F((7)t;(r)- - >F(a)m^ and by F(a}U(^- >F(r}U(^ respectively.
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Then, we assign Coker(/-g) to the functor F(a}.

1.4.

Proposition 1. 11. For any S- const ructible sheaf F, a^A and a

vector space T7, we have

Hom(F, V^)=Homc(F(t7(<7)), V).

Here, \a\ means the closure of \o\.

Proof. By Proposition 1. 3, we have F(U(o) ; VR) =T( \a\\ 7]£7l) ^ 7.

Hence we obtain the canonical homomorphism

(1.4.1) Horn (F, F^j) - > HomcCF( £/(*)), V).

We shall show that this is an isomorphism for any -F. If jF has

the form WU(r} for a vector space W and reJ, then we have

Hom(F, V^{)=Hom(W9 r (C7(r) ; V^))

= Hom(W; r ( [ / ( r )nH; Vw^.

Now, it is easy to see that the following four conditions are equiv-

alent: C7( r )nH=£0, C 7 ( r ) i D | f f | , |r | c \a~\ and rCa. Thus, we

obtain

On the other hand, we have

Home (F( [/((/)), y)-Homc(r(C/Ca); WU(r)), V).

Therefore we have by Proposition 1. 3

u otherwise.,

They imply that (1.4. 1) is an isomorphism for any F of the form
WU^Y Hence for any sheaf F, (1.3.1) is an isomorphism for a(F).

Since there exists an exact sequence, (See Lemma 1. 7.)

and the both sides of (1.4. 1) is left exact in F, we obtain the
desired result. Q. E. D.

Now, for any S-constructible sheaf F we define f (F) by

© F(U(a))w. Then by the preceding proposition one can define
a

the canonical homomorphism
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which is injective.

1. 5. If &'=(S, A) and S^'—(JS^ A'} are two simplicial complex,
then a morphism g from £P to £f' is by definition a map from S into
5" such that g(a) e^' for any o^A. For a morphism g from ^ to £P\
one can define a continuous map |g-| from |^| into \£f'\ as follows:
for any x^ £f |, |#| (#)(#)= 2 •£(£) f°r q^S'. It is easy to see

P^g~^W>
that |#| ( \a |) = Ig-O) | and \g \ ( |<j j) = jg-(» |. Moreover, any fiber

of | t f | -> |g"(ff) I is contractible.

§ 2. jR-Constructible Sheaves on a Real Analytic Manifold

2. 1. Let M be a real analytic manifold. In this paper, all real
analytic manifolds are assumed paracompact. We shall recall the
notion of subanalytic sets due to Hironaka.

Definition 2. 1. A subset Z of M is called subanalytic at a point
p of M if there exist a neighborhood W of p, an integer r, real
analytic manifolds Nf} and proper real analytic maps ff} from N(^

into W(v=l, 2 ; j = l , 2, - - . , r ) such that Z n W= U (/f (#<») -
y=i

/]2) (A^)2))). A subset is called subanalytic z/ ft z's subanalytic at any
point of M.

For the properties of subanalytic sets we refer to [HI] and [H2].
For instance, the following results are known.

Proposition 2. 2. (i ) The union and the intersection of a locally
finite family of subanalytic subsets are subanalytic.
( i i ) The complement of a subanalytic subsets is subanalytic.
(iii) The closure^ the boundary and the interior of a subanalytic set
are subanalytic.

Proposition 2. 3. A closed subanalytic set is the image of a real

analytic manifold by a proper real analytic map.

Proposition 2. 4. A relatively compact subanalytic subsets has only
a finite number of connected components and they are subanalytic.
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Proposition 2, 5. Let {Zy}ye/ be a locally finite family of sub-
analytic subsets of a real analytic manifold M such that M=(jZj.
Then, there exist a simplicial complex & — (5, J) and a homeomor-
phism c: \£P\c%M satisfying the following conditions:
( i ) For any aGE J, c( \a |) is a sub ma m fold of M which is subanalytic.
(ii) For any <7€EJ, there exists j^J such that c ( \ a \ ) c : Z j .

2.2.
Definition 2. 6. Let F be a sheaf of C -vector spaces on a real

analytic manifold M. We say that F is weakly J2-eonstructible if there
exists a locally finite family {Mj} j^j of subanalytic subsets of M such
that F\M. is a locally constant sheaf on Mj for any j^J and that

M= U Mj.

Definition 2. 7, For a weakly R-constructible sheaf F, we say that
F is 12-constructible if dim Fx<^oo for any x^M.

Let us denote by Mod(M) the abelian category of sheaves of
C-vector spaces on M, and by jR-Const(M) the full subcategory of
Mod(M) consisting of Jg-constructible sheaves on M. We shall denote
by D(M) the derived category of Mod(M) and denote by D«_C(M)
the full subcategory of D(M) consisting of F' such that 3?j (F') are
J£-constructible for any j and that Fj =0 except for a finite many j.

Theorem 2. 8. The canonical functor

Db (^-Const (M) ) ̂ D^_c (M)

is an equivalence.

Proof. In order to prove this, we have to show the following two
statements.

(a) For any F'eOb(Dfc_c(M)), there exists G'eDb(^-Const(M))5

such that G' is isomorphic to F' (as an object in Dfi_ c(M)).
(b) HomDb(u_const(M))(F', G') c$ HomD|_c(M) (F\ G')

for any F\ G'eOb(Db(K-Const(M)).

First we shall prove the statement (a).
Let F' be an object of D«_C(M). We may assume from the

beginning that Fn = Q for n<0 and that all Fn are flabby. Since all
tf*(F') are 12-constructible and ^fn(F') =0 except for a finite many
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73, there exists a locally finite family {My}je/ of subanalytic subsets of

M such that M= U Mj and that 3?n(F') \M. are locally constant for

any n and any j^J. Hence there exist a simplicial complex £f= (S, £)

and a homeomorphism c: \^\^M satisfying the following conditions:

(2.2. 1) c( ( j | ) is subanalytic for any a^A,

(2 .2 .2) For any a^.A, there exists j'eJ such that e( (7|)cMy.

Therefore we have

(2.2.3) rl3T(F) is 5-constructible for any n.

Since rlP" are flabby, Proposition 1. 9 implies that G' = fi(rlF')

is quasi-isomorphic to C1F'. Since G is a complex of S-constructible

sheaves, c*G' is a complex of U-constructible sheaves by (2 .2 .1) .

Hence c*(G'} is an object of Db(12-Const(M)) which is quasi-

isomorphic to F'. Thus we obtain (a).

Now, we shall prove (b).

For F\ G"eOb(Db(!2-Const(M))), there exist a simplicial complex

ff*=(S, J) and a homeomorphism c: \ <f \ ̂ M satisfying (2 .2 .1) and

the following condition (2.2.4).

(2. 2.4) rlF\ r1Gn are 5-constructible for any n.

Then we have the diagram:

(2.2.5)

-VF; rlG') >HomD(M)(F5 C')

Theorem 1. 10 implies that u is an isomorphism. Hence w is surjective.

Now, we shall prove that w is injective. Let <p be an element

of Horn_b,_ _ t,^(F'> G") such that w(cp) =0. Hence there exist a
D (xi — Const (M))

quasi-isomorphism G'—>G/- and a homomorphism (p'\F'->G'' of com-

plexes, which give (p. Hence by replacing G with G'", we may

assume from the beginning that <p is given by a homomorphism of

complexes from F' into G', which we shall denote by the same letter

(p. Then, tin the diagram (2.2.5) , <p = v(c~l((p)) and hence w(cp') =

u(c~l(p) =Q. This implies Cl((p) =0 by Theorem 1. 10 and finally we

obtain <p = v(rl(<p)} =0.
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§ 3. Tempered Distributions

3. 0. In this section, we shall study the properties of the tempered
homomorphisms from 12-constructible sheaves into the sheaf of distri-
butions (in the sense of L. Schwartz).

This notion is a generalization of tempered distributions studied
by Martineau [Ma], Lojasiewicz [L], • • • . An original notion of a
tempered distribution is a distribution u on Rn which satisfies the
condition:

\\u(x for any

Here, C~(Rn) denotes the space of C°°-functions on Rn with compact
support. If we compactify Rn to Sn by adding one point, then this
notion is equivalent to saying that u is continued to a distribution
defined on Sn.

As a generalization of this, we arrive to the definition of tempered
homomorphisms (Def. 3. 13).

3. 1. Let M be a real analytic paracompact manifold, jtfM the sheaf
of real analytic functions and &M the sheaf of differential operators
of finite order with jtfM as coefficients. Let us denote by ^/M the
sheaf of distributions on M.

Definition 3. 1. A distribution u defined on an open subset U of
M is called tempered at a point p of M if there exist a neighborhood
W of p and a distribution v defined on W such that u\wnu = v\wnu.
If u is tempered at any point, then we say that u is tempered.

Then one can easily prove the following lemma.

Lemma 3. 2. Let u be a distribution defined on an open subset
U of M. Then the following conditions are equivalent.
( i ) u is tempered.
(ii) u is tempered at any point of dU=U—U.
(iii) There exists a distribution w defined on M such that u = w\u.

We have also the following lemma. For a subset A of Rn and a
point x of Rn, we denote

(3. 1.1) d(*, A)=mt[\y-x\;y^A}.
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Lemma 3. 3. Let u(x) be a distribution defined on a relatively
compact open subset U of Rn. Then the following conditions are
equivalent'.
( i ) u is tempered (at any point of Rn).
(ii) There exist a positive C and a positive integer m such that

(3.1.2) \ { u ( x ) < p ( x ) d x ^CS sup \Dap\

for any 0?eC5°(t7).
(iii) There exist a positive C and positive integers m and r such that

(3. 1.3) \^u(x)<p(x)dx ^C S sup (d Or, 3U)-r\D"<p(x) !)

for any (p^C^(U).

Proof. ( i )=>(i i)=>(i i i ) is trivial.
( i i ) : ^ > ( i ) is an immediate consequence of Hahn-Banach's exten-

sion theorem.
We shall prove (in) =^> (ii) . Let (p^C^(U) and x a point of U.

Then there exists y^U such that supp tp^y, \x— y |<^d(^, 3LO and
x + t(y— x) <=U for O^t^l. On the other hand, we have

for y^l.

Hence there exists a constant Cy which does depend only on n
and v such that

\D*<p\

sup \D«<p\.
\a\£i>

Applying this to Datp instead of ^?, we obtain

sup
for x^U and

Therefore (3.1.3) implies (3.1.2). Q.E.D.

3. 2. Lojasiewicz ( [L] p. 98, Prop. 5) shows the following theorem.

Theorem 3. 4. Let M—Rn and let [719 U2 be two relatively compact
open subsets of M. Suppose that there exist an open neighborhood W
of d(Ui\J C72), a positive constant C and a positive integer m such that
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(3.2.1) d(*
for

Then a distribution u defined on Ui\J U2 is tempered if and only if
u u^ and u [^ are tempered.

On the other hand, Hironaka proved the following theorem.

Theorem 36 5 ([H2]). Let A and B be two closed subanalytic
subsets of Rn. Then, for any compact set K there exist a positive
integer m and a positive constant C such that

(3.2.2) dGr, A)+d(x, B)^C(d(x, AftB)}m for x^K.

Hence these two theorems imply the following

Theorem 3. 60 Let U be a subanalytic subset of a real analytic
manifold M and [Uj] jej a finite open covering of U by open subanalytic
subsets Uje Then a distribution u defined on U is tempered if and
only if u n. is tempered for any /EiJ.

By this theorem, we can localize the notion of tempered distribution.

3. 3o Lojasiewicz also proved the following

Lemma 3. 70 (Lojasiewicz's inequality [L]). Let f ( x ) be a real
analytic function defined on an open subset U of Rn, and let Z denote
/"^(O). Then, for any compact subset K of U, there exist a positive
constant C and a positive integer m such that

(3.3.1) |/(*)|^C(d(*, Z))" for x^K.

This lemma together with Lemma 3. 3 immediately implies the

following Iemma0

Lemma 3* 8. Let u be a distribution defined on an open subset
U of a real analytic manifold M and let g(x) be a real analytic
function defined on M which does not vanish at any point of U.
Then u is tempered if and only if gu is tempered. Assume moreover
g is positive-valued on U. Then for any l^C-> gxu is tempered if
and only if so is u.

Now we shall prove the following
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Proposition 3« 9. Let f: M->N be a real analytic map from a
real analytic manifold M into a real analytic manifold N. Let U be
an open subset of M such that f induces a submersion from U into
N. Then for any distribution u defined on N, (/*w) \u is a tempered
distribution.

Proof. The question being local we may assume that M is an
open subset of Rm and N is an open subset of Rn. We can assume
also m^n. Set Z— {z^M', rank(d/) (x)<^n}. Then we can assume
U—M—Z. Let us take a point p of M and consider all the problems
on a neighborhood of p. Then there exist a finite number of real
analytic maps g{: M->Rm~n such that U= U Ui9 where C7,-= {x^ U;
rank df{(x) =m], and f.= (gi9 /) : M->jRm~B X N. If we denote by p
the projection from Rm~nxN onto N, and if we set v=(f*u) \U9 then
we have v \u. =ff (p*u) v. Since all U{ are subanalytic, v is tempered

if f*(P*u) I u. is tempered for any i. Hence, by replacing N, f, u

and U with Rm~n x N, /„ />*« and [/„ respectively, we may assume
from the beginning m = n and U=M—Z. Let g(x) be the Jacobian
dy/dx of /(a;). Then g- i z = 0 and #(*) =£0 for ^eM-Z. Therefore
there exists an integer I such that

(3.3.2) \g(x) | ̂  const. (d(^5 Z})1 for x^M.

Let us denote by x = (xl9 . . . , xn) (resp. y= (y^ . . . , 3/n)) points of M
(resp. A/)- Then there exists real analytic functions h { i j ( x ) ( l^z ,
j^ri) such that

(3.3.3) _
oy{

by y=f(z).
Hence g2lalD^ is a linear combination of Df ( | /3 !^ |a | ) with real
analytic functions in y as coefficients. Note that u(y} satisfies

(3.3.4) \(u(y}<p(y}dy ^Const. 2 sup |D^| for
I J l a l ^ w j

by shrinking Af if necessary.

For <p(

where g(x) is the Jacobian y=f(x). Hence we have
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£ const Z sup
|a|

^ const
\a\

^ const £ supg(x)~3lal-1\Da
x^(x) \.

\a\^m

Hence we obtain

\\(f*u)(x)<l>(x)dx
\J

supdte, Z)-(3|al+1)/ \Da
x^(x) \

\a\^m

for any <fi^C%(U).

Hence it follows from Lemma 3. 3 that (f*u)\v is tempered.
Q.E. D.

Proposition 3e 10, Let f: M-+N be a proper real analytic map.
Let U be an open subset of N such that f~l(U)^>U is an isomorphism.
Then a distribution u defined on U is tempered if and only if

(/*«) \f-i(U)
 is tempered.

Proof. The question being local in N, we may assume that N is
an open subset of Rn. If u is tempered then there exists a distri-
bution u defined on N such that u\u = u. Hence, (f*u} \ i —

(f*u)\ i is a tempered distribution by the preceding lemma. Con-

versely assume that f*u \ f ~ i n is tempered. Let us fix nowhere

vanishing real analytic densities /% and /% on M and N, respectively.
Set g=f* [1N/ '/%. Then g is a real analytic function which does not
vanish on f~lU. Therefore, g~1(f*u) \ ^ is also tempered by Lemma

3. 8. Let w be a distribution defined on M which extends
g~l(f*u f-iv)- We define the distribution w' on N by

\ w'(p{jLN = \ w(<p°f)[j.M for (p^C^(N).
JN JM

Then it is easy to see that w' \u = u. Q; E. D.

Remark 3. 11, In L. Schwartz [S], a distribution u(x) defined
on Rn is called tempered if

u (x} tp (x~) dx sup \D"y\ for any

This condition is equivalent to saying that there is a distribution u
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defined on Pn(R) such that u Rn — u\ i. e. u is tempered in Pn(R}.

Remark 3. 12. This notion of tempered distributions have been
studied by several mathematicians. See [Ma], [L].

3. 4. Let M be a paracompact real analytic manifold.

Definition 3. 13. For an R-constructible sheaf F defined on M,
T-^om(F, ^M) is the subsheaf of tfomc (F, S/M) defined as follows:
for any open subset U of M

<p satisfies the following condition (3. 4. 1)}

(3.4. 1) For any relatively compact open subanalytic subset V of U
and s^F(V), <p(s) is a tempered distribution.

Similarly, for any locally free j/M-Module i^ of finite rank, we
can define T-tfom(F, WM (X) "/O and we have

Note that T-Myom(F, @dM) is a sheaf of ^-modules. Hereafter,
for the sake of simplicity, we write TH(F) for T-fflom(F, &&M)> If
we want to emphasize the manifold M, we write THM(F) for it.

Since THM(F) is a sheaf of modules over the ring of C°°-functions,
we have

Proposition 3. 14. For any Jg-constructible sheaf F, TH(F) is a
soft sheaf.

Lemma 3. 15. Let U be a subanalytic open subset of M and u a
tempered distribution defined on U. Then the homomorphism <p
from Cu to @JM defined by l^u belongs to F(M; 77f(C7y)). Here
\u signifies the element of F(U', Cv} which corresponds to the constant
function with value 1.

Proof. Let V be a relatively compact subanalytic open subset of
M and let s be a section of Cv over V. We have to prove that cp(s)
is a tempered distribution. As mentioned in Proposition 2. 4, V has
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finitely many connected components F13 . . . , F/. Then s is a constant
function on each Vj because CuC.Cx- Since Supp sC.U, s\v. — Q if

Vj<£U. Hence 9(5) |F. is a tempered distribution if Vj (£ C/. If

V}ct7, 9(5) |y. is a constant multiple of u\v. and hence tempered.

In both cases, ^(s) |7. is tempered and hence <p(s) is tempered by

Theorem 3. 6. Q E. D.

This lemma implies the following corollary.

Corollary 3. 16. For any open subanalytic subset U and an open
subset Q of M, we have

F(Q\ TH(Cu^ = {u^r(UnQ', WM); u is tempered at
any point of Q] .

Corollary 3. 17. For any closed subanalytic subset Z of M, we have

If Mod(^M) denotes the category of SM-Modules, then TH(*} is a
contravariant functor from jR-Const(M) into Mod(^M). This functor
enjoys the following remarkable property.

Theorem 3. 18. TH(*) is an exact functor from /Z-Const(M)
into Mod(^M).

Proof. This theorem follows from the following two lemmas.

Lemma 3. 19. Let <p: F->G be a surjective homomorphism of
R- const ructible sheaves F and G and let (p be a section of

If <p°<p belongs to TH(F), then <p belongs to TH(G).

Lemma 3. 20. Let <p\ F— >G be an injective homomorphism of
R- const ructible sheaves F and G. Then TH(G)->TH(F} is surjective.

In order to prove Lemma 3. 19 we prepare the following lemma.

Lemma 3. 21. Let <p: F^G be as in Lemma 3. 19. Then, for any
relatively compact open subanalytic set V and any s in G(V), there
exist a finite open covering {Vj} j(Ej of V by subanalytic sets Vj and
elements tj of F(Vj) such that <p(tj) =s\v..
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Proof. By Proposition 2. 5, there exist a simplicial complex &* =
(S, A) and a homeomorphism r. ^ ^M satisfying

(3.4.2) ' ( k i ) is subanalytic for any a^A.

(3. 4. 3) rlF and rlG are S-constructible.

(3.4.4) For any a^A, we have either c( \o |) cF or *( |tf 1) D V=^.

Then J7={(je4; Hcr^V] is a finite set and rlV=\J U(a). Then
0eJ'

the lemma follows from the surjectivity of the homomorphisms
; rlG). E. D.

Now, we shall prove Lemma 3. 19. Let <p be a section of
/M) over an open subset U of M such that ^>o<p belongs to

TH(F). Let V be a relatively compact, open, subanalytic subset of
U and let s be a section of G over V. Then, the preceding lemma
assures the existence of a finite open covering {V}} of V by subanalytic
sets Vj and tj^F^V?) such that 5 v. = <p(tj}. Since (/>o<p belongs to

TH(F},<j)(s) \v. = (j)(<p(tj}) is tempered for any j. Hence 0(s) is

tempered by Theorem 3. 6. Thus Lemma 3. 19 is proved.

Next we shall prove Lemma 3. 20. In order to prove this lemma,
it is sufficient to show the surjectivity of the map (p* : F(M', T/f(G))
->F(M; TH(F)). Let <p be an element of T(M; Tff(F)). Let us
take a simplicial complex ^ = (S, £) and a homeomorphism c: \£f\—>
M satisfying (3.4.2) and (3.4.3). Let sf be the set of (F, 07)»
where Fx is a subsheaf of G such that c~lF' is 5-constructible and <p'
is an element of F(M\ TH(F')). We introduce the order on stf as
follows: CF, (p'X(F\ <p"} if and only if F"Z)F' and ^'=^|F/.

We shall prove first that jtf is inductively ordered. Let s$' —
{(Fi, ^)} be a linearly ordered subset of ,</. Set F* = \J F» Then,
it is clear that c~lF' is an 5-constructible sheaf, and there exists a
unique element <f>' <=F '(M; Jfftom(F/, ^/M)) such that $' F =^. In

order to prove that </>' is in TH(F'), let 5 be a section over a
relatively compact, open, subanalytic subset V of M. Then for any
o^.Ar = [a^A\ \o | fl c~lV^<f>], \a \ ru"1^ has only finite many connected
components. Moreover, Fx | , ( l ( J l ) is a constant sheaf. Therefore we
have r(c(\G\)r\V; F') = U r u ( k | ) n V\ F,}. Since 4' is a finite set,

*
there exists 1 such that s \l(lffl}nv<=r (c ( \a ]) fl V; FJ for any



340 MASAKI KASHIWARA

This implies that s^F(V; F^) for such a 1. Therefore ^'(s) =<^(s)
is a tempered distribution. This shows that <f>' belongs to TH(F").

This (F, 0') is clearly a supremum of £$' and hence J/ is
inductively ordered. Therefore by Zorn's lemma there exists a maximal
element (F, ^') of ^ such that (F, ^')>(F ̂ )-

In order to prove Lemma 3. 20, it is sufficient to show G = F'.
For this purpose, we shall prove F ' ( c ( U ( a ) ) ) =G(c(U(0))) for any
a. Let 5 be an element of G(X[/(»)).

Let s be the section of G/F over c(U(a)} which corresponds to
5 and let Z be the support of s. Then we have the exact sequence

r\ >/^* a > W'^T\/^ > (^

where Cc(U(a»~z->F' is given by * |£(Z7(0) )_Z and Ci(U(a»-Z-^Ci(U(a» is the
canonical injection. Then the distribution u=<f>' (s c(U(a»-z) is a
tempered distribution, and hence there exists a tempered distribution
u defined on c(U(o}} such that u \t(u(<f»-z= ~u- Then 0: CUM^ 1 h~^w
belongs to TH(Cu(a^ by Corollary 3. 16. Let f be the homomorphism
(?/, 0) from F'@CU(a} into S/M. Then f belongs to T(M; TH(F'@
Cu(a))) and satisfies ?°# = 0. Let Fx be the cokernel of a. Then f
gives the homomorphism </>ff from F/x into S^M. Lemma 3. 19 implies
that (p" belongs to TH(F"), and hence (F", <p"} is an element of stf
such that (Fx, <p")^(F', <j>'}. The maximality of (F, ^') implies
F'=Fff. This shows that Z=0, which implies seF(Xt/O))). Thus
we have proved F ' ( c ( U ( a ) ) ) =G(t(U(a'))) for any o-eJ. Then G=F'
follows from Proposition 1. 4. This completes the proof of Lemma
3. 20, and also the proof of Theorem 3. 18.

Proposition 3. 22. IfZ is a closed subanalytic subset of M, and if
F is an R-constructible sheaf on M, then we have

rz(TH(F))=TH(Fz).

Proof. Let us consider the exact sequence
r\ TT* 771

Thus we obtain an exact sequence

By taking the functor Fz, this gives the exact sequence
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On the other hand, we have

rz(TH(Fx-z»<zrz#om(Fx-z; 94u)=Xom((Fx-z)z\ ^M} = 0.

Thus we have the desired result. CX E. D.

Proposition 3. 23. Let f be a real analytic function on M and F
an R-constructible sheaf on M. Set U=M—f~l(ty. Then,

is an isomorphism. Here *f means the localization by f.

Proof. The multiplication map by / on TH(Fjj) is evidently
bijective and hence the homomorphism TH(F)->TH(Fii) decomposes

Since TH(F)-^TH(FU) is surjective, TH(F) f-*TH(Fn) is surjective.
Now, we shall prove that TH(F) f~^TH(Fu) is bijective. Since

TH is an exact functor, we may assume without loss of generality,
that F has the form Cz for a closed subanalytic set Z. In this case,
the proposition follows from the fact that for any distribution u
supported on /"HO) is annihilated by a power of/ . Q. E. D.

3. 5, We shall denote by D(^M) the derived category of the cate-
gory Mod(^M) of @M~ Modules. Since TH(*} is an exact contravariant
functor from Jg-Const(M) into Mod(^M), this gives a contravariant
functor

RTH : Dbd2-Const(M))~>D(^M).

By Theorem 2. 8, DbCR-Const(M)) is equivalent to D^_C(M). Thus
we obtain the functor

RTH :D^_C(M)->D(^M).

By this construction, for any FeOb(D^_c(M)), RTH(F'} = TH(G'),
where G" is a bounded complex of fg-constructible sheaves which is
quasi-isomorphic to F'.

When we want to emphasize the manifold M, we shall write
RTHM(*} for fi 77100.



342 MASAKI KASHIWARA

§4. Functorial Properties for TH(*}

4. 0. In this section, we shall investigate the relation between THN

(*) and THM(*) for a real analytic map /: N^>M.

4. 1. We shall denote by a)M the sheaf of orientation on M. Hence,
for a connected, orientable open subset U of M, we have F(U\ O)M)
= Z- This isomorphism depends on the choice of orientation and
changes its sign if we change the orientation of U. We shall denote
by QM the sheaf of p-forms with real analytic coefficients and put
^M =QnMp®vM' Set ^M = ̂ M=^M®O)M. The sheaf ^M is called the

z z
sheaf of densities with real analytic coefficients. If we denote by

&M the sheaf of C°°-functions on M, then ^M®^M is the sheaf of
*M

densities with C°°-coefficients.
By this notation, a distribution is a continuous functional on

TC(M; ^M(X)^M) and a section of ^M®^M is a continuous functional
^M ^M

on P C ( M \ ^M) with the appropriate topology.

4. 2. Let /: M-^N be a real analytic map. For any sheaf ^ on
M, we shall denote by fi(^) the direct image with proper support;
i. e. for any open subset U of AT,

(4.2. 1) F(U\ /,(^)) - (5er(/-1(C7) ; #") ; supp j is proper over U].

Now, we shall define the integration map

(4. 2. 2) \:
Jf

by u, <p = <u, cpofy for ^eCrCU) and
\J/ / rfM

Note that supp wR supp <p°f is a compact subset in f~lU. This
homomorphism is j/^-linear. By tensoring T^f"1, we obtain

(4. 2. 3) \: ft (94M (x)
J/ ^M

where ^M/^ = ̂ M (g) ^f^-
Note that the composition

vanishes. In fact, for 5eT( [7; /,(^/M (X) /^^1))) and ^eC^([7), we
/f v ^M

have \ d s , ^ =
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4. 3. Let /: M—>N be a real analytic map, and let 2M and S#
denote the sheaf of differential operators of finite order with real
analytic coefficients on M and N, respectively. Then, we define

and

where ^M/N — ̂ M ® /"H^f"1)-

Then one can define the canonical homomorphisms

(4. 3. 3) ^ji^jv" ® f~l<^N~*^M

and

(4 3 4) f~lfi^N (X) 2 —>"/^

Moreover, we can endow the structure of (SM> /~1^^)-bi-Module
on S&M-+N and that of (f~l@N, ^M)-bi-Module on @N^M so that
(4.3.3) and (4.3.4) are ^M-linear (See [K2]).

With these notations, one can state the main theorem of this section.

Theorem 48 1. Let f: M-^N be a real analytic map and
Dfl_c(M). Assume the following conditions.

(4. 3. 5) 3Fj(F') is of finite rank for any j.

(4.3.6) The closure of the support of 3?j (F') is proper over N for
any j.

Then we have a canonical isomorphism in

L
Here (X) denotes the left derived functor of (X).

®M ®M

The proof of this theorem will be given in §4. 5-§4. 11 in three
steps. In §4. 5, we treat the case when / is an embedding and in
§4. 6-§4. 10 the case when / is of maximal rank. Finally we shall
complete the proof of Theorem 4. 1 in §4. 11.

4. 4. Before entering into the proof of the theorem, we shall remark
the following thing. If we denote by £8 the sheaf of hyperfuiictions
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and replace the functor TH(*) with jtfbmc(*, 3$) in the statement
of the theorem, then one obtains the following statement.

(4.4.1) Rf*(®N«-M®

It turns out that this is also true by Poincare duality provided
L

that / is smooth. In fact, one can prove that @N*-M®&M=f~~l^N®
®M z

coM/N\_l] where / = dim M — dim N and <^M/N = 0)M®a)^~1' Since £%M is a
flabby sheaf (and hence an injective object in Mod(M)), we obtain

Then (4.4.1) follows from Poincare duality (Verdier [V]).

Therefore, the difficulty to prove the theorem lies on the fact

that &d is not a flabby sheaf.

4. 5. We shall prove Theorem 4. 1 when / is a closed embedding.

In this case, @N*-M is a free ^M-Module, and hence it is sufficient

to prove

(4.5. 1) f+(9N

for an Jg-constructible sheaf F of finite rank on M.

Lemma 4, 2. // M is a closed submanifold of N then

Proof. Take a local coordinate system (x, y) = (x^ . . . , xn, yl9 . „ . ,
ym) of A^ such that M is given by x = Q. Then @N«-M is a free &M-
Module generated by Da

x®\dx\®'1 (a = («19 . . . , aJeZ'l).
On the other hand, it is well-known that any distribution u(x, y)

supported on M can be uniquely written in the form

Hence S(D?® \dx \~l)®ua(y)+*J] Da
xd(x)ua(y} gives the isomorphism

between @N^M®@4M and PM(94N). Q. E. D.
M

Now, we shall prove (4. 5. 1) when / is a closed embedding.
We have a series of homomorphisms
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/* ( @N<-M ® THM (F) ) ->/* (
®M

(F, ®N^M (X) ^

It is obvious that the image of this composition is contained in

THN(f*F] and hence we obtain the canonical homomorphism

(4. 5. 2) A (®N«-

Note that the both hand sides are exact in F.

The following lemma is almost obvious by the triangulation theorem

and we omit the proof.

Lemma 4. 3. For any R-constructible sheaf F of finite rank, there

exists a filtration F = F0^F1D - - - of F by R-constructible sheaves {Fj}

satisfying the following condition.

(4. 5. 3) For any point x of M, there exist a neighborhood U of x

and j such that Fj 1^ = 0.

(4.5.4) For any j, there exists a locally closed subanalytic subset

Zj such that Fj/Fj+^Czf

By this lemma, it is sufficient to show that (4. 5. 2) is an isomor-

phism for F — Cz with a subanalytic, locally closed subset Z. By

the exact sequence 0— >CZ~ >^z~^Cf9z~>0, we may assume further that

Z is a closed subanalytic subset of M. In this case, we have

THx(Cz)=rz(94u) and THN(f*F) =Ffw (94 „) =Tf(Z)(rM(^N)) =

rf(Z)(f*(@N~M®£>dM))- They imply immediately that (4.5.2) is an
M

isomorphism.

4. 6. Next, we shall investigate the case where / is a smooth map

(i. e. df : TXM->TXN is surjective for any x^M). In this case, 2N^M

is a right coherent SM-Module and @N«-M has a locally free resolution

(4. 6. 1) ®<-@N^M^^M/N®®M^
s*M

Here rfc/N = &M/N (X) O)M/N and / is the fiber dimension of / The
z a

differential d is given by d(w®P) = d(*)®P+ % dxjO)®-^- P for
j OXj

and P^&M. Here we take a local coordinate system

,*„) of M and we identify
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Hence, for F' eDb (B-Const (M)), ®N^M®RTHM(F) is quasi-

isomorphic to the simple complex associated with the double complex
i^(M\N®THM(F'}. Since ^(M$®THM(Fj) are soft sheaves,
L -^M ^M

®RTHM(F'» is isomorphic to f*CT(M\N®THM(F'}).
®M <*M

4. 7B For any 12-constructible sheaf F such that

(4. 7. 1) supp F is proper over N,

we can define

(4.7.2) ( :
Jf

b y ( 5 ) = W f o r ^r(U\f,F) a n d

jafM

It is easy to see that the image is contained in THN(flF) and hence
we obtain the homomorphism

(4.7.3)

By the integration by parts, it is easy to see that the composition

/* (^(M?N®THM(F}}-^f, (i^M/N®THM(F)}^TH
^M ^M

vanishes (see §4.2), and one obtains the homomorphism

(4. 7. 4) /*
^M

If F'eDb(/2-Const(M)) satisfies the condition

(4. 7. 2) Supp Fj is proper over N for any j,

then one has the canonical homomorphism

(4. 7. 3) : Mr$/N®TH,ff(F»-»THN(flF).
Jf J*M

4. 8. Now, we shall admit the following lemma, whose proof will
be given in §4. 13.

Lemma 4. 4. For any FeDb(jR-Const(Af)), satisfying (4.7.2),
there exist an object G of D ( J2-Const (M) ) and a quasi-isomorphism

F-*G' such that

(4. 8. 1) Supp Gj is proper over N for any j.
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(4. 8. 2) For any j\ there exists a locally finite family Aj of closed
subanalytic subsets of M such that

(4.8.2.1) Gj= 0
Zejj

(4. 8. 2. 2) For any Ze//?, any fiber of Z— »/(Z) is contractible.

In particular, we have

(4. 8. 3) R% (GO =0 for any k^Q and any j.

If we take such a G' and a quasi-isomorphism F'-»G", then we have
Rf* (F'} ^Rf^(G') ^/*G'. Thus we obtain the homomorphism

(4.8.4)
Jf

as the composition of

(F) = r$/N®THM (F) -+T$/N® THM
^M ^M

and :fl(^N®THM(G'»-*THN(flG').

It is a routine to show that thus obtained homomorphism (4. 8. 4)
does not depend on the choice of G" and a quasi-isomorphism F'->G",
and we omit the proof.

4. 9. We shall prove that (4. 8. 4) is a quasi-isomorphism. In order
to see this, we shall reduce the problem to a special case. For this
purpose wre remark the following things.
(a) The question is local in N.
(b) The question is local in M in the following sense. Any F ' 'EE
Db(JK-Const(M))5 has a filtration such that the support of the gradua-
tion is as small as we want.
(c) If / is a composition of two smooth map g:M-*L and h:L->N,

then ( = ( - \ . More precisely, { : Rf* (@N^.M® THM (F')) ->
Jf Jh Jg Jf ®M

RTHN(Rf*F') is the composition of

and
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L

Note that g~l & N+.L® 2 L*-M= ® N~M C[K2] Lemma 4.7). We omit the
%

proof of this.
By these three remarks we can reduce the problem when M=

RxN and / is the projection.

4. 10e Now, we shall prove that (4. 8. 4) is an isomorphism when
M=RxN and /is the projection. By Lemma 4,4, we may assume
that F = Cz for a closed subanalytic subset Z of M such that Z { \ f ~ l ( x )
is contractible for any #e/(Z). Now, we may assume further

Set

Z±={(t, ;r)eM; |*|^1 and there exists s^R such that (s, a;)
and ±^

Then we have Z+nZ_=Z, and Z+UZ- = [0, 1] X/(Z). Hence, in order
to show that (4.8.4) is isomorphic for F=CZ, it is sufficient to prove
this for F = CZ+, Cz_ and Cz+uz_> Hence, we may assume further

that ZD {0} X/(Z). Thus, the problem is reduce to the following
lemma.

Lemma 4.5. Let Z be a closed, subanalytic subset of M=RxN
satisfying

(4. 10. 1) Zfl/^O) is contractible for any

(4.10.2) ZD{0} x/(Z)

(4.10.3) Zc[-l, l]x/(Z).

o — >/*rz(^/M) ̂ f*rz (@JM) — r/(Z)
is an exact sequence.

Proof. If u^r(U', f^rz(^^M)} satisfies du/dt = Q, then M is con-
stant along the fiber. Hence supp wcZ implies u=0. If u^F(U',

satisfies \udt=Q, then we define v by the equation

Then v is constant in t outside Z, and \udt = v(t, x) for ^>1. Hence,

v(t, x) =0 if |^|^>1. This implies supp vdZ. Finally we have

w(x)d(t)dt = w(x) for w^Ff(Z)(^N). Q. E. D.
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Thus Theorem 4. 1 is proved when / is smooth or a closed
embedding.

4. IK Now, we shall prove Theorem 4. 1 in the general case. Sett-
ing L = NxM, f decomposes into hog where g : M->L is the closed
embedding of M onto the graph of / and h is the second projection
from L to M. Hence, we have

(g)

This completes the proof of Theorem 4. 1.

4. 12. As an application of Theorem 4. 1, we shall prove the follow-
ing proposition.

Proposition 4. 6. For F'eDs_c(M), we have

F, CM).

First remark that if we replace RTHM(F') with R 3?omc(F\ 3% M)
then the proposition is obvious, because R^om^M(j^M, &M)=CM by

Poincare Lemma and 3t M is a flabby sheaf. Hence, it is sufficient
to prove that the homomorphism

(4.12.1)

is an isomorphism for any 12-constructible sheaf F.
We may assume that M is oriented. Let us take a point x of

M, and we shall prove that

is a quasi-isomorphism. Let / be the map from M onto the manifold
pt consisting of the single point. Then, for a relatively compact open
subanalytic neighborhood U of x, we have

J ; C)
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by Theorem 4. 1. On the other hand

Hence we obtain

Rr(M;Rjeom<,M(j*M, TH(FJ) = Homc(Rrc( U; F), C)

On the other hand, this is true for ^om(F, ^), i. e.

RF(M\ R3fomgM(^m ^om(Fu, J>M)) =Homc(Rrc(U', F),

Thus we obtain

RF(M\

For U^)V^x, we have

U; R

Hence

Thus we obtain the desired result. Q,. E. D.

4. 13. Now, we shall prove Lemma 4. 4. This is a corollary of
§1.4, §1.5 and the following theorem (Hironaka [H]).

Theorem 4. 7. Let /: M-+N be a real analytic map, K a compact

subset of M and [Zj] a locally finite covering of M by a locally

closed subanalytic subsets Zr Then there exist simplicial complexes

£f=(S, J), £f'—(S', Jx) and a morphism g ' . Z f - ^ Z f ' , a homeomorphism

c from \&) onto a neighborhood of K and a homeomorphism c from

\y | onto an open subset of N satisfying the following conditions

(4.13.1) f°t=t'°\g\
(4.13.2) For any a^.A, c( a \) is a subanalytic set contained in

some Zj.

§ 5, Regular Holonomic Systems

5. 1. In this section, we shall review the results on regular holono-
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mic systems obtained in [KK], [K].
Let X be a complex manifold and 0 x the sheaf of holomorphic

functions on X. Let ^ x(iii) denote the sheaf of linear differential
operators of order at most m with 0 x as coefficients, and 2 ' x —
U @x (m) the sheaf of linear differential operators. Then the
m

cotangent bundle T* X of X coincides with Specan(gr @x}, where

gr 0z = ©0*(m)/0z(m-l).
m

For a .^-Module Jl, an increasing sequence {Jlj\j^z °f coherent
^^-sub-Modules of Jl is called a good filtration if it satisfies the
following conditions:

(5.1.1) g^m^Jl^Jl^

(5.1.2) @x(m')J{j = J{m+j for j>0 and ra^O.

(5.1.3) ^/;-=0 for j<0

(5.1.4) J^=(JJ^.

For a coherent ^x-Module ^, we donote by Ch(^f) the support
of 0 T*x (x) gr Jl where gr Jl denotes @Jl j/Jt ;-_i for a good filtration

^®x
of Jl. Since Ch Jl does not depend on the choice of good filtration
and since a coherent ^^-Module has locally a good filtration, Ch(^)
is a well-defined closed homogeneous analytic sub variety of T* X. We
call Ch(^) the characteristic variety of Jl. It is shown that the
characteristic variety is always involutive (Theorem 5.3.2 [SKK]),
and in particular its dimension is equal to or larger than the dimension
of X.

Definition 5. 1. // the characteristic variety of a coherent & x-
Module Jl has the same dimension as X, Jl is called holonomic.

Definition 5. 2. Let Jl be a holonomic ^ x- Module. If the
following condition is satisfied, Jl is called regular (in [KK], it is

called with R. S.)

(5. 1. 5) Jl has a good filtration {Jlj\ such that f gr Jl — ̂  for any

x vanishing on Ch(Jf).

Example 5. 1. ® x is a regular holonomic .^-Module and Ch(
coincides with the zero section of T* X.
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Example 5. 2. XaC and Jt = @x/@xP for P=£Q^&X. In this

case Jl is always holonomic, and Jl is regular if and only if Pu=0

has regular singularities in the sense used in the theory of linear

ordinary differential equations.

Example 5, 3. X=Cn, A^MN(C) (j=l,...,n). Then, JK =

®x/t> ®"(xJ-i—-Ai} is a regul
j=l \ uXj J

commute to each other, we have

®"xJ-—-Ai is a regular holonomic ^-Module. If A/s

5. 2. Now, we shall give several properties of regular holonomic

^-Modules.

Proposition 5, 3- ( 1 ) A coherent sub-Module and a coherent

quotient of a regular holonomic @ -Module are also regular holonomic.

( 2 ) // Jii~ >Jli-^>Jl$-^'Jlir*^*> is an exact sequence of ^-Modules

and if ^15 ^25 «^4 and Jt*> are regular holonomic then so is Ji-^

( 3 ) (Cor. 58 1. 1. [KK]) The notion of regular holonomicity is local.

( 4) (Theorem 5.4. 1. [KK]) Let f be a holomorphic function and

Jl a regular holonomic Qi -Module. Then the localization Jl f is also

a regular holonomic 0 -Module.

5. 3. Let / : X— >Y be a holomorphic map from a complex manifold

X to a complex manifold Y. Set @X^Y=@X 0 f~l@Y and @Y*-x =
f~l®Y

f~l(@Y (8) -Of"1) (X) Qx, where QY and Qx are the sheaves of the highest-
^Y /~%y

degree holomorphic forms on Y and X, respectively. Then @X-+Y is

a (^z> /"1^y)-bi-Module and 3f^x is a (f~l^Y, Sz)-bi-Module

(see [SKK]).

Proposition 5. 4e (Corollary 5.4.8 [KK]). // Jf is a regular

holonomic @Y-Module, then &rovi
Y(@x^ ^) " a regular holonomic

Six-Module.

Proposition 5.5. (Theorem 6.2.1 [KK])e // Jl is a regular
L

holonomic @ x~ Module and if f is protective, then Rlf*(@Y<-x®<^) is
L ®X

a regular holonomic &Y~ Module. Here (X) means the left derived
®x

functor of (X) in the appropriate derived categories.
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5. 4. A sheaf of vector spaces F on X is called constructible if there
exists a decreasing sequence of closed analytic subset XQ = X^)Xl^)X2

D • • • of X such that F\x._x. is locally constant of finite rank and

Proposition 5.6 ([Kl]). For a holonomic 2x-Module Jl,
(Jli ® x) is & constructible sheaf for any j.

5. 50 We denote by @x the sheaf of linear differential operators of
infinite order (see [SKK]). Then @x is faithfully flat over ® x, (9 x

is a left ^J-Module and Qx is a right S^-Module. A SJ-Module
Jl is called holonomic if there exists a holonomic ^^-Module Jl'
such that Jt= ^S(gM".

®x

Proposition 5.7 (Theorem 5. 2. 1 [KK])0 Let Jl be a holonomic
2°x~Module and set Jtreg={u^Jl\ &u is a regular holonomic 2 x-
Module). Then Jlreg is a regular holonomic 2 x- -Module and we have

In particular for any holonomic Sz-Module Jl (not necessarily
regular), there exists a regular holonomic Sz-Module Jl' (unique
up to an isomorphism) such that &*x®J{ is isomorphic to ^

§ 6. Statement of the Main Theorem

6. 1. Let X be a paracompact complex manifold of dimension n,
XR the underlying real analytic manifold and X the complex conjugate
of X. Thus, by the diagonal map XR->XxX, XxX is regarded as
a complexification of XR. The ring J$xR (resp. @x^) coincides with

the restriction of ® x*x (resp. &xxx^- By this, we regard @x and
@ x as a sub-Ring of @XR. For a ^^- Module Jt, Rtfom®^® x, Jf}

is quasi-isomorphic to the Dolbeaut complex with Jl as coefficients:

Here Qx'
q} is the sheaf of (p, q) -forms, writh real analytic function

R

as coefficients.
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6. 2. Let Mod(X) denote the category of sheaves of C-vector spaces
on X. Let D(X) denote its derived category and let D?(X) denote
the full sub-category of D(X) consisting of bounded complexes F'
such that 3?j(F') is constructive for any j.

Let Mod(^z) denote the category of Sz-Modules and D(^z)
its derived category. We denote by Drh(^z) the full subcategory of
D(^x) consisting of bounded complexes Jt' such that ffl ' (Jt°} is a
regular holonomic ^-Module for any j.

By replacing Sz with &x and regular holonomic with holonomic
SJ-Module, we similarly define Mod(SJ), D(SJ) and DS(^?).

6. 3. We shall define functors

and

as follows
(6.3.1) Jx =

(6.3.2) 0x=

(6.3.3) 0X=

(6.3.4) Wx=

Here ° denotes the opposite category. Since ^x is faithfully flat
over @x, Jx is well-defined. By Proposition 5. 6, $x and $x are
well-defined.

Now, we shall define the functor Wx. This is obtained as the
composition of Dc

b(X) °->D^_c(Z^)0_?!^Db(^/2)and R ^om^^(0x, *) :

Here D(S^) is the derived category of the abelian category of

@x -Modules. Hence for FeOb(D£(X)), W(F') is the DolbeautR

complex

Tff(G') (0-0)-^ TH(G') ^-^ ---- d-*TH(G'} (0'n\

where G' is a complex of 12-constructible sheaves on XR, which is
quasi-isomorphic to F'. We sometimes denote by the same letter Wx

the functor R JfomgAO x, RTH(*)) from V\-C(XR}° to
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In the sequel, we omit the subscript X if there is no afraid of
confusion.

Main Theorem. ( 1 ) F(DS(X)°)cDjh(^) and ¥™=Jo¥.
(2) J, 0, 0°°, ¥ and ¥°° give the equivalence between the categories
D*(X)°, DlU^x) and Dh

b(^). Moreover, 0 and ¥(resp. 0°° and
¥°°)are inverse to each other.

In [KK], we proved the following

Lemma 6. 1. ( 1 ) (Proposition 1. 4. 8., Theorem 6. 1. 1 [KK])
J, 0 and 0°° are faith fuL
(2) (Theorem 1.4.9 [KK]) gr-o<p- = id.

Hence Main Theorem is a consequence of the following two
propositions.

Proposition 6. 2. r(Dc
b(X)°) cDr

b
h(^z)0

Proposition 6. 3. 0¥=id.

However, the latter follows easily from the first. In order to
show this, let F' be an object of Db(X). We have

Here we used Proposition 1. 4. 6. [KK] and the fact that W(F)
(S*)). On the other hand, we have

® %, RTH(F')))

x (j/v , RTH(F')},
R R

which equals RJtfbm(F\ Cx} by Proposition 4. 6. Thus Proposition
6. 3 follows from Proposition 6. 2.

§ 7. Proof of Main Theorem

7. 1. We have already reduced Main Theorem to Proposition 6. 2.
We shall prove this by using Hironaka's desingularization theorem. In
order to perform this, we have to know how the functor ¥ behaves
under integration.
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7. 2 Let X and Y be two complex manifolds and /: X~*Y a

holomorphic map.

Proposition 7. 1. Suppose that an object F' of D«_c(^) of finite
rank satisfies the following condition'.

(7.2. 1) The closure of Supp 3?j (F) is proper over Y for any j.
Then we have

(7. 2. 2) fl/, (9^xVz(F» [dim X]

Proof. By Theorem 4. 1, we have

Hence we have
L

<8>

Thus the proposition is a consequence of the following lemma.

Lemma 7. 2. R^om2.(0y, &Y»«-xJ°"Y R R

= @Y^x®R3l?omg-($ x, @XR) [dim X-dim Y].
2x

Proof. We have RJfbmg (0* ®YR«-xJ =^[-dim F](g) ̂ yw*-j
•* JTC /t ^ri _ if

We have also

L
yy

and in general

&

These imply

om9?(0T, @YR*-XR)

pt*-Y (g) @YXY«-XXX I^C-dim Y]
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L L
= 3>pt^ (g) Syx? (x) ^yxjvxxjtl XB[ -dim Y]

[-dim Y]

r x J r l j r [ - d i m Y].

On the other hand, we have

= @Y«-XXX z^E-dim X]. a E. D.

The following lemma follows immediately from Proposition 5. 3.

F"
Lemma 7. 3. I/ \ + \ is a distinguished triangle in D£(

if two of WX(F"), WX(F) and WX(F") belong to Dr
b

h(Sz), then
so does the other.

7. 3. Now, we shall prove Proposition 6. 2. By the standard argu-
ment using Lemma 7.3, it is enough to show VX(F) <=Ob(Drh(^z))
for any constructive sheaf F. We shall prove this by the induction
of the dimension of the closure Z of the support of F.

Let ZQ be a nowhere dense closed analytic subset of Z such that

(7.3. 1) F\z-zQ is locally constant.

(7. 3. 2) Z—Z0 is non-singular.

By the hypothesis of the induction, Vfx(FzQ) belongs to Drh(^z) -

Hence by using Lemma 7. 3, we may assume FZQ = 0 without loss of

generality. Let /: X'-*X be a projective map satisfying the following
conditions

(7.3.3) X' is non-singular and f(X')=Z.

(7.3.4) ZQ=f'l(Zo) is a normally crossing hypersurface of X'.

(7.3.5) X' — ZQ-+Z— ZQ is an isomorphism.

Such an / is obtained by a succession of blowing up's by Hironaka's
desingularization theorem [HI].
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Set Ft=f~1(F). Then we have

(7.3.6) F'|zi=0,

(7.3.7) F' U/-ZQ is locally constant,

(7.3.8) Rf*F'=F.

As we shall prove later in Lemma 7.4, WX,(F'} belongs to Ob(Drh

(^ j f / ) ) . By Proposition 7. 1 and Proposition 5. Sand (7.3.8), WX(F)

belongs to D*h(Sz)«

7. 4. So far, we reduced Main Theorem to the following lemma.

Lemma 7. 4. L(?£ Y be a normally crossing hype rsur face of a
complex manifold X, and F a constructive sheaf on X such that

jF|y = 0 and that F\X-Y is locally constant of finite rank. Then WX(F}
belongs to

We shall prove first the following special case.

Lemma 7. 5. Being X and Y in the preceding lemma,

is isomorphic to the sheaf Jl?ixm( ® x) °f meromorphic functions on
X with possible poles in Y.

Proof. If Y= 0, then WX(CX) is nothing but the Dolbeaut com-
plex

Therefore, WX(CX} is isomorphic to ® x. The question being Iocal3

we may assume

(7.4.1) X = Cn, and Y= U Yj

where Yj = {x = (xl<t . . . , xn) e X; Xj = 0} .

Set f—xl • • • • xt. Then, by Proposition 3. 23 we have

(7. 4. 2) TH(CX-Y) = TH(Cx)f = (®JXR)f.

Here, */ means the localization by / On the other hand, we have

Q.E.D.
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Now, we shall prove Lemma 7. 4. The question being local, we

may assume (7.4. 1) with Z^l. Thus F is determined by the mono-

dromy around Y}. Let exp 2^~^lAj be the monodromy around Y/,

with an ( N X AT) -matrix Aj. We may assume

[4, 4J=0 for l^j, k^l.

Then, by multiplying XA = xl
 Ix2

 2 - - • Xi z, TH(F} is isomorphic to

y)' This is not .^-linear but S^-linear, and 0^-linear.

Hence as an 0z-Module, TH(F) is isomorphic to TH(CN
X-y) =

3?lx\Y-](@ x)N> If we denote by / this isomorphism, the action of
d/dxj is given

f(d/3xj - u) = (d/dxj -A5xjl)f(u) for u ̂  TH(F) .

Here A;-(j>/) is understood to be zero. One can easily show that

3i?ix\Yi(@x)N with this structure of Sz-Module is regular holonomic.
This shows Lemma 7. 4 and hence the proof of Main Theorem is

completed.

§ 8. Applications

8. 1. In [KK], we have proved that the integration of regular

holonomic ^-Module under projective morphism is regular holonomic.

This can be generalized to proper morphisms.

Theorem 8. 1. Let f: X->Y be a morphism and let Ji be a

regular holonomic <2}x~Module whose support is proper over Y. Then

S
L

Jt = Rf*(@v+-x®^} ^ regular holonomic,
f 2X

Proof. Set F' = W X ( J [ ) . Then by Proposition 7. 1,

( Jf=VY(Rf*(F» [dim Y-dim X].

Since «/* CF') belongs to D£(Y), ( Jl belongs to Dr
b

h(Sy).

Q,E.D.

8. 2. Let M be a real analytic manifold and X a complexification

of M. Then we have, for any

(8.2.1)
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Theorem 8.2. For any Jt' <=V^(® x) and for any
of finite rank,

(8.2.2)

is an isomorphism.

In particular, if we set F' = CM) we obtain

Corollary 8. 3, For any „//' eEDb
h

is an isomorphism.

Note that RtfomaAJt\ R $fomc(F\ J*M)) can be calculated as
A

follows.
Since ^M = RFM( <^^)0(wM[dim M] (o)M = ̂ n

M (C*)), we have

[dim M] )

[dim M]

M

Here DRX(JI') =R ^om2x( 0 x, Jf} =R ieomCx(0xW)9 Cz).

Thus, we obtain

Corollary 8. 4. For any uf eDj?h(0*) anJ FeD^_c(M), ze;̂

Jt\ RTH(F'))

Corollary 88 5. For ^/'eDr
b

where ^M is the sheaf of C°°-functions on M.

Proof. We may assume ^' is a single complex. Let
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be a free resolution of Jl. Then for any relatively compact open
subanalytic set U

and

RF(U;

On the other hand, since the cohomology groups of FC(U, 24 r)

<— ̂ — • • • < r Fe(U9 && °) are finite dimensional, by the duality,

(8.2.3)

and similarly

(8.2.4)

Thus Corollary 8. 3 implies

tb (U; Jl, J/M) ~ Extj® ( U', Jl, <g M) • Q E. D.

Corollary 8. 6. Let X be a complex manifold. Then for any
c(XB) of finite rank and Jf^D^(^x) we have

Proof. We have

^x(Jir® 0X9 RTH(F)).

Since ^'(8)^^eDrh(^zx^)5 the corollary follows from Theorem 8. 1.

8. 3o We shall prove Theorem 8. 2 first in the case where F=CM

by the induction on Supp^'^U Supp^fJ(^") and dim X.
3

Let Y be the union of the support of Jl' and its complex con-
jugate. Then by the desingularization of Hironaka, there exist locally
a real analytic manifold M', a complexification X' of M', a holo-
morphic map /: X'—>X and a nowhere dense analytic subset Z of Y
satisfying the following conditions.



362 MASAKI KASHIWARA

( 0 ) Z is an intersection of Y and a hypersurfaee of X.
( 1 ) /: X'— >X is proper.
(2) /(MO CM
(3) /: X'— /(Z)^>X— Z is an isomorphism.

( 4 ) r -/-HF-Z) is smooth.
( 5) Ch(^')cTfXuZxT*X.

j?
(6) Z /=Y /n/~1(Z) is a normally crossing hypersurfaee of Yf.
( 7 ) Z is stable under the complex conjugation.
( 8 ) N= Y' n M is a real analytic manifold and Y' is its complexifica-

tion.

Set Jt" = RrLz'\z>i(Lf*J['*)*. Here Jt'* denote
L

@x} ® flf-^dim X], and Lf*Jl'* = Sz,.^ (X) uf*.
-X JL

Lemma 8. 3. 1.

, @M') =R

Admitting this lemma for a while, we shall prove Theorem for
F=CU.

Now, Jl'' is locally isomorphic to the direct product of

s>j>l j^s

for a real coordinate (.r l 9 . . . , ^:B) of X. In this case, one can easily
verify the theorem. Hence we obtain

Thus by Lemma 8. 3. 1, we have

for <&' = RrLXlz-\(Jf*)*. Since &' is isomorphic to Jt' on X— Z,
there exists a triangle

Jf - > Jf'

where Supp Jf 'cZ.

Since the theorem is true for JT by the hypothesis of the
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induction, that is true also for Jt' .

8.4. Proof of Lemma 8. 3. 1 (1).
Assume Z=Yft {<p=Q}. Set Jf' =R

X] and Jf" = R

Then the right hand side of (1) is B/tC/T'® 9>^ and the left
L ®X>

hand side is Jf' (X) @4M.
x

On the other hand, we have

JT' = ̂ '0 (2X)9 and jr" = Jr'®(®x,)r
®x ®x

Hence we obtain by Proposition 3. 23

and similarly

X X

Thus, (1) follows from

Proof of Lemma 8. 3. 1 (2). By the argument preceding Corollary
8.4,

Hence (2) follows immediately from

8. 5. Now, we shall prove Theorem 8. 2 for an arbitrary F'. We
may assume that F' = CZ for a compact subanalytic set Z. We shall
prove Theorem 8. 2 by the induction of dim Z. By the definition,
there exists a proper real analytic map /: N^>M such that /(AT) =Z.
We may assume M and N are oriented. Letting Y a complexification
of N we extend / to a holomorphic map Y— >X.

By Theorem 4. 1, we have
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Hence

This holds also by replacing ®& with J*. Hence Theorem 8. 2 for
the constant sheaf implies

Now there exists a nowhere dense closed subanalytic subset Z'cZ
such that

( 1 ) Rf*(CN} \z-z> is constant.
( 2 ) F' \z-z> is constant.

By the hypothesis of induction, the theorem is true for F'z,. Rf*(CN}Z">
and hence it is true for Rf*(Cz}z-z^ Since Rf*(Cz}Z-zf is constant
the theorem is true for CZ-zf and hence for FZ-Z» Thus we obtain
the desired result.

References

[HI] Hironaka, H., Resolution of singularities of an algebraic variety over a field of charac-
teristic 0, Annals of Math., 79 (1964), 109-326.

[H2] - , Subanalytic sets, Number theory, algebraic geometry and commutative
algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo (1973), 453-493.

[fJ3] - } Introduction aux ensembles sous-analytiques, Asterisque 1 et 8, Societe math.
de France (1973), 13-20, redige par A. Hirschowitz and P. LeBarz.

[K] Kashiwara, M., Faisceaux constructibles et systemes holonomes d'equations aux derivees
partielles lineaires a points singuliers reguliers, Sdm. Goulaouic-Schwartz, 1979-80, expose
19.

[Kl] - , On the maximally overdetermined system of linear differential equations, I,
Publ. RIMS, Kyoto Univ., 10 (1975) 563-579.

[K2] - , .^-functions and holonomic systems, Invent. Math., 38 (1976), 33-53.
[KK] Kashiwara, M. and Kawai, T., On holonomic systems of microdifferential equations

III— system with regular singularities, Publ. RIMS, Kyoto Univ., 17 (1981), 813-979.
[L] Lojasiewicz, S., Sur le probleme de la division, Stadia Math., 8 (1959), 87-136.
[Ma] Martineau, A., Distributions et valeurs au bord des fonctions holomorphes, Oeuvre

de Andre Martineau, Paris, CNRS, U977), 439-582.
[Me] Mebkout, Z., Sur le probleme de Riemann-Hilbert, Lecture Notes in Physics, 126,



THE RlEMANN-HlLBERT PROBLEM 365

Berlin-Heidelberg-New York, Springer (1980), 99-110.
[S] Schwartz, L., Theorie des distributions, Paris, Hermann (1950).
[SKK] Sato, M., Kawai, T. and Kashiwara, M., Microfunctions and pseudo-differential

equations, Lecture Notes in Math., 649, Berlin-Heidelberg-New York, Springer (1978),
228-289.

[V] Verdier, J. L., Dualite dans la cohomologie des espaces localement compacts, Sim.
Bourbaki, expose 300 (1965).

Added in proof'.
The proof of Theorem 2.8 is not complete because we assumed dim Fz<oo for an

-K-constructible sheaf F but not for an S-constructible sheaf F. This difficulty can be
overcome by one of the following methods. The first method relies on the fact that
Theorem 2. 8 is proven if we replace "12-constructible" with "weakly i^-constructible" and
that the functor TH is a well-defined exact functor on the category of weakly J2-construc-
tible sheaves. The second method is to prove Theorem 2. 8 in the original form by using
the following lemma which can be easily shown.

Lemma. If F' is a bounded complex of S-constructive sheaves on \&\ such that dimJf j :(F')x

<C°°, then F' is quasi-isomorphic to a bounded complex F'~ of S-cons true tible sheaves such that




