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ABSTRACT. The crystal base is introduced by the investigation of the quan-
tized universal enveloping algebra at ¢ = 0. It carries a combinatorial
structure, which permits us a combinatorial study of representations. We
explain here this notion and its properties.
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0. Introduction

The notion of quantized universal enveloping algebra was introduced by Drin-
feld [23] and Jimbo [24] around 1985 in order to explain trigonometric R-
matrices in 2-dimensional solvable models in statistical mechanics. Since then,
the quantized universal enveloping algebra has been one of the important tools
to describe new symmetries in Mathematical Physics and other fields.

The quantized universal enveloping algebra U,(g) contains a parameter g,
which is a parameter of temperature in the 2-dimensional solvable model, and
q = 0 corresponds to the absolute temperature zero. This work on crystal bases
was motivated by the belief that the phenomena must be simple at the absolute
temperature zero. In fact, as we shall explain in this talk, the representations of
U,(g) have good bases at ¢ = 0, which we call crystal bases.

The crystal bases have good properties, such as uniqueness, stability by ten-
sor product, etc. Moreover the Uy(g)-module structure induces a combinatorial
structure on the crystal bases, called crystal graph. This permits us to reduce
many problems in the representation theory to problems of the combinatorics.
For example, the Littlewood-Richardson rule, describing the decomposition of
the tensor product of two representations of gl,, into irreducible components,
may be clearly explained by the use of crystal bases.

Crystal base is a base at ¢ = 0 but we can extend this base to the whole ¢-
space to obtain a true base of the representation, which we call global base (see
§12). Independently, G.Lusztig introduced the notion of canonical base inspired
by the work of Ringel to describe U, (g) by quivers (see [27]). It is shown that
canonical base and global base coincide (I.Grojnowski and G.Lusztig [25]).

In this talk, we shall explain the notion of crystal bases and its application to
the representation theory.

§1-4 treat the general theory of crystal bases. In §1 and §2, we review the
quantized universal enveloping algebra and its representation theory. In §3, we
introduce the notion of local base, which is a “base at ¢ = 0”. In §4, we define
the crystal base and give its fundamental properties.

In the sections 5, 6 and 10, we give a concrete description of crystal graphs, by
Young tableaux for the gl,,-case in §5, by sequences of the crystal bases of a
finite-dimensional representation for the affine case in §6, and by paths in the
weight vector space for the general case in §10.

In §7, we introduce the notion of crystal, by abstracting the combinatorial aspects
of crystal bases. With this tool in hand, we shall give another way of describing
crystal bases in §8. In §8, we also introduce the crystal base of U~ (g), the half of
U,(g). In §9, we introduce the crystal base of U,(g), the algebra obtained from
U,(g) by replacing its Cartan part with the space of projectors onto the weight
spaces. In §12, we extend the crystal base to the whole g-space to obtain the
true base of the representation space.
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1. Representations of U,(sl2)
1.1. Definition. Let us begin with the sly case. We fix a field K (with an
arbitrary characteristic) and ¢ € K. We assume

(1.1) g # 0 and ¢™ # 1 for any integer n > 1.

DEFINITION 1.1. Uy(sl) is the K -algebra generated by the symbols e, f t and
the inverse t~' of t with the defining relations:

tet7! = qze,
tft7l = ¢ %f and
[e.f] = (t—t")/(@—a).
When we set t = ¢" and ¢ tends to 1, this becomes the universal enveloping

algebra U (slz) of sly, which is the algebra generated by the three elements e, f, h
with the defining relations

[h,e] = 2e,
h,f] = —2f and
e, ] = h.

1.2. Hopf algebra structure. For two left U,(sly)-modules M; and Mo,
M, ® k M, has also a structure of U, (sl,)-module by the following action:

tur @ ua) = tur Q tus,
e(ur ®ua) = eus @t Tug 4+ ur ® eus,
flur @ua) = fui @ua +tur @ fus.

This can be explained also by the coproduct A. Let us endow the ring structure
on U, (sly) ®k Uy(slz) by (a @ b)(a' @ b') = aa’ @ bb'. Then

At = t®t,
Ae = et l+1®e,
Af = fe14+tef

extends to a ring homomorphism

A : Uy(sly) = Uy(sly) @k Uy(sly).
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Since M1 ® M> has a structure of left U, (sl2) @ x U, (sl2)-module, this has also a
structure of Uy (sl2)-module via A. This U,(sl>)-module structure coincides with
the one defined earlier.

For three U,(sly)-modules M, M> and M3, the K-linear isomorphism

(M1 ® M2) ® M3 — M @ (My ® Ms)

given by (u1 ® u2) ® ug — u1 ® (u2 ® ug) is a Uy(sly)-linear isomorphism. This
fact is equivalent to the commutativity of the diagram:

Uq(ﬁ[z) ® Uq(ﬁ[z)

A \1{®A
Uq(ﬁ[z) ) Uq(5[2) ® Uq(5[2) ® Uq(ﬁlz) .
A AR1L

Uq(ﬁ[z) ® Uq(5[2)

This property is refereed to the coassociativity of A.

REMARK 1.1. The coproduct is not cocommutative. That is, the homomor-
phism M; ® Ms — M> ® M; given by u; ® us — uz ® ug is not U, (slz)-linear.
However, for finite-dimensional representations, there is a non-trivial Uy(sls)-
linear isomorphism M; @ M= M, ® M;, called R-matrix, and it satisfies the
Yang-Baxter equation. This is the motivation for Drinfeld and Jimbo introduc-
ing the quantized universal enveloping algebras. However, we don’t go in this
direction.

REMARK 1.2. There are several ways of defining coproducts. They are trans-
formed by exchanging the first and the second factors, or automorphisms of the
algebra. We used this coproduct in order that the crystal base is stable by the
tensor product.

1.3. Useful formulas. In the explicit calculations, we need formulas on g-
integers, etc. We shall give some of those formulas.

EXAMPLE 1.1. Let z,y be elements (of some algebra over K) satisfying the
commutation relation:

Ty = ¢*yz.
Then we have the following g-analogue of the binomial formula

(1.2) (z+y)" = Z g9 [n]x’yj

L ?
1+j=n

> o [G]wet
1

i+j=n
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Here we use the notations:

(1.3) [n] = % forn € Z,
[n]! = H[z]' forn >0,
i=1
ny [n]! .
[z] = W for0<i<nm.

We understand [0]! = 1. They are called g-integer, g-factorial, g-binomial coeffi-
cient, respectively.

ExAMPLE 1.2. In U,(sl;), we have

e pm) = 5 pmk) o(n) {q’”"t} '

k
0<k<n,m

Here e(™ = e"/[n]!, £ = f/[n],

T zHqg tz}--{¢tFx
{k} _ {=Hq %k]! {g""a}

{z} = (@-27"/(g—q").

Hence{q,:}: [#] for 0 <k <mn.

EXAMPLE 1.3. For m,m',n,n' € Z, we have

m-n

(m]fm] — ][] = m — ] [

mm' —nn' ]

ifm—n==x(m'—n').

1.4. 1-dimensional representations. Let V' = Ku be a 1-dimensional left
U,(sl2)-module. Then we can write tu = cu for ¢ € K\{0}. Then tv = cv for
any v € V. Hence ceu = teu. Since te = g’et, we have teu = g’etu = cq’eu.
Thus we obtain c(g?> — 1)eu = 0. Since we assumed ¢ # 1, eu = 0. Similarly
fu=20. Then

t—tt c—ct

0=le, flu= u = U
e, f] g—q¢'  qg-—q!

implies ¢2 = 1. Hence ¢ = 1 or —1. In fact we have two kinds of 1-dimensional
representations K = K -1witht-1=1,e-1=f-1=0,and V_ = K -1_ with
t-1_=-1_,e-1_= f-1_=0. If K is of characteristic 2, K =2 V_.
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1.5. Finite-dimensional representations. For an integer [ > 0, we can
construct an (I + 1)-dimensional representation V (1) as follows. The vector space
V(1) has a base {Ug)}ogkgl with the action of Uy(sly) given by

tug) — ql—2kul(cl),

eu,(cl) =[l-k+ l]ugll,
fu? = T+ 1u).
Here we understand ug) = 0 unless 0 < k < I. We can easily check that this
gives a U, (sl2)-module structure on V (I). For example, let us check [e, f] = {t}.
We have efug) =[—-K]k+ l]ug) , feug) =[l-k+ 1][k]u§cl) and hence, by
applying Example 1.3, we obtain [e, flul’ = ([l = k][k + 1] — [l — k + 1][K])ul’ =
[l —2k]ul) = {t}ulV),
The bases {ug)} are chosen so that we have
u = Py
e(l*k)ul(l).
We visualize this as
u® S u® S ulh.

Arrows indicate that f (resp. €) sends the vector at the source (resp. the target)
of the arrow to the vector at the target (resp. the source), up to constant multiple.
The following theorem is well-known.

THEOREM 1.1.

(1.4)  Any finite-dimensional U, (sl2)-module is completely reducible.
(1.5)  Any irreducible (I + 1)-dimensional U, (sl2)-module is isomorphic to
VI or VI)QV_=V_ V().
REMARK 1.3. The eigenvalues of ¢ on V(I) have the form ¢* while the ones
on V(I) ® V_ have the form —g*.
By this theorem and the remark above, we have the following result.
COROLLARY 1.1. Let M be a finite-dimensional Uy(sla)-module. Then the
following two conditions are equivalent.
(1.6) M = QrezMy  where My, = {u € M;tu = qku}.
(1.7) M s isomorphic to a direct sum of V(1) ’s.

For such a module M, we define its character ch(M) by

ch(M)(z) = dim Myz* € Z[z,27"].
keZ
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Then ch(V (1)) = (2! —27!71)/(z —z7') and {chV (!)};> is linearly indepen-
dent. If M = @V(l;), then ch(M) = Sch(V(l;)), and hence {I;} is uniquely
determined by the character of M. Comparing the characters, we have the fol-
lowing g-analogue of the Clebsch-Gordan rule:

(1.8) V()@ V() = @ V (k).
|l —l2|<k<li1+l2
l1+l2=kmod2

2. Quantized universal enveloping algebras

2.1. Definition. In the previous section, we defined U,(sl2). In this section,
we shall define U,(g) for Lie algebras g other than sly. We can in fact define
U,(g) for an arbitrary symmetrizable Kac-Moody Lie algebra g.

Assume that we are given the following data.

P : a free Z-module (called a weight lattice)

I : an index set (for simple roots)

a; € P for i € I (called a simple root)

h; € P* = Homy(P,Z) (called a simple coroot)
(+,+): P x P — Q a bilinear symmetric form.

We shall denote by (-, -} : P* x P — Z the canonical pairing.
The data above are assumed to satisfy the following axioms.

(2.1) (o, ;) € 2Zs¢ foriel (cf. Def.2.1(iv)).
2 iy .

(2.2) (hiy A) = (gj’ 0:; forieITand e P.

(2.3) (aj,a;) <0 fori,j € I withi # j.

In particular, (o, a;) is a non-positive integer for i # j.
Now as in §1, let K be a field and ¢ € K a non-zero element with (1.1).

DEFINITION 2.1. The quantized universal enveloping algebra Uy(g) is the al-
gebra over K generated by the symbols e;, f; (i € I) and q(h) (h € P*) with the
following defining relations.

(i) ¢(h) =1 for h=0.
(11) q(hl)q(hQ) = q(hl + hg) fOT hl,hg € P*.

(iii) For any i € I and h € P*,

g(h)esg(h)™ = ¢™e; and
a(h) fiq(h)™r = g e g

;—t7t .. o ;.0
(iv) [es, f5] = 51‘]’% fori,j € I. Hereq; = ¢(®*)/2 gnd t; = q(%h,)
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(v) (Serre relation) For i # j,

b b
S (Dtelee™ =3 Vs =o0.

k=0 k=0
Here b =1— (h;, ;) and

e = ek k), R = fER
k= (&} ="/ (@—a"), [kl:!=] [k

REMARK 2.1. As is easily seen, we have

tiejt;t = ¢@%)e; and
tzf‘]t;]- = q_(aivaj)fj‘

Note that we have g(®H2i) = qghi’aj).
Setting g(h) = ¢" and letting ¢ tend to 1, U,(g) becomes the universal en-
veloping algebra U(g) of the corresponding Kac-Moody Lie algebra g generated

by the abelian subalgebra K ®z P* and {e;, f;;i € I'} with the defining relations

[h, ez-] = (h, ai)ei
[h,fi] = —(h,a;)f;i for h € K ® P* and
e, fi] = dijhi

ad(e;)! ~hidide; = ad(f;)l Mol f =0,

The subalgebra of Uy(g) generated by {g(h);h € P*} is isomorphic to the
group algebra K[P*]. Let us denote by U (g) (resp. U, (g)) the subalgebra
generated by the e;’s (resp. the f;’s). Then we have an isomorphism of K-vector
spaces

Uy(e) < Uy (9) @ K[P*] @ U, (9)
by a ® g(h) ® b+ aq(h)b for a € U (g),b € U, (g),h € P*.

In the sequel, we assume for the sake of simplicity

(2.4) {ai}ier and {h;}ier are linearly independent.

However almost all statements in this paper still hold without this assumption.

2.2. The Hopf algebra structure. As in the case of U,(slz),U,(g) has a
Hopf algebra structure. We define the coproduct as the ring homomorphism

A:Uy(g) = Uy(e) ® Uy()
by
Aq(h) q(h) ® q(h),
Ae; et  +1®e;,
Af, = fi®1+ti®f,'.
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We can easily see that A is well-defined. By A, we can define the Uy(g)-module
structure on the tensor product of two U,(g)-modules. This coproduct is coas-
sociative. Hence the category of U,(g)-modules is a tensor category (see §7.1).
See Remark 1.2.

2.3. Integrable modules. Let us denote by U,(g); the subalgebra of U,(g)
generated by e;, f;,t; and t; *. Then U,(g); is isomorphic to Uy, (sl>). Hence we
can say that U,(g) is made up of several quantized sls.

DEFINITION 2.2. A left Uy(g)-module M is called integrable if it satisfies
(25) M= @ My where My ={u € M;q(h)u = ¢""Nu for any h € P*}.
AEP

(2.6) For any i€ I, M is a union of finite-dimensional U,(g);-submodules.

Any U,(g)-module M satisfying only (2.6) has a canonical decomposition

M=oMXQVX
X

provided that {\ € P;{h;, A\) = 0 for every i € I} = 0. Here {VX} is the set of
1-dimensional U, (g)-modules, and MX are integrable U, (g)-modules. Therefore,
we shall treat only integrable modules in the sequel.

REMARK 2.2. Similar arguments to the sly-case show that the one dimen-
sional representations of U, (g) are parameterized by the characters x : P* — K*
such that x((a;,a;)h;) = 1. The corresponding module VX = K1, is given by :

ei]-x = fi]-x =0, q(h)lx = X(h)lx

2.4. Representations of U,(g). In general, an integrable U, (g)-module is
not completely reducible. However, as in the Kac-Moody Lie algebra case, there
exists a family of completely reducible modules.

DEFINITION 2.3. Let O;nt(g) denote the category of integrable U, (g)-modules
M such that

(2.7 For any u € M, there exists 1 > 1

such that e;, ---e;,u =0 for any i1.--- 4 € I.
The condition (2.7) is (under the condition (2.4)) equivalent to
(2.8) dim U (g)u < oo for any u € M .
Let us set

(2.9) P, = {\ € P;< hj; A > >0 for any i}
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and we call an element of Py a dominant integral weight. For A € Py, let us
denote by V(A) the U;(g)-module generated by uy with the defining relation:

q(h)u,\ — q<h,A>u

eiuy =0,

1+<h;,A> —
fi uy = 0.

A

THEOREM 2.1 (G.LUSZTIG[26]). Assume that K is of characteristic 0. Let
A€ Py
(1) VIOx={ueV(A);eu=0 for any i} = Kuy #0.
(i) V(X) is an irreducible integrable Uy (g)-module in Oini(g) -
(ili) Any Uy(g)-module in Oin(g) is completely reducible.
(iv) Any irreducible U,(g)-module in O;,.(g) is isomorphic to V(X) for some
Ae Py

We conjecture that this theorem is true for an arbitrary characteristic (under
the condition (1.1), cf. Problem 2 in the last section). I think that this is known
for finite-dimensional g.

2.5. Motivation. Let M be an integrable U,(g)-module. We shall ask if M
has a good base in the following sense. For any 7, M is completely reducible as a
U,(g)i-module and there exists a (not necessarily unique) U,(g);-linear isomor-
phism

(2.10) M=aV(i).

Here V'(I;) is the (1 + [;)-dimensional irreducible U,(g);-module given in §1.5.
Each V(l;) has a base {Uilj)}ogkglj-

Question Is there a base B of the K-vector space M (independent of i)
such that for any i, there exists a U,(g)s-linear isomorphism M ~ & V(l;) by
j

which B is sent to the base {ug")} of ®V(l;)?
i

Of course, it is not true even at the classical limit ¢ = 1 (i.e. for a U(g)-
module). However we shall see that it is true at ¢ = 0.

3. Local bases

3.1. Definition. In order to give a precise meaning to the question above at
q = 0, we shall introduce the notion of local base.

Let us take a field k¥ and let K = k(q) be the field of rational functions in
a variable ¢ with coefficients in k. Let V be a K-vector space. For a subring
C of K, a C-lattice of V is, by definition, a C-submodule L of V such that
V =2 K ®¢ L (or equivalently, V is generated by L as a K-vector space provided
that K is a quotient field of C).
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Let us denote by A the subring of K consisting of rational functions f(q) in
K without a pole at ¢ = 0.
Hence by the evaluation map f(g) — f(0), we have an isomorphism

A/gA S k.

DEFINITION 3.1. Let V' be a K-vector space. A local base of V at ¢ =0 is a
pair (L, B) where

(3.1) L is an A-lattice of V' that is a free A-module.
B is a base of the k-vector space L/qL.

Similarly to a local base at ¢ = 0, we can define a notion of a local base at any
point of P! = Spec(k[g]) U Spec(k[g~!]). Since we use only local bases at ¢ = 0
in this paper, we simply say local base instead of saying local base at ¢ = 0.

ExaMPLE 3.1. To a base B of the K-vector space V', we can associate a local
base (L, B), where L is the A-module generated by B, and we identify B with
the image of B by L — L/qL. We call it the local base associated with B. Note
that any local base is associated with some base of the K-vector space V.

Let B and B’ be bases of the K-vector space V. Let us write b = >, c g/ forr (q)’
and b' = 3, 5 gvs(q)b. Then the local bases associated with B and B’ are equal
if and only if there exists a bijection ¢ : B — B’ satisfying the following equiva-
lent two conditions.

(i) forr(q) € A and fipr (0) = S(s),0r
(ii) gors(q) € A and gpp(0) = Sy (p),p -

Hence we may regard a local base as an equivalence class of bases with respect
to the equivalence relation above.

3.2. Direct sums and tensor products. Let {V;} be a family of K-vector
spaces and let (L;,B;) be a local base of V;. Then L = &;L; C ®;V; is a
free A-lattice of ®;V; and B = | |; B; C ®(L;/qL;) = L/qL is a base of L/qL.
Hence (L, B) is a local base of @;V;. We call it the direct sum of {(L;, B;)};
and denote it by @®;(L;, B;).

Let V1 and V3 be two K-vector spaces and (Lj, B;) alocal base of V; (j = 1,2).
Then L = L1 ®4 Ly C V4 Qi V3 is a free A-lattice of Vi ® ¢ Vo and

B=B1®32 = {b1®b2;b1€B1,b2€B2}
C (Ll/qu) Rk (Lg/ng) = L/qL

is a base of L/qL. Hence (L, B) is a local base of V; ® x Va. We call it the tensor
product of (L1, B;) and (Lo, B2) and denote it by (L1, B1) ® (La, B2).
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4. Crystal bases

4.1. Definition. In the sequel, we fix a field k of characteristic 0 (in order
to have Theorem 2.1), and set K = k(g). Hence, in our consideration, U,(g) is
a K-algebra.

Let us define crystal base as a solution to the question in §2.5 at ¢ = 0. Let

us take an integrable U,(g)-module M and let M = @ M) be its weight space
AeP

decomposition.

DEFINITION 4.1. A crystal base of M is a local base (L, B) of the K-vector
space M satisfying the following conditions.

(4.1) There is a local base (Ly, By) of My such that

L,B)= & (Lx,B)).
(LB) = & (L By)
(4.2) For any i € I, there exists a Uy(g);-linear isomorphism
§£: M= oV(y)
j

by which (L, B) is sent to the local base {ugj)}gskgj of @V ().
j

4.2. Crystal graph. A crystal base carries a combinatorial structure in-
duced by the U,(g)-module structure.

Let (L, B) be a crystal base of an integrable U,(g)-module M. Let us take
i € I. Then there is an isomorphism & as in (4.2). For b € B, £(b) = u,(gl") for
some jand 0 < k < 1. If 0 < k < U, let fib be the element of B such that
£(fib) = ul?). We set fib=0if k = I;. Similarly, for 0 < k < I, let &b be the
element of B such that £(é;b) = ugi)l. We set é;b =0 if K = 0. Thus we obtain
amap f; : B— BU{0} and & : B — B LU {0}. We can easily see that this
definition does not depend on the choice of £ : M 5 @V (I;).

For i € I we shall join b, b’ € B by an arrow named by i if b’ = f;b (< b = &').

by p

Thus we obtain a colored (by I) oriented graph whose set of vertices is B. We
shall call it the crystal graph. Note that é; and f, are recovered by this graph
structure. ) )

We call an i-string a subset of B corresponding to u(()lj N ul(jj) by
&: M 5 @V (l;). Hence an i-string is a connected component of the graph only
with the ¢-arrows. Therefore B is the disjoint union of i-strings. Hence the crystal
graph has a simple structure if we consider only i-arrows. However combining
all the i-arrows, the crystal graph has a rich structure (see Example 5.5).

For b € B, let us set

gi(b) = max{n > 0;e}'b # 0},
wi(b) = max{n > 0; b # 0}.
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These numbers are visualized as follows:

£i(b) wi(b)

For b € By (A € P), we set wt(b) = A and call it the weight of b.
If £(b) = ul'?), then ;(b) = k, ¥;(b) = — k and (h;, wt(b)) = | — 2k. Hence we
have the following properties.

(4.3) (hi, wt(b)) = ¢i(b) — £i(b).
(4.4) ;i (b) + £;(b) is the length of the i-string containing b.

REMARK 4.1. Although e; and f; commute if ¢ # j, € and f] do not commute
in general (when (a;, ;) = 0, they commute).

4.3. Elementary Properties of Crystal bases. The following proposition
is obvious from the definition.

PROPOSITION 4.1. Let {M;} be a family of integrable Uy(g)-modules and let
(Lj, Bj) be a crystal base of M;. Then &(L;,B;) is a crystal base of ® M;.

One of the most remarkable properties of crystal base is the following stability
by tensor product.

THEOREM 4.1 ([1]). Let M, be an integrable Uy(g)-module and (Lj, B;) a
crystal base of M; (j = 1,2).
(i) (L1, B1) ® (L2, B2) is a crystal base of M1 ®x M>.
(ii) Forb; € B; (j =1,2) and i € I we have

. N Jebi®by if pi(by) > ei(be)
Gilh®b) = {bl ® &by if pi(b) < £i(bs),
Fib @by = {fibl @ibz Z:f @i(b1) > €i(b2)

by ® fibz if pi(b1) < €i(b2).

We can easily reduce this theorem to the U,(sl2)-case, and then to the case
M; =V(l;) and My =V (l5). In this case, we can check the theorem by a direct
calculation. The last property (ii) can be visualized as follows.

32\31

o
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The rules in (ii) imply
(4.5) gi(b1 ®b2) = max(g;(b1), i(b2) — (hi, wt(b1))) ,
pi(hi ®@bs) = max (pi(br) + (hi, wt(b2)) , @i(ba)) -

4.4. Crystal bases in O;,;. For A € P, let V()) be the irreducible highest
weight U, (g)-module with highest weight vector uy of weight A (see §2.4). Then
we can show the following existence theorem.

THEOREM 4.2 ([3]). (i) V(N) has a unique crystal base (L(X), B(\)) such
that (L(A)x, B(A)a) = {ur}.
() BO) = {f@ - fPur : 1> 0,ir,... ,i € I, a1,... . > O}\{0}.

The proof of this theorem is rather involved. It is proved in fact simultaneously
with Theorem 8.1 by the induction on the weight. Theorem 4.1 plays a key role
in the course of the proof.

The following theorem guarantees a uniqueness of crystal base up to an iso-
morphism.

THEOREM 4.3 ([3]). Let M be a U,(g)-module in O;ni(g), and let (L, B) be a
crystal base of M. Then there exists a Uy(g)-linear isomorphism

M = oV(};)
j
by which (L, B) is isomorphic to ©(L(A;), B(A;)).
J

4.5. Irreducible decomposition. Let us investigate some consequences of
the theorems in the previous section.

First remark that B(A) is connected for A € P;. It means that the crystal
graph is connected by forgetting colors and the directions of arrows. In fact,
Theorem 4.2 (ii) shows that every element of B() is connected with uy. Hence
if (L,B) = @&(L(\;),B();)), then B = LB();) is the connected component
decomposition of B.

We shall say that an element b of a crystal base B is a highest weight vector
if é;b = 0 for any i. The property (ii) of Theorem 4.2 shows that B(\) has a
unique highest weight vector uy. Thus we have schematically

The decomposition of M into irreducible components

0

(4.6) The decomposition of B into connected components

0

The highest weight vectors of B.

As an example, let us consider the decomposition of V(A\) ® V() into irre-
ducible components.
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We remark that the following lemma follows from (4.5).

LEMMA 4.1. Let b; be an element of a crystal base B; (j = 1,2). Then
€i(b1 ® ba) =0 if and only if &by =0 and g;(b2) < vi(b1).

Now, let us investigate the condition for b ® b' to be a highest weight vector
for b € B(A) and V' € B(p). If b® b’ is a highest weight vector, then b is a
highest weight vector by the lemma above, and hence b = uy. The property
(4.3) implies @;(uy) = ;(un) + (h;, wt(uy)) = (hs, ). Hence b ® ' is a highest
weight vector of B(A) ® B(u) if and only if b = uy and ;(b') < (h;, A). Since
wt(b®b') = A + wt(b'), we obtain the following result.

PROPOSITION 4.2. For A\, u € Py,
VIA) @ V(p) =2 e V(A+ wt(d)).

Here the direct sum ranges over b € B(u) such that €;(b) < (h;, A) for every
1el.

Therefore if we know the crystal graph of B(u), we can calculate the decom-
position of V() ® V(u) into irreducible components.

4.6. Restriction to subalgebras. By crystal bases, we can also describe
the irreducible decomposition of V' (\) regarded as a representation of a subalge-
bra of Uy(g).

Let J be a subset of I. Let U,(g;) be the quantized universal enveloping
algebra associated with the data { P, {a;}ics, {hi}ics }. Then Uy(gy) is the sub-
algebra of U,(g) generated by {e;, fi;i € J} and {q(h); h € P*}. A crystal base
of an integrable U, (g)-module may be regarded as a crystal base of the associated
Uqg(gy)-module M. Let P{ denote the set {\ € P;(h;,A) > 0 for any i € J} of
integral dominant weights with respect to g;, and for any A € P_ﬁ let us denote
by V;(A) the irreducible integrable U,(g;)-module with highest weight A. Then
(4.6) implies the following result.

PROPOSITION 4.3. For A € Py, we have a Uy(gy)-linear isomorphism
V(A = aV(wt(d)) .

Here the direct sum ranges over b € B(X) such that £;(b) =0 for any i € J.

REMARK 4.2. The above proposition and Proposition 4.2 still hold at the
classical limit ¢ = 0 (i.e. for g-modules).
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5. Young tableaux and crystal bases

5.1. U,(gl,,). As seen in the preceding section, if we know the crystal graph
of B(\), we can for example compute the decomposition of the tensor product
into irreducible components. Of course, this program is not performed before we
know the crystal graph. In the case of gl,,, we can describe the crystal graphs
explicitly by using the Young tableaux. In this section we shall explain this
relation of crystal base and Young tableaux.

Let us define first Uy(gl,,). As a weight lattice, we take P = @}, Ze;. We
set I ={1,2,---,n — 1} and take &; — €;41 as a simple root a; (i € I). Let us
define the symmetric bilinear form on P by (e;,¢;) = 6;;. We give the coroots
hi (i € I) by < h;, A >= (g; — €i41, A). Let us denote by U,(gl,,) the quantized
universal enveloping algebra associated with these data.

Set Aj=e1+---+¢j (1 <j<n). Then < hi,Aj >=0;; (tel,1<j<n)
and we have

n—1
Py ={\€P;(h,\)>0forany i€ I} = Zxoh;+ ZA,.
i=1
Since < h;, Ap, >= 0 for every ¢ € I, V(mA,,) is a 1-dimensional U, (gl,,)-module.
Since V(A) = V(A+mA,) @V (—mA,,), we shall study only V() with A € Py =
Bi1Z>0A;.

5.2. The vector representation. The representation V(A;) of U,(gl,) is
n-dimensional and called the vector representation. It is explicitly given as
follows:

via) = & Kil,

q(h) — q<h,s,->,
ejli] 8jiali—1],
Hlil = e fi+1].

The vector is a highest weight vector. The base {;i =1,---,n} forms a
crystal base of V(A1) and its crystal graph is:

B(A1) :[1]2[2] 2 - "B [n].

Remark that wt((i]) = e;.

5.3. Fundamental representation. The representations V' (A;) are called
the fundamental representations. We shall describe B(A;) by embedding it into
the tensor product of copies of B(A1). Let us consider the vector ®- . ® in
B(A1)®!. Then it is a highest weight vector of weight A;. Hence by Theorem 4.3,
B(A;) is isomorphic to the connected component of B(A;)®? containing | 1|®
e ® . This component can be described as follows.
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PRroroSITION 5.1. By the isomorphism above,

B(Ai)g{@)"'@EB(A1)®i;1§a1<a2<"'<ai§n}.

We shall write ®:® € B(A;) by . Hence the highest weight

vector up; corresponds to

5.4. General representations. We shall recall that A € P, = Yoy ZisoA;
corresponds to the Young diagram as follows. For A = Y7 | A\;A;, we associate
the diagram Y (X):

e | | |
NN

A2

S
An

This is a Young diagram, i.e. it consists of n rows of blocks whose lengths (> 0)
are decreasing (in the generalized sense). The length of the i-th row of Y (A) is
Ai + -+ -+ An- Equivalently, Y'(A) has A; columns of length .

ExXAMPLE 5.1. The Young diagram Y (3A; + 2As + A3) is

We embed B(}) into B(A1)®* ® ---® B(A,)®* by uy — uff’f‘l ®--- ®u§’:‘".
Since B(A;) is embedded into B(A;)®?, B()) is embedded into B(A;)®N with
N =>"i\;. We denote the vector
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U1,1 - QUi n, OU21 Q- QU2 AR - RQUp1 @+ U,
€ B(A))®M ® - -- ® B(A,,)®*»

as (representing each u; ; by a column with numbers)

U2,1 |U1,)\, U1,

Un, A,

This is to translate the English writing order into the Japanese writing order (of
course the Japanese order followed the Chinese order). This is a Young diagram
Y (A) whose blocks are filled with positive integers at most n. We call such an
object a Young tableau with shape Y (A).

EXAMPLE 5.2. For A = Ay + Az + A3, the vector ®®®®®@

is written in the following Young tableau with shape Y (A).

4f2]1)
5|3
6

We call a Young tableau semi-standard if the numbers at blocks are strictly
increasing vertically and increasing horizontally (from the left to the right).

THEOREM 5.1 ([8]). By the above embedding, B(\) is identified with the set
of semi-standard Young tableaux with shape Y (X).

The action of &; and f; is described as follows. Set b = ® . -®. Then
é;b and f;b are obtained by the following procedure.
(i) Neglect the ay’s other than ¢ and ¢ + 1.

(ii) Neglect |i|® .

(iii) At the end of the procedures above, the vector is in the form ®
---®®®---® . Then, é; changes the most right ¢ + 1 to ¢
and ﬁ changes the most left ¢ to ¢ + 1. If such ¢+ 1 or ¢ does not exist,
then it changes the vector to 0, respectively.
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Observe that |i |® belongs to the trivial representation of U, (gl,);.

ExAMPLE 5.3. The following is a 1-string.

2]e[2]e[2]e[2] —
2]e[2]e[2]e[1] —
2le[2]e[le[1] —
2le[fe[ie[1] —
[elte[1]el] .

—— ——
EXAMPLE 5.4. Take b = ®® ® ® ® . Then, with respect

to 2 = 1, the parts under the braces may be neglected by the procedures (i) and
(ii). Hence the 1-string containing this vector is

[1]e[2]el1]s[4]e[3]e[1] —
[1]e[2]e[2]e[4]e[3]e[1] —
[1]e[2]e[2]e[4]s[3]e[2] .

= —_—
With respect to ¢ = 2, in ®® ®4|® ® , the parts under the

braces are neglected and the 2-string containing b is

Te@e@e@sElsm 2
[1]e[3]e[2]e[4]e[3]e[2] =
[eBle2]e[4]e[3]e[3] .
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EXAMPLE 5.5. Let us take g = gl;. The crystal graph of B()) for A =
2A1, A1 + As,2A1 + A, is as follows.

\2\\
B(2A4)
1] 1]
1] 2] 1] 1]
3
\2 /
1] 3] 1] 2]
2
1 2
2] 2] 1] 3
3 3
2 1/
2| 3]
3
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—

1 1]

/1_2\2

1] 1] 2| 1] 1] 1]
112 13
1] 2] 2| 1] 1] 3] 1] 1] 2|
2 L2 3
X o _2
1] 2| 3 1] 2] 2| 73]
2] L3 3
2 2 L
1 \ =
2
L3
1] 3| 3
3
X -
2| 3| 3]
3

B(2A1 + A»)

5.5. Littlewood-Richardson rule. After describing the crystal base in
terms of Young tableaux, we can calculate the decomposition of V' (A\) @V () into
the irreducible components and we obtain (an equivalent form of) the Littlewood-
Richardson rule. First we observe the following two properties.

(5.1) wuy ®|1i|is a highest weight vector if and only if the diagram Y (\) + 4
(the diagram obtained from Y'()\) by adding one block at the i-th row)
is again a Young diagram.

In this case, the weight of uy ®|i|is A + &; and it is represented by the Young

diagram Y(A) + ¢

(5.2) uy ® by ® -+ Q by is a highest weight vector if and only if

uy ® by ® - -- ® by, are highest weight vectors for all k£ <.

By those observations, we obtain



22 MASAKI KASHIWARA
THEOREM 5.2 (T.NAKASHIMA[9]). For A\,u € Py
VN @V(p) =aeV(A+ €ajy +-0 F 604‘N) :

Here N = Y .ip; and the direct sum ranges over ® e ® € B(u) C
B(A1)®N such that all Y(N) + asy, (Y (A) + as,) + ai,, - -+ are Young diagrams.

EXAMPLE 5.6. Consider the case g = sl3, A = As, p = A1 + As. We have

00~ (0 B B G B B 6 B
((H+1)+1)+2 (B]+1)+2=B:D+2=BE']

(( H-&- 2)+1)+2 ( Hj +1)+2 and Hjis not a Young diagram.

Continuing this procedure, B(u) , , give the contributions to
2 2 3

the irreducible decomposition and we obtain

H@BH=BE']@@E|@_II

Here we identified a Young diagram with the corresponding irreducible repre-
sentation.

So far, we discussed the gl,,-case. The crystal bases in the other classical Lie
algebras sp,,, 50, are also described by variations of Young tableaux (see [8]),
and the Littlewood-Richardson rule is also generalized to those cases (see [9]).

6. Path description of crystal bases for affine algebras

In the affine case, we can describe the crystal graph for modules in O;y,; by
using paths. This construction is motivated by the study of solvable models,
and in fact it enables us to calculate one-point functions of the solvable models
as string functions of the representations. We shall explain here only the case of
basic representations of 57[2. For other cases and one-point functions, see [12, 13].

6.1. Uq(g[g) and qu(f:\[Q). We take the data as follows. Set I = {0,1},
P =7ZAy®ZA ®Z65, and let hg, hy,¥ € P* be the dual base of {Ag, A1,d}.
We set ag = 2A¢g — 2A1 + 6 and a3 = 2A; — 2A9. We take a symmetric bilinear
form (-,-) : P x P — Q so that (ag,a0) = (a1,a1) = 2, (ag, 1) = —2. Hence
(a0, Mo) =1, (a1,A0) = 0 and we can choose (Ag, Ag) as we like. The associated
quantized universal enveloping algebra is denoted by U, (;[2) We denote by
U (;’ (;[2) the quantized universal enveloping algebra associated with P, = P/Z¢
( hence P} = Zho+ Zhy C P*). Then we have

Uy(sly) = UZ(slz) ® K[g(9), q(9)1].
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6.2. 2-dimensional representation of U¢! (;[2) The algebra U, (f?[g) does
not have finite-dimensional representations except trivial ones. However, U, qu (;[2)
has many finite-dimensional representations. In fact we have a ring homomor-
phism

Ut (sly) = Uy(sly)

by
e, fi = f,
el:fO = e,
to — t b,
t1 — t.

Let V be the two-dimensional representation of U¢ (sAlg) induced by the Ug(sls)-
module V(1). Then V = Kug ® Kuy with

a(hyug = gh-Ar=Rolyy,
a(hyuy = ¢PRo=My,,
eour = fiur = upt1,
eiur = four = Up—1.

Here we understand u_; = uz = 0. Hence B = {ug, u1} gives a crystal base of
V and its crystal graph is

1
Ug == U3
0

6.3. Path description. The key fact is the following proposition.

PrOPOSITION 6.1 (K.MISRA-T.MIWA[10]). There are unique isomorphisms
of crystals (see §7)

sending upr, and up, to up, @ ur and up, @ ug, respectively.
Then for any integer n we have a chain of isomorphisms

v, : B(AO)C}%)B(AI) ®B<I>;®>BB(AO) ®B®B = ... = B(Ao) ® B®?"
) 1

We have ¥,,(ur,) = ur, ® (ug @ u1)®". Set
(n) ug if n is even,
n)=
Po uy if nis odd.

For b € B(Ay), if we take n large enough, then ¥, (b) has the form up, ® bap, ®
-++®by. Then for n' > n we have ¥,/ (b) = up, ® (ug ®u1)®(””") Qb ®---Rb;.
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Hence associating with b the sequence {b1,--- , ban,pg(2n +1),p,(2n + 2),--- },
we obtain a bijection

B(Ag) = P = {{p(n)}n=1,2,; {p(n)} is a sequence in B
such that p(n) = py(n) for n > 0}.

Thus B(Ag) is described by a space of paths in B.
REMARK 6.1. We have an isomorphism of crystals
B(Ao) = B(Al) R B.

But we have no U (ﬁg)—linear homomorphism V(Ag) = V(A1) ® V. In order
to get such a homomorphism (called vertex operator, see [16]) , we need a
completion of V(Ag) and V(A;).

7. Category of crystals

There is a way of describing crystal graphs for an arbitrary U,(g). In order to
explain this, we need to introduce the notion of crystals obtained by abstracting
the properties of crystal graphs associated with integrable U, (g)-modules.

7.1. Tensor Category. Let us recall briefly the definition of a tensor cate-
gory (see e.g. [29] for the details). Let C be a category with a bifunctor

CxC3XxY— XQ®Y €eC.
Moreover we are given a functorial isomorphism
S(X,)Y,2): ( X®Y)®Z S5 X® (Y ®2)

in X,Y,Z € C. We assume that the following diagram is commutative for any
X,)Y,Z,WeC.

S(X,Y,2)@W S(X,Y®Z,W)
(X@Y)RZ2) W — (XR(Y®2)W — Xe(Y®Z)W)

S(X®Y,Z,W) X®S(Y,Z,W)

S(X,Y,ZQW)
(X®Y)®(ZW) — XR(Y®(ZW))

This axiom guarantees that X; ®---® X, is well defined for X;,... , X, € C and
(X1® - ®Xy)® (Xgy1 ®---®X,,) is canonically isomorphic to X1 ® - -+ ® X,,.
An object 1 € C is called a neutral object if we have functorial isomorphisms
a(X):1®X - X and B(X) : X ® 1 = X such that

a(X®Y) = aX)®Y : 18 XY 5 XY,
BX®Y) = X®B(Y): X@Y®l—>X®Y and
aX)®Y = XoB(Y): X®leY 5 XaY.

A neutral object is unique up to a canonical isomorphism.
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7.2. Category of crystals. We keep the notations in §2.1. Let us construct
the tensor category C of crystals. An object of C, called a crystal, is a set B
endowed with

wt:B — P
g:B — ZU{-o0}
pi:B — ZU{—o0}

and
fi:B — BuU{0}.

Here —oo is the smallest element of Z U {—oc} and 0 is a ghost element. We
assume the following axioms.

(7.1) i (b) = &;(b) + (h;,wt(b)) for any i (cf.(4.3)).
(7.2) If b € B satisfies ;b # 0, then

gi(€:b) = g;(b) — 1,

pi(€ib) = pi(b) +1,

wt(€;b) = wt(b) + a; (cf.(4.3)).
(7.3) If b € B satisfies f;b # 0, then

ei(fib) =&i(b) +1,

i(fib) = pi(b) — 1,

wt(fib) = wt(b) — a; .

(7.4) For by, by € B, by = f;by if and only if by = &;b.
(7.5) If @;(b) = —o0, then &b = f;b =0.
Here we understand —oo + n = —oo for any integer n.

Note that a crystal base of an integral U, (g)-module satisfies these conditions.
Let B; and By be two crystals. A morphism ¢ : By — By is a map 9 :
B; U {0} — By U {0} satisfying the following properties.
(7.6) ¥(0)=0.
(7.7) If 4(b) # 0 for b € By, then
wi(4(b)) = wt(b),
gi(1h(b)) = €i(b) and
@i(4(b)) = i (b).

(7.8) For b € B; such that v¢(b) # 0 and v(€;b) # 0, we have
P(€:b) = Ep(b).
(7.9) For b € By such that 1 (b) # 0 and ¢(f;b) # 0, we have

P(fib) = fip(b).
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It is easy to check that a composition of two morphisms of crystals is again a
morphism of crystals. Thus, we defined the category of crystals.

7.3. Tensor Product of crystals. As in Theorem 4.1(ii) and (4.5), we
define the tensor product B; ® Bz of two crystals B; and Bs. As a set, By ® By
is the set {b; ® ba; b1 € B1,bs € Bo}. We define

wt(by ® ba) = wt(by) + wt(b2),

Ez'(bl ® b2) = max (E,’(bl),Ez’(bg) — <hz,Wt(b1)>) s
@i(b1 ® by) = max (@i (b1) + (hi, wt ba), i(b2))
.5y  by) = {éibl @by if giby) > €i(b)

by ® €;by  if p;(b1) < ei(b2),
5 fibi @ by if i(b1) > &4(b
fi(b1 ® b) = f1®~2 f§0(1) €i(ba)

b1 ® fiba if @i(b1) <ei(b2).

Here we understand b; 0 = 0®bs = 0. It is easily checked that B; ® B, satisfies
the axiom of crystal, and (B;, B2) — B; ® Bs defines a bifunctor C x C — C.
The next lemma assures that C becomes a tensor category.

LEMMA 7.1. Let By, By and B3 be three crystals. Then (B; ® Bs) ® B3 —
B; ® (B3 ® Bs), given by (b; ® bs) ® by — b1 ® (be ® b3), is an isomorphism of
crystals.

7.4. Reversing arrows. For a crystal B, let us denote by BY the crystal
obtained by reversing the direction of arrows. Namely, BV = {b¥;b € B} with

wt(dY) = —wt(b),
ei(b¥) pi(D),
@i(bY) gi(b),
ei(bY) (fib)",
() = (&b)".

This corresponds to the following ring automorphism of Uy (g) :

q(h) ~ q(=h),
f’i;

€;.

\

€

fi

I

We have

(7.10) (B, ® B,)Y = By @ BY .
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7.5. Examples. Let us give several examples of crystals.
ExaMPLE 7.1. For A € Py, B()) is a crystal. More generally, the crystal base
of an integrable U,(g)-module is a crystal.

EXAMPLE 7.2. For A € P,, we set B(—\) = B()\)V. Then B(—)) is regarded
as the crystal base of the integrable U, (g)-module V(—\) of lowest weight —A.

EXAMPLE 7.3. Ty (A € P).
T)\ = {t)\} with Wt(t)\) = )\, Ei(t)\) = (pi(t,\) = —0Q, éit)\ = fit)\ = 0. We have

(711) TheT,=Tryy, forApeP.
(7.12)  For any crystal B, To®@ BB Ty =2 Bbyto®b++ bRty + b.

Hence Ty is a neutral object of the category of crystals.
EXAMPLE 7.4. B; (i € I)

B; = {bi(n);n € Z} and
wt(bi(n)) = na;,

5(bs(n)) = {::o jZZ
j(bi(n)) = {T_Loo j;i
€jbi(n) = {Zi(nJr ! j ; z
Fibi(n) = {g"(n Y j Zi

We denote b; = b;(0). The associated crystal graph is
B b (1) D bi(0) D bi(—1) B -+
We have
(7.13) T\®B;=2B;®T,,x» for i€l and A€P
Here s;A = A — (h;, A)a;. The isomorphism is given by
ta ® bi(n) «— bi(n + (hi, \)) @ ts;x -

7.6. Various Notions. We call a morphism v : By — B strict if 1 com-
mutes with the &;’s and the f;’s. If the associated map By LI {0} — B, LU {0} is
injective, we say that 1 is an embedding and call By a subcrystal of Bs.

We call a crystal B semi-normal if €;(b) = max{n > 0;é"b # 0} and ¢;(b) =
max{n > 0; f*b # 0} for any b € B and i € I. It means that B considered as
a crystal over U,(g);, is isomorphic to the crystal associated with an integrable
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U,(g)i-module. The crystals B(A\) and B(—\) are semi-normal but Ty and B;
are not semi-normal.

If B is a subcrystal of By and if B; and Bs are semi-normal, then By 2
B]_ L (BQ\BI)

For a crystal B and a subset J of I, let us denote by ®;(B) the crystal B
regarded as a crystal over Uy(gy) (see §4.6). Then we can show the following
proposition.

PROPOSITION 7.1. For any crystal B, the following two conditions are equiv-
alent.

(i) For any finite subset J of I such that ((as, Oéj))z.’je.] is a positive-definite
symmetric matriz(i.e. g, is finite-dimensional), ® ;(B) is isomorphic to
the crystal associated with an integrable Uy(g;)-module.

(ii) The condition above is satisfied for any J C I with at most two elements.

We call a crystal B normal if B satisfies the equivalent two conditions above.

8. Crystal base of U, (g)

8.1. Crystal base of U, (g). Similarly to V(}), U, (g) has a “crystal base”.
This is in fact derived from the crystal base of V() as its limit when A tends to
the infinity.

For A € P,, there is a surjective U, (g)-linear homomorphism
(8.1) Uy (g) = V()

by mA(P) = Puy.
For { € Q- =" Z<poy, we set

Uy (9)e = {P € U, (8); a(h)Pa(h) " = ¢ P}.
Then U, (g) = . % U, (8)e and 7z(U, (8)¢) C V(M)aye. The kernel of my is
€Q-

> U,;(g)fipr(h"’)‘). Therefore, if (h;,A\) > 0, then U, (g)e = V(A)rye is an
isomorphism. Hence we may regard U, (g) as the limit of V() when (h;, A)
tend to the infinity. In order to see what happens when we change A, let us take
u € Py and study the relation of 7y and mx4,.

There is a unique Uy (g)-linear map Sx,, : V(A+p) = V(A) ®V (1) that sends

Urtp — Ux @ uy. Let p, : V() - K denote the K-linear map that sends u, to
1 and V(p)y (n # p) to 0. Then the diagram

Us(g) 2HVO+m)2% V) eV

q

lm  PAu lV()\) ® pu

V(N VIO)® K
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commutes. In fact this follows from the fact that all the arrows are U, (g)-linear.
Then Sy, sends L(A + p) into L(A) ® L(p) and V(A) ® p, sends L(A) ® L(p) to
L(X). Moreover those homomorphisms send a crystal base to a crystal base (or
0). Moreover they commute with f; (in fact f;(b®wu,) = fib®wu, or b® fiu, and
they are sent to f;b or 0 by V(\) ® p, accordingly). Thus, px i, : V(A +p) =
V(A) sends L(A + p) to L(A) and induces morphisms of crystals B(A + p) —
B()\) ® B(u) = B(\) ® T}, This morphism commutes with the f;’s but not &s.
Thus tending A to the infinity we obtain

THEOREM 8.1 ([3]). There is a unique local base (L(oc), B(oc)) of U, (g) with
the following properties.

(8.2) ma(L(00)) C L(A) and @\ (B(o0)) C B(A) U0 for any A € Py,
(8.3) B(o0) has a structure of crystal such that B(oco) — B(A) @ T_»
(b mA(b) ® t_y) is a morphism of crystals for any X € Py,

(8.4) B(o0) = B(\) @ T_x commutes with f; for any X € Py,
(8.5) fiB(o0) C B(c0),
(8.6) {b € B(c0);7x(b) # 0}1>B()\) is bijective for any \ € Py.

Hence B()\) may be regarded as a subcrystal of B(co) QT by B(A) 3 7 (b) <
b®tx € B(oo) ® Th. Then B(A) < B(oo) ® T commutes with the é;’s (but not
fi’s). Its image will be given in Proposition 8.2.

Let us denote by us, the element of B(co) corresponding to 1 € U, (g). Hence
we have Ty (Ueo) = Un-

REMARK 8.1. For b € B(c0), we have
g;(b) = max{n > 0;€;'b # 0} .
However, ¢;(b) may be negative (e.g. ¢i(fitioo) = —1). Also note that
(8.7) {b€ B(0);€;(b) =0 foreveryi € I} = {uco}-

8.2. Description of B(co). In order to describe B(o0), let us first show
that B(oco) is embedded into B(00) ® B; (Uoo — Uco @ b;) for any i. This can be
explained as follows.

Take A; € Q ® P such that (h;,A;) = 6;; for every j € I. Take b € B(00).
Take A € Py such that (h;,A\) = 0 and (h;,A) > 0 for j # i. Take N > 0
such that NA; € P. Let by ® b € B(\) ® B(NA;) be the image of b by the

composition B(oo)hﬂ)AiB()\ + NA;) = B(\) ® B(NA;). Take b’ € B(00) such
that 75 (b') = b;. We can see easily that by, has the form f"una, and b’ and m
do not depend on the choice of N and A. Then b +— b’ ® f/™b; is in fact defines

a morphism of B(co) = B(o0) ® B;.
THEOREM 8.2 ([5]). There is a unique strict embedding of crystals
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that sends Uoo 10 Uso ® b;.

We can see by the similar argument

(88) B(co) ® B; = | | B(00) ® Tha,

where B(00) ® T, = B(00) ® B; is given by oo ® tna; — Uoo ® EFD;.

Now let us take a sequence i1,i2,--- in I such that {n € Zs¢;i = i,} is an
infinite set for any ¢ € I. Then we have

U, :B(o) “3B(c0)® By, 223" B(oo) ® Bi, ® Bi,

— -+ > B(0)®B;, ®---Q By,

For any b € B(0), if we take n > 0 then ¥, (b) has the form uq, ®Ji-“n" bi, ®--®
fi“llbil. Set @ =0 (m > n). Since ¥y (b) = U0 @b, @ -+~ D bi, 41 @ ﬂ-‘;"bin ®
- ® ffll b;, for n' > n, the sequence {a;,as ---} is independent of the choice of
n. Thus we obtain an embedding

U : B(00) = {(an)n>o0; (an) is a sequence of non-negative integers
such that a, = 0 for n > 0} .

This gives a description of B(oo). This description depends on the choice of a
sequence {i1, 42, - }. The map ¥ is injective but we don’t know the image of ¥
in general.

ExaMPLE 8.1. For g = sl3, I = {1,2}, if we take iy = 1,i3 = 2,i3 = 1, then
the image of ¥ is the set of (a,) with

as > az and a, = 0 for n > 3.

8.3. x-operation. Let * : U,(g) — U,(g) be the anti-automorphism given
by

a = g
e; e
i fi

Then * sends U, (g) to U, (g) -

THEOREM 8.3. L(00)* = L(00), B(00)* = B(0).
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We shall set

&) = (&))"
fi) = (f")
gi(b) = &(d)

pi(d) = @)

Then it gives another crystal structure on B(oo). This can be explained also by
¥, : B(oo) — B(o0) ® B; as follows.

PROPOSITION 8.1. For b € B(oo), set ¥;(b) = b' ® f™b;. Then we have

(8.9) ei () =0,
(8.10) er(b) =m,
(8.11) T;(fib) =b' @ fm+h;  and
e VR ifm >0
(8.12) W, (e5h) = { 0 Fmo.

Hence the image of ¥; : B(co) — B(o0) ® B is {b® f'b; € B(c0) ® B;; n >
0, £7(b) = 0}. We have also

PROPOSITION 8.2. For any XA € Py, the image of B(\) < B(o0) ® T is

{b®txr € B(co) @ T, ; €f (b) < (hs, \) for anyi € I}.

REMARK 8.2. By Proposition 8.1, & and f; commutes if i # j, but & and f;
do not commute (cf. §9.3).

REMARK 8.3. Similarly, U} (g) has a “crystal base”. We shall denote it by
(L(—0), B(—=00)). We have B(—0) = B(00)V as a crystal. We set u_oo = oo,
which corresponds to 1 € U (g)

9. Crystal Base of Modified quantized enveloping algebras
9.1. Modified quantized enveloping algebra. Let U,(g)ay be the left
U,(g)-module with the defining relation g(h)ay = ¢‘»* ay. Set

U,(9) = A Uy(g)ax

and we endow the U, (g)-bimodule structure on U,(g) as follows:

(9.1) For £ € Q = ®Za; and
R e Uy(g)e = {R € Uy(9); ¢(h)Rq(—h) = ¢ R for any h € P*},
a)\R = Ra)\_g .
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Moreover U, (g) has the ring structure satisfying

(9.2) axay, = (5)\,Na,\ .
(9.3) (uP)v = u(Pv) for u,v € U,(g) and P € U,(g)-

For any integrable U, (g)-module M, U, (g) operates on M such a way that ay
is the projection operator to the weight space M.
We have

Uq(g) = ?ep a/\Uq(g)au-
ATpEQ

9.2. Crystal base of U,(g). We shall show that U,(g) has also a “crystal
base”. The reasoning is similar to the U, (g)-case. Take A € P and choose
¢, € Py such that A = { — p. Then we have a Uj,(g)-linear homomorphism

et Ug(@ar = V() @ V(—p) by ax — uc @ u_y.

Here V(—p) is the irreducible integrable U,(g)-module with lowest weight —pu.
Hence V(—p) = U,(g)u—, with the defining relations: g(h)u_, = ¢ *u_,,
fiuo, = 0, el "My = 0. Then m¢,, is surjective. For £ € Py we have a
commutative diagram.

Uygay, ——— VC+E@V(—p—8)
la
V() ® V(€)@ V(=€) @ V(—p)

s
V() @V(-p)
Here « is given by the U,(g)-linear homomorphisms V(¢ + §) = V({) ® V()
(ugre = uc®@ug) and V(—p—§) = V(=) @ V(—p) (u—p—g = u—¢ ®u—_y). The
morphism £ is given by a unique U, (g)-linear homomorphism V() @V (-¢§) - C
(ug ® u_g = 1). In the level of crystals, a and § induces

BA+§®B(-p—¢§) — B(A)®B(£) ©B(-=£) @ B(—p)
— B(A) ® B(0) @ B(—u),
=~ B(\) @ B(—pu).

Here B(£§) ® B(—£) — B(0) = {uo} is given by

uo if by =ug and by = u_¢,

b @by
0 otherwise.
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We can easily see that they are strict morphisms of crystals. This gives the
following

THEOREM 9.1 (G.LUSZTIG[28]). For any A € P, there exists a unique local
base (L(Uy(g)ar),B(Ug(g)ar)) of Ug(g)ax that satisfies the following properties.
(i) For any (,pu € Py with A =( — p,

eu(L(Ug(g)ar)) € L(Q) ® L(—p)

and the induced map ¢,

L(Uq(g)axr)/aL(Uq(g)ax) = (L(C)/qL(C)) @ (L(—p)/qL(—p))
satisfies
e (B(Uq(g)ar)) € B(¢) ® B(—p) U{0}.
(ii) There is a structure of crystal on B(Ug(g)ar) such that @¢, gives a

strict morphism of crystals from B(Uy(g)ar) to B(() @ B(—p) for any
(€ Ppowith A= — p.

Set (L(U,(g)), B(U,(9))) = ® (L(U,(g)ar), B(U,(g)ay)). Let us remark that

B(U,(g)) is normal (see §7.6).

For ¢,u € Py, we have B({) — B(oco0) ® T¢ and B(—p) — T, ® B(—00).
Hence B(¢) ® B(—p) — B(o0) @ T¢—,, ® B(—00). Thus fixing A =( — p € P}
and letting ¢ and p tend to infinity, we obtain

THEOREM 9.2 ([7]). B(U,(g)ar) = B(00) ® T\ ® B(—o0) as a crystal.
This is compared with
(94) Uy(g)ar = Uy (9) @ Kax @ U, (g) -

9.3. Crystal structure over g @ g. As U,(g) has a U,(g)-bimodule struc-
ture, it may be regarded as a U,(g & g)-module. Similarly, we can extend the

crystal structure on B(U,(g)) to a crystal structure over g & g.
Let * be the anti-automorphism of U,(g) given by

*

qa = g,
ay = a-x,
(Pu)* = wu*P*, (uP)* = P*u* foru € U,(g) and P € U,(g).

Then we can show

TueoreM 9.3. (i) L(U,(g))*
(i) By the identification B(U,(g))

R

L(U,(g)), B(Uy(9))* = B(U,(9))-
@ B(x0) @ Th ® B(—), we have
AEP
(9.5) (b1 ®tA ®b2)" = b] @1\ wtb; wtby @ b3

for by € B(c0) and by € B(—0).
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Now setting

g;(b) = &(d")
ei(b) = i(b")
&) = (&))"
i) = (fi)”
wt*(b) = —X for be B(Uy(g)anr),

we obtain another structure of crystal on B(U,(g)). These two crystal structures
are compatible (i.e. &f, f : B(U,(g9)) = B(U,(g)) is a morphism of crystal), so

that B(U,(g)) may be regarded as a crystal over g @ g.
Let us denote by T the (integral) Tits cone, i.e.

T = W-P,
= {A€P;(a,A) <0 only for a finite number of positive roots a} .

Here W denotes the Weyl group. Set
Br(Uy(g)) = {b € B(Uy(g)); wt(b), —wt*(b) € T}.

Then we have a Peter-Weyl type theorem (also see Problem 1 in the last section).

THEOREM 9.4 ([7]).

(9-6) By (U, () = NS B(A) ® B(-4)

as a crystal over g & g.

Regarding P@® P as the weight lattice of g g, B(\) ® B(—\) means B(A®0)®
B(0®(—X)). Hence B(A)® B(—A) is identified with {b;®b,; by € B()\) and by €

B(—\)}, and é; and f; act on the first factor and & and f* act on the second
factor, and €;(b1 ® ba) = €;(b1), €} (b1 ® ba) = €;(b2), etc.

10. Littelmann’s path realization

P. Littelmann ([17, 18]) gave a way of describing B(A) in a geometric way. Let
us explain it briefly. Set Pr = R ®z P. A path is a piecewise-linear, continuous
map from [0,1] to Pr. We consider it modulo parameterization (i.e. 7 = mo ¢
if ¢ : [0,1] — [0,1] is a piecewise-linear continuous increasing surjective map).
Remark that 7 may be not injective. Let us denote by P the set of paths 7 such
that w(0) = 0 and 7(1) € P. He defined a crystal structure on P as follows. For
m € P, we set wt(m) = w(1). For i € I, let us set

h =inf(Z N {{h;, 7 (t));0 <t < 1}) <0.
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We set g;(w) = —h. If g;(r) = 0 then &b = 0. If g;(w) > 0, let us take the
smallest ¢, > 0 such that (h;, 7(¢1)) = h. Let to < t; be the largest number such
that (h;,m(tg)) = h + 1. Then we define

(1)
(t) — (hi,w(t) — 7T(t0)>01i for to S t S tl
w(t) + a; fort; <t < 1.

7r for 0<t<to
™

(&m)(t) =

Hence the part to < t < t; of the path 7 is reflected along the hyperplane
{A\ € Pg;{hi,\) = h+ 1} and the part ¢; < ¢ < 1 is parallel translated. We set

fnr = (éi(ﬂv))v ,
pi(m) = ei(r”) = (hi,m(1)) = h.
Here 7V is the reversed path [0,1] 3 ¢t — m(1 —¢) — m(1).
Then we can see easily

LeMmMA 10.1. The data above define a structure of crystal on P.

Remark that P is a semi-normal crystal. Let * : P x P — P be the map given

m1(2t) 0<t<1/2,

(m1 *m2)(t) = { m(l) +ma(2t—1) 1/2<t<1.

The following is also easy to prove.

LEMMA 10.2. 11 ® w1y — 1 * Ty gives a morphism of crystals from P ® P to
P.

Now we can state the result. For A € P, let m) be the straight path joining 0
and .

THEOREM 10.1. For A € Py, there is a unique morphism of crystal from B(X)
to P sending uy to wx. By this morphism, B()) is isomorphic to the connected
component of the crystal P containing .

The image of B(\) — P is explicitly described (referred to as Lakshmibai-
Seshadri paths) in [17].
11. Weyl group action on crystals

Let B be a semi-normal crystal (see §7.6). For i € I, we define the automor-
phism S; of the set B by

Gp {f,-WvW“’)b if (h, wt(b)) >0

11.1
(L) g~ (hiwto) b if (hy, wt(b)) < 0.

This is visualized as
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S
S;
o, -0 . - -0 -0
Hence we have
S? =id
We have
(11.2) wt(S;b) = s;(wt(b)) .

Here s; is the simple reflection s;(A) = A — (h;, A)a; . Let W be the Weyl group,
i.e. the subgroup of GL(P) generated by the s;’s.

THEOREM 11.1 ([7]). If B is a normal crystal, then there exists a unique
action S : W — Aut(B) of W on the set B such that Ss;, = S; for any i € I.

We have
(11.3) wt(Swb) = w(wt(b)) for any w € W, and b € B.

REMARK 11.1. Even if wa; = a;, Sy 0 €; = €; 0 Sy, does not hold in general.

12. Global bases

12.1. Introduction. So far, we discussed crystal bases, which is a local base
at ¢ = 0. In fact, starting from this we can construct a true base of the repre-
sentation V().

This is based on the following observation.

12.2. Balanced triple. Let k be a field and K = k(q). Let A = {f(q) €
K; f is regular at ¢ = 0} and A = {f(q) € K; f is regular at ¢ = co}.

Let V be a K-vector space. We regard V as the space of meromorphic sections
of a vector bundle on P! = Spec(k[q]) U Spec(k[g~!]). Then a local base (L, B)
at ¢ = 0 defines the vector bundle on a neighborhood of ¢ = 0 and a base of the
stalk of the vector bundle at ¢ = 0. If we can extend this vector bundle globally
to P! and if this vector bundle is trivial, then any section at ¢ = 0 uniquely
extends to a global section. This gives a base of V' as a K-vector space.

More precisely, let L be an A-lattice of V, L, an Axo-lattice of V and Vi, 4-1
a k[g,q ']-lattice of V.
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PropOSITION 12.1. Set E = L N Lo N Vipg,q-17- Then the following four
conditions are equivalent.

(12.1) E — L/qL is an isomorphism.

(12.2) E — Loo/q 'L is an isomorphism.

(12.3) (L N Vig,g-11) ® (@ " Loo N Vig,g-11) = Vijg,q-1] 18 an isomorphism.
(12.4) A®E—> L Ax ®E — Lo, klg,q™ ]%E = Vilg,a-1] andK(%E -V

are zsomorphzsms.

In a geometric language, (L, Loo, Vi[q,q-1]) determines a quasi-coherent sheaf
VY on P!, and Vig,q-1] corresponds to the space of its sections over P\ {0, o},
E to the space of global sections, L/qL to the stalk at ¢ = 0 and Lo, /q™ ' Leo to
the stalk at ¢ = co. The kernel and the cokernel of the homomorphism in (12.3)
correspond to the 0-th and the first cohomology of V& Op1(—1). The above four
conditions are equivalent to the triviality of V.

DEFINITION 12.1. If (L, Loo, Vi[g,q-1]) Satisfies the equivalent four conditions
above, we call (L,L(X,,Vk[q,q_l]) balanced.

In such a case, let us denote by G : L/gqL — E the inverse of the isomorphism
n (12.1). If B is a base of L/qL, then G(B) becomes a base of V. We call it a
global base of V.

12.3. Global bases of V(A). Let us apply the arguments in the preceding
section to obtain a true base of V(X). Let Uy(g)gq,q-1] denote the k[g,q"]-
subalgebra of U, (g) generated by e\™, f™ q(h) and {q(r?)} (n>1,iel,he
P*). Let U (8)q,g-1] (resp. Uy (8)x[q,q-1]) denote the k[g, ¢~ ']-subalgebra gen-
erated by the egn)’s (resp. the fi(n) ’s). Then

Uq(@)kg,a-11 = Uy (@)kig,0-1] k[q(%’_llﬂc[q,q‘l] ® U;_(E)k[q,rl] .

Here Tyjq,4-1] is the k[g, ¢~']-subalgebra of K[P*] generated by ¢(h) and {q%z) }
Let — : U,(g) = U,(g) be the ring automorphism given by

- -1

q = q ,

€; €;,

fii = fia
qg(h)” = q(=h).

For A € Py, let —: V(A) = V() be the map Puy — Puy (P € U,(g)). This is
well-defined. Then L(A)~ is an As-module. Set

VMNrig.q=11 = Ug(@)kig.e-11ur = Uy (@)klg,o—11Ux-
THEOREM 12.1 ([8]). (L(A), L(A) ™, V(A)k[q.q-1]) @5 a balanced triple.
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Hence if we denote by G the inverse of the isomorphism L(A) N L(A)~ N
V(Nkfg,q-11 = L(A) /¢L(X), then we have

(12.5) VIA)= @& KGab).
beB(N)

We call {GA(b)}sep(r) the global base of V(X).

We have

(12.6) GA(b)” = Ga(b)

Similarly we have
THEOREM 12.2 ([8]). (L(00), L(00)™,U; (8)k(g,q-1]) s @ balanced triple.
Hence if we denote by G, the inverse of the isomorphism
L(00) N L(00)~ N Uy (@)kgg.g-1) — L(00)/aL(o0),
we have

(12.7) U-(g)= © KGuolb)
beB(o0)

We call {G(b)}seB(c0) the global base of U, (g)-
If we denote 7y : L(o0)/qL(c0) — L(\)/qL()\) the map induced by =y :
Uy (9) = V(A) given by mx(P) = Puy (see §8.1), we have

(12.8) Goo(b)ur = GA(7A(b)) for b € B(oo).
We have also

(12'9) Goo(b)_ = Goo(b)a
G = Gu(bY).

Similarly we can define the global base of (~Jq(g) We define the ring automor-
phism — of U,(g) by (Pay)~ = Pa, and set

0q(9)k[q,q—1] = )\GeaP Uq(g)k[q,q‘l]@\ :

TueOREM 12.3 (Lusztic[28]). (L(Uy(g)), L(Uy(9))~, Ug(@)k(g,-1)) is @ bal-
anced triple.

Hence U, (g) has also global bases.

EXAMPLE 12.1. If g = sly, the global bases of U, (g) is {f™;n > 0}.
ExAMPLE 12.2. If g = sl3, I = {1,2}, the global bases of U, (g) is

B A m 2 1} U ™ £75m > L n).

Note that fl(l) f2("+l) fl(") = fz(") fl("H) f2(l) and those bases are mutually distinct
except those cases.
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EXAMPLE 12.3. The global base of U, (sls) is given by

(12.10) fMeMa,  where (h,\) > m —n and
(12.11) eM Mg, where (h,\) <m —n
Remark that f(™e(May = e(® (Mg, if (h,A) =m —n.

12.4. Properties of global bases. The global bases of V' ()\) have good
properties.

LEMMA 12.1.
£GO) = [ei(b) + UG(fib) + > FiyG'),
g (b")>e; (b)+(hj i)
e;G(b) = [pi(b) + 1)G(ED) + > Ei, G .

0 (b)) > (b)+(hj,ai)

Remark that, as for the remainder terms G(b') (¢;(b') > €;(b) + (hj, i),
b’ belongs to an i-string whose length is greater than the length of the i-string
containing b.

LEMMA 12.2.
ffVA) = @ KG\(b)
ei(b)>m
esz()\) = @ KG\(b)
pi(b)>m

Let w € W be an element of the Weyl group. Then dim V' (\),,» = 1 and let
uwx € V(A)wx be a global basis. Then this is explicitly given by

Uy = fi((hi ') Ut \

if w=s;w,l(w) =1+I(w"). Here [ is the length function. This follows from
Lemma 12.1.
Now let w = s;, - - - s;, be a reduced expression. Then we can easily see

Uf@uwr= > Kf¥ - fiu,.
ai,...,a; >0
Set
Bw(A) = { Niail - ;,L;‘IU)\;GI, ...a; € Zzo}\{O} C B(A)

Then we have ([5])

THEOREM 12.4. Uf (g)uwr = @& KGx(D).
bEBw(A)
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Let < denote the Bruhat order on W. Then for w' £ w, we have
(12.12) By (A) C By(A).
Set By,(X) = By(X)\ Y By (A).
w'Sw

Then we have the decomposition (Littelmann[17])

(12.13) B(\) = U Bu(\).

The set By (\) has the following property. For any ¢ € I and any i-string
S C B(X), we have one of the following three cases :

(12.14) Bu,(\)DS.
(12.15) B,(A) NS ={o}.
(12.16) B,(A) NS consists of the highest weight vector of S.

The Demazure character formula is obtained easily from this fact (see [5]).

13. Problems

PROBLEM 1. Describe explicitly the crystal graph of B(U,(g)), when g is
affine.

By Theorem 9.4, if g is finite-dimensional, we have an analogue of Peter-Weyl
theorem:

B(T.(®) = & B()®B(-X

as a crystal over g @ g. In the affine case, we have a similar result for non-zero
level. More precisely, let ¢ € >, Z~oh; be a center of g (i.e.(c,;) = 0). Then
Theorem 9.4 implies

B(U,(9)) = B(Uy(9)), © B(Uy(9)), © B(Uy(a))_

where B(U,(g)), consists of vectors b such that (c, wt(b)) > 0,= 0, < 0 according
to x = +,0,—. Then

BO@).= & BN® BN
(c,A)20

as a crystal over g ® g. However, we know very little about the structure of
B(U,(8)),- (ct. [15)
PROBLEM 2. For \ € Py and £ € P, calculate det (Gx(b), GA(Y)), bEBO)”
There is a unique symmetric bilinear form (-,-) on V(A) such that

(ur,un) =1,
(eiu7 ’U) = (uv fiv)a
(a(h)u,v) = (u,q(h)v).
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Then for b,b' € B(A)¢, @pp (q) = (Ga(b), GA(b')) belongs to Z[g+ g~!]. Further-
more we have

We consider ¢ as a non-zero element of an arbitrary field K and U,(g) as an
algebra over K. Then the U,(g)-module V()) is not irreducible if and only
if ¢ is a root of det (G)‘(b)’G)‘(bl))b,b’eB()\)E = 0 for some £&. On the other
hand, V() is (believed to be) irreducible unless ¢ is a root of unity. Hence
det (G,\(b),G,\(bl))
power of q).

The similar and easier problem may be asked for the global base of U, (g)
and the Verma modules.

»p Must be a product of cyclotomic polynomials in g (and a

PROBLEM 3. Has a crystal graph for non-symmetrizable g a meaning ?

The procedure in §8.2 is applied also to non-symmetrizable case. Namely
there exists a crystal B(oo) with an embedding B(co) — B(oo) ® B; for any i.
Hence B(\) — B(oc) ® T can be also defined. However U,(g) is not known for
non-symmetrizable g.

PRrROBLEM 4. Is there an analogue of crystal base and global base for the
g-analogue of other algebra cases 7

The Hecke algebra case is already known (Kazhdan-Lusztig polynomials).
Other cases such as generalized Kac-Moody Lie algebras of Borcherds are not
known, as far as I know.

BIBLIOGRAPHY

Articles on the general theory of crystal bases

1. M. Kashiwara, Crystallizing the g-analogue of universal enveloping algebra, Commun.
Math. Phys. 133 (1990), 249-260.

, Bases cristallines, C. R. Acad. Sci. Paris, 311 (1990), 277-280.

, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math.

J. 63 (1991), 465-516.

, Crystallizing the q-analogue of universal enveloping algebras, Proceeding of the

International Congress of Mathematicians, Kyoto, Japan, 1990, The Mathematical Society

of Japan (1991), 791-797.

, Crystal base and Littelmann’s refined Demazure character formula, Duke Math.

J. 71 (1993), 839-858.

, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), 455-485.

, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994),

383-413.

Articles on the relations of crystal bases and Young Tableaux for classical
groups

8. M. Kashiwara and T. Nakashima, Crystal graphs for representations of the g-analogue of
classical Lie algebras, Journal of Algebra, 165 (1994), 295-345.

9. T. Nakashima, Crystal base and a generalization of Littlewood-Richardson rule for the
classical Lie algebras, Commun. Math. Phys. 154 (1993), 215-243.



42

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

MASAKI KASHIWARA

Articles on crystal bases for affine Lie algebras and their path realizations

K.Misra and T.Miwa, Crystal base for the basic representation of Uy (sl2), Commun. Math.
Phys. 134 (1990), 79-88.

S-J. Kang, M. Kashiwara, K. Misra, T. Miwa, T. Nakashima and A. Nakayashiki, Vertez
models and crystals, C. R. Acad. Sc. Paris, t. 315, I (1992), 375-380.

, Affine crystals and Vertex models, International Journal of Modern Physics A
7, Suppl. 1A (1992), 449-484, Proceeding of the RIMS Research Project 1991 ”Infinite
Analysis”.

, Perfect crystals of quantum aoffine Lie algebra, Duke Math. J. 68 (1992), 499-607.
S-J. Kang, M. Kashiwara and K. Misra, Crystal bases of Verma modules for quantum
affine Lie algebras, Compositio Mathematica 92 (1994), 299-325.

M.Idzumi, K.Iohara, M.Jimbo, T.Miwa, T.Nakashima and T.Tokihiro, Quantum affine
symmetry in Vertex models, Int. J. Mod. Phys. A 8 (1993), 1479-1511.

For the relation of solvable models and quantized universal enveloping alge-
bras, see the following survey article.

M.Jimbo and T.Miwa, Algebraic analysis of solvable lattice models, CBMS Regional Con-
ference Series in Mathematics, 85, AMS.
Articles on Littelmann’s path realization

P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody Lie algebra,
Invent. math. 116 (1994), 329-346.
, Path and root operators in representation theory, Ann. Math. (to appear).

As for the canonical base of G.Lusztig, see the following book and the refer-
ences inside

G. Lusztig, Introduction to Quantum Groups, Progress in Math. 110, Birkhduser (1993).

As for the relation of crystal bases and Poincaré-Birkoff-Witt bases, see the
book of G.Lusztig and also

Y. Saito, PBW basis of quantized universal enveloping algebras, Publ. RIMS, Kyoto Univ.
30 (1994) 209-232.

As for the relation of crystal bases and monomial bases, see

Lakshmibai, Bases for quantum Demazure modules,II, in Algebraic groups and their gen-
eralization: quantum and infinite-dimensional methods, Proc. Symp. Pure Math., AMS,
56 (1994) 149-168.

The multiplicative structure of upper global base (i.e. the dual base of the
global base) in U, (g) is studied in

A.Berenstein and A.Zelevinsky, String bases for quantum groups of type A, in I.M.Gelfand
seminar, Part I, Advances in Soviet Mathematics, AMS, 16 51-90.

Other papers cited in this article

V.G.Drinfeld, Hopf algebra and the Yang-Bazter equation, Soviet Math.Dokl.(English
translation) 32 (1985), 254-258.

M.Jimbo, A g-difference analogue of U(g) and the Yang-Bazter equation, Lett.Math.Phys.
10 (1985), 63-69.



25.

26.
27.

28.
29.

ON CRYSTAL BASES 43

I.Grojnowski and G.Lusztig, A comparison of bases of quantized enveloping algebras, Con-
temporary Math. 153 (1993), 11-19.

G.Lusztig, On quantum groups, J.Algebra 131 (1990), 466-475.

Canonical bases arising from quantized enveloping algebras, J.Amer.Math.Soc. 3
(1990), 447-498.

Canonical bases in tensor products, Proc.Natl.Acad.Sci.USA 89 (1992), 8177-8179.
N.Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Math. 265, Springer,
(1972).

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KyoTO UNIVERSITY, KYOoTO, 606-01

JAPAN



