The Universal Verma Module and the b-Function

Masaki Kashiwara

§ 0. Introduction

In this paper, we study the universal Verma module and apply this to the determination of the b-functions of the invariants on the flag manifold.

Let \mathfrak{g} be a semi-simple Lie algebra over \mathbb{C}, \mathfrak{b} a Borel subalgebra of \mathfrak{g}, \mathfrak{n} the nilpotent radical of \mathfrak{b} and \mathfrak{h} a Cartan subalgebra in \mathfrak{b}. Let V be a finite-dimensional irreducible representation of \mathfrak{g} and let u be a lowest weight vector of V. Then there exists $f \in U(\mathfrak{h})$ and a commutative diagram

$$
\begin{array}{ccc}
U(\mathfrak{g}) \otimes \mathbb{C}_{U(\mathfrak{n})} & \rightarrow & U(\mathfrak{g}) \otimes V_{U(\mathfrak{n})} \\
\downarrow f & & \downarrow g \\
U(\mathfrak{g}) \otimes \mathbb{C}_{U(\mathfrak{n})} & \rightarrow & U(\mathfrak{g}) \otimes \mathbb{C}_{U(\mathfrak{n})}
\end{array}
$$

(0.1)

where g is given by the n-linear morphism from V to \mathbb{C} sending u to 1. Note that $\text{End}_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{n})} \mathbb{C}) \cong U(\mathfrak{h})$.

The first problem is to determine the minimal f with such a property. In order to state the answer to this problem, we shall introduce further notations. Let \mathcal{A} be the root system for $(\mathfrak{g}, \mathfrak{h})$. For $\alpha \in \mathcal{A}$, let h_α be the coroot of α. Let \mathcal{A}^+ be the set of positive roots given by \mathfrak{b} and ρ the half-sum of positive roots. Let $-\mu$ be the lowest weight of V.

Theorem. There exists a commutative diagram (0.1), with

$$f = \prod_{\alpha \in \mathcal{A}^+} (h_\alpha + h_\alpha(\rho) + 1, h_\alpha(\mu))$$

where $(x, n) = x(x+1) \cdots (x+n-1)$. Conversely for any commutative diagram (0.1), f is a multiple of $\prod_{\alpha \in \mathcal{A}^+} (h_\alpha + h_\alpha(\rho) + 1, h_\alpha(\mu))$.

By using this theorem, we can calculate the b-functions on the flag manifold. Let G be a simply connected algebraic group with Lie algebra \mathfrak{g}, and let B and N be the subgroup of G with Lie algebras \mathfrak{b} and \mathfrak{n}, respectively, and let B_- be the opposite Borel subgroup.

Received January 17, 1984.
Then the semi-group of $B_+ \times B$-semi-invariants f on G, i.e. regular functions f on G which satisfies $f(b'gb) = \chi'(b')\chi(b)f(g)$ for $b' \in B_+$, $g \in G$, $b \in B$ with characters χ' and χ of B_+ and B, is parametrized by the set P_+ of dominant integral weights. More precisely, for $\lambda \in P_+$, let V_λ be a finite-dimensional irreducible representation of G with highest weight λ, v_λ a highest weight vector of V_λ, and \bar{v}_λ a lowest weight vector of the dual V_λ^* of V_λ. We normalize them such that $\langle v_\lambda, \bar{v}_\lambda \rangle = 1$. Then, the regular function f^λ given by

$$f^\lambda(g) = \langle gv_\lambda, \bar{v}_\lambda \rangle$$

is a semi-invariant, and any semi-invariant is a constant multiple of some f^λ. We have

$$f^{\lambda + \nu}(g) = f^{\lambda}(g)f^{\nu}(g).$$

Theorem. For any dominant integral weight μ, we can find a differential operator P_μ on G such that

$$P_\mu f^{\lambda + \nu} = b_\mu(\lambda)f^\lambda$$

for any λ.

Here

$$b_\mu(\lambda) = \prod_{\alpha \in \Delta_+} (h_\alpha(\lambda + \rho), h_\alpha(\mu)).$$

Notations

- \mathbb{Z}_+: the set of non-negative integers.
- \mathbb{Z}_{++}: the set of positive integers.
- \mathfrak{g}: a semi-simple Lie algebra over \mathbb{C}.
- \mathfrak{b}: a Borel subalgebra of \mathfrak{g}.
- \mathfrak{n}: $[\mathfrak{b}, \mathfrak{b}]$.
- \mathfrak{h}: a Cartan subalgebra of \mathfrak{b}.
- \mathfrak{b}_-: the opposite Borel subalgebra of \mathfrak{b} such that $\mathfrak{b}_- \cap \mathfrak{b} = \mathfrak{h}$.
- \mathfrak{n}_-: $[\mathfrak{b}_-, \mathfrak{b}_-]$.
- Δ: the root system of $(\mathfrak{g}, \mathfrak{h})$.
- Δ^+: the set of positive roots given by \mathfrak{b}.
- h_α: the coroot of $\alpha \in \Delta$.
- s_α: the reflection $\lambda \mapsto \lambda - h_\alpha(\lambda)\alpha$.
- W: the Weyl group of (Δ, h^\vee).
- $Q_+(\Delta) = \sum_{\alpha \in \Delta^+} \mathbb{Z}_+ \alpha$.
- $Q(\Delta) = \sum_{\alpha \in \Delta} \mathbb{Z} \alpha$.
- $P_+ = \{ \lambda \in h^*; h_\alpha(\lambda) \in \mathbb{Z}_+ \text{ for any } \alpha \in \Delta^+ \}$.
- $\rho = (\sum_{\alpha \in \Delta^+} \alpha)/2$.
Universal Verma Module

$S(Δ^+)$: the set of simple roots of $Δ^+$.
$U(∗)$: the universal enveloping algebra
$U(\mathfrak{g})$: $U(\mathfrak{g}) = C$, $U_j(\mathfrak{g}) = U_{j-1}(\mathfrak{g}) \mathfrak{g} + U_{j-1}(\mathfrak{g})$
R : $S(\mathfrak{h}) = U(\mathfrak{h})$
c : the canonical homomorphism $\mathfrak{h} \rightarrow R$
$U_\mathfrak{c}(∗)$: $R \otimes_c U(∗)$
$R_{c + μ}$: for $μ \in \mathfrak{h}^*$, the $U_\mathfrak{c}(\mathfrak{b})$-module $U_\mathfrak{c}(\mathfrak{b})/(U_\mathfrak{c}(\mathfrak{b})n + \sum_{h \in \mathfrak{h}} U_\mathfrak{c}(\mathfrak{b})(h - c(h) - μ(h)))$
$1_{c + μ}$: the canonical generator of $R_{c + μ}$
C_2 : for $λ \in \mathfrak{h}^*$, the $U(\mathfrak{b})$-module $U(\mathfrak{b})/(U(\mathfrak{b})n + \sum_{h \in \mathfrak{h}} U(\mathfrak{b})(h - \lambda(h)))$
$Z(\mathfrak{g})$: the center of $U(\mathfrak{g})$
$λ_λ$: the central character $Z(\mathfrak{g}) \rightarrow C$ of $U(\mathfrak{g}) \otimes_{U(\mathfrak{c})} C_{1 - μ}$; $λ_λ = λ_{wλ}$ for $w \in W$
$V_λ$: for $λ \in P_+$, a finite dimensional irreducible representation of \mathfrak{g} with highest weight $λ$
$v_λ$: a highest weight vector of $V_λ$
$v_{-λ}$: a lowest weight vector of $V^*_λ$
$(x, m) : x(x+1) \cdots (x+m - 1)$
G, B, N, B_-, N_-, T: the group with \mathfrak{g}, \mathfrak{h}, \mathfrak{n}, \mathfrak{n}_-, and \mathfrak{h} as their Lie algebras.

S1. The universal Verma module

For a ring R and a Lie algebra \mathfrak{a} over C, we write $U_\mathfrak{a}(\mathfrak{a})$ for $R \otimes_c U(\mathfrak{a}) = U(R \otimes_c \mathfrak{a})$. Hereafter we take $S(\mathfrak{h}) = U(\mathfrak{h})$ for R, where \mathfrak{h} is a Cartan subalgebra of a semi-simple Lie algebra \mathfrak{g}. Let c be the canonical injection from \mathfrak{h} into R. We define R_c by $R_c = U_R(\mathfrak{b})/U_R(\mathfrak{b})n + \sum_{h \in \mathfrak{h}} U_R(\mathfrak{b})(h - c(h))$. Then R_c is isomorphic to R as R-module. We write 1_c for the canonical generator of R_c.

Definition 1.1. We call $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} R_c$ the universal Verma module.

As a \mathfrak{g}-module, $U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} R_c$ is isomorphic to $U(\mathfrak{g}) \otimes_{U(\mathfrak{n})} C$. For $λ \in \mathfrak{h}^*$, let $C_λ$ be the $U(\mathfrak{b})$-module given by $U(\mathfrak{b})/(U(\mathfrak{b})n + \sum_{h \in \mathfrak{h}} U(\mathfrak{b})(h - \lambda(h)))$. We regard $C_λ$ also as an R-module by $R \rightarrow U(\mathfrak{b})$. Then $C_λ \otimes_R (U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} R_c)$ is nothing but the Verma module with highest weight $λ$. Note that the universal Verma module is, as an R-module, isomorphic to $R \otimes_c U(\mathfrak{n}_{-})$, and in particular it is a free R-module.

For $μ \in \mathfrak{h}^*$, we write $R_{c + μ}$ for the $U_R(\mathfrak{b})$-module $C_μ \otimes_c R_c$.

The following lemma is almost obvious.

Lemma 1.2. $\text{End}_{U_R(\mathfrak{g})}(U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{b})} R_c) = R$.

Now, we choose a non-degenerate W-invariant symmetric bilinear
form \((\lambda, \mu)\) on \(\mathfrak{h}^*\).

Lemma 1.3. For \(\mu \in \mathfrak{h}^*\), let \(f_\mu\) be the function on \(\mathfrak{h}^*\) given by

\[
f_\mu(\lambda) = (\lambda + \mu + \rho, \lambda + \mu + \rho) - (\lambda + \rho, \lambda + \rho) = 2(\mu, \lambda + \rho) + (\mu, \mu).
\]

and regard this as an element of \(R\).

Then we have

\[
f_\mu \text{ Ext}^j_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_c, U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_{c + \rho}) = 0 \quad \text{for any } j.
\]

Proof. The Laplacian \(\Delta \in \mathfrak{h}(\mathfrak{g})\) acts on \(U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_c\) by the multiplication of \((\lambda + \rho, \lambda + \rho)\) and on \(U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_{c + \rho}\) by \((\lambda + \mu + \rho, \lambda + \mu + \rho)\). Hence \((\lambda + \mu + \rho, \lambda + \mu + \rho) - (\lambda + \rho, \lambda + \rho)\) annihilates \(\text{Ext}^j\).

Q.E.D.

Now, let \(F\) be a finite-dimensional \(\mathfrak{h}\)-module generated by a weight vector \(u\) of a weight \(\lambda_0 \in \mathfrak{h}^*\). Hence \(\mathfrak{h}\) acts semisimply on \(F\). We shall choose a decreasing finite filtration \(\{F^i\}\) of \(F\) by \(\mathfrak{h}\)-modules such that

\[
F^0 = F
\]

(1.1) \(F^i/F^{i+1}\) has a unique weight \(\lambda_j\).

(1.3) \(\lambda_j \neq \lambda_{j'}\) for \(j \neq j'\).

Therefore, we have \(F^1 \cong \mathfrak{h} F\) and \(F^0/F^1 \cong C_{\lambda_0}\). Hence there exists an isomorphism

\[
\varphi_1 : U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_{c + \lambda_0} \tilde{\longrightarrow} U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_c \otimes F^0/F^1).
\]

Now, we shall construct a commutative diagram

\[
\begin{array}{ccc}
U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_{c + \lambda_0} & \xrightarrow{\varphi_j} & U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_c \otimes F^0/F^1) \\
\downarrow f_j & & \downarrow \\
U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_{c + \lambda_0} & \xrightarrow{\varphi_1} & U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_c \otimes F^0/F^1)
\end{array}
\]

(1.4)\(j\):

with \(f_j \in R\), by the induction on \(j\).

Assuming that (1.4)\(j\) has been already constructed \((j \geq 1)\), we shall construct (1.4)\(j+1\). We have an exact sequence

\[
0 \longrightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_c \otimes F^j/F^{j+1}) \longrightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_c \otimes F^0/F^{j+1}) \longrightarrow \]
This gives an exact sequence

\[\text{Hom}_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes \mathcal{R}_{e+\lambda_0}, U_R(\mathfrak{g}) \otimes (R_c \otimes F^0/F^{j+1})) \]

\[\rightarrow \text{Hom}_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes \mathcal{R}_{e+\lambda_0}, U_R(\mathfrak{g}) \otimes (R_c \otimes F^0/F^{j+1})) \]

\[\rightarrow \text{Ext}^1_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes \mathcal{R}_{e+\lambda_0}, U_R(\mathfrak{g}) \otimes (R_c \otimes F^j/F^{j+1})). \]

On the other hand, \(F^j/F^{j+1} \) is a direct sum of copies of \(R_{e+\lambda_j} \). Therefore, by Lemma 1.3, we have

\[g_j \text{ Ext}^1_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes \mathcal{R}_{e+\lambda_0}, U_R(\mathfrak{g}) \otimes (R_c \otimes F^j/F^{j+1})) = 0 \]

where \(g_j \in R \) is given by \(g_j(\lambda) = (\lambda + \lambda_J + \rho, \lambda + \lambda_j + \rho) - (\lambda + \lambda_0 + \rho, \lambda + \lambda_0 + \rho) \). Hence \(g_j \delta(\varphi_j)=0 \), which shows that \(g_j \varphi_j \) lifts to \(\psi : U_R(\mathfrak{g}) \otimes U_R(\mathfrak{g}) \mathcal{R}_{e+\lambda_0} \rightarrow U_R(\mathfrak{g}) \otimes U_R(\mathfrak{g}) (R_c \otimes F^0/F^{j+1}) \).

If \(\psi \) is divisible by \(g_j \), then \(\varphi_j \) itself lifts and we obtain (1.4)_{j+1} with \(f_{j+1} = f_j \).

Assume that \(\psi \) is not divisible by \(g_j \). For \(\lambda \in \mathfrak{g}^* \), let us denote by \(\psi(\lambda) \) the specialization of \(\psi \), i.e. \(\mathcal{C}_\lambda \otimes_R \psi \). Then, for a generic point \(\lambda \) of \(g_j^{-1}(0) \), \(\psi(\lambda) \neq 0 \). Hence we obtain a diagram

\[
\begin{array}{ccc}
U(\mathfrak{g}) \otimes (\mathcal{C}_\lambda \otimes F^j/F^{j+1}) & \rightarrow & U(\mathfrak{g}) \otimes (\mathcal{C}_\lambda \otimes F^j/F^{j+1}) \\
\uparrow & & \uparrow \\
U(\mathfrak{g}) \otimes \mathcal{C}_{\lambda+\lambda_0} & \rightarrow & U(\mathfrak{g}) \otimes (\mathcal{C}_\lambda \otimes F^0/F^j) \\
\downarrow & & \downarrow \\
g_j(\lambda) \varphi_j(\lambda) & \rightarrow & \psi(\lambda)
\end{array}
\]

(1.5)

Since \(g_j(\lambda)=0 \), we obtain a nonzero homomorphism \(h : U(\mathfrak{g}) \otimes_U(\mathfrak{g}) C_{\lambda+\lambda_0} \rightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g}) (C_\lambda \otimes F^j/F^{j+1}) \). Since \(U(\mathfrak{g}) \otimes_U(\mathfrak{g}) (C_\lambda \otimes F^j/F^{j+1}) \) is a direct sum of copies of \(U(\mathfrak{g}) \otimes_U(\mathfrak{g}) C_{\lambda+\lambda_0} \), the central character of \(U(\mathfrak{g}) \otimes_U(\mathfrak{g}) C_{\lambda+\lambda_0} \) and that of \(U(\mathfrak{g}) \otimes_U(\mathfrak{g}) C_{\lambda+\lambda_j} \) must coincide. Hence there exists \(w \in W \) such that \(w(\lambda+\lambda_0+\rho) = \lambda+\lambda_j+\rho \). This shows that \(w(\lambda+\lambda_0+\rho) = \lambda+\lambda_j+\rho \) holds for any \(\lambda \in g_j^{-1}(0) \). Since \(\lambda_j \neq \lambda_0, w \neq 1 \). Since \(w \) fixes the hyperplane \((\lambda, \lambda_j - \lambda_0) = 0 \), \(w \) must be the reflection \(s_\alpha \) for some \(\alpha \in \Delta^+ \). Hence we obtain

\[0 = \lambda + \lambda_j + \rho - s_\alpha(\lambda + \lambda_0 + \rho) = \lambda_j - \lambda_0 + h_\alpha(\lambda + \lambda_0 + \rho) \alpha. \]
This implies that $\lambda_j = \lambda_0 + k\alpha$ for some $k \in \mathbb{C}$. Since $\lambda_j - \lambda_0 \in Q_+(\Delta) \setminus \{0\}$, k is a strictly positive integer. Moreover, $h_a(\lambda + \lambda_0 + \rho) + k = 0$ holds on $g_j^{-1}(0)$. Hence g_j is a constant multiple of $h_a(\lambda + \lambda_0 + \rho) + k$.

Summing up, we obtain

Lemma 1.4. (i) If λ_j is not of the form $\lambda_0 + k\alpha$ with $\alpha \in \Delta$, $k \in \mathbb{Z}_{++}$, then φ_j lifts to $\varphi_{j+1} : U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} \mathbb{R}e_{+\lambda_0} \rightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} (\mathbb{R}e \otimes F^0/F^{j+1})$.

(ii) If $\lambda_j = \lambda_0 + k\alpha$ for some $\alpha \in \Delta$ and $k \in \mathbb{Z}_{++}$, then $(c(h_a) + h_a(\lambda_0 + \rho) + k)\varphi_j$ lifts to φ_{j+1}.

Repeating this procedure we obtain

Theorem 1.5. There exists a commutative diagram

$$
\begin{array}{ccc}
U_R(\mathfrak{g}) & \otimes_{U_R(\mathfrak{h})} \mathbb{R}e_{+\lambda_0} & \rightarrow
U_R(\mathfrak{g}) \otimes (\mathbb{R}e \otimes F) \\
\downarrow f & & \downarrow \\
U_R(\mathfrak{g}) & \otimes_{U_R(\mathfrak{h})} \mathbb{R}e_{+\lambda_0} & \rightarrow
U_R(\mathfrak{g}) \otimes (\mathbb{R}e \otimes F^0/F^1).
\end{array}
$$

(1.6)

Here $f = \prod_{(\alpha, k) \in \Sigma(F)} (h_a + h_a(\lambda_0 + \rho) + k)$ and $\Sigma(F)$ is the set of pairs (α, k) of positive root α and a positive integer k such that $\lambda_0 + k\alpha$ is a weight of F.

Example 1.6. We set $F_k = U(\mathfrak{g})/(U(\mathfrak{h})\mathfrak{h} + U(\mathfrak{n})\mathfrak{n})$. Let K be the quotient field of R. Then for any k, there exists a unique

$$
\varphi_k : U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} \mathbb{R}e \rightarrow U_R(\mathfrak{g}) \otimes (\mathbb{R}e \otimes F_k)
$$

such that the following diagram commutes

$$
\begin{array}{ccc}
U_R(\mathfrak{g}) & \otimes_{U_R(\mathfrak{h})} \mathbb{R}e & \rightarrow
U_R(\mathfrak{g}) \otimes (\mathbb{R}e \otimes F_k) \\
1 & & \downarrow \\
U_R(\mathfrak{g}) & \otimes_{U_R(\mathfrak{h})} (\mathbb{R}e \otimes F_0).
\end{array}
$$

Hence, taking the projective limit, we obtain

$$
\hat{\varphi} : U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{h})} \lim_k U_R(\mathfrak{g}) \otimes (\mathbb{R}e \otimes F_k).
$$

When $\mathfrak{g} = \mathfrak{sl}_2$, we shall calculate $\hat{\varphi}$. Let us take the generator X_+, X_-, h such that $[h, X_\pm] = \pm 2X_\pm$, $[X_+, X_-] = h$. Set $\lambda = c(h)$. We can write $P = \hat{\varphi}(1)$ in the following form

$$
P = \sum_{j=0}^\infty a_j X_+^j \otimes X_-^j (1 \otimes 1)
$$
with $a_0 = 1$. Then

\[X_+ P = \sum a_j X_+ X_j \otimes X_j (1_e \otimes 1) \]
\[= \sum a_j X_j \otimes X_j (1_e \otimes 1) + \sum j a_j X_j^{-1} (h - j + 1) \otimes X_j (1_e \otimes 1) \]
\[= \sum a_j X_j \otimes X_j (1_e \otimes 1) + \sum j (\lambda + j + 1) a_j X_j^{-1} \otimes X_j (1_e \otimes 1). \]

Here we have used the relation $[X_+, X_j] = jX_j^{-1} (h - j + 1)$.

Hence we obtain the recursion formula

\[a_j = -\frac{1}{j(\lambda + j + 1)} a_{j-1} \quad \text{for } j \geq 1. \]

Solving this, we obtain

\[P = \sum_{j=0}^{\infty} \frac{(-1)^j}{j! (\lambda + 2, j)} X_j \otimes X_j (1_e \otimes 1). \]

(1.7)

Let V_μ^* be a finite-dimensional irreducible representation of \mathfrak{g} with a lowest weight $-\mu$ and $v_{-\mu}$ a lowest weight vector. As well-known, $-\mu + k\alpha$ is a weight of V_μ^* if and only if $0 \leq k \leq h_\alpha(\mu)$. Hence Theorem 1.5 implies the following Theorem.

Theorem 1.7. There exists a homomorphism

\[\varphi_0 : U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_e \longrightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_{e+\mu} \otimes V_\mu^*) \]

such that $g \circ \varphi_0 = \prod_{\alpha \in \Lambda^+} (h_\alpha + h_\alpha(\rho) + 1, h_\alpha(\mu))$, where $g : U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_{e+\mu} \otimes V_\mu^*) \to U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_e$ is given by $g(1 \otimes 1_{e+\mu} \otimes v_{-\mu}) = 1 \otimes 1_e$.

Now, we shall show the converse.

Proposition 1.8. For any homomorphism

\[\varphi : U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_e \longrightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_{e+\mu} \otimes V_\mu^*), \]

set $f = g \circ \varphi \in R$. Then f is a multiple of $\prod_{\alpha \in \Lambda^+} (h_\alpha + h_\alpha(\rho) + 1, h_\alpha(\mu))$.

Proof. Note that $h_\alpha + h_\alpha(\rho) + k = c(h_\alpha + h_\alpha(\rho) + k')$ with $\alpha, \alpha' \in \Lambda^+, k, k' \in \mathbb{C}$ implies, $\alpha = \alpha'$, $k = k'$. Hence we can construct another φ such that $g \circ \varphi$ is the greatest common divisor of f and $\prod (h_\alpha + h_\alpha(\rho) + 1, h_\alpha(\mu))$. Therefore, we may assume from the beginning that f is a divisor of $\prod (h_\alpha + \rho(h_\alpha) + 1, h_\alpha(\mu))$.

Set $M = U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_{e+\mu} \otimes V_\mu^*) \cong U(\mathfrak{g}) \otimes_{U(\mathfrak{g})} V_\mu^*$ and let M_j be the image of $U_j(\mathfrak{g}) \otimes V_\mu^*$ in M. Then we can easily show
\[\text{gr } M = \bigoplus M_j / M_{j-1} = (S(\mathfrak{g}) / S(\mathfrak{g})_n) \otimes_{\mathfrak{g}^*} V^*_\mu \]

as an \(n \)-module.

Now, \(\nu = \varphi(1) \) is a non-zero element of \(M \) which is \(n \)-invariant. Let \(j \) be the smallest integer such that \(\nu \in M_j \) and let \(\bar{\nu} \) be the image of \(\nu \) in \(M_j / M_{j-1} \). Then \(\bar{\nu} \) is also \(n \)-invariant. By the Killing form we identify \(\mathfrak{g} \) and \(\mathfrak{g}^* \). Then \(S(\mathfrak{g}) / S(\mathfrak{g})_n \) is isomorphic to \(C[\mathfrak{b}] \), the polynomial ring of \(\mathfrak{b} \). Hence we can regard \(\bar{\nu} \) as a \(V^*_\mu \)-valued function on \(\mathfrak{b} \), and we denote it \(\mathcal{V} \).

By the assumption, \(\nu \) has the form

\[\nu = f \otimes v_{-\mu} \mod U(\mathfrak{b}_-) \otimes_n V^*_\mu. \]

Hence \(j \geq \deg f \) and we have either

\[\begin{align*}
 (1.8) & \quad j > \deg f \quad \text{and} \quad \mathcal{V} | \bar{\nu} = 0 \\
 (1.9) & \quad j = \deg f \quad \text{and} \quad \mathcal{V}(h) = \bar{f}(h) v_{-\mu} \quad \text{for} \quad h \in \mathfrak{h}.
\end{align*} \]

Here \(\bar{f} \) is the homogeneous part of \(f \). Since \(N[\mathfrak{h}] \) is an open dense subset of \(\mathfrak{b} \), \(\mathcal{V} | \bar{\nu} = 0 \) implies \(\mathcal{V} = 0 \). Hence the first case (1.8) does not occur and we have (1.9).

Let \(S(\Delta^+) \) be the set of simple roots. For \(\alpha \in \Delta \), let \(x_{\alpha} \) be a root vector with root \(\alpha \). We normalize as \([x_{\alpha}, x_{-\alpha}] = h_\alpha \). We set

\[\begin{align*}
 x_+ &= \sum_{\alpha \in \Delta^+} x_{\alpha} \\
 x_- &= \sum_{\alpha \in \Delta^+} x_{-\alpha}.
\end{align*} \]

We take the element \(h_0 \in \mathfrak{h} \) such that \(h_0(\alpha) = 2 \) for \(\alpha \in \Delta^+ \). Then \(h_0 = \sum_{\alpha \in \Delta^+} h_\alpha \). Now, we can show easily \([h_0, x_\pm] = \mp 2x_\pm \), \([x_+, x_-] = h_0 \) and hence \(\langle h_0, x_+, x_- \rangle \) forms a Lie algebra isomorphic to \(sl_2 \). We have

\[e^{tx_+} h_0 = h_0 - 2tx_+. \]

Therefore, we obtain

\[\begin{align*}
 \mathcal{V}(ah_0 - 2x_+) &= \mathcal{V}(a e^{a^{-1}x_+} h_0) = e^{a^{-1}x_+} \mathcal{V}(ah_0) \\
 &= \bar{f}(ah_0) e^{a^{-1}x_+} v_{-\mu} \\
 &= \sum_{k \geq 0} \frac{(a^{-1})^k}{k!} \bar{f}(ah_0) x_+^k v_{-\mu}.
\end{align*} \]

The representation theory of \(sl_2 \) implies that \(x_+^k v_{-\mu} \neq 0 \) for \(0 \leq k \leq h_0(\mu) \) and \(x_+^k v_{-\mu} = 0 \) for \(k > h_0(\mu) \). Since \(\mathcal{V}(ah_0 - 2x_+) \) is a polynomial in \(a \), \(\bar{f}(ah_0) a^{-h_0(\mu)} \) is also a polynomial in \(a \). Moreover \(\bar{f}(h_0) \neq 0 \) because \(\bar{f} \) is a
Universal Verma Module

factor of $\prod h_a(x)$. This shows that

$$\deg f = \deg \frac{f}{\prod h_a(x)} = \sum_{a \in \Delta^+} h_a(x).$$

Hence f is $\prod (h_a + h_a(x) + 1, h_a(x))$ up to constant multiple. Q.E.D.

For a \mathfrak{g}-module V and a \mathfrak{h}-module F, we have a canonical isomorphism

$$U(\mathfrak{g}) \otimes_{U(\mathfrak{g})} (F \otimes V) \rightarrow V \otimes_F (U(\mathfrak{g}) \otimes U(\mathfrak{g})) \tag{1.10}$$

by $1 \otimes (f \otimes v) \rightarrow v \otimes (1 \otimes f)$ for $v \in V$, $f \in F$.

Similarly, we have

$$U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_{c+p} \otimes V_{\mu}^*) \rightarrow V_{\mu}^* \otimes_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes R_{c+p}) \tag{1.11}$$

Therefore, we have

$$\text{Hom}_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes R_c, U_R(\mathfrak{g}) \otimes (R_{c+p} \otimes V_{\mu}^*)) = \text{Hom}_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes R_c, V_{\mu}^* \otimes (U_R(\mathfrak{g}) \otimes R_{c+p}))$$

$$= \text{Hom}_{U_R(\mathfrak{g})} (V_{\mu} \otimes (U_R(\mathfrak{g}) \otimes R_c), U_R(\mathfrak{g}) \otimes R_{c+p})$$

$$= \text{Hom}_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes (R_c \otimes V_{\mu}), U_R(\mathfrak{g}) \otimes R_{c+p}).$$

We choose a lowest weight vector $v_{-\mu}$ of V_{μ}^* and a highest weight vector v_μ of V_{μ}, normalized by $\langle v_\mu, v_{-\mu} \rangle = 1$. We define $g: U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_{c+p} \otimes V_{\mu}^*) \rightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_c$ and $h: U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_{c+p} \rightarrow U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} (R_c \otimes V_{\mu})$ by $g(1 \otimes 1_{c+p} \otimes v_{-\mu}) = 1 \otimes 1_c$ and $h(1 \otimes 1_{c+p}) = 1 \otimes 1_c \otimes v_\mu$.

Theorem 1.9. Assume that

$$\varphi \in \text{Hom}_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes R_c, U_R(\mathfrak{g}) \otimes (R_{c+p} \otimes V_{\mu}^*))$$

and

$$\psi \in \text{Hom}_{U_R(\mathfrak{g})} (U_R(\mathfrak{g}) \otimes (R_c \otimes V_{\mu}), U_R(\mathfrak{g}) \otimes R_{c+p})$$

correspond by the isomorphism (1.12). Set $f = g \circ \varphi \in R$ and $f' = \psi \circ h \in R$. Then, we have

$$f' = \prod_{a \in \Delta^+} \frac{h_a + h_a(x) + 1, h_a(x)}{h_a + h_a(x) + \mu} f \tag{1.13}$$
Proof. For $\lambda \in \mathfrak{h}^*$, we shall denote by $\varphi(\lambda)$, $\psi(\lambda)$, $h(\lambda)$ and $g(\lambda)$ their specializations at λ. Identifying $V^*_\mu \otimes (U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{2+\mu})$ with $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (C_{2+\mu} \otimes V^*_\mu)$, etc., we have commutative diagrams

$$
U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_2 \xrightarrow{\varphi(\lambda)} V^*_\mu \otimes (U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_{2+\mu}) \xrightarrow{\psi(\lambda)} U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_2
$$

and

$$
U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_{2+\mu} \xrightarrow{h(\lambda)} V^*_\mu \otimes (U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_2) \xrightarrow{\psi(\lambda)} U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_{2+\mu}.
$$

Letting λ be a dominant integral weight and employing the homomorphism $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_2 \rightarrow V_2$, etc. we obtain

$$
V_2 \xrightarrow{\bar{\varphi}} V^*_\mu \otimes V_{2+\mu} \xrightarrow{\bar{g}} V_2
$$

(1.14)

and

$$
V_{2+\mu} \xrightarrow{h} V_2 \xrightarrow{\bar{h}} V^*_\mu \otimes V_{2+\mu}
$$

(1.15)

Here \bar{g} and \bar{h} are characterized by $g(u_{-\mu} \otimes v_{2+\mu}) = u_2$ and $h(v_{2+\mu}) = u_{\mu} \otimes v_2$. Moreover, $\bar{\varphi}$ and $\bar{\psi}$ are related by

$$(c \otimes \text{id}_{V_{2+\mu}})(w \otimes \bar{\varphi}(v)) = \bar{\psi}(w \otimes v) \quad \text{for } v \in V_2 \text{ and } w \in V_\mu,$$

where c is the contraction $V_\mu \otimes V^*_\mu \rightarrow \mathbb{C}$.

Now, $V_\mu \otimes V_2$ contains $V_{2+\mu}$ with multiplicity 1. Let us denote by p the projector form $V_\mu \otimes V_2$ onto $h(V_{2+\mu})$, and regard this as an endomorphism of $V_\mu \otimes V_2$. Then by (1.15), we have

$$\bar{h} \circ \bar{\psi} = f'(\lambda)p.$$

On the other hand, we have a commutative diagram
where $\iota: C \to V^*_\mu \otimes V_\mu$ is the canonical injection. Therefore we have

$$f(\lambda) \text{id}_{V_\lambda} = f'(\lambda) (c \otimes V_\lambda) \circ (V^*_\mu \otimes p) \circ (\iota \otimes V_\lambda).$$

Taking the trace, we have

$$f(\lambda) \dim V_\lambda = f'(\lambda) \text{tr}_{Y_\lambda} (c \otimes V_\lambda) \circ (V^*_\mu \otimes p) \circ (\iota \otimes V_\lambda).$$

In order to calculate the right-hand side, we shall take bases $\{w_j\}$ of V_λ, $\{u_k\}$ of V_μ and their dual bases $\{w^*_j\}$ and $\{u_k^*\}$. Then

$$\begin{align*}
(c \otimes V_\lambda) \circ (V^*_\mu \otimes p) \circ (\iota \otimes V_\lambda)(w_j) &= \sum_k (c \otimes V_\lambda) \circ (V^*_\mu \otimes p)(u_k^* \otimes u_k \otimes w_j) \\
&= \sum_k (c \otimes V_\lambda)(u_k^* \otimes p(u_k \otimes w_j)).
\end{align*}$$

Hence we obtain

$$\text{tr}_{Y_\lambda} (c \otimes V_\lambda) \circ (V^*_\mu \otimes p) \circ (\iota \otimes V_\lambda)$$

$$= \sum_{j,k} \langle w^*_j, (c \otimes V_\lambda)(u_k^* \otimes p(u_k \otimes w_j)) \rangle$$

$$= \sum_{j,k} \langle u_k^* \otimes w^*_j, p(u_k \otimes w_j) \rangle$$

$$= \text{tr}_{V^*_\mu \otimes V_\lambda} p = \dim V_{\lambda + \rho}.$$

By (1.16), we obtain

$$f(\lambda) \dim V_\lambda = f'(\lambda) \dim V_{\lambda + \rho}.$$

Then the assertion follows from Weyl’s dimension formula

$$\dim V_\lambda = \prod_{\alpha \in \Delta^+} \frac{h_n(\lambda + \rho)}{h_n(\rho)}.$$

Q.E.D.

Corollary 1.10. For a dominant integral weight μ, there exists a commutative diagram

$$\begin{aligned}
U_R(g) \otimes R_{e + \mu}^+ &\xrightarrow{f} U_R(g) \otimes (R_e \otimes V_\mu) \\
\psi \downarrow &\quad \Downarrow \psi \\
U_R(g) \otimes (R_e \otimes V_\mu) &\xrightarrow{f} U_R(g) \otimes R_{e + \mu}
\end{aligned}$$
where \(f = \prod_{a \in J^+} (h_a + h_a(\rho), h_a(\mu)) \) and \(h(1 \otimes 1_{c+\rho}) = 1 \otimes 1_c \otimes v_\mu \).

Remark 1.11. This corollary is also obtained either by a similar argument as the proof of Theorem 1.5 or directly from Theorem 1.7 by the following argument. First note that for any \(U_R(b) \)-module \(F \), we have

\[
R \operatorname{Hom}_{U_R(b)} (U_R(g) \otimes F, U_R(g)) = U_R(g) \otimes R \operatorname{Hom}_{U_R(b)} (F, U_R(b)).
\]

On the other hand, for a finite dimensional \(b \)-module \(V \)

\[
R \operatorname{Hom}_{U_R(b)} (R_c \otimes V, U_R(b)) = R_{-c-2\rho} \otimes V^* [-\dim b]
\]

where \(R_{-c-2\rho} \) is the \(U_R(b) \)-module \(R \) with weight \(-c-2\rho\). Hence the commutative diagram

\[
\begin{array}{ccc}
U_R(g) \otimes R_c & \longrightarrow & U_R(g) \otimes (R_c + \rho \otimes V^*_\rho) \\
\downarrow f' & & \downarrow \\
U_R(g) \otimes R_c & \longrightarrow & U_R(g) \otimes V^*_\rho
\end{array}
\]

with \(f' = \prod_a (h_a + h_a(\rho) + 1, h_a(\mu)) \) gives

\[
U_R(g) \otimes R_{-c-2\rho} \leftarrow U_R(g) \otimes (R_{-c-\rho-2\rho} \otimes V^*_\rho) \leftarrow U_R(g) \otimes R_{-c-2\rho}.
\]

Now, the isomorphism \(h \mapsto -h - h(2\rho + \mu) \) gives Corollary 1.10.

§ 2. The \(b \)-functions of \(B_- \times B \)-semi-invariants

For a dominant integral weight \(\lambda \), let \(V_\lambda \) be an irreducible representation of \(g \) with highest weight \(\lambda \). Let \(v_\lambda \) be a highest weight vector of \(V_\lambda \) and \(v_{-\lambda} \) the lowest weight vector of \(V_\lambda^* \), normalized by \(\langle v_\lambda, v_{-\lambda} \rangle = 1 \).

Let \(f^\lambda \) be the regular function on \(G \) defined by

\[
f^\lambda(g) = \langle g v_\lambda, v_{-\lambda} \rangle.
\]

Then \(f^\lambda \) is \(B_- \times B \)-semi-invariant such that

\[
f^\lambda(b'gb) = x_{-\lambda}^-(b')x_{\lambda}^+(b)f^\lambda(g) \quad \text{for } g \in G, b' \in B_- \text{ and } b \in B,
\]

\[
(2.1) \quad f^\lambda(g) = \langle g v_\lambda, v_{-\lambda} \rangle.
\]

Then \(f^\lambda \) is \(B_- \times B \)-semi-invariant such that

\[
f^\lambda(b'gb) = x_{-\lambda}^-(b')x_{\lambda}^+(b)f^\lambda(g) \quad \text{for } g \in G, b' \in B_- \text{ and } b \in B,
\]

\[
(2.2) \quad f^\lambda(b'gb) = x_{-\lambda}^-(b')x_{\lambda}^+(b)f^\lambda(g)
\]

for \(g \in G, b' \in B_- \) and \(b \in B \),
where $\chi_i^±$ is the character of B and B_- such that

$$\chi_i^±(e^h) = e^{\pm(h)} \quad \text{for } h \in \mathfrak{h}.$$

Moreover we have

$$(2.3) \quad f^i(e) = 1.$$

Note that any $B_- \times B$-semi-invariant with character $\chi_i^± \otimes \chi_i^±$ is a constant multiple of f^i and any $B_- \times B$-semi-invariant has a character $\chi_i^± \otimes \chi_i^λ$ for some $λ \in P^+$. This follows from the well-known formula

$$\mathcal{G}(G) = \bigoplus_{λ \in P^+} V_λ^* \otimes V_λ.$$

In particular, we have

$$(2.4) \quad f^{i+2}(g) = f^i(g)f^i(g).$$

Theorem 2.1. For any dominant integral weight $μ$, there exists a differential operator $P_μ$ such that

$$(2.5) \quad P_μ f^{i+μ} = b_μ(λ)f^λ \quad \text{for any } λ.$$

Here $b_μ(λ) = \prod_{α \in \Delta^+} (h_α(λ + μ), h_α(μ)).$

Proof. Let us denote by \mathcal{D} the sheaf of differential operators on G. Then the right-action of G on itself gives a homomorphism $R: U(\mathfrak{g}) \to \mathcal{D}(G)$. In particular, $R(U(\mathfrak{g}))$ is the set of left invariant differential operators on G.

By Corollary 1.10, there exists an n-invariant element P of $V_μ^* \otimes (U_λ(\mathfrak{g}) \otimes U_λ(\mathfrak{g}) R_{i+μ})$ with weight c, whose coefficient of $v_λ$ is $\prod_{α \in \Delta^+} (c(h_α) + h_α(μ), h_α(μ))$. Hence P is written in the following form

$$P = \sum_{j=0}^{N} v_j \otimes P_j \otimes 1_{i+μ}$$

where

$$(2.6) \quad v_0 = v_{-μ}, \quad P_0 = \prod_{α \in \Delta^+} (h_α + h_α(μ - μ), h_α(μ))$$

and

$$(2.7) \quad v_j \in \mathfrak{n} V_μ^*, \quad P_j \in U(\mathfrak{b}_-) \mathfrak{n}_- \quad \text{for } j \geq 1.$$

We shall define the differential operator $P_μ$ on G by

$$(2.8) \quad (P_μu)(g) = \sum_j \langle v_j, gu_j \rangle (R(P_j)u)(g).$$
Lemma 2.2. For any $y \in \mathfrak{n}$, we have
\[[R(y), P_{\mu}] \in \mathcal{D}(G)R(\mathfrak{n}). \]

Proof. We have $[R(y), \langle v_{\mu}, gv_j \rangle] = \langle v_{\mu}, gvy_j \rangle$. Hence we have
\[
([R(y), P_{\mu}]u)(g) = \sum_j \langle g^{-1}v_{\mu}, yv_j \rangle (R(P_j)u)(g) \\
+ \sum_j \langle g^{-1}v_{\mu}, v_j \rangle (R([y, P_j])u)(g).
\]

Since $\sum_j v_j \otimes P_j \otimes 1_{e+\rho}$ is \mathfrak{n}-invariant, we have
\[
\sum_j yv_j \otimes P_j \otimes 1_{e+\rho} + \sum_j v_j \otimes [y, P_j] \otimes 1_{e+\rho} = 0
\]
in
\[
V_{\mu}^* \otimes U_R(\mathfrak{g}) \otimes_{U_R(\mathfrak{g})} R_{e+\rho} = V_{\mu}^* \otimes (U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{n}).
\]

Therefore we can write, as the identity in $V_{\mu}^* \otimes U(\mathfrak{g})$,
\[
\sum_j yv_j \otimes P_j + \sum v_j \otimes [y, P_j] = \sum w_k \otimes S_k
\]
with $w_k \in V_{\mu}^*$ and $S_k \in U(\mathfrak{g})\mathfrak{n}$. This shows
\[
([R(y), P_{\mu}]u)(g) = \sum_k \langle g^{-1}v_{\mu}, w_k \rangle (R(S_k)u)(g).
\]

Since $R(S_k) \in \mathcal{D}(G)R(\mathfrak{n})$, we have the desired result. Q.E.D.

By this lemma, we have for $y \in \mathfrak{n}$
\[
R(y)P_{\mu} f^{2+\rho} = [R(y), P_{\mu}] f^{2+\rho} + P_{\mu} R(y) f^{2+\rho} = 0
\]
because $f^{2+\rho}$ is right invariant by N. Therefore $P_{\mu} f^{2+\rho}$ is also right N-invariant. Since $B_- N$ is an open dense subset of G, it is sufficient to show (2.5) on B_-. Now for $g \in B_-$, we have
\[
(P_{\mu} f^{2+\rho})(g) = \sum_j \langle v_{\mu}, gv_j \rangle (R(P_j) f^{2+\rho})(g).
\]

Note that all P_j belongs to $U(b_-)$ and $P_j \in U(b_-)\mathfrak{n}_-$ for $j \neq 0$. Since $f^{2+\rho}(n_- h) = f^{2+\rho}(hn_-) = h^{2+\rho}$ for $h \in T$ and $n_- \in N_-$, $f^{2+\rho}|_{\mathfrak{n}_-}$ is right N_--invariant. This shows $R(P_j) f^{2+\rho}|_{B_-} = 0$ for $j \neq 0$. It is easy to see for $g \in B_-$
\[
R(P_0) f^{2+\rho}(g) = \prod_{\alpha} (h_\alpha(\lambda + \mu) + h_\alpha(\rho - \mu), h_\alpha(\mu)) f^{2+\rho} \\
= b_\rho(\lambda) f^{2+\rho}
\]
and \(\langle v_\mu, g v_0 \rangle = 1/r \).

This completes the proof of Theorem 2.1.

Remark 2.3. We can show \(b_\mu(\lambda) \) in Theorem 2.1 is the best possible one. This follows from the similar argument as Proposition 1.8, or we can use the result in [3]. In fact if \(w_0 \) is the longest element of \(W \), then \(T_{H - w_0 b}^b G \) is a good Lagrangian variety in the sense in [3], which is equivalent to saying that \(n \) is a prehomogeneous vector space over \(\mathbb{B} \). Hence we can show the degree of the local \(b \)-function is \(\sum_{a \in \mathcal{A}} h_a(\mu) \).

Bibliography

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606, Japan